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Abstract. Learning systems often describe a target class as a disjunction of conjunctions of conditions. Recent 
work has noted that sma//disjuncts, i.e., those supported by few training examples, typically have poor predictive 
accuracy. One model of this accuracy is provided by the Bayes-Laplace formula based on the number of training 
examples covered by the disjunct and the number of them belonging to the target class. However, experiments 
show that small disjuncts associated with target classes of different relative frequencies tend to have different 
error rates. This note defines the context of a disjunct as the set of training examples that fail to satisfy at most 
one of its conditions. An empirical adaptation of the Bayes-Laplace formula is presented that also makes use 
of the relative frequency of the target class in this context. Trials are reported comparing the performance of 
the original formula and the adaptation in six learning tasks. 
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1. Introduction 

Supervised concept learning from examples plays an important role in current machine 
learning research. In this area, a system is presented with a substantial number of training 
examples, each from a known class. The system then attempts to find definitions of the 
classes couched in terms used to describe the examples. These definitions should account 
for the classes of the training examples but, more importantly, they should accurately predict 
the classes of unseen examples. 

A recent paper by Holte, Acker, and Porter (1989) starts with the observation that the 
class definitions found by learning systems usually consist of several disjuncts. Each disjunct 
covers a subset of the training examples, all or most of which belong to the class associated 
with the disjunct. The size of a disjunct, i.e., the number of training examples that it covers, 
will generally vary from disjunct to disjunct. Holte et al. focus on small disjuncts that cover 
few training examples and show that the accuracy with which small disjuncts predict the 
class of unseen examples is much lower than that of their larger brethren. The authors 
then develop a new bias, selective specialization, that improves the predictive accuracy 
of small disjuncts by making them more specific. The paper contains a careful empirical 
study demonstrating the benefits of this scheme for small disjuncts. 

In deciding whether to further specialize a disjunct on the basis of its size, Holte et al. 
implicitly assume that all disjuncts of the same size ought to be treated the same way. This 
note argues that factors other than the size of a disjunct, notably the prevalence of the target 
class, affect its predictive accuracy. 
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In many learning tasks, the prevalence of the different classes varies significantly. For 
example, in one of the learning tasks presented later) 85 % of the training examples belong 
to one class and 15% to the other. Suppose now we have a disjunct that covers only a single 
training example. The chances are high that our disjunct contains little predictive informa- 
tion as there is scant evidence to support it. If it is used to classify unseen examples drawn 
from the same population as the training set, and hence with the same class distribution, 
what accuracy will the disjunct exhibit? If this disjunct is associated with the majority class, 
it will still be correct much of the time (since most examples that happen to satisfy the 
disjunct will also belong to the majority class). Conversely, it will be much less accurate 
if it is identified with the minority class. 

For trials with this learning task, Figure 1 shows the average error rate (on unseen exam- 
pies) of disjuncts that cover up to ten training examples. For smaller sizes, disjuncts of 
the minority class (denoted by solid circles) are notably less accurate than majority class 
disjuncts of the same size (denoted by open circles). While disjunct size is clearly impor- 
tant for predicting its accuracy, as found by Holte et al., it is not the end of the story. 

In the following sections we present a common estimator of disjunct error and an adap- 
tation that accounts for some of this variation. Empirical studies that compare the original 
and modified estimator are reported. 

2. A simple model 

If an event is observed to occur e times in n trials, one estimator for the probability of 
the event is given by the Bayes-Laplace formula 

e + l  
n + 2  
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Figure 1. Error  rate of  small disjuncts associated with different classes. 



IMPROVED ESTIMATES FOR THE ACCURACY OF SMALL DISJUNCTS 95 

(Kruskal & Tanur, 1978, p. 256). Analogously, consider a disjunct associated with the target 
class that is satisfied by n of the training examples, e of which do not belong to the target 
class. To the extent that we can regard a training example as a trial and an error as an 
event, 2 the error rate for this disjunct would be given by the same ratio. For a discussion 
of this use of the Bayes-Laplace formula in estimating error rates, see (Niblett, 1987). 

The Bayes-Laplace ratio is derived under the assumption that no information is available 
regarding the prior probability of error. Suppose, however, that we had reason to believe 
that the "sample" ofn training examples satisfied by this disjunct was drawn from a popula- 
tion containing a proportion C of examples that do not belong to the target class. This pro- 
portion, which will be referred to as the context  error of the disjunct, should clearly influ- 
ence the predicted accuracy of the disjunct. 

We might approximate the context error C by 1 - P(target),  where P(target) is the prior 
probability of the target class associated with this disjunct. However, training examples 
matched by a disjunct are not really sampled from the whole training set; a more relevant 
collection to regard as a sampling population is the subset of training examples immediately 
"around" the disjunct, i.e., in the same region of the description space. Since this space 
is generally non-Euclidean, we take the context  of a disjunct to be those training examples 
that fail to satisfy at most one condition of the disjunct. Each training example in this con- 
text either matches the disjunct completely or differs from it by a single condition, so the 
context captures some idea of the locality of the disjunct. If  there are n '  examples in the 
context of a disjunct, e '  of which do not belong to the class associated with the disjunct, 
the context error C = e'/n'. 

Returning to the Bayes-Laplace formula, we see that it can be understood in terms of 
an urn model  in which we start with two balls: a white one, representing the target class, 
and a black one representing other classes. To this are added n - e white balls correspond- 
ing to the training examples that belong to the target class and e black balls corresponding 
to other training examples. The predicted error rate of the disjunct is then the probability 
of drawing a black ball from this collection. 

To adapt this model when the context error is C, it is clear that the initial probability 
of drawing a black ball should be C. This does not tell us how many balls we should start 
with--the larger the number, the more slowly the predicted error rate will deviate from 
this initial probability. Replacing the 2 of the Bayes-Laplace formula with 

1 
I -  

(1 - C)  

has proved reasonably satisfactory, although no theoretical justification for this choice can 
be given. The adapted model of the predicted error rate is thus 

e + I x C  
n + I  

Notice that, when the context error C is 0.5, this expression reverts to the Bayes-Laplace 
formula. 
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3. Experiments 

A series of trials was run with the aim of testing how well this model performs in practice. 
To simplify matters, learning tasks were restricted to those involving two classes. Six datasets 
were used: 

• SickEuthyroid is one aspect of the Garvan thyroid data (Quinlan, Compton, Horn, & 
Lazarus, 1987). The classes are extremely unbalanced, with 6 % in the minority class. 
Available data was 3772 examples. 

• HighDistinction concerns A+-level Computer Science students in a database of 373 rec- 
ords. Classes are again very skewed, with 7% in the minority class. 

• LED3 uses a small noisy database from (Breiman, Friedman, Olshen, & Stone, 1984), 
specialized to the task of distinguishing the digit "3" from other digits. There are 200 
examples with 10% in the minority class. 

• ComplexBE has 11 Boolean attributes Ao, A~ . . . . .  A10, two of which are irrelevant to 
the complex concept 

(Ax V A 2 V A3) & (.44 V As) V (As V A7) & (-48 V hg). 

This concept was included because the exact error rate for any disjunct can be calculated. 
1024 examples were used, 15 % of them belonging to the minority class. 

• Endgame involves the chess endgame concept, King-Knight vs King-Rook lost 3-ply, for 
which there are 39 binary-valued attributes and 551 examples. Disjuncts for this class 
are typically very complicated. The minority class contains 26%. 

• Credit is a noisy real-world database of 690 records related to the approval of credit appli- 
cations. There are many irrelevant attributes. The classes are nearly balanced, with 44 % 
in the minority class. 

All in all, these learning tasks cover both artificial domains and real-world datasets with 
a range of difficulties and class imbalances. 

In each trial, the available data was divided randomly into a training set of 10% and 
a test set containing 90 % of the examples. (The unusually low proportion of training exam- 
pies was intended to lead to many small disjuncts.) A decision tree for the training set 
was generated. Each path from the root to one of the leaves defines a disjunct associated 
with the class at the leaf, consisting of the conjunction of conditions along the path. The 
size of this disjunct, its context error over the training set, and its actual error rate on the 
test set were all determined. For such a disjunct, the discrepancy of the model is the abso- 
lute difference between the error rate predicted by the model (using only information in 
the training set) and the actual error rate on the unseen examples in the test set. A similar 
discrepancy figure was found using the original Bayes-Laplace formula. 

Each such trial was repeated 1000 times for every dataset. Discrepancy figures for all 
disjuncts with size up to 10 were averaged separately for the minority and majority classes. 
Table 1 shows, for each dataset and both classes, the average discrepancies of the model 
and the original Bayes-Laplace formula, and the difference between them, with negative 
differences favoring the model. Due to the large number of repetitions, the standard errors 
of the averages are small and all differences except the +0.4 are significant. 
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Table 1. Average discrepancies for the model and Bayes-Laplace formula. 

Minority Class Majority Class 

Domain Model B-L A Model B-L A 

SickEuthyroid 21.1 42.2 - 21.1 24.4 21.4 + 3.0 
+0.4 5:0.4 +0.3 +0.3 

HighDistinction 18.6 44.5 -25.9  16.0 15.6 +0.4 
+0.4 5:0.5 5:0.4 +0.3 

LED3 17.2 40.0 -22.8 6.2 16.8 - 10.6 
+0.4 5:0.7 _+0.2 _+0.2 

ComplexBE 22.0 29.3 - 7.3 11.1 16.5 - 5.4 
_+0.2 +_0.2 5:0.1 5:0.1 

Endgame 24.8 26.0 - 1.2 19.0 21.5 -2 .5  

5:0.2 5:0.2 _+0.2 _+0.2 
Credit 23.2 29.0 -5 .8  29.9 34.1 -4 .2  

+0.2 +0.3 +0.3 _+0.3 

These figures show that the adapted model is usually more accurate than the original 
Bayes-Laplace formula. The improvement is marked for domains with more skewed class 
distributions in which small disjuncts of the minority class tend to have very high error 
rates; here, the adapted model removes about half of the discrepancy between the actual 
error rate and that predicted by the Bayes-Laplace formula. 

4. Conclusion 

Holte et al. (1989) argue with justification that learned concepts must be able to include 
small disjuncts arising from exceptions and rare cases. Their work offers an approach to 
reducing the risk of using small disjuncts by changing bias. 

This note shows that size alone is not an adequate basis for predicting the error rate 
of a disjunct, and hence the need for a different bias. In each of the six learning tasks 
studied, small disjuncts of the majority class proved more accurate than those of the same 
size associated with the minority class. 

The note also presents a more accurate model that employs the idea of the context of 
a disjunct as the training examples "near" it in the description space. The error rate of 
training examples in the context is then used as a kind of prior in an adapted form of the 
Bayes-Laplace formula. The adaptation is ad-hoc rather than theory-based; it would be 
interesting to see whether a better model could be derived under some set of assumptions 
about the data and/or the process by which disjuncts are formed. A more thorough model 
might also take account of factors such as the number of attributes and the number of con- 
ditions in the disjunct, both of which are ignored by the present model. 
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Notes 

1. The ComplexBE dataset. 
2. This assumption is normally violated because the training set is used in the formulation of the disjunct. 
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