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Abstract. Re-using and combining multiple ontologies on the Web is
bound to lead to inconsistencies between the combined vocabularies.
Even many of the ontologies that are in use today turn out to be incon-
sistent once some of their implicit knowledge is made explicit. However,
robust and efficient methods to deal with inconsistencies are lacking from
current Semantic Web reasoning systems, which are typically based on
classical logic. In earlier papers, we have proposed the use of syntactic
relevance functions as a method for reasoning with inconsistent ontolo-
gies. In this paper, we extend that work to the use of semantic distances.
We show how Google distances can be used to develop semantic rel-
evance functions to reason with inconsistent ontologies. In essence we
are using the implicit knowledge hidden in the Web for explicit reason-
ing purposes. We have implemented this approach as part of the PION
reasoning system. We report on experiments with several realistic ontolo-
gies. The test results show that a mixed syntactic/semantic approach can
significantly improve reasoning performance over the purely syntactic ap-
proach. Furthermore, our methods allow to trade-off computational cost
for inferential completeness. Our experiment shows that we only have to
give up a little quality to obtain a high performance gain.

There is nothing constant in this world but inconsistency.
-Jonathan Swift (1667-1745)

1 Introduction

A key ingredient of the Semantic Web vision is avoiding to impose a single on-
tology. Hence, merging ontologies is a key step. Earlier experiments (e.g. [10])
have shown that merging multiple ontologies can quickly lead to inconsistencies.
Other studies have shown how migration [I8] and evolution [9] also lead to in-
consistencies. This suggests the importance and omnipresence of inconsistencies
in ontologies in a truly web-based world.

At first sight, it might seem that many ontologies are semantically so lightweight
(e.g. expressible in RDF Schema only[6]) that the inconsistency problem doesn’t
arise, since RDF Schema is too weak to even express an inconsistencyEl. However,
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[17] has shown that on a closer look, many of these semantically lightweight ontolo-
gies make implicit assumptions such as the Unique Name Assumption, or assuming
that sibling classes are disjoint. Such implicit assumptions, although not stated,
are in fact used in the applications that deploy these ontologies. Not making these
disjointness assumptions explicit harms the re-usability of these ontologies. How-
ever, if such assumptions are made explicit, many ontologies turn out to be in fact
inconsistent.

One way to deal with inconsistencies is to first diagnose and then repair them.
[18] proposes a nonstandard reasoning service for debugging inconsistent termi-
nologies. This is a possible approach, if we are dealing with one ontology and
we would like to improve this ontology. Another approach to deal with inconsis-
tent ontologies is to simply avoid the inconsistency and to apply a non-standard
reasoning method to obtain answers that are still meaningful, even though they
have been obtained from an inconsistent ontology. The first approach could be
dubbed “removing inconsistencies”, while the second could be called “living with
inconsistencies”. This latter approach is more suitable for an open Web setting.
where one would be importing ontologies from other sources, making it impos-
sible to repair them, and where the scale of the combined ontologies would be
too large to make repair effective. Therefore, this paper investigates the latter
approach, namely, the approach of reasoning with inconsistent ontologies.

The classical entailment in logics is explosive: any formula is a logical con-
sequence of a contradiction. Therefore, conclusions drawn from an inconsistent
knowledge base by classical inference may be completely meaningless. The gen-
eral task of a system of reasoning with inconsistent ontologies is: given an incon-
sistent ontology, return meaningful answers to queries. In [I2] we developed a
general framework for reasoning with inconsistent ontologies, in which an answer
is “meaningful” if it is supported by a selected consistent sub-ontology of the
inconsistent ontology, while its negation is not supported. In that work, we used
relevance based selection functions to obtain meaningful answers. The main idea
of the framework is: (1) a relevance function is used to select some consistent
sub-theory from an inconsistent ontology; (2) then we apply standard reasoning
on the selected sub-theory to try and find meaningful answers; (3) if a satisfying
answer cannot be found, the relevance degree of the selection function is made
less restrictive, thereby extending the consistent sub-theory for further reason-
ing. In this way the system searches for increasingly large sub-theories of an
inconsistent ontology until the selected sub-theory is large enough to provide an
answer, but not yet so large so as to become itself inconsistent.

In [I3I1T], several syntactic relevance based selection functions were devel-
oped. However, these approaches suffer several limitations and disadvantages.
As we will show with a simple example later in this paper, such syntactic rele-
vance functions are very sensitive to the accidental syntactic form of an ontology,
which can easily lead to undesired conclusions on one syntactic form. A simple
semantics preserving syntactic reformulation would have lead to the appropri-
ate conclusion, but such careful design is unrealistic to require from knowledge
engineers.
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In this paper, we investigate the approach of semantic relevance selection
functions as an improvement over the syntactic relevance based approach. We
will examine the use of co-occurrence in web-pages, provided by a search en-
gine like Google, as a measure of semantic relevance, assuming that when two
concepts appear more frequently in the same web page, they are semantically
more relevant. We will show that under this intuitive assumption, information
provided by a search engine can be used for semantic relevance based selection
functions for reasoning with inconsistent ontologies.

The main contributions of this paper are (1) to define some general formal
properties of semantic relevance selection functions, (2) to propose the Google
Distance as a particular semantic relevance function, (3) to provide an implemen-
tation of semantic relevance functions for reasoning with inconsistent ontologies
in the PION system, (4) to run experiments with PION to investigate the quality
of the obtained results, and (5) to highlight the cost/performance trade-off that
can be obtained using our approach.

This paper is organised as follows. Section [ briefly summarises the frame-
work for reasoning with inconsistent ontologies. Section Bl introduces the notion
of semantic relevance functions. Setion [l presents a mixed approach which com-
bine the advantages of both the syntactic approach and the semantic approach.
Section [l reports on our experiments of running PION on a realistic ontology
before concluding the paper.

2 Reasoning with Inconsistent Ontologies

2.1 General Framework

Selection functions are central to the framework of reasoning with inconsistent
ontologies. Such a selection function is used to determine which consistent sub-
sets of an inconsistent ontology should be considered during its reasoning process.
The selection function can either be based on a syntactic approach, like syntactic
relevance [3], or based on semantic relevance. Examples of such semantic rele-
vance are for example Wordnet distance [2], or (as we will propose in this paper)
based on the co-occurrence of concepts in search engines like Google.

Given an ontology (i.e., a formula set) X' and a query ¢, a selection function
s returns at each step k£ > 0 a subset of Y. Let L be the ontology language,
which is denoted as a formula set. A selection function s is then a mapping
s:P(L) x L x N — P(L) such that s(X, ¢, k) C X.

In the following, we use X' = ¢ to denote that ¢ is a consequence of X' in the
standard reasoning, and we will use X' k= ¢ to denote that ¢ is a consequence
of X' in the non-standard reasoning. The values of non-standard inference are
defined as {Accepted, Rejected, Overdetermined, Undetermined}, following the
4-valued schema by [1].

Figure [l shows a strategy to compute X' g ¢. This procedure is called a linear
extension strategy because only one candidate X’ is chosen, and alternatives
are not considered. This is attractive because the reasoner doesn’t need to keep
track of the extension chain. The disadvantage of the linear strategy is that it
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Fig. 1. Linear Extension Strategy

may result in too many ‘undetermined’ or ’overdetermined’ answers when the
selection function picks the wrong sequence of monotonically increasing subsets.

In the case of s(X, ¢, k) being inconsistent, we can refine the procedure from
figure[Mlwith a backtracking step, which tries to reduce s(X, ¢, k) to a set that still
extends s(X, ¢, k— 1), but that is still consistent. This would reduce the number
of overdetermined answers, and hence improve the linear extension strategy. We
call this procedure overdetermined processing(ODP). ODP introduces a degree of
non-determinism: selecting different maximal consistent subsets of s(X, ¢, k) may
yield different answers to the query X = ¢. An easy solution to overdetermined
processing is to return the first maximal consistent subset (FMC) of s(X, ¢, k),
based on certain search procedure. Query answers which are obtained by this
procedure are still meaningful, because they are supported by a consistent subset
of the ontology. However, it does not always provide intuitive answers because it
depends on the search procedure of maximal consistent subset in overdetermined
processing. A natural search procedure is to perform breadth-first search among
the subsets of s(X, ¢, k) in decreasing cardinality, until we find the first (and
hence maximal) consistent subset.

2.2 Syntactic Selection Functions

Direct relevance between two formulas is defined as a binary relation on formulas:
R C L x L. Given any direct relevance relation R, we can extend it to a relation
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R* on a formula and a formula set, i.e. R™ C L x P(L), as follows:
(¢, 2) € RT iff I € X such that (¢, 7)) € R.

In other words, a formula ¢ is relevant to a formula set X iff there exists a
formula ¢ € X such that ¢ and ¢ are relevant. Two formulas ¢, ¢’ are k-relevant
with respect to a formula set X iff there exist formulas 1y, ...1¥r41 € X such
that ¢ = g Y1 = ¢’ and all ¢; and ;11 are directly relevant.

We can use such a relevance relation to define a selection function s as follows:

s(X,0,0)=10
s(X,0,1) = {p€ X|¢ and ¢ are directly relevant}
s(X, ¢, k) = {yp€ X is directly relevant to s(X, ¢,k — 1)} for k> 1

There are various ways to define a syntactic relevance R between two formulas
in an ontology. Given a formula ¢, we use I(¢), C(¢), R(¢) to denote the sets of
individual names, concept names, and relation names that appear in ¢ respec-
tively. In [12], we proposed a direct relevance which considers the presence of a
common concept/role/individual name in two formulas: two formulas ¢ and v
are directly syntactically relevant, written Rgynrei (¢, ), iff there is a common
name which appears in both formulas.

In [TTIT2], we provided a detailed evaluation of the syntactic relevance approach
by applying it to several inconsistent ontologies. The tests show that the syntactic
relevance approach can obtain intuitive results in most cases for reasoning with
inconsistent ontologies. The reason for this is that syntactic relevance mimics our
intuition that real-world truth is (generally) preserved best by the argument with
the shortest number of steps; and whatever process our intuitive reasoning uses, it
is very likely that it would somehow privilege just these shortest path argumentsﬁ.
However, as we will see, the problem is that the syntactic relevance approach re-
quires that the syntactic encoding of the ontology by knowledge engineers cor-
rectly represents their intuitive understandings of the knowledge.

Example: A simple example where syntactic relevance works very well is the
traditional penguin example in which birds are specified as flying animals and
penguins are specified as birds which cannot fly. In this example, the reasoning
path from penguin to —fly is shorter than that from penguin to fly:

penguin C —fly, penguin C bird C fly.

Example: However, the syntactic relevance approach does not work very well
on the MadCow exarnpleﬁ7 in which Cows are specified as vegetarians whereas
MadCows are specified as Cows which eats brains of sheep (and hence are not
vegetarians). Under the syntactic relevance selection functions, the reasoner re-
turns the ’accepted’ answer to the query ’is the mad cow a vegetarian?’. This
counter-intuitive answer results from the weakness of the syntactic relevance ap-
proach, because it always prefers a shorter relevance path when a conflict occurs.
In the MadCow example, the path 'mad cow - cow - vegetarian’ is shorter than

2 Thanks to Norman Gray, for pointing this out in personal communication.
3 The Mad Cow ontology is used in OilEd tutorials
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the path 'mad cow - eat brain - eat bodypart - sheep are animals - eat animal -
not vegetarian’. Therefore, the syntactic relevance-based selection function finds
a consistent sub-theory by simply ignoring the fact 'sheep are animals’.

2.3 Pro’s and Cons of Syntactic Relevance

Empirically good results. In [TTI12], we provided a detailed evaluation of the
syntactic relevance approach by applying it to several inconsistent ontologies.
The tests show that the syntactic relevance approach can obtain intuitive results
in most cases for reasoning with inconsistent ontologies.

Sensitive to syntactic encoding. As shown above, the syntactic relevance
approach is very dependent on the particular syntactic encoding that was chosen
for the knowledge, since it selects short reasoning paths over longer ones. This
works apparently works well in many cases (as shown in [I1JT2]), but it is not
hard to think of natural examples where the shortest reasoning chain is not the
correct one to follow.

Often needs a backtracking step. Because of the “fan out” behaviour of
the syntactic selection function, the relevance set will grow very quickly, and
will become very large after a small number of iterations. A very large relevance
set is in danger of becoming inconsistent itself, causing the system to need the
backtracking step that we called “overdetermined processing”.

Backtracking is blind. To make matters worse, the backtracking step of the
syntactic approach is essentially blind. It is hard to think of ways to make this
backtracking more involved, based only on syntactic features.

3 Semantic Selection Functions

A wide space of semantic relevance measures exist, varying from Wordnet dis-
tance 2], to the co-occurrence of concepts in search engines like Google [54]. In
this paper, we will use the latter, since we want to take advantage of the vast
knowledge on the Web that is implicitly encoded in search engines. In this way,
we can obtain light-weight semantics for selection functions.

The basic assumption here is that the more frequently two concepts appear
in the same web page, the more semantically close they are, because most web
pages are meaningful texts. Therefore, information provided by a search engine
can be used to measure semantic relevance among concepts.

3.1 General Properties of Semantic Relevance

Semantic relevance is considered as the reverse relation of semantic dissimilar-
ity: the more semantically relevant two concepts are, the smaller the distance
between them. Assuming that both relevance and distance are taken from the
[0,1] interval, this boils down to Similarity(x,y) = 1 — Distance(x, yﬂ.

4 In the following we use the terminologies semantic dissimilarity and semantic dis-
tance interchangeably.
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To use semantic dissimilarity for reasoning with inconsistent ontologies, we
define the dissimilarity measure between two formulas in terms of the dissim-
ilarity measure between two concepts/roles/individuals from the two formulas.
Moreover, in the following we consider only concept names C(¢) as the symbol
set of a formula ¢ to simplify the formal definitions. However, note that the def-
initions can be easily generalised into ones in which the symbol sets contain also
roles and individuals. We use SD(¢,¥) to denote the semantic distance between
two formulas. We expect the semantic distance between two formulas SD(¢, v)
to satisfy the following intuitive properties:

Range. The semantic distance is a real number between 0 and 1: 0 < SD(¢, )
< 1 for any ¢ and .

Reflexivity. Any formula is always semantically closest to itself: SD(¢,¢) =0
for any ¢.

Symmetry. The semantic distance between two formulas is symmetric: SD
(6,1) = SD(1), ) for any ¢ and .

Maximum distance. If all symbols in a formula are semantically most-dissi-
milar from any symbol of another formula, then the two formulas are to-
tally dissimilar: if SD(C;,C;) = 1 for all C; € C(¢) and C; € C(¢), then
SD(¢,v) = 1.

Intermediate values. If some symbols are shared between two formulas, and
some symbols are semantically dissimilar, the semantic distance between
the two formulas is neither minimal nor maximal: If C'(¢) N C(¥)) # 0 and

C(¢) £ C(¥) and C(¢) £ C(¢) then 0 < SD(¢, 1) < 1.

3.2 Google Distance as Semantic Relevance

In [54], the Google Distance is introduced to measure the co-occurrence of two
keywords on the Web. Normalised Google Distance (NGD) is introduced to
measure the semantic distance between two concepts by the following definition:

Definition 1 (Normalised Google Distance [4]).

maz{log f(x),log f(y)} — log f(x,y)

NGD(z,y) = log M — min{log f(z),log f(y)}

where f(x) is the number of Google hits for the search term x, f(y) is the number
of Google hits for the search term y, f(x,y) is the number of Google hits for the
tuple of search terms x and y, and M is the number of web pages indexed by
Google.

NGD(z,y) can be understood intuitively as the symmetric conditional probabil-
ity of co-occurrence of the search terms z and y. NGD(x,y) is defined between
two search items x and y. Simple ways to extend this to measure the semantic
distance between two formulas are to take either the minimal, the maximal or
the average NGD values between two concepts (or roles, or individuals) which
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appear in two formulas as follows:

SDmln((ﬁ,’(ﬂ) = mm{NGD(C’Z, CJ)|CZ S C(¢) and Cj S C(?ﬁ)}
SDmaz (@, ¥) = max{NGD(C;,C;)|C; € C(¢) and C; € C(¢)}
o Sum{NGD(Cl,C])|01€C(¢) and C]EC(w)}

SDave(, ) = (1S IC W)
where |C(¢)| means the cardinality of C(¢). However, it is easy to see that
SDpin and S D4, do not satisfy the Intermediate Values property, and SD e
does not satisfy Reflexivity.

We therefore propose a semantic distance which is measured by the ratio of

the summed distance of the difference between two formulas to the maximal
distance between two formulas:

Definition 2 (Semantic Distance).
sum{NGD(C;, Cj)|Ci € C(9)\C(¢), Cj € CWN\C(9)}
(IC(@)l +IC@)D)

The intuition behind this definition is to sum the semantic distances between
all terms that are not shared between the two formulae, but these must be
normalised (divided by the maximum distance possible) to bring the value back
to the [0,1] interval. It is easy to prove the following:

SD(¢, ) =

Proposition 1. The semantic distance SD(¢, 1) satisfies the properties Range,
Reflexivity, Symmetry, Mazximum Distance, and Intermediate Values.

Using the semantic distance defined above, the obvious way to define a rele-
vance relation for selection functions in reasoning with inconsistent ontologies is
to take the semantically closest formulas as directly relevant:

(¢,9) € Ry if-3" € £: SD(¢,9") < SD(¢,¥)).

(i.e. there exist no other formulas in the ontology that is semantically closer)

Given this semantic relevance relation, we now need to define a selection
function. In the syntactic approach of the previous section, we used the query
formula as the starting point for the selection function. We can define a similar
selection function s in terms of the semantic relevance relation Rsq. Namely,
the newly defined selection function will track along the concept hierarchy in an
ontology and always add to the selected set the closest formulas which have not
yet been selected.

Example: Figure [2] shows how the semantic distance is used to obtain intu-
itive answers on the MadCow ontology (where the syntactic distance failed). By
calculation of the Normalised Google Distance, we know that

NGD(MadCow,Grass) = 0.722911, NGD(MadCow, Sheep) = 0.612001.

® It is easy to see the definition about SD(¢,) is easily extended into a definition
about SD(¢,C), where ¢, are formulas, and C' is a concept. Moreover, it is easy
to see that SD(¢1,C) < SD(¢2,C) iff NGD(D1,C) < NGD(D2,C) for any ¢1 is
of the form Cy C D; and any ¢2 is of the form C; E D2 where C,C1, D1 and D>
are different concepts.



186 Z. Huang and F. van Harmelen

NGD
00 01 02 03 04 05 06 07 08 09 1.0
I i

Fig.2. NGD and MadCow Queries

Hence, the semantic distance between MadCow and Sheep is shorter than the
semantic distance between MadCow and Grass (even though their syntactic dis-
tance is larger). Because of this, the reasoning path between MadCow and Sheep is
preferred to the reasoning path between MadCow and Grass. Thus, we obtain the
intuitive answer that MadCow are not Vegetarians instead of the previously ob-
tained counter-intuitive answer that MadCow are Vegetarians. The intuition here
is that although syntactically, the MadCow - Sheep path is the longer of the two,
the accumulated semantic distance on this syntactically longer path is still shorter
than the semantic distance on the syntactically short MadCow - Grass path.

3.3 Pro’s and Cons of Semantic Relevance

Although empirical findings will only be discussed in section [l we can already
establish some of the advantages and disadvantages of the semantic approach to
relevance.

Slower fan out behaviour. As is clear from the definition the growth of a rel-
evance based on semantic distance is much slower than one based on syntactic
relevance. In fact, at each step the semantic relevance set grows by a single for-
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mula (barring the exceptional case when some formulas share the same distance
to the query).

Almost never needs a backtracking step. This slower growth of semantic
relevance means that it will also hardly ever need a backtracking step, since the
relevance set is unlikely to become “too large” and inconsistent.

Expensive to compute. Again by inspecting the definition, it is clear that
computing the semantic relevance is expensive: it requires to know the semantic
distance between the query and every formula 1 in the theory Y. Furthermore,
this must be done again for every new query concept Cy. With realistic modern
ontologies often at a size of O(10%) concepts, and a computation time in the
order of 0.2 secs for a single NGD-value, this would add a prohibitive cost to
each queryﬁ.

4 Mixed Approach

The picture that emerges from the pro’s and cons in sections and is
syntactic relevance is cheap to compute, but grows too quickly and then has
to rely on a blind backtracking step, while semantic relevance has controlled
growth, with no need for backtracking, but is expensive to compute.

In this section, we will propose a mized approach which combine the advan-
tages of both: we will use a syntactic-relevance selection function to grow the
selection set cheaply, but we will use semantic relevance to improve the back-
tracking step. Instead of picking the first maximal consistent subset through
a blind breadth-first descent, we can prune semantically less relevant paths to
obtain a consistent set. This is done by removing the most dissimilar formulas
from the set s(X, ¢, k) — s(X, ¢,k — 1) first, until we find a consistent set such
that the query ¢ can be proved or disproved.

Example: Taking the same example of the MadCow ontology above, we can see
from Figure [ that the path between MadCow and Grass can be pruned first,
rather than pruning the path between MadCow and Sheep, because the NGD
between MadCow and Sheep is smaller than the NGD between MadCow and
Grass. Thus, the path MadCow - Grass (which lead to the counter-intuitive
conclusion that MadCow are vegetarians) is pruned first.

We call this overdetermined processing (ODP) using path pruning with Google
distance. While syntactic overdetermined processing (from section 2I) can be
seen as a blind breadth-first search, semantic-relevance ODP can be seen as a
hill-climbing procedure, with the semantic distance as the heuristic.

Possible loss of completeness and soundness. Notice that semantic back-
tracking is not guaranteed to yield a maximal consistent subset. Consequently,
the completeness of the algorithm may be affected, since we might have removed
too many formulas from the relevance set in our attempt to restore consistency,

5 Although some of this can be amortised over multiple queries by caching parts of
the values that make up the NGD (definition [).
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thereby loosing the required implication to obtain the intuitive answer. Fur-
thermore, it is possible that the semantic backtracking might lead to the wrong
consistent subset, one supporting ¢ where —¢ would have been the intuitive an-
swer, or vice versa. In our experiment in section [6l we will find that indeed the
completeness drops (as expected), but not by very much, while the unsoundness
does not increase at all (making us belief that SD is a good heuristic for the
hill-climbing search towards a consistent subset).

Cutting levels in ODP. Finally, the semantic distance provides the possibility
for adjustable behaviour of the backtracking increments that are taken in the
overdetermined processing phase. We introduce a cutting level o (0 < v < 1),
and instead of only pruning the semantically least relevant paths one by one
until we obtain a consistent subset, we now prune in one step all formulas whose
distance to the query is higher than «. In this way, « plays the role of a threshold,
so that the processing can be sped up by pruning in a single step all those
formulas which do not meet the relevance threshold. This might of course increase
the amount of undetermined answers (since we may have overpruned), but it
allows us to make a tradeoff between the amount of undetermined answers and
the time performance. In Section Bl we will report an experiment in which this
tradeoff obtains a 500% efficiency gain in exchange for only a 15.7% increase in
undetermined answers.

5 Implementation and Experiments

We have implemented these definitions and algorithms in PION (Processing In-
consistent ONtologiesﬂ. In this section, we report several experiments on reason-
ing with inconsistent ontologies using the selection functions introduced above.

5.1 Data

As already observed before, many ontologies on the Semantic Web (e.g. those
indexed by Swoogl@) do not contain explicit inconsistencies. This would make
it hard to obtain test-data for running our experiments and indeed, it would
question the need for our inconsistency reasoning methods in the first place. The
following brief analysis shows that under the surface, the situation is different.
Disjointness constraints between classes in an ontology are necessary for a suit-
able formalisation of a conceptualisation, and are required to draw the required
inferences in tasks such as search, navigation, visualisation, service matching,
etc [19]. However, as shown by [I7] and [I6], knowledge engineers often neglect
to add disjointness statements to their ontologies, simply because they are not
aware of the fact that classes which are not explicitly declared to be disjoint will
be considered as potentially overlapping. Furthermore, an experiment by Volker

" Available for download at [wasp.cs.vu.nl/sekt/pion
8 swoogle.umbc.edu
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and her colleagues in [19] showed that when prompted to add disjointness state-
ments, human experts are very prone to introducing inadvertent inconsistencies.
Since we will take the ontologies that resulted from that experiment as our
dataset, we will describe that experiment in some detail.

The experiment in [I9], takes as its starting point a subset of the PROTON
Ontologytl. The selected subset of PROTON contains 266 classes, 77 object prop-
erties, 34 data-type properties and 1388 siblings. Each concept pair was randomly
assigned to 6 different people - 3 from a group of professional “ontologists”, and
3 from a group of students without profound knowledge in ontological engineer-
ing. Each of the annotators was given between 385 and 406 concept pairs along
with a natural language descriptions of the classes whenever those were avail-
able, and were asked to annotate each concept pair as “disjoint”, “overlapping”
or “unknown”. Two enriched versions of the ontology were then constructed by
adding those disjointness statements that were agreed upon by 100% of the ex-
perts and of the students respectively. We will call these the experts and the
students ontologies respectively. These two ontologies were both inconsistent.
For example, the students ontology alone already contained some 24 unsatisfi-
able concepts. Even more telling is the following example:

Example: 100 percent of students and experts (!) agree on the following axioms,
which are, however inconsistent:

Reservoir C Lake
Lake C WaterRegion
Reservoir & HydrographicStructure
HydrographicStructure C Facility
Disjoint(W ater Region, Facility)

This case shows that inconsistency and incoherence occurs much more easily
than what is often expected. Interestingly enough, this problem would be han-
dled by our semantic relevance approach. Normalised Google Distance tells us
that Lake and Water Region are more semantically relevant than Facility and
HydrographicStructure to Reservoir. Thus, using the semantic relevance based
selection function, we would conclude that Reservoir is a Water Region.

The essence of all this is that although the original ontology did not contain
inconsistencies (due to lack of disjointness statements), the inconsistencies arise
as soon as human knowledge engineers are asked to add explicit disjointness
statements to the best of their capabilities. Thus, the resulting ontologies contain
“natural” inconsistencies. This makes the resulting set of inconsistent ontologies
a realistic data-set for our experiments.

5.2 Tests

Goal. Given that the mixed approach (using syntactic relevance for growing
the relevant set, and using semantic relevance for backtracking, possibly using
a-cuts) seems to be the best alternative to the purely syntactic approach of

K proton.semanticweb.org/
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our earlier work, our experiment is aimed at (1) finding out the quality of the
answers generated by the mixed approach, and (2) finding out the quality/cost
trade-offs that can be obtained by varying the a-levels.

Test Queries and Answers. We created 529 subsumption queries randomly,
and obtained PION’s answers of these queries with backtracking done either
blindly (First Maximal Consistent Subset, FMC), or via the semantic distance
(SD). We compared these answers against a hand-crafted Gold Standard that
contained the humanly-judged correct answer for all of these 529 queries. For
each query, the answer given by PION can be classified in one of the following
categories, based on the difference with the intuitive answer in the Gold Stan-
dard:

Intended Answer: PION’s answer is the same as the intuitive answer from the
Gold Standard.

Counter-intuitive Answer: PION’s answer is opposite to the intuitive answer,
i.e. the intuitive answer is “accepted” whereas PION’s answer is “rejected”, or
vice versa.

Cautious Answer:The intuitive answer is “accepted” or “rejected”, but PION’s
answer is “undetermined”.

Reckless Answer: PION’s answer is “accepted” or “rejected” while the intu-
itive answer is “undetermined”.

Obviously, one would like to maximise the Intended Answers, and minimise
the Reckless and Counter-intuitive Answers. Furthermore, we introduced dif-
ferent a-thresholds in the overdetermined processing to see how the tradeoff
between the quality of query-answers and the time performance is effected by
different cutting levels.

5.3 Results

Our results obtained by running PION with the data and the tests described
above are shown in Figure[3l The first 4 rows show experiments on the experts
ontology, the final 2 rows on the students ontology. In all cases, we use syn-
tactic relevance for growing the relevance set until an answer can be found, but
they differ on what happens when the relevance set becomes inconsistent, and
backtracking is required. On the first line (labelled FMC, for First Maximal Con-
sistent subset), the backtracking is done blindly, on the other lines, backtracking
is guided by the semantic distance function, at different a-levels (i.e. with dif-
ferent sizes of the backtracking steps; smaller values for «, i.e. lower thresholds,
means that more formulas are removed during backtracking). Not listed in the
table is the fact that among the 529 queries, 414 (i.e. 78%) resulted in relevance
sets that became inconsistent before the query could be answered meaningfully,
hence they needed a backtracking phase.

Answer quality. The tables shows that when switching from syntactic back-
tracking (labelled FMC) to semantic backtracking (labelled SD) the intended
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Ontology Method « Query TA(IA rate) CA RA CIA ICRate(%) Time TRatio

experts FMC n/a 529 266 (50%) 219 32 12 91.68 114.63 n/a

experts SD 0.85 529 246 (47%) 238 32 13 91.49 54.28 2.11

experts SD 0.80 529 239 (45%) 246 32 12 91.68 39.96 287

experts SD 0.75 529 225 (43%) 260 32 12 91.68 2237 5.12

students FMC n/a 529 234 (44%) 249 33 13 91.30  45.05 n/a
(36%)

students SD 1.00 529 189 (36%) 309 22 9 94.14 28.11 1.62

TA = Intended Answers, CA = Cautious Answers, RA = Reckless Answers, CIA =
Counter-Intuitive Answers, IA Rate = Intended Answers(%), IC Rate = IA+CA(%),
FMC = First Maximal Consistent subset, SD = Semantic Distance, a=Threshold,
Time = Time Cost per Query (seconds), TRatio = TimeCost(FMC)/TimeCost(SD)

Fig. 3. PION test results by using FMC or SD for overdetermined processing

answer (IA) rate does indeed drop, as predicted in section @l Furthermore, the
TA-rate declines slowly with decreasing a-levels. Similarly, the cautious answer
rate increases slowly with decreasing a-levels. This is again as expected: larger
backtracking steps are more likely to remove too many formulas from the rele-
vance set, hence potentially making the relevance set too small. Or put another
way: the hill-climbing search performed in the ODP phase is aiming to get close
to a maximal consistent subset, but larger hill-climbing steps make it harder to
end up close to such a set, because of possible overpruning.

The combined IC-rate (combining intended and cautious answers, i.e. those
answers that are not incorrect, but possibly incomplete), stays constant across
between FMC and SD, and across all a-levels. It is important to note that the
numbers of reckless and counter-intuitive answers remains constant. This means
that although the semantically guided large-step reductions (at low a-levels) do
of course remove formulas, they do not remove the wrong formulas, which could
have potentially lead to reckless or counter-intuitive answers.

Summarising, when switching from FMC to SD, and with decreasing a-levels,
the completeness of the algorithm (IA Rate) gradually declines, while the sound-
ness of the algorithm (IC rate) stays constant.

Cost/Quality trade-offs. Although these findings on the answer quality are
reassuring (the semantic backtracking doesn’t damage the quality), they are not
by themselves a reason to prefer semantic backtracking over syntactic backtrack-
ing. The strong point of the semantic backtracking becomes clear when we look
at the computational costs of syntactic and semantic backtracking, particularly
in the light of the answer quality.

Above, we have seen that the answer quality only degrades very gradually
with decreasing a-levels. The final two columns of table Bl however show that
the answer costs reduce dramatically when switching from syntactic to semantic
backtracking, and that they drop further with decreasing a-levels. The absolute
computation time is more than halved when switching from FMC to SD (o =
0.85), and is again more than halved when dropping « from 0.85 to 0.75, leading
to an overall efficiency gain of a factor of 5. Of course, this efficiency is gained at
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the cost of some loss of quality, but this loss of quality (the drop in completeness,
the TA rate) is very modest: the twofold efficiency gain at o = 0.85 is gained at
a price of a drop of only 3 percentage points in completeness, and the fivefold
efficiency gain at a = 0.75 is gained at a price of a drop of only 7 percentage
points in completeness. Summarising, semantic backtracking with cut-off levels
yields a very attractive cost/quality trade-off between costs in terms of run-time,
and the quality in terms of soundness and completeness of the answers.

6 Discussion and Conclusions

Research from a number of different areas is relevant to the current work. Seman-
tic distances and similarity measures have been widely used in computational
linguistics [2I14] and ontology engineering [8II5]. [7] proposes the use of a Google-
based similarity measure to weigh approximate ontology matches. Our research
in this paper is the first attempt to introduce the Google Distance for reason-
ing with inconsistent ontologies. In essence we are using the implicit knowledge
hidden in the Web for explicit reasoning purposes.

The main contributions of this paper are: a) we investigated how a semantic
relevance-based selection function can be developed by using information pro-
vided by a search engine, in particular, by using the Normalized Google Distance;
b) we provided variants of backtracking strategies for reasoning with inconsistent
ontologies, and ¢) we showed that semantic distances can be used for handling
large scale ontologies through a tradeoff between run-time and the degree of
incompleteness of the algorithm.

In our experiment we applied our PION implementation to realistic test data.
The experiment used a high-quality ontology that became inconsistent after
adding disjointness statements that had the full support of a group of experts.
The test showed that the run-time of informed semantic backtracking is much
better than that of blind syntactic backtracking, while the quality remains com-
parable. Furthermore the semantic approach can be parametrised so as to step-
wise further improve the run-time with only a very small drop in quality.

Clearly, our experiments should be repeated on many different ontologies in or-
der to see how generalisable our results are. We are now developing a benchmark
system for reasoning with inconsistent ontologies, by which various approaches
and selection functions can be tested with different application scenarios on much
larger ontology data. This is an inherently difficult task, because existing ontolo-
gies will often need to be enriched by making disjointness statements explicit be-
fore they can be used as test data. Furthermore, a Gold Standard of intuitive an-
swers can often only be created by hand. These high costs experiment-construction
costs also justify why we did not run more experiments in the scope of this paper.

One of the future tasks is to make the NGD (Normalized Google Distance)
component well integrated with the architecture of PION, so that the NGD
values can be dynamically obtained at run time, rather than as the pre-loaded
libraries, as it is done in the present implementation.
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