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Abstract This paper deals with inducing classifiers from imbalanced data, where
one class (a minority class) is under-represented in comparison to the remaining
classes (majority classes). The minority class is usually of primary interest and it is
required to recognize its members as accurately as possible. Class imbalance con-
stitutes a difficulty for most algorithms learning classifiers as they are biased toward
the majority classes. The first part of this study is devoted to discussing main proper-
ties of data that cause this difficulty. Following the review of earlier, related research
several types of artificial, imbalanced data sets affected by critical factors have been
generated. The decision trees and rule based classifiers have been generated from
these data sets. Results of first experiments show that too small number of exam-
ples from the minority class is not the main source of difficulties. These results
confirm the initial hypothesis saying the degradation of classification performance
is more related to the minority class decomposition into small sub-parts. Another
critical factor concerns presence of a relatively large number of borderline exam-
ples from the minority class in the overlapping region between classes, in particular
for non-linear decision boundaries. The novel observation is showing the impact
of rare examples from the minority class located inside the majority class. The ex-
periments make visible that stepwise increasing the number of borderline and rare
examples in the minority class has larger influence on the considered classifiers than
increasing the decomposition of this class. The second part of this paper is devoted
to studying an improvement of classifiers by pre-processing of such data with re-
sampling methods. Next experiments examine the influence of the identified critical
data factors on performance of 4 different pre-processing re-sampling methods: two
versions of random over-sampling, focused under-sampling NCR and the hybrid
method SPIDER. Results show that if data is sufficiently disturbed by borderline
and rare examples SPIDER and partly NCR work better than over-sampling.
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1 Introduction

Supervised learning of classifiers from examples is one of the main tasks in machine
learning and data mining. Many approaches based on different principles have been
introduced in last decades, for reviews, see e.g. [34, 41]. However, their usefulness
for obtaining high predictive accuracy in real life data depends on different factors,
including also difficulties of the learning problem and its data characteristics. Class
imbalance is one of the sources of these difficulties.

A data set is considered to be imbalanced if one of target classes contains much
smaller number of examples than the other classes. The under-represented class is
called the minority class, while the remaining classes are referred to as majority
classes.

Many real life problems are characterized by a highly imbalanced distribution
of examples in classes. Typical examples are rare medical diagnosis [26], recog-
nition oil spills in satellite images [36], detecting specific astronomical objects in
sky surveys [45] or technical diagnostics of equipment failures. Moreover, in fraud
detection, either in card transactions [17] or in telephone calls [5] the number of
legitimate transactions is much higher than the number of fraudulent ones. Similar
situations occur either in direct marketing where the response rate class is usually
very small in most marketing campaigns [39] or information filtering where some
important categories contain few messages only [38]. Other practical problems are
also discussed in [11, 18, 19, 62].

If imbalance in the class distribution is extensive, i.e. some classes are strongly
under-represented, then the typical learning methods do not work properly. An even
class distribution is often assumed (also non explicitly) and the classifiers are “some-
how biased” to focus searching on the more frequent classes while “missing” exam-
ples from the minority class. As a result constructed classifiers are also biased to-
ward recognition of the majority classes and they usually have difficulties (or even
are unable) to classify correctly new objects from the minority class. In [38] au-
thors described an information retrieval system, where the minority class (being of
a primary importance) contained only 0.2% of all examples. Although the classi-
fiers achieved the overall accuracy close to 100%, they were useless because they
failed to deliver requested documents from this class. Similar degradation of clas-
sifier’s performance for the minority class was also reported for other imbalanced
problems, see e.g. [9, 26, 29, 35, 43, 62].

Learning from imbalanced data is considered by some researchers as one of the
most challenging topics in machine learning and data mining [65]. It has received
growing research interest in the last decade and several specialized methods have
already been proposed, see [11, 12, 18, 62] for a review. These methods are usually
categorized in two groups:

e The first group includes classifier-independent methods that rely on transforming
the original data to change the distribution of classes, e.g., by re-sampling.
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e The other group involves modifications of either a learning phase of the algo-
rithm, classification strategies, construction of specialized ensembles or adapta-
tion of cost sensitive learning.

This paper concerns the first group as these methods are more universal and they
can be used in a pre-processing stage before applying many learning algorithms.
While the other group includes many quite specialized methods based on different
principles. For instance, many authors changed search strategies, evaluation criteria
or parameters in the internal optimization of the algorithm, see e.g [23, 27, 31, 61,
62, 63]. A survey of special changes in ensembles is given in [21], while adaptations
to cost sensitive learning are reviewed in [18].

Before focusing our interest on some of pre-processing methods, we want to ask
a more general question about the nature of class imbalance problem and to study
the key properties of data distribution which make learning classifiers so difficult.
A small number of examples in the minority class is not the only source of dif-
ficulties for classifiers. Recent works also suggest that there are other factors that
contribute to difficulties. The most well known studies with artificial data are the
works of Japkowicz [29, 30], who showed that simple class imbalance ratio was
not the main difficulty. The degradation of performance was also related to other
factors, mainly to decomposition of the minority class into many sub-clusters with
very few examples. The rare sub-concepts correspond to, so called, small disjuncts,
which lead to classification errors more often than examples from larger parts of the
class [20]. Other researchers also explored the effect of overlapping between im-
balanced classes — more recent experiments on artificial data with different degrees
of overlapping also showed that overlapping was more important than the overall
imbalance ratio [24, 47].

However, the authors of the above mentioned papers considered these factors
independently each other. It could be worth to investigate them occurring together
in the data also in presence of other factors. In earlier studies Stefanowski and his
co-operators have noticed that many imbalanced data (e.g. coming from UCI repos-
itory [2] and used in many papers on new approaches to class imbalance) contain
also minority class examples located inside the majority class [40, 42]. They could
treated as outliers (in particular, if they are single examples surrounded by many
examples from majority classes) or rare cases (if they are not single ones). They
should not be considered as noise as they are too rare and too precious for the mi-
nority class. According to the best knowledge this kind of rare examples has not
been examined in studies with imbalanced data. Furthermore, it could be interesting
to consider the role of changing decision boundary between classes from linear to
non-linear shapes. Let us remind that rather simpler shapes were previously studied
[24, 29].

To sum up, studying the role of these factors in class imbalance is still an open
research problem. Therefore, the main aim of this study is to experimentally ex-
amine which of these factors are more critical for the performance of the classifier.
Carrying out such experiments requires preparing a new collection of artificial data
sets which are affected by the above mentioned factors. Proposing such data sets is
another sub-aim of this paper.
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Then, assuming that performance of classifiers could be deteriorated by these
data factors one could examine competence of pre-processing methods to deal with
particular factors.

In this paper we are particularly interested in focused (also called informed) re-
sampling methods, which modify the class distribution taking into account local
characteristics of examples. Representative such methods are SMOTE for selective
over-sampling of the minority class [9], one side sampling [35] and NCR for remov-
ing examples from the majority classes [37] or hybrid SPIDER method [54].

Therefore, an experimental comparison of chosen focused re-sampling methods
and simpler random replication of the minority class methods applied to previously
generated data sets and establishing competence of these methods for dealing with
particular data factors are the next aims of this paper.

The following paper contains many new experimental results (in particular in
studying the role of data factors). However, its also summarizes some results coming
from co-operation with other colleagues, in particular concerning SPIDER methods
and already published in [42, 55].

The paper is organized as follows. Section 2 describes main evaluation measures
used for imbalanced data. The review of related research with data factors in im-
balanced data is given in Section 3. Then, the generation of artificial data sets is
presented in Section 4. The next section contains results of experiments study of
the influence of data critical factors on the tree, rule based and k-NN classifiers.
In Section 6 the most related focused pre-processing methods, including SPIDER,
are briefly presented. Their comparative experimental evaluation is summarized in
Section 7. The paper concludes with a discussion in Section 8.

2 Evaluation Measures for Learning Classifiers from
Imbalanced Data

Imbalanced data constitutes a problem not only when inducing a classifier, but also
when evaluating its performance. The overall classification accuracy is not the only
and the best criterion characterizing performance of a classifier in case of class
imbalance [62].

As the overall classification accuracy is biased towards the majority classes, in
most of the studies on imbalanced data, measures defined for two-class classification
are considered, where typically the class label of the minority class is called positive
and the class label of the majority class is negative [18]. Even if data contains more
majority classes the classifier performance on these classes could be aggregated
into one negative class. Therefore, the performance of the classifiers is presented in
a confusion matrix as in Table 1.

From the confusion matrix, apart from other more elaborated measures (see e.g.
reviews as [18]), one can construct simple metrics concerning recognition of the
positive (minority) and negative (majority) classes:
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Table 1 Confusion matrix for performance evaluation

Predicted Positive Predicted Negative

True Positive TP FN
True Negative FP TN

TruePositiveRate = TP/(TP+ FN)

TrueNegativeRate = TN /(TN + FP)
FalsePositiveRate = FP/(TN + FP)
Precision=TP/(TP+FP)

True Positive Rate is called Sensitivity (also Recall) while True Negative Rate
is referred to Specificity. As the improvement of recognizing the minority class is
associated with changes of recognizing other majority classes, aggregated measures
are considered to characterize the performance of the classifiers. First of all, several
authors use the ROC (Receiver Operating Characteristics) curve analysis [16]. A
ROC curve is a graphical plot of a true positive rate (sensitivity) as a function of a
false positive rate (1 — specificity) along different threshold values characterizing
overall performance of a studied classifier. The quality of the classifier performance
is reflected by the area under a ROC curve (so called AUC measure) [11, 62]. AUC
varies between 0 and 1. Its larger values indicate better classifier performance. Al-
though AUC is a very popular tool, some researchers have showed that it has some
limitations as in the case of highly skewed data sets it could lead to an overoptimistic
estimation of the algorithm’s performance. Thus, other proposals include Precision
Recall Curves [15] or other special cost curves (see their review in [18]).

One can also use simpler measures to characterize classifiers, in particular if
they have a purely deterministic prediction (see discussions on applicability of ROC
analysis in [61]). Kubat and Matwin [35] proposed to use the geometric mean of
sensitivity an specificity defined as a:

G-Mean = \/Sensitivity -Specificity,

This measure relates to a single point on the ROC curve and it key idea is to
maximise the recognition of each of minority and majority classes while keeping
these accuracies balanced. An important, useful property of the G-Mean is that it is
independent of the distribution of examples between classes [24]. An alternative cri-
terion aggregating precision and recall is F' measure; for discussion of its properties
see e.g. [18].
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3 Earlier Studies with Data Factors in Class Imbalance

In this section we discuss earlier, related works on studying data properties which
influence learning classifiers from imbalanced data sets.

First, one can notice that the majority of researchers proposing new approaches
to handle class imbalance validated them in experiments conducted mainly on real-
life data sets (usually imbalanced data coming from the UCI Machine Learning
Repository [2]). Moreover, other comparative studies of various basic classifiers or
pre-processing methods are carried out in a similar way on such data sets, see e.g.
such comprehensive comparative studies [3, 59]. However, working with artificial
data sets, where it is possible to change their characteristics in the controlled way, is
more valuable if someone attempts to study more precisely the impact of a chosen
factor characterizing distributions of examples.

Several experimental studies have already showed that the performance of stan-
dard classifiers decreased in imbalanced data. However, some researchers hypoth-
esized, that the class imbalance ratio (i.e. too low cardinality of the minority class
referred to the total number of examples or to the majority class) is not necessarily
the only, or main, problem causing this performance decrease and dealing only with
it may be insufficient for improving classification results. In other words, besides
this imbalanced ratio, data could be accompanied with other factors, which in turn
cause the degradation of classification performance.

Japkowicz and her co-operators focused on within-class imbalance, i.e. target
concepts (classes) were decomposed into sub-concepts [30]. To check the influence
of increasing the level of decomposition she and her co-authors carried our many ex-
periments with artificially generated data. Let us describe their construction just to
have a reference point for our further solutions. Three parameters were controlled:
the size of the training set, the imbalance ratio, and so called degree of concept
complexity (understood as decomposition of the class into a number of subclasses).
Two classes the minority vs. the majority class were considered only and each of
data sets was generated in one-dimension interval. This input interval was divided
into a number of subintervals of the same size (up to five), each associated with a
different class label. The examples were uniformly distributed within subintervals.
The degree of complexity corresponds to the number of alternating subintervals.
For these assumption 27 data sets were generated with various combinations of the
above mentioned three parameters. Following similar assumptions they also gener-
ated additional data sets in five-dimensional space, where an alternance of classes
was modelled by separate clusters.

Then, C4.5 tree and multi layered perceptron (MLP) with back propagation algo-
rithms were run over these data sets. Their results showed that imbalance ratio did
not cause the degradation of classifiers’ performance so much as increasing degree
of complexity. The worst classification results were obtained for the highest decom-
position of classes (e.g. into 5 parts) in particular existing with too small number of
examples. Their main result is that "the true nature of the class imbalance problem
(...) is only if the size of the small class is very small with respect to the concept
complexity; i.e. it contains very small subclusters”. On the other hand, this also
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means that in much larger data where subclusters could be represented by a reason-
able number of examples, the imbalance ratio alone will not decrease so much the
classification performance [30].

According to Japkowicz, if the such within-class imbalanced sub-concepts con-
tain quite a small number of minority class examples it is associated with the prob-
lem of small disjuncts while building classifiers — which was originally introduced
by Holte in standard (balanced) learning of symbolic classifiers [20]. Briefly speak-
ing, a classifier learns a concept by generating disjunct forms (e.g. rules of tree) to
describe it. Small disjuncts are these parts of the learned classifier which cover a too
small number of examples [20, 62]. It has been observed in the empirical studies
that small disjuncts contribute to the classification error more than larger disjuncts.
In case of fragmented concepts (in particular in the minority class) the presence of
small disjunct arises [18].

As a practical consequence special approaches to handle the problem of small
disjuncts of imbalanced concepts were proposed in [29, 30]. They are based on
specialized over-sampling of minority class, i.e. a required number of examples
are randomly replicated until balancing majority and minority class in the certain
degree. By appropriate increasing the amount of the smaller class the classifiers
learned from such modified data are less sensitive to original rare concepts. An
example of using cluster analysis to identify the sub-concept and their random over-
sampling is described in Section 6. The impact of small disjuncts was also further
studied by other researchers, see e.g. [28, 46]. In particular, additional experiments
with applying other classifiers on the artificial data constructed in the above mention
way showed that decision trees were the most sensitive to the small disjuncts, then
the next was MLP and support vector machines were the less sensitive!.

Recently some researchers have also focused on different factors characterizing
data distributions. Prati et al studied the role of overlapping between minority and
majority classes [47]. They generated artificial data sets where the minority and the
majority class were represented by two clusters in five dimensional space (examples
where generated around centroids following Gaussian distribution). Two parameters
were changed: the imbalance ratio, and the distance between centroids — so classes
could be moved from clear separation to high overlapping. Using C4.5 classifier and
AUC criterion they showed that increasing the overlapping ratio was more responsi-
ble for decreasing AUC results than decreasing cardinality of the minority class (for
some data AUC decreased from 0.99 to 0.5). Another observation, consistent with
intuition, was that for clearly separate and distant clusters the classification mea-
sures did not decrease even with high under-representation of the minority class.

Then, influence of increasing overlapping was more precisely examined in [24].
Garcia et al. generated two-dimensional data sets with two classes separated by a
line orthogonal to one of the axis. Depending on the amount of overlapping exam-
ples of the majority class were uniformly generated inside the minority class part in
a stepwise way moving from the decision boundary until covering completely mi-
nority class. Garcia et al. assumed a fixed size of data and changed the overlapping

! These results are also summarized in the report [8]
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amount for a given imbalance ratio and vice versa. Results of experiments with 6
different classifiers showed that increasing overlapping more degraded their perfor-
mance (with respect to TPR and TPN) than changing the imbalance ratio. Moreover,
in the other experiments they fixed the amount of overlapping and changed the dis-
tribution of the minority examples by increasing their number in the overlapping
area. In this way they achieved balance between classes in this boundary, and then
the minority class dominated the majority one. Again the results of experiments
confirmed that increasing such a local imbalance ratio and the size of the overlap-
ping area were more influential than changing the overall imbalance ratio. However,
these factors influenced in a different way performance of particular classifier. For
instance k nearest neighbor classifiers (K-NN) was the most sensitive to changes in
the local imbalance region. Naive Bayesian, MLP and J4.8 were better working in
the dense overlapping region. These conclusions have been later verified in addi-
tional experiments (more focusing on performance of K-NN and other evaluation
measures), see [25].

Prati et al. have recently come back to studying the overlapping in class imbal-
ance [4]. Comparing to their previous work [47] where they identified that perfor-
mance degradation was not solely caused by class imbalances, but it was strongly
related to the degree of class overlapping, in the new work, they decided to investi-
gate the usefulness of five different re-sampling methods on the same difficult arti-
ficial data sets. The chosen methods were: popular random-over sampling, random
under-sampling, Nearest Cleaning Rule (NCR) [37], SMOTE and SMOTE + ENN
[9]. We will briefly describe them in further section 6. Now we can say that the main
conclusion was that appropriate balancing training data usually led to a performance
improvement of C4.5 classifiers for highly imbalanced data sets with highly over-
lapped classes. However, the improvements depends on the particular method and
the overlapping degree. For the highest degree of overlapping it was not clear which
method was the best (NCR worked there quite well). Results for other overlapping
showed that over-sampling methods in general, and Smote-based methods in partic-
ular, were more effective than under-sampling. Moreover, the Smote-based methods
were able to achieve the best performance even for the most skewed distributions.
Then, the data cleaning step used in the Smote + ENN seemed to be especially
suitable in situations having a higher degree of overlapping. The quite good perfor-
mance of SMOTE over-sampling integrated with data cleaning (as edited nearest
rule ENN or Tomek Links [58]) was also confirmed in other experiments on many
UCI real data sets [3].

Prati et al. have also noticed in their conclusions that it is also worthwhile to
consider the generation of artificial data sets where the distribution of examples of
the minority class is separated into several small clusters” [4].

Finally, quite a few researchers noticed that the other factor which could influence
degradation of classifiers performance on imbalanced data could be noisy examples
[1, 60]. Traditionally noise in supervised learning is understood as an (random) error
in labeling examples (i.e. an example is assigned to wrong class) or erroneous values
of attributes describing some examples [7]. These researchers wrote that existing
methods for handling imbalanced data sets were studied under an assumption saying
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that the input data are noise-free or noise in the data sets is not significant. They
claimed that real-world data are rarely perfect and can often suffer from corruptions
that may impact decision of models created from these data. An investigation of both
class and attribute noise in case of typical machine learning (i.e. balanced data) was
conducted by many researchers which conclusion that the presence of noise can be
harmful to a classifier, in particular when it is applied to previously unseen or testing
examples. In case of imbalanced data authors of [1, 60] proposed to identify noisy
examples and remove them from the input data. However, their experiments were
either conducted over UCI typical data sets or specific software data [60]. Moreover,
they used special classification filters with identify so called mislabeled examples
[7] by sophisticated ensembles. In these approaches the meaning of a mislabeled
example has a broader sense as besides random errors it also includes outliers and
other nontypical class representatives [22]. In this paper, a different view on such
examples is presented.

4 Generation of New Artificial Data Sets

First, we will discuss assumptions for preparing new data sets in our experimental
study.

Let us summarize that authors of related works indicated the role of following
factors characterizing data distribution:

e decomposition of classes into sub-concepts,
e too low number of examples in sub-concepts (small disjuncts),
e high overlapping between classes.

One can notice that these authors studied the impact of single factors without
considering other ones in the same experimental setup. Here, we want to consider
all of them occurring together.

Besides the above mentioned factors we decide to consider two additional fac-
tors:

o different, more difficult shapes of the decision boundaries between classes
e and additional type of examples belonging to the minority class.

Explaining the second factor let us try to categorize types of minority class mem-
bers. The examples located more deeply inside this class (even its sub-concepts)
could be treated as safe ones. Such examples could be easier for correct recognition
as they are surrounded by examples from the same class. Then, some other exam-
ples could be called borderline examples, if they are located inside the overlapping
region. They are more unsafe or difficult to be learned as they occur closer to the de-
cision boundary between classes with mixed distribution of majority class neighbors
and possible noise could more influence changing the classification decision.

Moreover, it would be worthy to distinguish yet another type of so called rare
examples. These examples are located in the majority class region and being distant
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enough to the decision boundary to be distinguished from borderline examples. In
some of earlier experiments Stefanowski and his co-operators analysed local neigh-
borhoods of minority class examples (see e.g. [40]). This analysis of local neigh-
borhood was done with k-NN classifiers. An example was treated as safe, if its was
correctly re-classified by its closest k neighbors. If the ratio neighbors from op-
posite classes was similar which could lead to mis-classification of the example it
was treated as a borderline example. Then, if all its neighbours belong to opposite
classes it was identified as an outlier. Moreover we noticed that some minority ex-
amples locally created pairs or sometimes triples also more distant from borderline
examples. Analysing in this way several UCI data sets we noticed that they could
be difficult with respect to recognizing the minority class as they contained much
less safe examples than others. Moreover, the number of outliers or rare pairs/triples
was sometimes relatively high. For instance, in cleveland data the minority class
contained 35 examples with 22 outliers or rare examples and 13 borderline ones.
Similar situation ocured for a few data while some other data sets, e.g. haberman or
ecoli, contained more bordeline examples than outlier ones (e.g. haberman has 51
and 20 respectively with 10 safe examples only). As the number of outliers or rare
examples is quite high comparing to the size of the minority class we claim that they
could be precious and cannot be just skipped while building classifiers. In our point
of view they are not treated as simple noise but rather less typical rare cases of the
scattered minority class. We will further call them rare examples®.

To sum up, the following factors are chosen to be present in new artificial data
sets considered in our experiments:

decomposition of the minority class into sub-parts (subclusters, etc.),
size of the overlapping region between classes (majority class examples are gen-
erated into the minority class inside the “borderline zone” of the given width and
it is parametrized by the relative number of examples from the minority class that
are located in this region),

e presence of rare examples (also parametrized by the relative number of examples
from the minority class),
linear vs. non-linear shape of decision boundaries,
imbalance ratio (denoted as i : j, where i represents the minority class and j the
majority one),

e total number of learning examples.

Similarly to other researchers we chose binary classification problems (the mi-
nority vs. the majority class) with examples randomly (either uniformly or not) dis-
tributed in the two-dimensional space (both attributes were real-valued). Following
the literature on experiments with the factors influencing the performance of clas-
sifiers, we decided to prepare several artificial data sets in order to control these
factors. We considered three different shapes of the minority class: subclus, clover
and paw.

2 In this sense it could be close to rare cases as discussed in the second section of G.Weiss study
[62]. Although it is still class imbalance problem not a case of very rare data as sometimes consid-
ered in the context of one-class-learning
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Fig. 1 Subclass data set — a minority class is decomposed into 3 parts (subclusters)

34.5 308

Fig. 2 Clover data set with 3 elements and sub-clusters of majority classes

In subclus, examples from the minority class are located inside rectangles all sur-
rounded uniformly by the majority class. The examples of the minority class are also
uniformly distributed within its sub-region. This shape is a kind of two-dimensional
generalization of data from related works on data decomposition and small dis-
juncts [29]. Fig. 1 shows such a shape with 3 subclusters; two zoom windows focus
a reader attention on the exemplary borders.

Then, the next shape, called a clover, represents a more difficult, non-linear set-
ting, where the minority class resembles a flower with elliptic petals. We decided to
analyse two types of such clover shapes. In the first type the examples of majority
class were also distributed inside the elliptic shapes fitted within the minority class
“petals”. Figure 2 shows just such a clover with 3 petals. Then, we created another
clover versions where examples from the majority class were uniformly distributed
in all the free parts — see at Fig. 5 for clover with 5 petals (as this shape will be
mainly used in further experiments — see Section 7 — examples are represented by
points marked with different symbols).
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Fig. 3 Paw data set - version 02a

“
277 L

Fig. 4 Another paw data set - version 02b

Finally, in paw the minority class is decomposed into 3 elliptic sub-regions of
varying cardinalities, where two subregions are located close to each other, and the
remaining smaller sub-region is separated — two representatives of such shapes are
showed in Fig. 3 and Fig. 4. In case of 02a example the majority class are generated
closer to the minority class regions and they are distributed more uniformly, while
02b is more similar to clovers where the majority class is arranged in elliptical
shapes. However, in both cases the majority class was also generated within some
elliptical shapes. We also constructed another versions of paw where examples from
the majority class are uniformly distributed in the allowed area - see an illustrative
example in Fig 6. We constructed such paw figure as it should better represents real-
life data than the clover. Moreover, both clover and paw should be more difficult to
learn than simple circles (or spheres) that were considered in some related works.

We generated a large collection of data sets with different numbers of examples
(ranging from 200 to 1200) and imbalance ratios (from 1:3 to 1:9). Additionally,
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Fig. 5 Clover data set Fig. 6 Paw data set

following Japkowicz’s research on data complexity and splitting data shapes into
interleaved sub-parts [29], we considered a series of the subclus and clover shapes
with the number of sub-regions ranging from 1 to 5, and from 2 to 5 respectively.

Technically, this generator was implemented by Krzysztof Kaluzny in Java as a
program compatible with WEKA platform; for more details see [32].

5 Experimental Analysis of Influence of Critical Factors on
Classifiers

In experiments three different classifiers were applied to the generated data sets
(as presented in the previous section). K—nearest neighbod (K-NN), tree- and
rule—based classifiers were chosen following the related experiments. K-NN was
parametrized with k = 3 (we also tested 1 neighbour). While looking for these near-
est neighbours, the distance is calculated with HVDM distance [64], i.e. aggregation
of the Euclidean distance metric for numerical features and the Value Distance Met-
ric [14] for the qualitative attributes. Decision trees were induced by Quinlan algo-
rithm [44] - version J4.8 available in WEKA. Then, rules were generated by Ripper
algorithm [13] (also JRip implementation from WEKA). Trees and rule were run
without pruning to get more precise descriptions of the minority class. Evaluation
measures were estimated by stratified 10 fold-cross validation. We focus mainly
on the sensitivity (TPR) to study recognition of the minority class and AUC as a
secondary criterion.

Due to the space limit, we are not able to present the complete results of all
experiments but focus on the most interesting ones. For more details the reader is
referred to the report describing much more experimental results [53].

In first experiments we studied the impact of the imbalance ratio combined with
the size of data (i.e. total number of examples varied from 1200 to 200). Other crit-
ical factors were not considered, i.e. there was no overlapping or noisy examples.
Let us only comment that our results were consistent with the observations reported
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Table 2 Influence of decomposing the minority class into sub-concepts on the sensitivity measure
for K-NN classifier: Subclass data set. Two imbalance ratios and five different cardinalities of data
sets are reported in columns.

Number of 1:5 1:9

subclusters 600 400 200 600 400 200
2 0.82 0.8 0.78 0.78 0.76 0.45
3 0.78 0.72 0.70 0.66 0.74 0.25
4 0.75 0.70 0.68 0.64 0.50 0.15
5 0.73 0.68 042 0.58 045 0.11
6 0.64 0.62 036 042 0.32 0.10

Table 3 Influence of non-linear decision boundaries on AUC measure. Size of data — 1200 exam-
ples and 3 different imbalance ratios.

Type of Trees Rules KNN
data 1 13 15 1.1 113 15 1:1 1:3 15

02a 095 085 0.68 094 091 089 094 092 09

02b 095 092 089 095 092 0.85 095 093 0.9
subclass3  0.98 097 096 096 094 092 097 096 0.94
subclass5 098 096 094 096 092 090 096 096 094
clover3 094 093 092 094 092 090 096 094 0092
clover5 093 092 089 091 0.88 0.84 0.94 0.92 0.90

in [30]. For the number of examples greater than 400 examples there was no sig-
nificant influence of decreasing the imbalance ratio. Small decreases of sensitivity
and partly AUC measures was observed only for very small cardinality of the data
(smaller than 200) and a very high imbalanced ratio (1:11). It concerned all studied
classifiers.

We also noticed that non-linear shapes of decision boundaries (as visible in clover
or 02a, 02b data) were more difficult to recognize than linear rectangles subclass —
see also Table 3.

In the next phase of experiments we studied more precisely the impact of in-
creasing the decomposition of the minority class into sub—parts. Generally speaking,
the obtained results were also consistent with earlier related research, in particular
works of Japkowicz — increasing the number of sub-regions of the minority class
combined with decreasing the size of a data set degraded the performance of a clas-
sifier [28, 29, 30]. For illustration see Table 2, where for two imbalance ratios (1:5
and 1:9) and stepwise decrease of examples (from 600 to 200) we divide the rect-
angle of the minority class into appropriate subclusters (of the same size). One can
notice that for smaller number of examples increasing the number of subclusters
degraded the values of sensitivity much larger than changing the imbalance ratio.
If the number of subclusters is higher than 4 and the number of examples is no
greater than 400 examples, they could be seen as small sub-regions (e.g. for 1:5 the
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Table 4 Influence of decomposing the minority class on the sensitivity of tree classifier: Clover
data set. Data size — 600 and 400 examples

Number of 600 400
elements I3 15 1.7 19 1:3 1:5 1.7 19

092 092 0.83 0.80 094 0.85 0.82 0.80
090 0.85 0.80 0.78 0.84 0.78 0.72 0.70
0.85 080 0.78 0.74 0.82 0.75 0.68 0.60
0.75 035 024 0.06 0.14 010 O 0
022 010 O 0 006 O 0 0

AN NN

Table 5 Influence of overlapping on the sensitivity of the tree classifier learned from subclass
data. Overlapping is expressed by % of borderline examples in the minority class. Total number of
examples — 800.

Number of 1:5 1:9
subclusters 0% 10% 20% 0% 10% 20%

096 091 085 094 09 0.75
096 0.89 0.78 094 0.87 0.74
096 0.87 0.76 090 0.81 0.66
094 0.84 0.74 088 0.68 0.38

NN kW

total number of 66 minority examples are divided into rare areas having less than
15 examples comparing to 333 majority examples — which could refer to the idea
of small disjuncts [30]). Decreasing the total number of examples to 200 makes the
problem definitely more difficult. The tree and rule classifiers also decreased their
performance for these subclass shapes.

The degradation of performance was larger if the decision boundary became non-
linear even for larger data set. Table 3 illustrates results for all classifiers applied to
data sets characterized by different imbalanced ratio and smaller or higher decom-
position. As the number of examples is rather highest (1200 examples), for nearly
balanced data we did not notice the decrease. Non-linear and more complicated
shapes (e.g. 02a, or increasing a number of parts in clover5) made the problem
more difficult, in particular for tree or rule- classifiers, when data became more im-
balanced (ratio 1:5). K-NN classifier is rather more local approach than global clas-
sifiers (trees or rules) and it works better with more complicated, non-linear classes.
Values of AUC decrease in a more visible way if the number of examples is smaller
than 600 ones.

Knowing that non-linear shapes were more difficult, we studied more precisely
the impact of decomposition the minority class in presence of smaller number of
examples. As it is more visible for the sensitivity measure we show a representative
results for tree classifier, see Table 4. One can notice that stepwise increasing the
number of sub-regions (from 2 to 6) in clover shape degrades much more the sensi-
tivity measure than stepwise increasing the class imbalance ratio (from 1:3 to 1:9).
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Table 6 Influence of overlapping and rare examples of the minority class on the sensitivity of tree
classifier: Subclass data set.

Number of 800 600 400
subclusters 0% 10% 20% 30% 0% 10% 20% 30% 0% 10% 20% 30%

096 0.84 0.70 0.56 094 085 0.70 055 09 082 0.7 042
094 0.84 068 04 092 082 058 03 089 0.7 04 034
09 082 056 036 09 078 052 032 0.87 068 024 0.18
0.88 0.64 040 034 08 06 036 03 05 022 0.14 0.08

AN N AW

Table 7 Influence of rare and borderline examples: 02a data set.

Classifier Sensitivity AUC
0% 10% 20% 30% 0% 10% 20% 30%

Tree 045 038 0.17 0.04 082 0.8 0.64 0.5
Rules 0.82 0.70 0.65 0.58 092 0.85 0.82 0.78
KNN 084 0.72 070 0.62 095 092 09 0.87

Rule and K-NN classifiers showed similar behaviour - although in case of K-NN the
degradation was not so radical.

The next phase of experiments concerned the influence of overlapping in the
boundary between classes and the presence of rare minority examples located in-
side the majority class area. Starting from the overlapping factor, we established the
width of the overlapping inside the area of the minority class and parametrized it by
percentage of examples from the minority class which were located in this overlap-
ping boundary. The majority examples are uniformly generated inside this boundary
with their number was equal to the number of the minority class located there.

Table 5 shows influence of such overlapping on the tree classifier. Although com-
paring number of sub-regions to amount of overlapping may be not justified we can
“roughly” say that stepwise increasing of overlapping could decrease more the sen-
sitivity than stepwise increasing decomposition. For instance, let us analyse the first
column (%) - the sensitivity changes from 0.96 to 0.94. While for any of the number
of subclusters the sensitivity decreases in range of nearly 0.2 (see, e.g. 4 subclusters,
the sensitivity decreases from 0.96 to 0.78). The similar tendency can be observed
for rule and K-NN classifiers, also for smaller data sets and non-linear shapes (how-
ever, decreases of the sensitivity are even higher).

The next factor was the presence of rare examples from the minority class. We
studied their impact together with overlapping of classes in these data sets. More
precisely, if the parameter is set to x% it means that half of these examples are
generated inside the overlapping and the rest are generated as rare examples. For
instance, value 20% means that it is previous case of 10% overlapping extended
by 10% minority examples treated as rare one. The appropriate new experiment
referring to previous Table 5 is now presented in the next Table 6.
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Table 8 Influence of rare and borderline examples: clover4 data set.

Classifier Sensitivity AUC
0% 10% 20% 30% 0% 10% 20% 30%

Tree 05 025 010 008 0.72 0.62 055 052
Rules 0.68 0.44 038 035 08 0.72 0.68 0.62
KNN 090 088 0.72 062 095 092 082 0.78

Although it could be questionable to compare directly the step of changing rare
level with the step of increasing the class decomposition, we can say that stepwise
increasing the level of rare and borderline examples decreases much more the eval-
uation measures than dividing a class into smaller parts (e.g. for 600 examples and
no rare moving from 3 to 6 subclusters decreased the sensitivity around 0.1, while
adding up to 30% noise or borderline examples introduced a change of the sensitiv-
ity over 0.5). Moreover, as it could be expected, adding rare made the problem more
difficult (compare results from Table 5 to Table 6).

The similar results were obtained for other shapes and classifiers, see summaries
presented in Tables 7 and 8.

Finally we checked all these parameters in case of the other versions of non-linear
shapers (as illustrated in Fig. 6 and Fig. 5) where the examples from the majority
class are surrounding more closely the minority class. These versions were more
difficult to learn and values of evaluation measures were smaller than in the above
presented tables.

To sum up, results of the experiments shows that besides decomposition of the
minority class, the next important critical factors are:

overlapping between classes (expressed by the number of borderline examples)
rare examples from the minority class (in particular if they occur together with
similar number of borderline examples).

We can also hypothesize that these factors could cause higher degradation of
classification performance than decomposition itself - this is a new result comparing
to previous related works. Moreover, presence of all these factors together in the
data set causes larger classification deterioration than too low imbalance ratio — in
particular for non-linear decision boundaries.

6 Improving Classifiers by Focused Re-sampling Methods

In the previous section we experimentally showed critical factors for degrading the
performance of the selected tree, rule and K-NN classifiers. Pre-procesing methods
that change distribution of examples in classes are one of the main types of spe-
cialize methods for improving classifiers in case of class imbalance [11, 18]. These
methods, sometimes also called re-sampling techniques, are classifier-independent
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and consist in transforming an original data distribution to change the balance be-
tween classes. Some them can also handle other properties of data distributions
[3, 18].

Therefore, the next research problem of the following paper is to check the sen-
sitivity of different re-sampling methods to overlapping, rare examples and class
decomposition factors in the considered artificial data sets. We have chosen 4 meth-
ods some related to the proposal of the SPIDER method, introduced by Stefanowski
and Wilk [54, 55]. More precisely they are simple random over-sampling, cluster
based over-sampling and nearest cleaning rule NCR and SPIDER.

In the following review we briefly describe only these methods and SMOTE,
which is also related to our proposal of SPIDER; for more extensive reviews see,
e.g., [3, 11, 18, 62].

First of all, the simplest re-sampling techniques are random over-sampling which
replicates examples from the minority class and random under-sampling which ran-
domly eliminates examples from the majority classes until a required degree of bal-
ance between classes is reached (Many researchers attempted to obtain the same
cardinality of the minority class as the majority one). However, several authors
showed the random under-sampling or over-sampling were not sufficiently good
at improving recognition of imbalanced classes. Random under-sampling may po-
tentially remove some important examples and simple over-sampling may also lead
to overfitting [9, 35]. Furthermore it is not easy to find an optimal ratio for balancing
classes. Several authors have already shown that used “even” distribution (i.e. ob-
taining the same cardinality in classes) is not optimal when dealing with such rare
classes. For instance, the reader can consult the comprehensive study with many
data sets and classifiers showing that depending on combination of data and classi-
fiers the ratios of modified majority vs. minority class cardinalities like 3:1 and 2:1
quite often outperformed the most popular ratio 1:1 [33]

Therefore, researchers proposed more elaborated methods that attempt at taking
into account data characteristics and factors influencing nature of class imbalance.

Following critical observations on the role of small disjuncts Japkowicz proposed
an advanced oversampling method (cluster oversampling) that takes into account
not only between-class imbalance but also within-class imbalance, where classes
are additionally decomposed into smaller sub-clusters [30]. First, random oversam-
pling is applied to individual clusters of the majority classes so that all the sub-
clusters are of the same size. Then, minority class clusters are processed in the same
way until class distribution becomes balanced. This approach was successfully ver-
ified in experiments with decomposed classes [30, 43].

6.1 Informed Undersampling

Kubat and Matwin in their paper on one-side selection claim that characteristics of
mutual positions of learning examples is a source of difficulty for learning classifiers
from imbalanced data [35]; see also their more application study [36]. They focus
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attention on noisy majority class examples located inside the minority class and
borderline examples. According to their approach, such examples are removed from
the majority classes, while the minority class is kept unchanged (these examples can
be identified with so called Tomek links [58]). As result of such “focused” under-
sampling ambiguous regions around the minority class are “cleaned”. Moreover,
some examples from “safer” regions of the minority class can be also discarded as
they could be correctly classified by other learning examples.

Then, the Nearest Cleaning Rule (NCR) method was introduced in [37]. This
method is based on the Edited Nearest Neighbor Rule (ENNR) and it removes these
examples from the majority classes that are misclassified by its k nearest neighbors.
Experimental results confirmed that both methods improved the sensitivity of the
minority class comparing to simpler over- or under-sampling methods [35, 37].

6.2 Informed Oversampling Methods

A most well-known representative of informed over-sampling is SMOTE (Synthetic
Minority Over-sampling Technique) introduced by Chawla et al. [9], which consid-
ers each example from the minority class and generates new synthetic examples
along the lines between this example and some of its randomly selected k nearest
neighbours (also belonging to the minority class). Experiments reported in [9] with
C4.5 trees, Ripper rules and Naive Bayes classifiers showed that SMOTE improved
recognition of the minority class. Moreover, its combination with under-sampling of
the majority class was able to achieve better results than other under-sampling meth-
ods as ENNR alone — see, e.g., [3]. There are also other proposals of hybridization
of the basic SMOTE with additional “filtering” step, see e.g. the use of some rough
sets inspired solutions [48] or more sophisticated ensemble noise filtering [49].

Although SMOTE and NCR showed to be promising in experimental evaluation,
they also demonstrated several shortcomings that became motivations for introduc-
ing SPIDER — we will further discuss them in the next section. We should note
that recently some researchers have also tried to propose various generalizations
of SMOTE following similar critical observations — see discussion in [18]. Two
most interesting generalizations of SMOTE are Borderline SMOTE that takes into
account the different nature of examples from the minority class, and Safe-Level
SMOTE, where also the distribution of the majority class is considered while gen-
erating synthetic examples from the minority class. Both methods are described
in [18, 40]. Yet another proposal is based on controlling distributions in local neigh-
borhoods of the seed example and its nearest neighbors from both minority and
majority classes [40].
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6.3 SPIDER Method

The critical analysis of undesirable properties of well-known focused re-sampling
methods, especially NCR and SMOTE, became a starting point for developing
by Stefanowski and Wilk the SPIDER method [54]. NCR and in particular one-
side-selection are too strongly biased toward cleaning overlapping regions between
classes and interior areas of the majority class. However, both methods may remove
too many examples from the majority classes. Such greedy “cleaning” definitely
leads to the increased sensitivity for the minority class but too extensive changes in
the majority classes may deteriorate the ability of an induced classifier to recognize
examples from these classes.

One of the main shortcoming of SMOTE is the overgeneralization problem.
SMOTE blindly generalizes regions of the minority class without checking posi-
tions of the nearest examples from the majority classes. This strategy is particularly
problematic in the case of skewed class distribution where the minority class is very
sparse in comparison to the majority classes. In such a situation SMOTE may in-
crease overlapping between classes by locating synthetic examples from the minor-
ity class among existing examples from the majority classes. Moreover, the number
of synthetic examples generated by SMOTE has to be globally parametrized, thus
reducing the flexibility of the approach. Results of experimental studies with sim-
ulated data sets [24] imply that an efficient method should be rather focused on
local distributions of difficult examples than being controlled by a global parameter.
Let us also notice that according to experimental results reported in the literature
an appropriate value of this parameter strongly influences SMOTE’s performance
and its proper tuning requires a computationally costly procedure (iterative testing
of various possible values). Finally, random introduction of synthetic examples by
SMOTE may be difficult to justify in some domains where it is important to pre-
serve a link between original data and a constructed classifier in order to explain
suggested decisions.

The SPIDER method relies on the local characteristics of examples (i.e., charac-
teristics of their local neighborhood) and distinguishing between different types of
examples. Two types of examples are distinguished — safe and not-safe. Safe exam-
ples should be correctly classified by a constructed classifier, while not-safe ones
are likely to be misclassified and require special processing. In SPIDER the type
of an example is discovered by applying the nearest neighbor rule (NNR) with the
heterogeneous value distance metric (HVDM) [64] — i.e., the distance is calculated
with the Euclidean distance metric for numerical features and with the value dis-
tance metric [14] for qualitative features. According to NNR an example is safe if it
is correctly classified by its k nearest neighbors, otherwise it is not-safe.

More precise categorization of an example is based on the analysis of its neigh-
bors from the other classes (i.e., different than the class of a considered example).
If an example is not-safe and its nearest examples belong to other classes, then this
example is identified as certain-not-safe and we interpret it as a rare case (or an
outlier) located deeply inside the other classes. Such example should be treated in
a different way than a not-safe example with some neighbours from the same class
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— this one is rather located in / or closer to an overlapping region between classes.
Unlike related methods that distinguish the type of examples in the minority class
only, SPIDER identifies the nature of examples in all classes. SPIDER assumes two
decision classes — the minority class ¢, and the majority class ¢, — if an original
data set contains several majority classes they are collapsed together.

The method consists of two main phases — identification and pre-processing. In
the first phase the type of examples is identified according to the "local” charac-
teristics of their neighbors and ’flagged’ accordingly. Firstly, examples from the
majority class ¢, are processed. In particular, depending on the relabel option the
method either removes or relabels certain-not-safe / noisy examples3 from ¢4 (i€,
changes their classification to c,;,). Then, in the second phase, it identifies the char-
acteristic of examples from ¢, considering changes introduced in the first phase.
Not-safe examples from this class require special processing — i.e they are amplified
(by replicating them with different degree) according to the ampl option

All options of SPIDER involve modification of the minority and majority classes,
however, the degree and scope of changes varies between options. Weak amplifica-
tion is the simplest and less greedy modification of the minority class. It focuses on
not-safe examples from ¢, and slightly over-samples them by adding as many of
their copies as there are safe examples from c,,,; in their neighborhoods. The second
option — relabel — also changes these certain noisy examples from c;,,; which could
be interpreted as noisy outliers located more deeply inside the minority class. For
the last option — strong — the degree of amplification of not-safe examples c;;, could
be higher depending on analysis of an extended neighborhood. Much more thorough
description of the method is provided in [54, 55], including precise pseudocode of
the algorithm.

7 Experiments with Focused Re-sampling Methods

In the next experiments we will study the impact of overlapping, rare examples and
partly class decomposition on the performance of selected pre-processing methods
for handling class imbalance, including our proposal of SPIDER. Here, we summa-
rize some of the main results of the more comprehensive study on this topic recently
carried out by Napierala, Stefanowski and Wilk [42].

According to the results of Stefanowski’s earlier experiments (presented in Sec-
tion 5) a group of data sets with 800 examples, the imbalance ratio of 1:7, and 5
sub-regions for the subclus and clover shapes is selected for experiments. We chose
their more difficult versions where the majority class is uniformly distributed around
the minority class shapes — see the Figures 5 and 6. Let us remind that all these data
sets presented a significant challenge for a stand-alone classifier. Similar behaviour
was observed for data sets with 600 examples, but due to space limit we did not de-

3 In case of the majority class we can consider possible noise example if a not-safe example is
located deeply inside the region of the minority class (all its k-nearest neighbors belong to the
opposite class) and it could be wrongly re-classified by its neighbors
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scribe these data sets in the paper. Due to specific aims of study [42], two symbolic
rule and tree classifiers were applied. Trees were induced by C4.5 algorithm, while
rules were induced by MODLEM algorithm (introduced by Stefanowski in [50]; see
also for its description in [51, 52].

Firstly, the impact of disturbing the borders of sub-regions in the minority class
was evaluated. It was simulated by increasing the ratio of borderline examples from
the minority class subregions. This ratio (further called the disturbance ratio) was
changed from 0 to 70%. The width of the borderline overlapping areas was compa-
rable to the width of the sub-regions (sub-parts in data shapes).

The constructed classifiers were combined with the following focused pre-
processing methods:

standard random oversampling (abbreviated as RO),
Japkowicz’s cluster oversampling (CO),

nearest cleaning rule NCR,

and SPIDER (SPID).

Cluster oversampling was limited to the minority class, and SPIDER method was
used with the strong amplification as such combination performed best in our earlier
studies [54, 55]. For baseline results (Base), both classifiers were ran without any
pre-processing.

Table 9 G-mean for artificial data sets with varying degree of the disturbance ratio in the overlap-
ping region.

Rules Trees

Data set Base RO CO NCR SPID Base RO CO NCR SPID

subclus-0 09373 0.9376  0.9481 0.9252 0.9294 0.9738 0.9715 09715 0.9613 0.9716
subclus-30  0.7327 0.7241 0.7242  0.7016 0.7152 0.6524 0.7933 0.7847 0.7845 0.8144
subclus-50  0.5598 0.5648 0.6020 0.6664 0.6204 0.3518 0.7198 0.7113 0.7534 0.7747
subclus-70  0.4076  0.4424 0.4691 0.5957 0.5784 0.0000 0.7083 0.7374 0.6720 0.7838
clover-0 0.7392  0.7416  0.7607 0.7780 0.7908 0.6381 0.8697 0.8872 0.6367 0.6750
clover-30  0.6361 0.6366 0.6512 0.7221 0.6765 0.2566 0.7875 0.7652 0.6758 0.7686
clover-50  0.5066 0.5540 0.5491 0.6956 0.6013 0.1102 0.7453 0.7570 0.6184 0.7772
clover-70  0.4178 0.4658 0.4898 0.6583 0.5668 0.0211 0.7140 0.7027 0.6244 0.7665
paw-0 0.9041 09126 09182 0.9184 0.8918 0.6744 0.9318 0.9326 0.6599 0.7330
paw-30 0.7634 0.7762 0.7701 0.7852 0.7780 0.3286 0.8374 0.8334 0.8527 0.8337
paw-50 0.6587 0.6863 0.6865 0.7517 0.7120 0.3162 0.8013 0.7858 0.8200 0.8075
paw-70 0.5084 0.5818 0.5691 0.7182 0.6506 0.0152 0.7618 0.7472 0.7824 0.8204

We do not report all results from [42] but summarize the most representative
ones. However, let us remark that with respect to recognition of the minority class
alone, expressed by the sensitivity measure, results clearly showed that all meth-
ods of pre-processing improved the sensitivity of both classifiers in comparison to
Base classifiers (in particular for more difficult decision boundaries and larger dis-
turbance). Generally speaking, simpler over-sampling RO and CO performed com-
parably on all data sets, and on non-disturbed data sets they often over-performed
focused methods NCR and SPIDER. On more difficult sets (disturbance = 50-70%)
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both methods NCR and SPIDER were significantly better than oversampling meth-
ods. Then, we took into account balance between sensitivity and specificity, so rec-
ognizing examples also from the other majority class. Results of the geometric mean
(G-mean) are presented in Table 9.

These experiments also showed that the degradation in performance of a classifier
is strongly affected by the number of borderline examples. If the overlapping area
is large enough (in comparison to the area of the minority sub-clusters), and at least
30% of examples from the minority class are located in this area, then focused re-
sampling methods (NCR, SPIDER) strongly outperform random and cluster over-
sampling with respect to sensitivity and G-mean. Moreover, the performance gain
increases with the number of borderline examples. On the contrary, if the number of
borderline examples is small, then oversampling methods sufficiently improve the
recognition of the minority class and they are comparable to focused method with
respect to G-mean.

Table 10 Sensitivity for artificial data sets with different types of testing examples

Rules Trees

Dataset g, RO CO NCR SPID Base RO CO NCR SPID

subcl-safe  0.58 058 0.62 0.78 0.64 032 0.84 086 098 1.00
subcl-B 0.84 0.84 0.84 086 0.84 0.00 0.82 0.84 036 0.92
subcl-C 012 010 0.16 024 026 0.00 054 0.00 0.00 0.52
subcl-BC 048 047 050 055 055 0.00 0.68 042 0.18 0.72
clover-safe 030 0.38 044 0.70 060 0.02 096 092 0.04 0.98
clover-B 0.84 0.82 0.82 084 0.86 0.04 094 092 0.04 0.94
clover-C 0.14 0.08 0.14 024 036 0.00 030 0.02 0.00 040
clover-BC 049 045 048 054 0.61 0.02 062 047 0.02 0.67
paw-safe 084 092 084 0.84 080 042 090 096 0.74 1.00
paw-B 0.88 0.88 0.86 0.88 090 0.14 090 0.90 040 0.92
paw-C 0.16 0.14 0.12 026 0.16 0.04 020 0.00 0.00 0.34
paw-BC 052 051 049 057 053 0.09 055 045 0.00 0.63

In [42] we carried out additional experiments where we studied the impact of
rare examples from the minority class, located outside the borderline area, on the
performance of a classifier. To achieve this, we introduced new rare examples (sin-
gle and pairs) and denoted them with C. Similarly to the first series of experiments
we used data sets of three shapes (subclus, clover and paw), 800 examples and the
imbalance ratio of 1:7. We also employed rule- and tree-based classifiers combined
with the same pre-processing methods. However, we changed the 10-fold cross val-
idation to the train-test verification in order to ensure that learning and testing sets
had similar distributions of the C examples. In each training set 30% of the minority
class examples were safe examples located inside sub-regions, 50% were located in
the borderline/overlapping area (we denote them with B), and the remaining 20%
constituted the C rare examples.
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For each training set we prepared 4 testing sets containing the following types
of examples from the minority class: only safe examples, only B examples, only C
examples, and B and C examples combined together (BC). Results are presented in
Table 10. They clearly show that for the “difficult” rarity (C or BC) SPIDER and in
most cases NCR were superior to RO, CO and Base. SPIDER was also comparable
to RO and CO in case of safe and (sometimes) B examples

To sum up these experiments reveal the superiority of SPIDER and in most cases
NCR in handling rare examples located inside the majority class (also accompanied
with borderline ones). Such result has been in a way expected, as both methods were
introduced to handle such situations. The experiments also demonstrated that even
random oversampling is comparable to SPIDER and better than NCR in classifying
safe examples from the minority class.

Besides the above mentioned experiments with artificial data, the focused re-
sampling methods, including SPIDER, were also compared on some real data sets
coming from UCI Machine Learning Repository [2]. As this kind of experiments is
not within the main aim of this paper, and its page size is limited, we do not show
these precise results but attempt at summarizing the general conclusions from two
earlier papers ([54] - early results with rule based classifiers, and more extended
comparison [55] including additional methods and classifiers). In these experiments
SPIDER applied together with C4.5 and MODLEM algorithms was compared to
competitive methods (NCR and SMOTE) and basic classifiers used without any pre-
processing. The results of experiments showed that although NCR often led to the
highest increase of sensitivity, at the same time it significantly deteriorated speci-
ficity and overall accuracy. SPIDER was the second best with respect to improving
the sensitivity of the minority class (improvement was more visible for rule than
trees), and slightly better than SMOTE or comparable to it. Moreover, it did not
deteriorate the recognition of the majority classes as much as NCR. In case of SPI-
DER and possible pre-processing options, weak resulted in the best specificity and
overall accuracy (often at the cost of sensitivity), strong resulted in a good balance
between specificity and sensitivity — evaluated by G-mean — and relabel improved
sensitivity in the similar range as strong, however at the cost of specificity.

Recently we showed another way of balancing recognition of the minority and
majority classes (expressed by optimizing G-mean) which include using SPIDER
inside the generalized framework of the adaptive ensembles called Ilvotes [6].

Considering results of the experiments with UCI imbalanced data, we could also
refer to the analysis of the “nature” of these data sets taking into account local
neighbourhood characteristic for the focused re-sampling methods. In [40] we used
k — NN analysis of each minority class example and considered is as certain unsafe
(outlier) or borderline (unsafe-possible) as defined in SPIDER. Results (for k = 3 or
partly 5) showed that all studied data sets are rather difficult with respect to classi-
fier ability for recognizing the minority class. First of all, we noticed that for some
data sets the number of outlier examples is quite high comparing to the size of the
minority class. Other data sets contained also many borderline examples without
too many safe regions of the minority class. Referring to the earlier comparison of
oversampling methods we noticed that for such data sets SPIDER and NCR led to
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improvements of the sensitivity. On the other hand, for a two data sets (as e.g. new
thyroid) with more safer examples, base classifiers without preprocessing or simpler
oversampling worked sufficiently good. Let us remind that such a data as new thy-
roid is more imbalanced than other data sets. In our opinion this very simple analysis
confirm our earlier observations on the role of critical factors from experiments with
controlled artificial data sets.

8 Final Remarks

The problem of learning classifiers from imbalanced data has been considered. It
is one of the most challenging topics in machine learning and data mining [65].
Moreover, it is still open” from a theoretical point of view and it is very important
in many application domains. On the other hand, one can notice by studying related
literature that it has received growing research interest in the last decade and several
specialized methods have already been proposed. Although some of them have been
validated in experiments, it is still a need to ask more general research questions
about the class imbalance, data characteristics and competence of some popular
methods. This paper is an attempt to partly answer to these questions.

Firstly, the nature of this problem and sources of difficulties for achieving good
recognition of the minority class are discussed. As it has been already noticed by
other researchers, the small number of examples in the minority class is not the
main source of difficulty [24, 28, 29, 47]. The degradation of classification per-
formance is rather related to other critical factors as decomposition of the classes
into smaller sub-parts including too few examples (so called small disjuncts [30]),
overlapping between classes (existence of too many borderline examples in the mi-
nority class), presence of rare or noisy examples located farther from the decision
boundary (deeper inside the distribution of the opposite class).

Following this literature review, in the first part of this paper we decided to carry
out an experimental study on the impact of the critical factors on re-sampling meth-
ods dealing with imbalanced data. Unlike the related works we decided to consider
them occurring together in the data. Moreover, we pay more attention to presence
of borderline and rare examples. We also considered more complicated shapes of
classes than in earlier works. This is why we introduced new types of artificial data
sets for experimental evaluation. Generated artificial data include simpler rectangle
shapes of the minority class (subclass following inspirations from earlier works)
and more complicated non-linear boundaries as clover, paw and similar 02 shapes.

In the first phase of experiments we studied impact of critical factors in these arti-
ficial data sets on performance of the most popular rule-, tree- and K-NN classifiers.
First of all, some results confirmed earlier results obtained for simpler artificial data
on the importance of the minority class decomposition into smaller sub-concepts
[30]. We also showed that for more nonlinear decision boundaries increasing decom-
position of the class into small sub-parts decreased sensitivity or AUC measures. It
was also observed that K-NN could classify the non-linear shapes better than trees
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- it could be explained by its local performance comparing to a more global way
of constructing trees (see also more extensive discussion of specific properties of
K-NN in [46]). On the other hand, both tree and rule classifiers worked better for
rectangle shapes of the minority class. Moreover, rule classifier Ripper was slightly
better than C4.5 tree. Its behaviour could be caused by a specific way of construct-
ing a decision list in the final classifier, i.e. the algorithm induced rules only for the
minority class (with a controlled pruning level) and they are ordered in a kind of an
exception list [13]. If the new / testing example does not match any of these rules it
is classified by a default rule to the majority class. As we ran Ripper without strong
pruning, it could be better suited to class imbalance in non-linear, complicated, de-
cision boundaries (clover, paw, 02) than more global tree classifiers.

Then, experimental results clearly showed that the combination of class decom-
position with overlapping makes learning very difficult (in particular for sensitivity
measure and tree classifiers). Focussing attention on the rare examples from the mi-
nority class is an original contribution of this study — as according to the best knowl-
edge they have not been studied yet in experimental studies. It was clearly visible
that the presence of rare example significantly degraded performance of all clas-
sifiers. We could also say that stepwise increasing numbers of borderline and rare
examples in the minority class decreased all evaluation measures more that increas-
ing decomposition of this class into new sub-parts. This is also a new observation
comparing to previous related research.

To sum up this part of experiments, we hope that our results expand the body of
knowledge on the critical role of borderline and rare examples with respect to earlier
results based on simpler artificial data sets and other factors [24, 28, 29, 47].

The next part of this paper concerns problems of handling these difficulties by
the following re-sampling methods: random over-sampling, cluster over-sampling,
informed under-sampling by NCR and SPIDER. Our experiments showed that the
degradation in classification performance was strongly affected by the number of
borderline examples. If the overlapping area was large enough (in comparison to the
area of the minority sub-clusters), and at least 30% of examples from the minority
class were located in this area (i.e., they are borderline examples), then focused re-
sampling methods (as SPIDER and partly NCR) strongly outperformed random and
cluster oversampling with respect to sensitivity and G-mean measures. Moreover, it
seams that the performance gain increased with the number of borderline examples.
The other experiments revealed the superiority of SPIDER and in some cases NCR
in handling rare examples located inside the majority class (also accompanied with
borderline ones).

We hope that the above mentioned comparative studies with artificial simulated
data also extended by experiments on UCI data sets could give more insight into
conditions of the usefulness of particular re-sampling methods to improve classifiers
learned from imbalanced data.
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