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Abstract

In the field of cranio-maxillofacial surgery, there is a
huge demand from surgeons to be able to automatically
predict the post-operative face appearance in terms of a
pre-specified bone-remodeling plan. Collision detection is a
promising means to achieve this simulation. In this paper,
therefore, an efficient collision detection method based on
a new 3D signed distance field algorithm is proposed to
accurately detect the contact positions and compute the
penetration depth with the moving of the bones in the
simulation, and thus the contact force between the bones
and the soft tissues can be estimated using penalty methods.
Thereafter, a nonlinear finite element model is employed to
compute the deformation of the soft tissue model. The per-
formance of the proposed collision detection algorithm has
been improved in memory requirements and computational
efficiency against the conventional methods. In addition, the
proposed approach has the superior convergence charac-
teristics against other methods. Therefore, the usage of the
collision detection method can effectively assist surgeons in
automatically predicting the pos-operative face outline.
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1. Introduction

Many cranio-maxillofacial surgical planning systems
(CSPSs) appear to be widely in use by surgeons in com-
puting an optimal plan and training for the purpose of
repeatedly practicing surgical procedures. However, in the
existing systems[1][2][3][4], the boundary conditions of
the biomechanical model, which affects the accuracy and
stability of the soft tissue deformation, must still be defined
manually by measuring the displacements of the bones in
terms of the bone-related planning developed by the surgeon.
Therefore, automatically estimating the boundary conditions
and predicting soft tissue deformations with respect to pre-
specified bone remodeling plans becomes highly desirable
in the CSPSs. Collision detection is a promising means to
achieve this simulation. Currently, deformable continuous
collision detection has been studied widely with the devel-
opment of surgical simulation, robotics and games. Some
methods based on bounding volume hierarchies(BVHs) or

spatial sub-division were successfully applied to the detec-
tion of the contact between surgical tools and an organ in
the surgical simulation[5][6][7][8].

However, for the craniofacial surgical simulation pre-
sented in this work, collision detection is not simply to detect
the touch of objects, instead, precise collision information,
e.g. penetration depth and normals, is required. Furthermore,
intersection regions between the bones and the soft tissues
are generally large. Therefore, the methods that have been
widely used in the surgical simulation are not appropriate for
this work, and an effective and efficient collision detection
algorithm is highly desired. Fortunately, the distance fields,
free from these limitations, can be applied in collision
detection, and the estimation of the penetration depth and
the normals needed for the biomechanical model of the soft
tissues is extremely fast and independent of the geometric
complexity of the object[7]. Fuhrmann[9] proposed a rapid
collision detection method based on the partial distance field.
This method is suitable to detect the contact between rigid
objects and highly deformable objects. However, it used
the uniform grid data structures resulting in huge memory
requirements. Frisken[10] proposed the adaptive distance
field technique. Their contribution is to reduce memory
requirements and represent complex shape in diverse scales.
However, this method increased the cost of more complex
storage and retrieval. These drawbacks hamper the distance
field from being applied in collision detection. Therefore
the efficient computation of the distance field for a given
surface representation is still a research topic. In this work,
we present an efficient method for computing the signed
distance field by combining Fuhrmannn’s algorithm[9] and
the adaptive sampling method[10], and an efficient collision
detection algorithm based on the proposed distance field is
employed to automatically estimate the penetration depth
and the contact force after the moving of the bones. The
proposed algorithm can help to achieve efficiently collision
detection between the bones (rigid objects) and the soft
tissues (deformable objects).
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Figure 1. Prism of a triangle mesh and the AABB of the
prism

2. Method

2.1. 3D Signed distance field

An efficient signed distance field algorithm is designed
by combining the partial distance field algorithm[9] and the
adaptive sampling algorithm[10]. It can generate a signed
distance field for the geometry with oriented triangle meshes,
and does not require a closed and 2-manifold surface. The
algorithm that is used to generate a signed distance field for
triangular geometrical model is summarized as follows:

(1) For each triangle of the surface of the geometrical
model, a prism is generated by moving its vertices along the
surface normal by an amount of ζ in negative and positive
direction (ζ is the assumed thickness of the distance field),
as shown in Figure 1.

(2) For each prism generated in step (1), the axis-aligned
bounding box(AABB) enclosing this prism is determined,
as shown in Figure 1.

(3) For all grid points inside the corresponding bounding
volume, the distances to the triangle of the surface are
computed, and the sign of the distance values are determined
by the sign of the angle weighted pseudo-normal. If the
calculated absolute value is less than the current value of
the distance field, the current value is set to a new value.

(4) A hierarchical octree is constructed to organize the
cartesian grid points of the distance field, and subsequently
an adaptive distance field is generated using adaptive, detail-
directed sampling method.

In the above algorithm, steps (1) and (2) are straightfor-
ward, while steps (3) and (4) relate to two key problems
which are the sign computation of the distance value and
the generation of the adaptive distance field. We describe
the efficient methods to address these two problems in this
section.

For a given point p, the minimum distance from p to a
triangle mesh can be calculated using the voronoi regions
of the features of the triangle. However, if the sign which
determines whether a point is inside or not simply results

Figure 2. The mesh feature closest to p is a vertex of
the triangle or a point at the edge of the triangle

Figure 3. The angle weighted pseudo-normal N

from the sign of the inner product of the face normal and
the direction vector (from point p to the closest point c on
the surface), which is presented by Fuhrmannn[9], it does
not work in many cases, because in some cases the closest
feature is a vertex or an edge, there is the same distance
to two or more triangles but the dot product of �d · �n1 and
�d · �n2 have different signs, as shown in Figure 2. In this
work, therefore, the angle weighted pseudo-normal, which is
guaranteed to have a positive dot product with the direction
vector whenever the point is outside and a negative dot
product whenever the point is inside[11], is employed to
address this problem. As shown in Figure 3, for a given
vertex v, the angle weighted pseudo-normal is defined as

�Nv =
∑

�niθi

‖ ∑
�niθi ‖ (1)

where{θ1, θ2, θ3, · · · } are the incident angles of point c, and
{�n1, �n2, �n3, · · · } are the normals of the incident faces.

In addition, for a given edge e, the pseudo-normal is
straight defined as �Ne =

∑
�ni. Let there be a given

grid point p, the distance to the triangle mesh is d =
infx∈M ||p−x||, and assume that c is a closest point in the
triangle mesh M , so that the distance is d = ||p−c||, and the
direction vector is r = p− c. Thus, the sign of the distance
value is given by sd = sgn( �Nv ·�r) or sd = sgn( �Ne ·�r),
which means that sd > 0 if p is outside the surface, and



sd < 0 if p is inside.
In order to perform the adaptive sampling approach, an

octree-based hierarchical data structure is used to store
the sampled data so as to process the sample data more
efficiently. First, an octree is built to store the regularly
sampled distance field generated in step 3, and then the
bottom-up approach is used to unite recursively leaf cells
within a specified error tolerance. Specifically, a group of
adjacent cells, starting with the smallest in the octree, is
coalesced as long as none of them has child cells and the
sampled distance of the eight cells can be reconstructed from
the sample values of their parent cells to a specified error
tolerance. Upon considering all the cells for coalescing at a
given level in the hierarchy, the group of cells at the next
level is considered. The adaptive distance field generation is
completed when the coalescence is finished at a given level
or the root node is reached.

2.2. Collision Detection and Penetration Depth
Computation

Collision detection between different objects is carried out
pointwise when using distance field. Vertices on the internal
surface of the deformable object (the soft tissue model) are
compared against the distance field of other objects (bones).
A collision occurs if the distance(D) is a negative value. An
adaptive distance field stores distance values at cell vertices
of an octree data structure and uses trilinear interpolation
for reconstruction and gradient estimation.

2.3. Penalty Force

We assume that the contact between the bones and the soft
tissues is frictionless, and thus the contact force is normal
to the surface. In the paper, the penalty-potential energy is
defined as a function of imposed displacements(penetration
depth d)

φ(d) = kcd
2 (2)

The external contact force is therefore computed as follows:

Fext
a =

∫
∂V (c)

∂φ

∂x
Nada (3)

3. Results

3.1. Prototype Implementation

The prototype system was performed on a workstation
with a Dual-Core AMD Opteron CPU 3.0GHz, with 4G of
RAM and a NVIDIA Quadro FX 5500 GPU. For concrete-
ness, the case of craniofacial dysostosis is used to describe
the prototype applied in the experiments, the objective of
which is to simulate correction of the craniofacial dysostosis

Figure 4. Results of soft tissue deformation based on
mixed-element modeling (a) pre-operative face config-
urations, (b) the predicted face configurations with the
bones of the mid-face moving 6mm forwards, (c) the
predicted face configurations with the bones of the mid-
face moving 12mm forwards and 5mm downward.

with mid-face distraction osteotogenesis. The implementa-
tion workflow consists of the following steps:(1) the 3D
geometric models, including the bone tissue models and
the soft tissue models, are reconstructed from CT data sets,
and the signed distance field of the skull-model is generated
following the proposed signed distance field algorithm; (2)
the bone cuts (osteotomies) are modeled with the help of a
craniofacial surgeon, and the required cut surfaces for defin-
ing the bone regions are interactively generated following the
anatomy structures. Thereby, the skull-remodeling plan and
the moving paths of the bones are computed; (3) the bones
move automatically following the moving path of the bone-
related plan. When the collision occurs, the contact nodes
and the penetration depth between the moved bones and the
soft tissues are computed using the proposed collision detec-
tion algorithm, and thus the penalty force of the soft tissue
model is computed in terms of the penetration depth of the
contact nodes; (4) the geometrical model and the boundary
conditions serve as input for our simulator, and We used
the nonlinear finite element method base on hyper-elastic
material model to simulate the behavior of the facial soft
tissue and to predict the new facial configurations. Figure 4
shows the predictive results under different displacements of
the bones.

3.2. Performance Evaluation

3.2.1. Collision detection. We compared our collision de-
tection approach to the two conventional methods: the



Figure 5. Comparison of Convergence rates.

fast partial distance field computation method using uni-
form grid data structure[9], and the adaptive distance field
technique[10]. A skull model with 96190 triangles is em-
ployed to test the performance of these methods. Table 2
shows the performance comparison results of the distance
field computation. The average memory requirements of our
algorithm decrease by 73% against the uniform grid method
(Fuhrmann’s method). Although, the distance field com-
putation time is slightly greater than Fuhrmann’s method,
the average computation time improves by 77% against the
adaptive distance field.

3.2.2. Numerical comparison of convergence. We com-
pared the convergence characteristics of the collision detec-
tion algorithm based on bounding volume hierarchies and
the proposed algorithm based on the signed distance field.
The surgical simulation, as shown in figure 4, is used to
test the convergence rates of the two algorithms. Figure
5 shows the comparison results of convergence rates of
the two algorithms. For the former, oscillation is evident
and the convergence speed is very slow. That is because
the contact forces change discontinuously in many cases.
Instead, for the latter, since the new adaptive signed distance
field can represent complex shapes with arbitrary precision,
the residual quickly converges to low states.

4. Discussion

The proposed method is successfully demonstrated in
a preliminary application to complex cranio-maxillofacial
surgery. Since the nonlinear finite element is much more
sensitive to the boundary conditions and the material pa-
rameters, the definition of boundary condition is a key
factor for the nonlinear finite element model. However,
it is difficult to define the boundary conditions for the
facial soft tissue model using such conventional methods

as manual measurement, registration due to the complexity
of the facial geometric structures, which is why many
research works[3] concluded that the nonlinear finite element
did not enhance significantly accuracy of the soft tissue
deformation. However, we employ an accurate collision
detection algorithm to estimate the penetration depth and the
penalty force, which successfully define boundary conditions
automatically. Therefore, the superior computational strategy
of the boundary conditions presented in this paper has great
significance to promote the development of the soft tissue
prediction systems based on bone-related planning. It not
only helps us estimate the contact forces between the bones
and the soft tissues automatically, but also improves the
accuracy and the efficiency of the surgical planning system.

5. Conclusion

This paper presents a novel method for assisting surgeons
in automatically predicting the new face configurations
based on a pre-specified bone-related plan. An accurate
collision detection method using the signed distance field
is the key technique in automatically predicting the cranio-
facial surgery. It performs the accurate contact handling be-
tween the bones and the soft tissues. When the bones move
following a pre-specified bone-related plan, this method can
automatically and dynamically detect the inter-penetration
depth and the contact normals between the moved bones and
the soft tissues. These inter-penetration depth and the contact
normals are needed for the biomechanical model of the
soft tissues. Moreover, the signed distance field computation
method is improved in both the computational efficiency and
the memory requirements. In addition, this work employed
a nonlinear biomechanical model for enhancing accuracy
and simulation realism required in the cranio-maxillofacial
surgical simulation.

For future work, we will further improve our method.
Although reducing the simulation time is not the goal of the
CSPS, it is necessary to optimize and improve the efficiency
of the biomechanical model analysis and collision detection.
Of course, the accuracy has been a key issue to enable the
clinic practice of this method. Therefore, the biomechanical
model will be further investigated. Moreover, much more
qualitative validation for the biomechanical model is neces-
sary for further studies.
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