
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002 227

Immunotronics—Novel Finite-State-Machine
Architectures With Built-In Self-Test Using

Self–Nonself Differentiation
D. W. Bradley, Member, IEEE,and A. M. Tyrrell, Senior Member, IEEE

Abstract—A novel approach to hardware fault tolerance is
demonstrated that takes inspiration from the human immune
system as a method of fault detection. The human immune system
is a remarkable system of interacting cells and organs that protect
the body from invasion and maintains reliable operation even in
the presence of invading bacteria or viruses. This paper seeks to
address the field of electronic hardware fault tolerance from an
immunological perspective with the aim of showing how novel
methods based upon the operation of the immune system can
both complement and create new approaches to the development
of fault detection mechanisms for reliable hardware systems. In
particular, it is shown that by use of partial matching, as prevalent
in biological systems, high fault coverage can be achieved with the
added advantage of reducing memory requirements. The develop-
ment of a generic finite-state-machine immunization procedure is
discussed that allows any system that can be represented in such
a manner to be “immunized” against the occurrence of faulty
operation. This is demonstrated by the creation of an immunized
decade counter that can detect the presence of faults in real time.

Index Terms—Artificial immune system, error detection, fault
tolerance, finite-state machine, immunotronics.

I. INTRODUCTION

FAULT tolerance is becoming ever more important in elec-
tronic systems as we rely more and more on their contin-

uous and reliable operation. Electronic system controllers are
found in equipment ranging from vending machines through to
automotive and spacecraft systems. While the presence of a fault
on one system is often just an annoyance, safety-critical sys-
tems, such as those on an aircraft, must ensure reliable operation
at all times, even in the event of a component failure. Research
is continuously looking for improved ways of meeting such re-
quirements.

In recent years, research has taken an interest in how bio-
logical organisms manage to survive both individually through
self-repair and from one generation to the next through evolu-
tion of the species. For example, these challenges have been ad-
dressed in hardware fault tolerance through embryonics [43],
[46] and evolvable hardware (EHW) [56], [58], respectively.

Our understanding of the natural or, more specifically, human
immune system has increased dramatically over the last few

Manuscript received December 14, 2000; revised June 6, 2001. This work was
supported by the Engineering and Physical Sciences Research Council, U.K.,
and Xilinx Ltd.

The authors are with the Department of Electronics, University of York, Hes-
lington, York YO10 5DD, U.K. (e-mail: amt@ohm.york.ac.uk).

Publisher Item Identifier S 1089-778X(02)06070-8.

decades and has provided a miraculous insight into how the
body defends itself from invasion and maintains reliable opera-
tion. Through this increased understanding, new techniques in-
spired by the operation of the human immune system have given
rise to improved approaches to computer security [19], virus
protection [20], [30], anomaly detection [14], process moni-
toring [28], robot control [27], and software fault tolerance [62].
The human immune systems provides a distributed fault-tol-
erant architecture within the body and so suggests a radically
different approach to current reliable system design. This paper
addresses the challenge of fault-tolerant hardware system de-
sign through immunologically motivated techniques.

The requirements for fault-tolerant hardware design are dis-
cussed in Section II. Section III extends this into the domain
of biological inspiration and introduces evolutionary and de-
velopmental approaches to hardware fault tolerance. The devel-
opment of the immune-inspired hardware fault-tolerance tech-
nique orimmunotronics(immunological electronics) begins in
Section IV with a discussion of the similarities and differences
between immunology and fault tolerance. Section V demon-
strates the immunization cycle and the steps needed to immu-
nize a system for providing fault detection. Results are presented
in Section VI and are followed in Section VII with an analysis
of the results. Future directions for the work are also discussed.
The paper concludes in Section VIII.

II. FAULT TOLERANCE

Over 30 years ago, developments based on the challenge of
designing reliable systems from unreliable components resulted
in the notion of fault tolerance. Even after years of research, the
provision of high-confidence applications and systems is still
a very costly process limited only to the most critical of situa-
tions [2]. Systems must be protected from a variety of potential
faults including transient faults causing a unexpected change in
the state of a latch through to permanent faults in the form of a
stuck-at-one or stuck-at-zero fault [35], [31]. Real-time fault tol-
erance can be implemented by the replication of critical systems
usingn-modular redundancy (NMR) [37], [55], error-detecting
and correcting codes [51], [18], and self-checking logic circuits
[34], [52].

Existing methods have limitations that make alternative fault
tolerance architectures attractive in a number of situations, es-
pecially when it is impossible to access or replace the defec-
tive components in remote systems such as space or hazardous

1089-778X/02$17.00 © 2002 IEEE

228 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

environments. The replication of functionally equivalent com-
ponents is also costly and potentially inefficient if the point of
failure is a single transistor.

Reliable operation is achieved using a three-stage process:

1) detectionof an error or output deviating from the norm;
2) minimizationor eradicationof the resulting effects of the

fault;
3) activationof a suitable recovery procedure. Recovery can

take the form of one of two methods: a) backward error
recovery can return the system to a previously stored valid
state and b) forward error recovery can make selective
corrections to the current state until an acceptable state
is reached.

Biologically inspired fault tolerance must address these pro-
cesses also.

A. Error Detection

Detection is perhaps the most critical process within a fault-
tolerant architecture. The most sophisticated recovery methods
are only as good as the error detection scheme that initiates their
operation [1]. It is on this premise that the paper concentrates on
the development of a novel error-detection mechanism rather
than a complete fault-tolerant architecture.

Hardware error-detection systems can be classified according
to their time of application and intervention within the system
being protected [1].

1) Initial testingcan take place to identify faults before the
system is put into operation. Error detection mechanisms
for initial testing often use automatic test equipment
and computer-based techniques with reference systems
for comparison [7]. Automatic test pattern generation
(ATPG) systems generate specific test patterns that can
be applied to systems to diagnose and determine the po-
sition of any faults within a system permitting fast repair
[7]. Signature analysis is one such ATPG technique that
relies on the presence of unique signatures at test points
throughout the system [3], [22].

2) Concurrentor online detection takes place simultane-
ously with the normal operation of the protected system.
Examples include error-detecting codes [18], [51], NMR
[37], and self-checking logic circuits [34], [52]. An
important advantage of concurrent fault detection in
comparison to other techniques is that recovery proce-
dures can be executed before extensive damage occurs to
the system data [1].

3) Scheduledor offline detection takes place when normal
operation is interrupted either by a user or at regular
automated intervals. The techniques applied normally
match those used for the initial testing, although as
systems become more integrated the ability to gain
access to test points becomes more problematic. Tech-
niques and onchip facilities, such as boundary scan [11],
have provided industry-standard approaches to system
verification and fault detection.

4) Redundancy testingis used to verify that any protection
mechanisms are themselves fault free, such as ensuring
the fault signals are not stuck at a “no fault” state.

Concurrent methods of self-checking checkers [34] and
scheduled testing of fault signals are suitable here.

The goal of our work lies with the protection of sequential
digital systems represented as a finite state machine (FSM).
FSMs have been used extensively to model many kinds of sys-
tems including sequential circuits, programs, and communica-
tions protocols [36]. Many fault-detection systems for FSMs re-
quire the generation of unique input–output distinguishing se-
quences in order to test a circuit and locate the position of a
fault [8], [10]. This approach has seen many developments and
enhancements to improve the efficiency and error detection ca-
pabilities of the test harness [9], [24], [50]. Biologically inspired
solutions, using evolutionary algorithms, have also been applied
for their abilities to “search” and optimize the test sequence pat-
terns [24]. Another approach has been to model the FSM as an
iterative combinational circuit [7], [34]. All these methods of
fault detection represent offline approaches. Real-time detection
of FSM faults requires the use of concurrent checking hardware.
Many examples of this have been investigated [38], [47], [63]
using error correcting codes, duplication of functional systems,
and extraction of signatures.

The goal of any error detection mechanism is to achieve 100%
coverage of all potential faults.

III. B IO-INSPIREDSYSTEMS

Although bio-inspired systems have been present within the
electronic and computer science communities for many years
[60], it has only been possible in more recent years to realize
many of the ideas. The emerging bio-inspired systems can be
classified into three distinct domains [54].

1) Phylogenyis concerned with the evolution of a species.
Bio-inspired fault tolerance research exists in this domain
in the form of EHW. Research has investigated the evolu-
tion of devices with inherent fault tolerance [56] and also
through the evolution of populations of circuits within
voting architectures [58].

2) Ontogeny is concerned with the development of an
individual or organism from a single mother orzygote
cell through to a multicellular system. The field ofem-
bryonicshas developed fault-tolerant electronic systems
based upon a cellular structure, whereby each cell can
take on the role of any other cell within the system
[40], [41]. Recent work has also shown mathematically
that embryonic systems can provide better reliability
measures than existing voting systems [45].

3) Epigenesisrelates to learning within a species. The field
of artificial neural networks (ANNs) is the largest re-
search field within this area. Artificial immune systems
(AISs) are a rapidly emerging addition to this field, with
many similarities and advantages over ANNs discovered
[13].

The three domains have developed largely along their own
individual paths, although there have been proposals to combine
the concepts from more than one domain [4]. The body’s own
defense mechanisms do not rely on a single solution. The human
immune system is a multilayered protection mechanism divided
into innateandacquiredimmunity. Innate immunity dictates the

BRADLEY AND TYRRELL: IMMUNOTRONICS—NOVEL FSM ARCHITECTURES 229

TABLE I
COMPARISON OF THELAYERS OFPROTECTIONWITHIN THE HUMAN BODY AND ELECTRONIC HARDWARE

The body incorporates a multilayered defense mechanism. An “electronic” immune system for hardware can be represented in a similar way.
Immunotronics adds an additional layer to the hardware immune system.

defense mechanisms with which the body is born and acquired
immunity dictates those that are learned as the body develops
[33]. Table I compares the defense mechanisms used in nature
against those in electronic hardware fault tolerance.

This paper discusses an addition to the epigenetic domain in
the form of an AIS for electronic hardware. The defense layer
forms an acquired layer of hardware protection created after the
system has been developed. We have termed thisimmunotronics
(immunological electronics).

IV. I MMUNOLOGICAL TO HARDWARE TRANSITION

Avizienis [2] first noted the similarity in requirements be-
tween the immune system and hardware fault tolerance. The
immune system suggests alternative ways of implementing the
processes of Section II. Five key analogies with the immune
system can be made by developing the work of Avizienis.

1) The immune system functions continuously and au-
tonomously. In a mapping to hardware, the analogy is
that of error detection and removal without the need for
software support.

2) Immune cells are distributed throughout the body to
serve all the organs. The hardware equivalent suggests
distributed error detection.

3) Immune cells exist in large quantities and with great di-
versity. Limited diversity is already a common solution to
fault-tolerant system design using NMR.

4) The immune system possesses memory. The hardware
analogy suggests the training of fault-detection mecha-
nisms to differentiate between fault-free and faulty states.

5) Detection is imperfect within the human immune system.
A complementary match between an antigen and an anti-
body requires only a certain level of specificity [49]. The
onset of faults in hardware systems is often due to the im-
possibility to exhaustively test a system.

Imperfect detection has already been significantly investigated
and has seen the development of thenegative selection algo-
rithm for self–nonself differentiation in computer security and
virus protection [20], with remarkable results.

The human immune system provides real-time detection of
invaders throughout the body. The creation of a hardware im-
mune system to protect a digital system can therefore be cate-
gorized as a concurrent detection mechanism (see Section II-A).
Similarities can be seen in the human immune system, where it
is possible to view a biological form of redundancy testing with

Fig. 1. Definition of valid and invalid states and state transitions for an
arbitrary FSM. Normal operation is defined by a valid transition(t) between
valid states(q). Faulty operation is defined by an invalid state(e) or invalid
transition(t). Note how an invalid transition can also occur between valid
states (e.g.,t) if the transition is not within the system specification.

the procedure required to initiate a humoral immune response.
B cells only begin proliferation of antibodies when an activation
signal is received from helper T cells.

A. Hardware Representation

In principle, any hardware system can be represented as an
individual or interconnected set of FSMs. FSMs define the ac-
ceptable states and transitions between states, as shown in Fig. 1.
Under normal and reliable operation or what can be deemed as
self, only transitions can occur, where defines a valid
transition and a valid transition from previous stateto
current state . The presence of an invalid state or invalid
transition , where signifies a condition in error, flags a
potential problem or the presence ofnonself. As with many
other approaches to state machine fault detection ([8], [10], [39],
[50]), concentrating on the transitions between states improves
the definition and detection of nonself rather than just treating
states as self or nonself. If only states are monitored, then an
error can be detected after the transition from a valid state to an
invalid one, such as in Fig. 1. If the transition, rather than
just the states are analyzed, then transitions between two valid
states that are not defined explicitly, such as , are also in-
cluded in the definition of nonself. Table II shows the practical
benefits for a zero to four counter.

B. Feature Mapping

In a similar manner to that of [62], the features and opera-
tions of the immune system can be translated into the hardware

230 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

TABLE II
INCREMENTAL ZERO TOFOUR COUNTER

The benefits of monitoring state transitions. A fault within the state machine forcing the count to change from
four to five (row 2), rather than four to zero is detected if just the state is monitored. A fault within the state
machine forcing the count to change from two to one (row 3), rather than two to three is detected only if the
transition is monitored.

TABLE III
ENTITY FEATURE MAPPING

TABLE IV
PROCESSFEATURE MAPPING

domain. Tables III and IV summarize the analogies. The map-
pings are divided into entities that correspond to physical ele-
ments in both the immune system and electronic hardware and
processes that correspond to actions or operations that can take
place. Tables III and IV show that an immunologically inspired
approach based upon the use of FSMs is feasible. The hardware
equivalents to the immune system form logical analogies that
exist within the domain of state machine operation.

The analogies are developed in Section V to show how these
features are put to use.

V. IMMUNIZATION CYCLE

The immunization cycle is developed using a decade counter
with the specifications of Table V.

TABLE V
STRUCTURE AND FUNCTION OF THEDECADE COUNTER

Fig. 2. Generic bit-string representation of the data

Fig. 3. Bit-string representation of the decade counter strings, with example
sequences.

The data are protected by forming a set oftolerance condi-
tionsto protect the data set that forms self. Individual strings

are formed from the combination of user input and pre-
vious and current states from the state machine. Fig. 2 shows
one such form of the self strings.

For the decade counter defined in Table V, the structure of
is that given in Fig. 3. With the organization ofas defined in
Fig. 3, the decade counter possesses 40 strings that define self
and hence valid operation.

The immunization cycle is divided into four phases that fit
into a typical hardware development cycle [55]. Hence, the com-
plete cycle becomes requirements, specification, design, imple-
mentation, testing,data gathering, tolerance condition genera-
tion in service operation,error detection, andfault removal. The
new phases are italicized and are described in some detail in the
following sections.

A. Data Gathering

The goal of the data gathering stage is to create a data set
that represents a complete or substantial percentage of all pos-
sible valid state transitions within normal operation of the FSM.
The test bench setup consists of a Xilinx Virtex XCV300 field-
programmable gate array (FPGA) [26] situated on a Virtual

BRADLEY AND TYRRELL: IMMUNOTRONICS—NOVEL FSM ARCHITECTURES 231

Fig. 4. Complete hardware and software testbench for self-data generation, collection, and processing. Inputs are injected into the state machine under test and
the resulting system state (or output) collected and returned to the computer. Data is processed to create the setS of self strings ready to undergo the immunization
process.

Workbench development board from Virtual Computer Corpo-
ration [12]. The hardware configuration permits any FSM de-
sign to be inserted into a generic test bench on the FPGA and
undergo an immunization cycle.

Self data can be collected from the hardware in one of two
ways: 1) from a set of predefined inputs and operations used for
the previous testing phase 2) or through the injection of random
inputs. The first is analogous to conventional testing techniques.
Many of the approaches are discussed and cited in Section II.
The second approach using random information is somewhat
more analogous to the immune system in the sense that self
(cells) are collected randomly, ready to be presented to imma-
ture T cells during the centralized negative selection process. In
both situations, it is assumed that at the time of data generation
the FSM under analysis is fault-free. The random approach is
adopted initially for its simplicity and likening to the immune
system. If a complete description of the FSM is already pro-
vided, then the data are already available and this stage, in some
instances, is not required. The decade counter contains ten valid
states and two inputs, giving a total of self
strings to be collected. Experimentation showed this to be pos-
sible within 10 s after an average 200 000 random input com-
binations. This confirms that, although the adoption of an im-
mune-inspired method of data collection can realize the desired
operation, a functional approach or a function combined with
random data generation can improve the rate at which an equiv-
alent coverage is reached [29].

The combined hardware/software testbench is shown in
Fig. 4. The software component provides random, cyclic, or
user-defined (specific-data defined or generated elsewhere)
inputs to the state machine under test. The FSM is inserted into
the test harness in the development hardware. Data are gathered
from the state machine and returned to the computer whereby
the inputs and previous and current state (or output) data are
concatenated to create individual strings. The strings are then
filtered to create the set of unique self strings.

B. Tolerance Condition Generation

The negative selection algorithm was developed by Forrest
et al. [20] for the detection of viruses within computer systems

Fig. 5. Negative selection algorithm is used to create a set of tolerance
conditionsR that fail to match any self stringss in at leastc contiguous
positions.

and network intrusion. It applies techniques inspired by the op-
eration of the human immune system for pattern detection. The
negative selection algorithm was developed from a theoretical
analysis of matching and binding probabilities within the im-
mune system from work carried out by Percuset al. [48]. Ex-
isting fault tolerance architectures, such as NMR [1] and em-
bryonics [42], work by checking constantly for the presence
of valid operation. In contrast, the negative selection algorithm
works by checking constantly for the presence of invalid oper-
ation. The negative selection algorithm has already proven very
successful, with further advances forming a complete immune
system for computers under the name of ARTIS [23]. The algo-
rithm is based upon the method of selecting a set of stringsof
length from a randomly generated original set of data. Each
string fails to match any of the self strings , also
of length , in at least contiguous positions. Any strings that
match in at least contiguous positions are deleted. The mature
set of tolerance conditions are generated from an initial ran-
domly generated set corresponding to immature tolerance
conditions, which undergo a negative selection process. The set
of self strings correspond to the set of self strings defined in
Fig. 3. Fig. 5, adopted from [16], summarizes the operation.

Using the negative selection algorithm from [20], the prob-
ability that two random strings match (here between a self
string and an individual randomly generated immature

232 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

tolerance condition in at least contiguous posi-
tions is given by

(1)

where and is the number of alphabet symbols (two
for a binary FSM). When this does not hold, the exact formula
described in [59] can be applied.

If the number of tolerance conditions is limited, the theo-
retical probability that the system fails to detect nonself is given
by

(2)

It is, therefore, possible to trade off the fault-detecting capabili-
ties of the hardware immune system against the storage require-
ments. The hardware immune system will be a valuable pro-
tection mechanism in remote environments such as space-borne
applications where the operation of a system is changed or re-
configured remotely. It is envisaged that reprogramming of a
remote system or controller is carried out and then the hard-
ware immune system can immunize the updated device auto-
matically. The use of programmable hardware for such systems
means that only a limited hardware space may be available, de-
pending on the configuration of the new hardware. The ability
to control is of great use. From this, it is possible to predict
the initial number of immature tolerance conditions needed
to generate matured tolerance conditions

(3)

Equations (1)–(3) are applied in Section VI to assess the detec-
tion capabilities of the hardware immune system for the decade
counter.

The random generation of tolerance conditions goes some
way to achieving the desired goal of covering and protecting
against the occurrence of nonself strings. One shortfall of this
approach, in terms of storage space, is the overlap in detectors
that can occur creating a less efficient protection against nonself
strings (although this could be treated potentially as creating re-
dundancy within the tolerance conditions). D’haeseleer devel-
oped a method of improving the coverage of the string space
through the development of thegreedy detector generating al-
gorithm [15], [17]. The greedy detector generator achieves a
better coverage of nonself strings by not generating the detectors
randomly, but instead extracting those tolerance conditions that
match the most nonself strings first and then extracting others
and placing them as far apart as possible. As discussed in [17],
this has the benefits of either reducing the probability of failing
to detect a nonself string for a given number of tolerance
conditions or, alternatively, reducing the number of tolerance
conditions for a fixed failure probability . In [15], D’hae-
seleer discusses the operation of the greedy detector generating
algorithm in detail. Both the random and greedy detector gener-
ator algorithm are implemented as software components of the
complete hardware immunization procedure to permit compar-
ison of and .

Analyzing for variations in and enables the match
length to be chosen to give the best coverage of nonself strings

Fig. 6. Architecture of the hardware immune system. Hardware immune
system acts as a wrapper to the state machine under protection. User inputs,
state, and/or output data are gathered from the state machine and used to create
a search string for passing to the CAM [32]. Partial-matching CAM searches
all memory locations for a match inc contiguous positions and returns a result
in l � c + 1 clock cycles.

for the available storage space. Such data for the decade counter
are provided in Section VI.

C. In-Service Operation—Configuration, Architecture, and
Fault Detection

It is now demonstrated how the hardware immune system
is incorporated into the complete system architecture whereby
it acts as a “wrapper” to the state machine being protected or
immunized. The detection process is significantly less complex
than the previous stages and permits a complete hardware im-
plementation with no final requirement for software control.

1) Architecture of the Hardware Immune System:The oper-
ational state machine and combined immune system comprise
three main components and form the complete system, as shown
in Fig. 6.

The state machine under protection is the system being pro-
tected. Under normal operation, only self strings are present.
The presence of a fault creates a nonself state, analogous to the
presence of an antigen.

The string generation component gathers the user inputs and
system state (or output) from the state machine, combining it
with the previous system state (or output) to create a search
string for presentation to the immune system memory.

The partial-matching content-addressable memory (CAM)
stores the tolerance conditions and returns a positive result if
contiguous bits out of match the search string. A CAM [32]
permits parallel searching of all memory locations in a single
clock cycle. It achieves this by accessing the device using the
data, rather than by an address. The data are presented to the
CAM and a found or not-found signal returned in addition
to the address where the data were found. Fig. 7 shows the
structure of a typical CAM device.

Partial matching in contiguous bit locations is provided for
by modifying the generic CAM architecture of Fig. 7 to provide
further bit masking inputs. Individual bits can then be set to a
matchor don’t carestate.

For development purposes, the CAM is configured as a
64-bit-wide (32-bit data and 32-bit mask) 128-word deep
device. Although the CAM is a fixed width, shorter tolerance

BRADLEY AND TYRRELL: IMMUNOTRONICS—NOVEL FSM ARCHITECTURES 233

Fig. 7. Basic structure of a CAM. Parallel searching of the memory locations
by data (rather than address) creates a search time that is independent of the
depthn of the CAM.

conditions can be stored by permanently fixing the masking
bits to adon’t carestate. The mask size and masking pattern
are also programmable by the user. Variation in the masking
bits allows a -sized window to be moved across the tolerance
conditions. A search for an individual string requires a single
clock cycle. With a variable mask for detection of length, the
required number of clock cycles is increased to (for
the decade counter with and a match length 4
clock cycles are neeed). The hardware immune system ensures
that a match is still found within a single state machine clock
cycle through the use of a memory read clock multiplied by a
similar ratio.

The use of a partial matching CAM for storage of the toler-
ance conditions is very apparent in the operation of the natural
immune system. In a reversal of roles, models of the immune
system have been used on several occasions to develop novel
forms of CAMs [25], [21].

2) Error Detection: The immunized state machine is moni-
tored at every change of state and the gathered data sent to the
tolerance condition memory and searched. A match is deemed to
have occurred if any tolerance condition matches the generated
string in contiguous positions. The faster memory read clock
driving the CAM permits the result of search to be returned to
the “string generation and response activation” component of
Fig. 6 before the current internal state of the state machine prop-
agates to the output on the next clock cycle. If the internal states
of the hardware are always monitored, rather than just the out-
puts, then it is possible to detect a fault before the effects have
propagated to the output.

D. Fault Removal

The goal of this paper to date has been to investigate immuno-
logically inspired approaches to fault detection. Future work
aims to develop these methods to incorporate fault removal tech-
niques. Potential methods of achieving this are now discussed.

1) Classical Architectures:In the human immune system,
invaders are destroyed to prevent a detrimental effect to the
body. A simple approach would be to replicate the protected
state machine and switch to a spare if the first is detected as
faulty, in essence, creating a form of NMR as discussed in Sec-
tion II. In this form, the hardware immune system would essen-
tially be a novel form of voting architecture. Unless a disastrous

failure occurs, it is not ideal to disable a large hardware compo-
nent. If a self string is detected accidentally as nonself through
incomplete coverage of self strings or the presence of a fault
within the tolerance condition storage, then a fault-free state ma-
chine may be deactivated completely. Again, a similar problem
is created for transient errors and the deactivation of a system
that operates normally to specification. A similar problem is en-
countered for the presence of transient errors.

2) Immunologically Inspired Architectures:As first steps
toward enhancing the architecture and immunization cycle,
discussed in Sections V-AC, the detection of a nonself string
may signal the user to request the next action. If the condition
is deemed valid, then the self string can be added to a list of
acceptable, but immune activating strings. The possibility of
providing two sets of tolerance conditions has been discussed in
[5] so that a set of potential recovery states corresponding to self
string can also be stored. It may then be possible to automat-
ically correct the faulty output through an output multiplexer
selecting either the normal output or the immune-activated
response. The continuous usage of the state machine, even after
a fault has first been detected, means that transient errors do
not result in the deactivation of the complete system.

Analyzing the operation of the immune system further, during
the humoral response, antibodies bind to antigens to prevent
their binding to further cells in the body. The phenomenal cel-
lular redundancy in the body enables normal operation to per-
sist when cells are neutralized and later destroyed due to infec-
tion. In an FSM architecture, a similar technique could be used
through the use of spare states or latch bits within the hardware.
The detection of a fault would then cause the state machine to be
reconfigured to ensure the faulty state was circumvented and a
spare state used. To implement this would require some knowl-
edge of what the next valid operation should have been, either
through inclusion of a complementary set of tolerance condi-
tions failing to match nonself or through prior programming of
the spare states to correspond to valid ones—essentially having
two overlapping state machines operating in tandem.

3) Total Biologically Inspired Architectures:Two other bi-
ologically inspired approaches to fault detection and tolerance
were introduced in Section I in the form of embryonics and
EHW. The integration of immunotronics with embryonics has
been investigated in [4] to create a learning cellular architecture
of functional and antibody cells. Embryonics is based upon the
development of multicellular organisms. When biological mul-
ticellular organisms develop, cells differentiate according to “in-
structions” stored in their DNA. Different parts of the DNA are
interpreted depending on the position of the cell within the em-
bryo. Before differentiation, cells are (theoretically) able to take
over any function within the body because each one possesses a
copy of the DNA. Correspondingly, every electronic cell in an
embryonic array stores not only its own configuration register,
but also those of its neighbors. To differentiate, every cell se-
lects a configuration register according to its position within the
array. Position is determined by a set of coordinates that is cal-
culated from the coordinates of the nearest neighbors.

Every embryonic cell currently performs self-checking con-
tinuously. If a failure is detected, the faulty cell issues a status
signal that eliminates the cell. The surviving cells recalculate

234 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

(a) (b)

Fig. 8. (a) Antigen-antibody interactions within the human immune system. (b) Mapping of lymphatic interactions to an integrated immunotronic-embryonic
multilayered fault-tolerant architecture.

Fig. 9. Theoretical (P) and experimental (P) variations in the probability
of failing to detect the presence of a fault for4 � c � 10; N = 10.
Experimental plots show the random detector generatorP (Ran) and the
greedy detector generatorP (Gr) algorithms applied to the generation of
tolerance conditions.

their coordinates and select a new configuration register. By
doing so, every cell performs a new function. A detailed de-
scription of the embryonics architecture can be found in [41]
and [46]. The integration of a cellular hardware immune system
within the architecture, as shown in Fig. 8, removes the need
for self checking from each embryonic cell. This simplifies the
cell architecture and removes the need for duplication of func-
tional units within each cell. Removing the checking circuit also
removes another place for potential faults to manifest. The hard-
ware immune system layer contains cells intertwined within the
embryonic cells, with each immune orantibodycell continu-
ously monitoring its neighboring embryonic cells for faults. In-
teraction between neighboring antibody cells also allows for
error detection within each antibody cell due to the repeated
checking of every embryonic cell by more than one antibody
cell. If the results from antibody cells that have checked the op-
eration of the same embryonic cell differ, then the fault antibody
cell is deactivated and the array reconfigured.

VI. RESULTS

Section VI presents the results from the immunization of the
decade counter example discussed through the development of
the hardware immune system in Section V. Fig. 9 shows the
mean results over 100 repetitions for match lengths ,
with fixed to ten tolerance conditions using both the exhaus-
tive random and greedy detector generator algorithms. Random
generation is implemented through the use of a L’Ecuyer with

Fig. 10. Comparison of random and greedy detector generator algorithms for
variation in failure probabilityP against the number of tolerance conditions
N for match length6 � c � 8.

Bayes–Durham shuffle algorithm [53] to ensure that sufficiently
diverse random values are generated over the repetitions. The
number of self strings is fixed at 40 for the counter. The the-
oretical prediction is provided for comparison.

Fig. 9 shows that for a fixed number of final tolerance con-
ditions, the failure probability increases asincreases as in-
dividual tolerance conditions, in general, are matching progres-
sively fewer and fewer nonself conditions. For , the failure
probability for both generators agrees with the theoretical
prediction . Below this value, the theoretical predictions do
not correspond well with the results. The theoretical approxi-
mation of (1) still holds with the low values of, as can be con-
firmed by calculation using the exact formula forcontiguous
locations in [59]. The increased failure probability at the lower
values of is due to the limited number of unique tolerance con-
ditions that can actually be generated that match only nonself
(see Table VI). In addition to this, an analysis of the matured
tolerance conditions confirms the presence of similarities in the
tolerance conditions generated by the exhaustive random gen-
erator. For lower match lengths, the greedy detector generator
improves the results by extracting the best tolerance conditions
first creating a lower failure probability. Analyzing the results
from both the random and greedy detector generators further,
Fig. 10 shows the effects of failure probability for
over a range of five to 50 tolerance conditions. As with Fig. 9,
it is again possible to see the improvement through a reduction
in failure probability . As the match length increases, the

BRADLEY AND TYRRELL: IMMUNOTRONICS—NOVEL FSM ARCHITECTURES 235

TABLE VI
OPTIMAL NUMBER OF TOLERANCE CONDITIONS REQUIRED TOCOVER ALL

DETECTABLE NONSELFSTRINGS FOR THEDECADE COUNTER

No unique detectors are possible for match lengths .

improved nature of tolerance condition extraction reduces pro-
gressively as individual tolerance conditions match fewer and
fewer nonself strings.

Having demonstrated the improved coverage ability of the
greedy detector generator, the random generator is no longer
used for generation of tolerance conditions. The following re-
sults apply just the greedy detector generator for production of
tolerance conditions.

Table VI shows the optimal number of tolerance conditions
required for each match length to cover alldetectablenonself
strings. The term detectable has been added as many nonself
strings may be undetectable for a given match length due to
strong similarities with self strings. A tolerance condition gen-
erated to detect these nonself strings would also detect a self
string making the detection process invalid. This is discussed
further in Section VII. With a match length of , only six
tolerance conditions are needed to detect about 60% of all the
possible (984) faults. As would be expected with a match length

, every tolerance condition detects a unique nonself string
providing 100% coverage of all nonself strings.

The ideal match length can be determined by first setting a
limit on the available storage space. To complement the hard-
ware immune system architecture of Fig. 6, the upper limit is
set to 128 10-bit words. Fig. 11 shows the failure probability
against the match lengthfor a variation in tolerance conditions
from . As the number of tolerance conditions
increases, the optimal (in terms of failure probability for a given
number of tolerance conditions) match lengthcan be chosen
from the minimum point of each plot. For ,

provides the best coverage of nonself; for ,
should be chosen. For , provides the best

coverage up to and including the limit imposed of 128 toler-
ance conditions. Although not shown in Fig. 11, a match length

supersedes the coverage provided by with almost a
twofold increase in tolerance conditions at .

Fig. 11 demonstrates that a match length (with
from Table VI) is the ideal match length for the decade

counter. The previous plots have analyzed thetotal detectable
faults that may occur throughout the operation of the state ma-
chine. It is also useful to consider what fraction of the faults will
be detected within a single clock cycle, i.e., before the effect
of the fault propagates to the output of the system. A fault will

Fig. 11. Failure probabilityP against match lengthc for 10 � N � 130,
using greedy detector generator.

Fig. 12. Propagation of a stuck at one fault through a data string. To prevent a
faulty system output requires the fault to be detected at timeT � t+ 1.

first result in an error in the “current state” substring within each
string , which will then propagate through the state machine as
shown in Fig. 12 producing in this particular case a stuck-at-one
fault.

The matching assessment is now modified to analyze the
failure probability for the detection of a fault within a
single cycle. Strings are defined to be a single-cycle detectable
string if both the input and previous state bits correspond to
a self string and the current state bits correspond to a nonself
string. For the decade counter, the total number of single-cycle
detectable strings is 600, i.e., 600 out of the total 984 nonself
strings result from the propagation from a self to a nonself
state (rather than from a nonself to another nonself state).
Fig. 13 compares the fraction of single cycle detectable faults
to all the detectable faults for the chosen match length .

236 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

Fig. 13. Failure probabilityP against the number of tolerance conditions
N for total fault detectionP (total) and single cycle detectableP (single)
faults. Match lengthc = 7.

Fig. 13 shows that an almost constant 7% increase in failure
probability occurs when single-cycle detections are considered.
Further analysis of these data indicate that as the match length

increases, the percentage difference between total and single
cycle detectable faults decreases. Given , a 2% difference
is observed.

VII. A NALYSIS

The error-detection procedure implemented relies on the
ability to extract the internal state bits from the FSM being
immunized. Doing so permits a high level of error detection
and enables any future recovery procedure activated before
the effects of the fault propagate to the system output. If the
state machine is itself an embedded device then direct access
to the internal state may be impossible. Fault detection is still
possible in such instances, although not before the first fault
occurs at the output, by monitoring the outputs rather than the
internal states.

The presence of undetectable nonself strings orholes[15] is
the result of self strings matching over contiguous bits
and consequently inducing other strings that are unable to be
detected because any tolerance conditions matching the induced
strings would also match the self strings. The cause and analysis
of this effect has been investigated by D’haeseleer in [15] and
[16]. Within the hardware immune system, preliminary inves-
tigations have shown that two factors, both creating the same
symptoms, can cause variation in the number of undetectable
nonself strings (holes) for a particular match length.

1) State Assignment:Conventional digital-design tech-
niques concentrate on minimizing the next-state logic
(and, therefore, cost) within the state machine architec-
ture. One approach to doing this is to ensure only a single
bit changes on each transition [61]. This is one step
toward an efficient use of resources. The effect of this on
the immunization procedure is to make the presence of
holes even more apparent. Changing the state assignment
would reduce the number of holes.

2) Self-String Structure:Closely related to the state assign-
ment, the self strings are formed from the state data and
so themselves change little on each new detection cycle.
Reorganization of the self strings can vary the number of
holes.

Two methods of reducing the number of holes are the fol-
lowing.

1) Optimize the Self-String Structure:Preliminary analysis
has shown that varying the structure of the self strings
or state assignment varies the number of holes within the
nonself strings, as discussed previously. Optimizing the
state assignment, while beneficial to the hardware im-
mune system, can have detrimental effects on both the
speed and size of the FSM. Variation of the structure of
self strings is applied easily by concatenating the user in-
puts and previous and current state data together in dif-
ferent ways. This has been investigated for the decade
counter for the match length : mixing the bits to-
gether with inputs , previous ,
and current state bits forming self strings in
the form increases the percentage
of total detectable nonself strings from 93% to 98% and
the number ofsingle-cycledetectable nonself strings from
88% to 96% using 104 tolerance conditions compared to
the original 103.

2) Vary the Match Length:Varying the match length is an
ideal way to remove the presence of holes completely.
Any undetectable nonself strings can then be covered by
an increased match length. Although initially a simple so-
lution, implementing this in hardware would entail mul-
tiple CAMs and increasing the size of the system signifi-
cantly. A beneficial side effect of doing so would be that
replication would provide redundancy within the mem-
ories as longer tolerance conditions that are designed to
protect nonself string using a lower match length would
also overlap the detection other nonself strings.

VIII. C ONCLUSION

This paper has demonstrated a novel approach to FSM
error detection using probabilistic negative selection methods
inspired by the human immune system. The acquired immune
response in the human immune system is learned through a
process of centralized maturation to create a collection of anti-
bodies able to detect the invasion of nonself into the body. This
analogy has been applied to the field of electronic hardware
error detection to provide FSMs using a generic immunization
procedure.

A immunization cycle has been developed that integrates with
a typical hardware development cycle to permit any finite-state-
based system to be immunized in a methodical way. The system
is analyzed, self strings gathered, and tolerance conditions gen-
erated. The match lengthis choosen to make optimum use
of the available tolerance condition storage space. This is car-
ried out currently by hand, although future automation would
be straightforward. The architecture also permits a tradeoff be-
tween the storage space and failure probability, ensuring that the
most effective tolerance conditions are always stored first. The
implementation of a CAM ensures that an error can be detected
in a single clock cycle, providing the ability to activate any fu-
ture recovery procedures before the resulting error propagates
to create a faulty output.

BRADLEY AND TYRRELL: IMMUNOTRONICS—NOVEL FSM ARCHITECTURES 237

The hardware immune system currently goes some way to
achieving three of the five original analogies between the human
immune system and hardware fault tolerance discussed in Sec-
tion IV.

1) The operational hardware immune system functions
continuously and autonomously and is designed to allow
full implementation in hardware. This is facilitated by
the simple (compared to tolerance condition generation)
search and detection process created through the use of
a CAM.

2) The immunotronic error detection mechanisms are
trained to differentiate between faulty and fault free tran-
sitions. The hardware immune system possesses memory
to store the set of tolerance conditions that perform this
operation.

3) Detection of invalid conditions is imperfect.

The most notable exception in this work from the key analo-
gies is the omittance of any distributed forms of fault detection.
A single FSM is not the ideal architecture for a distributed ap-
proach. If a system were built upon a set of several intercon-
necting FSMs, then a distributed approach could certainly be
considered to protect the system against faults. Each state ma-
chine could then possess a set of individual tolerance conditions.
The ideal solution, however, will be provided by the implemen-
tation of an integrated immunotronic-embryonic architecture.

ACKNOWLEDGMENT

The authors would also like to thank the anonymous referees
for their helpful and incisive comments.

REFERENCES

[1] A. Avizienis, “Fault-tolerance: The survival attribute of digital systems,”
Proc. IEEE, vol. 66, pp. 1109–1125, Oct. 1978.

[2] , “Toward systematic design of fault-tolerant systems,”IEEE Com-
puter, vol. 30, pp. 51–58, Apr. 1997.

[3] D. Bahr, “Understanding signature analysis,”Electron. Test, vol. 5, no.
11, p. 28, 33, Nov. 1982.

[4] D. W. Bradley, C. Ortega-Sánchez, and A. M. Tyrrell, “Embryonics+
Immunotronics: A bio-inspired approach to fault tolerance,” inProc.
2nd NASA/DoD Workshop on Evolvable Hardware, July 2000, pp.
215–223.

[5] D. W. Bradley and A. M. Tyrrell, “Hardware fault tolerance: An im-
munological solution,” inProc. IEEE Int. Conf. Systems, Man, and Cy-
bernetics, vol. 1, 2000, pp. 107–112.

[6] , “Immunotronics: Hardware fault tolerance inspired by the im-
mune system,” inProceedings of the 3rd International Conference
on Evolvable Systems: From Biology to Hardware (ICES2000), J.
Miller, A. Thompson, P. Thomson, and T. C. Fogarty, Eds: Springer-
Verlag, Apr. 2000, vol. 1801, Lecture Notes in Computer Science, pp.
11–20.

[7] M. A. Breuer and A. D. Friedman,Diagnosis and Reliable Design of
Digital Systems. Rockville, MD: Computer Science, 1976.

[8] G. Buonanno, F. Fumi, D. Sciuto, and F. Lombardiet al., “FsmTest:
Functional test generator for sequential circuits,”Integr. VLSI J., vol.
20, no. 3, pp. 303–325, 1996.

[9] G. Buonannoet al., “How an evolving fault model improves the behav-
ioral test generation,” inProc. IEEE Great Lakes Symp. VLSI, Mar. 1997,
pp. 124–129.

[10] K. T. Cheng and J. Y. Jou, “Functional test generation for finite state
machines,” inProc. IEEE Int. Test Conf., Sept. 1990, pp. 162–168.

[11] C. Collins, “JTAG boundary-scan for low cost system testing,”Xcell,
no. 31, pp. 34–35, 1999.

[12] The Virtual Workbench (1999). [Online]. Available:
http://www.vcc.com/VW.html

[13] D. Dasgupta, “Artifical neural networks and artificial immune systems:
Similarities and differences,” inProc. IEEE Int. Conf. Systems, Man,
and Cybernetics, Oct. 1997, pp. 363–374.

[14] D. Dasgupta and S. Forrest, “An anomaly detection algorithm inspired
by the immune system,” inArtificial Immune Systems and Their Ap-
plications, D. Dasgupta, Ed. Berlin, Germany: Springer-Verlag, 1998,
pp. 262–277.

[15] P. D’haeseleer, “Further efficient algorithms for generating antibody
strings,” Dept. Comput. Sci., Univ. New Mexico, Tech. Rep. CS95-3,
1995.

[16] , “An immunological approach to change detection: Theoretical
results,” inProc. 9th IEEE Computer Security Foundations Workshop,
County Kerry, Ireland, June 1996.

[17] P. D’haeseleer, S. Forrest, and P. Helman, “An immunological ap-
proach to change detection: Algorithms, analysis and implications,”
in Proceedings of the 1996 IEEE Symposium on Computer Security
and Privacy. Los Alamitos, CA: IEEE Comput. Soc. Press, 1996, pp.
110–119.

[18] S. Dutt and N. R. Mahapatra, “Node-covering, error-correcting codes
and multiprocessors with very high average fault tolerance,”IEEE
Trans. Comput., vol. 46, pp. 997–1014, Sept. 1997.

[19] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A sense of
self for Unix processes,” inProce. 1996 IEEE Symp. Computer Security
and Privacy, May 1996, pp. 120–128.

[20] S. Forrest, A. S. Perelson, L. Allen, and R. Cherukuri, “Self-nonself dis-
crimination in a computer,” inProceedings of the 1994 IEEE Sympo-
sium on Research in Security and Privacy. Los Alamitos, CA: IEEE
Comput. Soc. Press, 1994, pp. 202–212.

[21] C. J. Gibert and T. W. Routen, “Associative memory in an immune-based
system,” inProc. 12th Int. Conf. Artificial Intelligence, July 1994, pp.
852–857.

[22] S. Z. Hassan, “Signature testing of sequential machines,”IEEE Trans.
Comput., vol. C-33, pp. 762–764, Aug. 1984.

[23] S. A. Hofmeyr and S. Forrest, “Architecture for an artificial immune
system,”Evol. Comput., vol. 8, no. 4, pp. 443–473, 2000.

[24] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, “Automatic test generation
using genetically-engineered distinguishing sequences,” inProc. IEEE
VLSI Test Symp., Apr. 1996, pp. 216–223.

[25] J. E. Hunt and D. E. Cooke, “Learning using an artificial immune
system,”J. Network Comput. Applicat., vol. 19, no. 2, pp. 189–212,
1996.

[26] Virtex Data Sheet (1999). [Online]. Available:
http://www.xilinx.com/partinfo/virtex.pdf

[27] A. Ishiguro, T. Kondo, Y. Watanabe, and Y. Uchikawaet al., “Immunoid:
An immunological approach to decentralized behavior arbitration of au-
tonomous mobile robots,” inParallel Problem Solving from Nature IV,
H. M. Voightet al., Eds: Springer-Verlag, 1996, vol. 1141, Lecture Notes
in Computer Science, pp. 666–675.

[28] A. Ishiguro, Y. Watanabe, and Y. Uchikawa, “Fault diagnosis of plant
systems using immune networks,” inProc. 1994 IEEE Int. Conf. Mul-
tisensor Fusion and Integration for Intelligent Systems, Oct. 1994, pp.
34–42.

[29] M. Karam and G. Saucier, “Functional versus random test generation for
sequential machines,”J. Electron. Testing Theory Applicat., vol. 4, pp.
33–41, 1993.

[30] J. O. Kephart, “A biologically inspired immune system for computers,”
in Artificial Life IV, Proceedings of the Fourth International
Workshop on the Synthesis and Simulation of Living Systems, R.
A. Brooks and P. Maes, Eds. Cambridge, MA: MIT Press, 1994, pp.
130–139.

[31] Test Technology Overview, R. Klenke. (1998). [Online]. Available:
http://www.cedcc.psu.edu/ee497f/rassp_43/

[32] T. Kohonen,Content-Addressable Memories, 2nd ed. Berlin, Ger-
many: Springer-Verlag, 1987.

[33] J. Kuby,Immunology, 3rd ed. San Francisco, CA: Freeman, 1997.
[34] P. K. Lala,Digital Circuit Testing and Testability. New York: Aca-

demic, 1997.
[35] , Fault Tolerance and Fault Testable Hardware. Englewood

Cliffs, NJ: Prentice-Hall, 1985.
[36] D. Lee and M. Yannakakis, “Principles and methods of testing finite state

machines—A survey,”Proc. IEEE, vol. 84, pp. 1090–1126, Aug. 1996.
[37] P. A. Lee and T. Anderson,Fault Tolerance Principles and Practice,

Volume 3 of Dependable Computing and Fault-Tolerance Systems, 2nd
ed. Berlin, Germany: Springer-Verlag, 1990.

[38] R. Leveugle and G. Saucier, “Optimized synthesis of concurrently
checked controllers,”IEEE Trans. Comput., vol. 39, pp. 419–425, Apr.
1990.

238 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 3, JUNE 2002

[39] H. Ma and S. Devadas, “Test generation for sequential finite state ma-
chines,” in Proc. Int. Conf. Computer-Aided Design, Nov. 1987, pp.
288–291.

[40] D. Mange, M. Goeke, D. Madon, A. Stauffer, G. Tempesti, and S.
Durand, “Embryonics: A new family of coarse-grained field-pro-
grammable gate array with self-repair and self-reproducing properties,”
in Toward Evolvable Hardware: The Evolutionary Engineering Ap-
proach, E. Sanchez and M. Tomassini, Eds: Springer-Verlag, 1996, vol.
1062, Lecture Notes in Computer Science, pp. 197–220.

[41] D. Mange, M. Sipper, A. Stauffer, and G. Tempesti, “Toward robust in-
tegrated circuits: The embryonics approach,”Proc. IEEE, vol. 88, pp.
516–541, Apr. 2000.

[42] D. Mange, A. Stauffer, and G. Tempesti, “Embryonics: A microscopic
view of the molecular architecture,” inProceedings of the 2nd Inter-
national Conference on Evolvable Systems: From Biology to Hardware
(ICES98), M. Sipper, D. Mange, and A. Pérez-Uribe, Eds: Springer-
Verlag, Sept. 1998, vol. 1478, Lecture Notes in Computer Science, pp.
185–195.

[43] P. Marchal, P. Nussbaum, C. Piguest, S. Durand, D. Mange, E. Sanchez,
A. Stauffer, and G. Tempesti, “Embryonics: The birth of synthetic life,”
in Toward Evolvable Hardware, E. Sanchez and M. Tomassini, Eds:
Springer-Verlag, 1996, vol. 1062, Lecture Notes in Computer Science,
pp. 166–198.

[44] C. Ortega-Sánchez and A. M. Tyrrell, “MUXTREE Revisited: Embry-
onics as a reconfiguration strategy in fault-tolerant processor arrays,”
in Proceedings of the 2nd International Conference on Evolvable Sys-
tems: From Biology to Hardware (ICES98), M. Sipper, D. Mange, and
A. Pérez-Uribe, Eds. Berlin, Germany: Springer-Verlag, Sept. 1998,
vol. 1478, Lecture Notes in Computer Science.

[45] , “Reliability analysis in self-repairing embryonic systems,” pre-
sented at the Proceedings of the 1st NASA/DOD Workshop on Evolv-
able Hardware, July 1999.

[46] C. Ortega-Sánchez, D. Mange, S. Smith, and A. Tyrrell, “Embryonics: A
bio-inspired cellular architecture with fault-tolerant properties,”Genetic
Program. Evolvable Mach., vol. 1, no. 3, pp. 187–215, July 2000.

[47] F. Özgüner, “Design of totally self-checking asynchronous and syn-
chronous sequential machines,” inProc. 7th Int. Symp. Fault Tolerant
Computing, June 1977, pp. 124–129.

[48] J. K. Percus, O. E. Percus, and A. S. Perelson, “Probability of self-non-
self discrimination,” inTheoretical and Experimental Insights Into Im-
munology, A. S. Perelson and G. Weisbuch, Eds. Berlin, Germany:
Springer-Verlag, 1992, pp. 63–70.

[49] , “Predicting the size of the T-cell receptor and antibody combining
region from consideration of efficient self-nonself discrimination,” in
Proceedings of the National Academy of Science, vol. 90. London, U.K.,
1993, pp. 1691–1695.

[50] I. Pomeranz and S. M. Reddy, “On achieving a complete fault coverage
for sequential machines using the transition fault model,”Proc. 28th
ACM/IEEE Design Automation Conf., pp. 341–346, June 1991.

[51] D. K. Pradham, Ed.,Fault Tolerant Computing: Theory and Tech-
niques—Volume 1: Prentice-Hall, 1986.

[52] , Fault Tolerant Computing: Theory and Techniques—Volume
2. Englewood Cliffs, NJ: Prentice-Hall, 1986.

[53] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C, 2nd ed. Cambridge, U.K.: Cambridge Univ.
Press, 1992.

[54] M. Sipper, E. Sanchez, D. Mange, M. Tomassini, A. Pérez-Uribe, and
A. Stauffer, “A phylogenetic, ontogenetic and epigenetic view of bio-in-
spired hardware systems,”IEEE Trans. Evol. Comput., vol. 1, pp. 83–97,
Apr. 1997.

[55] N. Storey,Safety-Critical Computer Systems: Addison-Wesley, 1996.
[56] A. Thomspon, “Evolutionary techniques for fault tolerance,” inProc.

UKACC Int. Conf. Control, 1996, pp. 693–698.
[57] A. M. Tyrrell, “Computer know Thy self!: A biological way to look af

fault tolerance,” inProc. 2nd EuroMicro/IEEE Workshop Dependable
Computing Systems, Sept. 1999, pp. 129–135.

[58] A. M. Tyrrell, G. S. Hollingworth, and S. L. Smith, “Evolutionary strate-
gies and intrinsic fault tolerance,” inProc. 3rd NASA/DoD Workshop
Evolvable Hardware, July 2001, pp. 98–106.

[59] J. V. Uspensky,Introduction to Mathematical Probability. New York:
McGraw-Hill, 1937, ch. 5, pp. 77–79.

[60] J. von Neumann,Theory of Self-Reproducing Automata. Urbana, IL:
Univ. Illinois Press, 1966.

[61] J. F. Wakerly, Digital Design, Principles and Practices, 2nd
ed. Englewood Cliffs, NJ: Prentice-Hall, 1994.

[62] S. Xanthakis, S. Karapoulios, R. Pajot, and A. Rozz, “Immune system
and fault tolerant computing,” inArtificial Evolution, J. M. Alliot, Ed:
Springer-Verlag, 1996, vol. 1063, Lecture Notes in Computer Science,
pp. 181–197.

[63] C. Zeng, N. Saxena, and E. J. McCluskey, “FSM synthesis with concur-
rent error detection,” inProc. Int. Test Conf., Sept. 1999, pp. 672–679.

D. W. Bradley (S’00–M’01) received the M.Eng. de-
gree in electronic systems engineering from the Uni-
versity of York, York, U.K. in 1998. He is working
toward the Ph.D. degree in electronics at the same
university.

He is currently a Microprocessor Engineer with
ARM Ltd., Cambridge, U.K. His current research
interests include microprocessor architectures, fault
tolerance, biologically inspired hardware design,
and artificial immune systems.

A. M. Tyrrell (S’84–M’85–SM’96) received the
B.Sc. degree in electrical and electronic engineering
from the Bolton Institute of Technology, Bolton,
U.K., in 1982 and the Ph.D. degree in electrical
and electronic engineering from Aston University,
Birmingham, U.K., in 1985.

He joined the Electronics Department at York Uni-
versity in April 1990, where he is currently Chair in
Digital Electronics. Previously, he was a Senior Lec-
turer at Coventry Polytechnic. Between August 1987
and August 1988, he was Visiting Research Fellow at

Ecole Polytechnic Lausanne, Switzerland, where he was researching the eval-
uation and performance of multiprocessor systems. From September 1973 to
September 1979, he was with STC at Paignton Devon, working on the design
and development of high-frequency devices. He has authored or coauthored over
120 papers. His current research interests include the design of biologically in-
spired architectures, evolvable hardware, field-programmable gate array system
design, parallel systems, fault-tolerant design, and real-time systems. Over the
last six years, his research group at York have concentrated on bio-inspired sys-
tems. This work has included the creation of embryonic processing array, in-
trinsic evolvable hardware systems, and the immunotronics hardware architec-
ture.

Dr. Tyrrell is a Fellow of the Institution of Electrical Engineers.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

