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Abstract. We define a new class of games, called backtracking games.
Backtracking games are essentially parity games with an additional rule
allowing players, under certain conditions, to return to an earlier position
in the play and revise a choice.

This new feature makes backtracking games more powerful than parity
games. As a consequence, winning strategies become more complex ob-
jects and computationally harder. The corresponding increase in expres-
siveness allows us to use backtracking games as model checking games for
inflationary fixed-point logics such as IFP or MIC. We identify a natural
subclass of backtracking games, the simple games, and show that these
are the “right” model checking games for IFP by a) giving a translation
of formulae ¢ and structures 2 into simple games such that 2 = ¢ if,
and only if, Player 0 wins the corresponding game and b) showing that
the winner of simple backtracking games can again be defined in IFP.

1 Introduction

The view of logic as a dialectic game, a set of rules by which a proponent attempts
to convince an opponent of the truth of a proposition, has deep roots going back
to Aristotle. One of the modern manifestations of this view is the presentation of
the semantics of logical operators as moves in a two-player game. A paradigmatic
example is the Hintikka semantics of first-order logic, which is just one instance
of what are now commonly called model-checking games. These are two-player
games played on an arena which is formed as the product of a structure 2 and a
formula ¢ where one player attempts to prove that ¢ is satisfied in 2 while the
other player attempts to refute this.

Model-checking games have proved an especially fruitful area of study in
connection with logics for the specification of concurrent systems. The modal
p-calculus L, is widely used to express properties of such systems and, in terms
of expressive power it subsumes a variety of common modal and temporal logics.
The most effective algorithms for model checking properties specified in L, are
based on parity games. Formally, a parity game is played on an arena G :=
(V,E, Vo, V1, 2), where (V| E) is a directed graph, V;,V; C V form a partition
of V,and 2 : V — {0,...,k — 1} assigns to each node a priority. The two



players move a token around the graph, with Player 0 moving when the token
is on a node in V) and Player 1 when it is on V;. The edges FE determine the
possible moves. To determine the winner, we look at the sequence of priorities
£2(v;) occurring in an infinite play vovs . ... Player 0 wins if the smallest priority
occurring infinitely often is even and Player 1 wins if it is odd.

Parity games are the model-checking games not just for L, but also of LFP—
the extension of first-order logic with an operator for forming relational least
fixed points. That is, for any formula ¢ of LFP and any structure 2 one can
easily construct a game G(2, ¢) where Player 0 has a winning strategy if, and
only if; the formula ¢ is satisfied in 2. The game arena is essentially obtained as
the product of A" and ¢, where w is the width of the formula—the maximal arity
of a relation defined by a subformula of . Furthermore, for any fixed number
k, the class of parity games with k priorities in which Player 0 has a winning
strategy is itself definable in L, and therefore by an LFP formula of width 2.
This tight correspondence between games and the fixed-point logic leads us to
describe parity games as the “right” model-checking games for LFP.

LFP is not the only logic that extends first-order logic with a means of forming
fixed points. In the context of finite model theory, a rich variety of fixed-point
operators has been studied due to the close connection that the resulting logics
have with complexity classes. Here we are mainly concerned with IFP, the logic
of inflationary fized points (see Section 3 for a definition). In the context of finite
model theory the logics IFP and LFP have often been used interchangeably as
it has long been known that they have equivalent expressive power on finite
structures. More recently, it has been shown that the two logics are equally
expressive even without the restriction to finite structures [6]. However, it has
also recently been shown that the extension of propositional modal logic is vastly
more expressive than L, [1] and that LFP and IFP have very different structural
properties even when they have the same expressive power [6]. This exploration
of the different nature of the fixed-point operators leads naturally to the question
of what an appropriate model-checking game for IFP might look like.

The correspondence between parity games and logics with least and greatest
fixed point operators rests on the structural property of well-foundedness. A
proponent in a game who is trying to prove that a certain element x belongs
to a least fixed point X, needs to present a well-founded justification for its
inclusion. That is, the inclusion of x in X may be based on the inclusion of
other elements in X whose inclusion in turn needs to be justified but the entire
process must be well-founded. On the other hand, justification for including an
element in a greatest fixed point may well be circular. This interaction between
sequences that are required to be finite and those that are required to be infinite
provides the structural correspondence with parity games.

A key difference that arises when we consider inflationary fixed points (and,
dually, deflationary fixed points) is that the stage at which an element x enters
the construction of the fixed point X may be an important part of the justifica-
tion for its inclusion. In the case of least and greatest fixed points, the operators
involved are monotone. Thus, if the inclusion of x can be justified at some stage,



it can be justified at all later stages. In contrast, in constructing an inflationary
fixed point, if = is included in the set, it is on the basis of the immediately pre-
ceding stage of the iteration. It may be possible to reflect this fact in the game
setting by including the iteration stage as an explicit component of the game
position. However, our aim is to leave the notion of the game arena unchanged
as the product of the structure and the formula. We wish only to change the
rules of the game to capture the nature of the inflationary fixed point operator.

The change we introduce to parity games is that either player is allowed to
backtrack to an earlier position in the game, effectively to force a countback of
the number of stages. That is, when a backtracking move is played, the number
of positions of a given priority that are backtracked are counted and this count
plays an important role in the succeeding play. The precise definition is given in
Section 3 below. The backtracking games we define are far more complex than
parity games. We prove that winning strategies are necessarily more complicated,
requiring unbounded memory, in contrast to the memoryless strategies that work
for parity games. Furthermore, deciding the winner is PSPACE-hard and remains
hard for both NP and Co-NP with only two priorites. In contrast, parity games
are known to be decidable in NP N Co-NP and in PTIME when the number of
priorities is fixed. In Section 3 we show that the model-checking problem for IFP
can be represented in the form of backtracking games. The construction allows
us to observe that a simpler form of backtracking game suffices which we call
simple backtracking games. In Section 4 we show that in IFP we can define the
class of simple backtracking games that are won by Player 0. Thus, we obtain
a tight correspondence between the game and the logic, as exists between LFP
and parity games.

2 Games with Backtracking

Backtracking games are essentially parity games with the addition that, under
certain conditions, players can jump back to an earlier position in the play. This
kind of move is called backtracking.

A backtracking move from position v to an earlier position u is only possible
if v belongs to a given set B of backtrack positions, if v and v have the same
priority and if no position of smaller priority has occurred between u and v.
With such a move, the player who backtracks not only resets the play back to
u, he also commits herself to a backtracking distance d, which is the number of
positions of priority {2(v) that have been seen between u and v. After this move,
the play ends when d further positions of priority (2(v) have been seen, unless
this priority is “released” by a lower priority.

For finite plays we have the winning condition that a player wins if her
opponent cannot move. For infinite plays, the winner is determined according
to the parity condition, i.e., Player 0 wins a play 7 if the least priority seen
infinitely often in 7 is even, otherwise Player 1 wins.

Definition 2.1. The arena G := (V, E,Vy, V1, B, 2) of a backtracking game is
a directed graph (V, E), with a partition V.= Vo U Vi of V into positions of



Player 0 and positions of Player 1, a subset B CV of backtrack positions and a
map 2:V —{0,...,k— 1} that assigns to each node a priority.

In case (v,w) € E we call w a successor of v and we denote the set of all
successors of v by vE. A play of G from initial position vg is formed as follows.
If, after n steps the play has gone through positions vgv; ... v, and reached a
position v, € V,, then Player o can select a successor v, 41 € v, E; this is called
an ordinary move. But if v,, € B is a backtrack position, of priority 2(v,) = g,
say, then Player ¢ may also choose to backtrack; in that case she selects a
number ¢ < n subject to the conditions that 2(v;) = ¢ and 2(v;) > ¢ for all
7 with ¢ < 7 < n. The play then proceeds to position v,+1 = v; and we set
d(q) = {k :i <k <nA2(vy) = q}|. This number d(q) is relevant for the rest of
the game, because the play ends when d(q) further positions of priority ¢ have
been seen without any occurrence of a priority < g. Therefore, a play is not
completely described by the sequence vgv; ... of the positions that have been
visited. For instance, if a player backtracks from v, in vp...v;...v;... 0y, it
matters whether she backtracks to 7 or j, even if v; = v; because the associated
numbers d(p) are different.

We now proceed to a more formal description of how backtracking games are
played. We distinguish therefore between the notion of a (partial) play, which is
a word m € (V UN)=¥ and the sequence path(r) of nodes visited by 7. Further,
we associate with every partial play 7 a function d, : {0,...,k — 1} —» NU{oco}
associating with every priority p the distance d(p). Here d(p) = oo means that
p is not active; either there never has been a backtracking move of priority p, or
the priority p has since been released by a smaller priority. Every occurrence of
a node with priority p decrements d,(p), with the convention that oo — 1 = oc.
A play 7 cannot be extended if d.(p) = 0 for some p.

Definition 2.2 (Playing backtracking games). Let G = (V, E, Vy, V1, B, 2)
be a backtracking game with priorities {0,...,k — 1}, and vg € V. The set of
partial plays 7 from position vy, together with the associated sequence path(m)
of the visited positions and the distance function d, : {0,...,k—1} — NU{oo},
are inductively defined as follows.

start: vy is a partial play, with path(vg) = vy, and dy,(p) = oo for all p.

ordinary move: If 7 is a partial play with d.(p) > 0 for all p, path(w) =
vy ...V, and v, € V,, then Player o can extend m to mv for each v € v, E;
Further, path(mv) = path(m)v and dr (p) := dr(p) for p < 2(v), dry(p) =
dr(p) =1 for p = 2(v), and dq(p) := oo for p > N2(v).

backtracking move: Suppose that 7 is a partial play with d(p) > 0 for all p
and that path(r) = vg...v, with v, € Vo N B, 2(v,) = q, and d.(q) = co.
Then Player o can extend 7 to wi for any number i < n such that 2(v;) = q
and 2(vg) > q for all k with i < k < n. Further path(ri) = path(m)v; and
dri(p) :==dx(p) for p < q, dri(p) = {k:i <k <n:Qvg)=q}| forp=q,
and dn;(p) := oo for p > q.

Definition 2.3 (Winning condition). A partial play 7 with path(w) = vg ... v,
is won by Player o, if v, € Vi_, and no move is possible. This is the case if



either d.(p) = 0 for some p, or if v, E is empty and no backtracking move is
possible from w. An infinite play 7 is won by Player 0 if the smallest priority
occurring infinitely often on path(rw) is even; otherwise w is won by Player 1.

A game is determined if from each position one of the two players has a win-
ning strategy. Determinacy of backtracking games follows from general facts on
infinite games. Indeed, by Martin’s Theorem [7] all Borel games are determined,
and it is easy to see that backtracking games are Borel games.

Proposition 2.4. Backtracking games are determined.

Backtracking games generalise parity games. Indeed a parity game is a back-
tracking game without backtrack positions. Since parity games are determined
via positional (i.e. memoryless) winning strategies, the question arises whether
this also holds for backtracking games. We present a simple example to show
that this is not the case. In fact, no fixed amount of finite memory suffices. For
background on positional and finite-memory strategies we refer to [5].

Theorem 2.5. Backtracking games in general do not admit finite-memory win-
ning strategies.

Proof. Consider the following game (where circles are positions of Player 0 and
boxes are positions of Player 1).

U0

B
We claim that Player 0 wins from the leftmost position, but needs infinite mem-
ory to do so. Clearly, if Player 1 never leaves the leftmost position, or if she
leaves it before doing a backtracking move, then Player 0 wins seeing priority 0
infinitely often. If Player 1 at some point backtracks at the leftmost position and
then moves on, the strategy of Player 0 depends on the value of d(0) to make
sure that the fourth node is hit at the point when d(0) = 0. But Player 1 can
make d(0) arbitrarily large, no finite-memory strategy suffices for Player 0. O

This result establishes that winning strategies for backtracking games are
more complex than the strategies needed for parity games. It is also the case
that the computational complexity of deciding which player has a winning strat-
egy is also higher for backtracking games than for parity games. While it is
known that winning regions of parity games can be decided in NP N Co-NP (and
it is conjectured by many, that this problem is actually solvable in polynomial
time), the corresponding problem for backtracking games is PSPACE-hard. Fur-
ther, for any fixed number of priorities, parity games can be decided in PTIME,
but there are examples of backtracking games with just two priorities that are
NP-hard. The proof is by reduction from the language equivalence problem for
finite automata over a unary alphabet, which is known to be Co-NP-hard [2].
As the problem of deciding the winner of a backtracking game is closed under
complementation, it is also NP-hard.

Theorem 2.6. Deciding the winner of backtracking games is Co-NP and NP-
hard, even for games with only two priorities.



3 Model checking games for inflationary fixed point logic

In this section we want to show that backtracking games can be used as model
checking games for inflationary fixed point logics. We will present the games in
terms of IFP, the extension of first-order logic by inflationary and deflationary
fixed points, but the construction applies, with the obvious modifications, also
to the modal iteration calculus MIC [1].

Inflationary fixed point logic. A formula (R, x) with a free k-ary second-
order variable and a free k-tuple of first-order variables & defines, on every
structure 2, a relational operator F, : P(A*) — P(AF) taking R C A* to the
set {a: (A, R) E ¢(a)}. Fixed point extensions of first-order logic are obtained
by adding to FO explicit constructs to form fixed points of definable operators.
The type of fixed points that are used determines the expressive power and also
the algorithmic complexity of the resulting logics. The most important of these
extensions are least fixed point logic (LFP) and inflationary fixed point logic

(IFP).
The inflationary fixed point of any operator F : P(A¥) — P(AF) is defined
as the limit of the increasing sequence of sets (R®)acora defined as R? := @,

Rl := R*UF(R®), and R* := J,_, R* for limit ordinals \. The deflationary
fized point of F is constructed in the dual way starting with A* as the initial
stage and taking intersections at successor and limit ordinals.

Definition 3.1. Inflationary fixed-point logic (IFP) is obtained from FO by al-
lowing formulae of the form [ifp Rx . (R, x)](x) and [dfp Rx . ¢(R, x)|(x), for
arbitrary ¢, defining the inflationary and deflationary fixed point of the operator
induced by .

Model checking games for LFP. Let us recall the definitions of model check-
ing games for least fixed-point logic LFP (the games for the modal p-calculus
are analogous). Consider a sentence 1) € LFP which we assume is in negation
normal form and well-named, i.e. every fixed-point variable is bound only once.

The game G(2, 1)) is a parity game whose positions are subformulae of v
instantiated by elements of 2, i.e. expressions p(a) such that ¢(x) is a subfor-
mula of ¢, and a a tuple of elements of 2. Player 0 (Verifier) moves at positions
associated with disjunctions and formulae Jyp(a,y). From a position (¢ V¥)(a)
she moves to either p(a) or ¥(a) and from a position Jyp(a,y) she can move to
any position ¢(a,b) such that b € 2. In addition, Verifier is supposed to move
at atomic false positions, i.e., at positions Ra where a ¢ R* and —Ra where
a € R*. However, these positions do not have successors, so Verifier loses at
atomic false positions. Dually, Player 1 (Falsifier) moves at conjunctions and
formulae Vyp(a,y), and loses at atomic true positions. The rules described so
far determine the model checking game for FO-formulae 1 and it is easily seen
that Verifier has a winning strategy in this game G(2, 1) starting at a position
e(a) if, and only if, A = ¢(a).

For formulae in LFP, we also have positions [fp Tx.¢](a) (where fp stands
for either lIfp or gfp) and Ta, for fixed-point variables T'. At these positions



there is a unique move (by Falsifier, say) to ¢(a), i.e. to the formula defining
the fixed point. The priority labelling assigns even priorities to gfp-atoms T'a
and odd priorities to lfp-atoms T'a. Further, if T,T" are fixed-point variables
of different kind with 7”7 depending on T' (which means that T' occurs free in
the formula defining T"), then T-positions get lower priority than 7"-positions.
The remaining positions, not associated with fixed-point variables, do not have
a priority (or have the maximal one). As a result, the number of priorities in the
model checking game equals the alternation depth of the fixed-point formula plus
one. For more details and explanations, and for the proof that the construction
is correct, see e.g. [3, 8].

Theorem 3.2. 2 = ¢ if, and only if, Verifier has a winning strategy for the
parity game G(A, ) from position 1.

Games for IFP. We restrict attention to finite structures. The model check-
ing game for an IFP-formula ¢ on a finite structure 2 is a backtracking game
G, ) = (V,E,Vy, V1, B, £2). As in the games for LFP, the positions are subfor-
mulae of 1, instantiated by elements of 2(. We only describe the modifications.

We always assume that formulae are in negation normal form, and write
9 for the negation normal form of —. Consider any ifp-formula ¢*(x) :=
[ifpTx.o(T,z)](x) in 9. In general, ¢ can have positive or negative occur-
rences of the fixed point variable T. We use the notation ¢(T,T) to separate
positive and negative occurrences of T'. To define the set of positions we include
also all subformulae of Tx V ¢(T, ) and Tz A B(T, ). From a position ¢*(a)
the play proceeds to T'a V ¢(T,a). When a play reaches a position T'c or Tc
the play proceeds back to the formula defining the fixed point by a regeneration
move. More precisely, the regeneration of an ifp-atom T'c is T'e V ¢(T, ¢), the
regeneration of Tc is T'c A B(T, ¢). Verifier can move from Tc to its regener-
ation, Falsifier from Tc. For dfp-subformulae ¥*(x) := [dfp Rz .9(R, z)](x),
dual definitions apply. Verifier moves from Re to its regeneration Re V 9(R, c),
and Falsifier can make regeneration moves from Re to ReAY(R, ¢). The priority
assignment associates with each ifp-variable T' an odd priority £2(7") and with
each dfp-variable R an even priority £2(R), such that for any two distinct fixed
point variables S, S’, we have 2(S) # 2(5’), and whenever S’ depends on S,
then 2(S) < £2(S5"). Positions of the form Sc and Sc are called S-positions. All
S-positions get priority £2(5), all other formulae get a higher priority. The set
B of backtrack positions is the set of S-positions, where S is any fixed-point
variable.

For simplicity we focus on IFP-formulae with a single fixed point, ¥ :=
[ifpTx. ¢](a) where (T, x) is a first-order formula. When the play reaches a
position T'c Verifier can make a regeneration move to T'cV ¢(T, ¢) or backtrack.
Dually, Falsifier can regenerate from positions Tc or backtrack. However, since
we have only one fixed point, all backtrack positions have the same priority and
only one backtrack move can occur in a play.

In this simple case, the rules of the backtracking game ensure that infinite
plays (which are plays without backtracking moves) are won by Falsifier, since



ifp-atoms have odd priority. However, if one of the players backtracks after the
play has gone through a T-positions, then the play ends when « further 7T-
positions have been visited. Falsifier has won, if the last of these is of form T'c,
and Verifier has won if it is of form Tc.

The differences between IFP model checking and LFP model checking are in
fact best illustrated with this simple case. For this reason, and for lack of space,
we prove the correctness of the model checking game only for this case, and defer
the general case to the full version of this paper.

We claim that Verifier has a winning strategy for the game G(2, ) if 2 = v
and Falsifier has a winning strategy if 2 }£= 1.

To prove our claim, we look at the first-order formulae ¢® defining the stages
of the induction. Let ©°(a) = false and ¢**1(a) = *(a) V p[T /o, T /7% (x).
On finite structures ¢ (a) = V., ¢*(a). Consider the situation after a back-
tracking move prior to which 3 T-positions have been visited and suppose that
2 = ¢%(a). A winning strategy for Verifier in the first-order game G(2A, ¢’ (a))
(from position ¢?(a)) translates in the obvious way into a (non-positional) strat-
egy for the game G(2, 1) from position ¢ (a) with the following properties: Any
play that is consistent with this strategy will either be winning for Verifier before
0B T-positions have been seen, or the S-th T-position will be negative.

Similarly, if A = ¢”(a) then Falsifier has a winning strategy for G(2, ¢”(a)),
and this strategy translates into a strategy for the game G(2(,4) by which Fal-
sifier forces the play (after backtracking) from position ¢ (a) to a positive 8-th
T-position, unless she wins before 8 T-positions have been seen.

Lemma 3.3. Suppose that a play on G(A, ) has been backtracked to the ini-
tial position (a) after § T-positions have been visited. Verifier has a winning
strategy for the remaining game if, and only if, A = % (a).

From this we obtain the desired result.

Proposition 3.4. If 2 | ¢(a), then Verifier wins the game G(A,¢¥(a)) from
position Y (a). If A = (a), then Falsifier wins the game G(2A, ¥ (a)) from posi-
tion ¥(a).

Proof. Suppose first that 2 |= ¢(a). Then there is some ordinal o < w such that
A = ¢*(a). We construct a winning strategy for Verifier in the game G(2, ¥ (a))
starting at position i (a).

From ¢(a) the game proceeds to (T'a V ¢(a)). At this position, Verifier re-
peatedly chooses the node T'a until this node has been visited a-times. After
that, she backtracks and moves to ¢(a). By Lemma 3.3 and since % = ¢%(a),
Verifier has a strategy to win the remaining play.

Now suppose that 2 £ ¢(a). If, after a T-positions, one of the players
backtracks, then Falsifier has a winning strategy for the remaining game, since
A = p*(a). Hence, the only possibility for Verifier to win the game in a finite
number of moves is to avoid positions Tb where Falsifier can backtrack.

Consider the formulae ¢%, with gpg)c = false and ga?“(m) = ¢lp}, false](x).
They define the stages of [ifp Tx . ¢[T, false](x)], obtained from v by replacing
negative occurrences of T' by false. If Verifier could force a finite winning play,



with a — 1 positions of the form T'c and without positions T'c, then she would
in fact have a winning strategy for the model checking game G(%, (p?(a)). Since
¥¢ implies ¢, it would follow that 2 = ¢®(a). But this is impossible. O

4 Definability of Backtracking Games

In the previous section we demonstrated that backtracking games can be used
as model-checking games for IFP. The aim of this section is to show that they
are, in some sense, the “right” model-checking games for inflationary fixed-point
logics. For this, we identify a natural sub-class of backtracking games, which
we call simple, such that for every formula ¢ € IFP and finite structure 2, the
game G(2, ¢) can be trivially modified to fall within this class and, on the other
hand, for every k € N there is a formula ¢ € IFP defining the winning region
for Player 0 in any simple game with at most k priorities. In this sense, simple
backtracking games precisely capture IFP model-checking.

Consider again the proof given in Section 3 for winning strategies in a game
G(2, ) and the way backtracking was used there: If Player 0 wanted to backtrack
it was always after opening a fixed point, say [ifp Rz . Rz V ¢]. She then looped
a times through the Rx sub-formula and backtracked. With choosing the o she
essentially picked a stage of the fixed-point induction on ¢ and claimed that
x € p®. From this observation we can derive two important consequences. As
every inflationary fixed-point induction must close after polynomially many steps
in the size of the structure 2 and therefore in linearly many steps in terms of the
game graph, there is no need for Player 0 to backtrack more than n steps, where
n is the size of the game graph. Further, the game can easily be modified such
that instead of having the nodes for the disjunction Rx V ¢ and the sub-formula
Rz, we simply have a node for ¢ with a self-loop. In this modified game graph,
not only is it sufficient for Player 0 to backtrack no more than n steps, we can,
in addition, require that whenever she backtracks from a node v, it must be to
v again, i.e. when she decides to backtrack from a node corresponding to the
formula ¢, she loops « times through ¢ and then backtracks « steps to ¢ again.
The same is true for Player 1 and her backtracking.

Definition 4.1. A strategy in a backtracking game G is local if, for any back-
tracking node v, all backtracking moves from v are to a previous occurrence of v.
Given a function f : N — N, we call a strategy f-backtracking if all backtracking
moves made by the strategy have distance at most f(|G|). The strategy is called
linear in case f(n) = n and polynomial if f is a polynomial in n.

As explained above, we can easily modify the construction of the game graph
G, @) for a formula ¢ and structure 2 such that every node in B has a self
loop. We call such game graphs inflationary.

Definition 4.2. A backtracking game G := (V, E,Vy, V1, B, §2) is inflationary,
if every mode in B has a self-loop. An inflationary game G is called simple if
both players have local linear winning strategies on their winning regions.



Proposition 4.3. For any IFP-formula 1 and every finite structure A, the
model-checking game G(2, ¢), as defined in Section 3, is simple.

We will construct IFP-formulae defining the winning regions of simple back-
tracking games. Since backtracking games are extensions of parity games we
start with the formula defining winning regions in parity games (see [9]). Let
G be a parity game with k + 1 priorities and consider the formula (z) =
[gfp Rox. fp Ryz. ... fp Rix . ¥(x, Ry, . .., Ry)](x),where

19(1" Ry, ... aRk) = /\f:O(VO:C A Q(y) =i—Jy (Exy A R1y>) A
A_o(Viz A Q(y) =i — Yy (Bxy — Riy)).

For every node v € V', we have that G = ¢(v) if, and only if, Player 0 has a
winning strategy for the game G from v. A simple way to see this is to analyse
the model checking game for ¢(v) on G. If we remove the edges which would
force a player to lose immediately, we obtain G itself (from position v).

We take this formula as a starting point for defining an IFP-formula deciding
the winner of backtracking games. To define strategies involving backtracking,
we first need some preparation. In particular, in order to measure distances we
need an ordering on the arenas.

It is easily seen that backtracking games are invariant under bisimulation.
Thus, it suffices to consider arenas where no two distinct nodes are bisimilar
(we refer to such arenas as bisimulation minimal). The next step is to define
an ordering on the nodes in an arena. This is done by ordering the bisimulation
types realised in it.

Lemma 4.4. There is a formula @,rq4(x,y) € IFP defining on every bisimulation
minimal arena a linear order.

This is well-known in finite model theory. For an explicit construction, see
e.g. [4]. As a result, we can assume that the backtracking games are ordered
and that we are given an arithmetical predicate for addition with respect to the
order defined above.

In Theorem 2.5 we exhibited a backtracking game that requires infinite mem-
ory strategies. All strategies in this game are necessarily local strategies. Thus
Theorem 2.5 also applies to games with local strategies. The reason for the in-
creased memory consumption is that when the decision to backtrack is made,
it is necessary to know which nodes have been seen in the past, i.e. to which
node a backtracking move is possible. However, since we here consider strate-
gies with local backtracking only, it suffices to know the backtracking moves
that are still active, i.e. have not yet been released. Thus we can capture all the
relevant information about a partial play 7 ending in position v by the tuple
(v,d(0),...,d(k)). This is formalised in the notion of a configuration.

Definition 4.5. Let G be a backtracking game with k + 1 priorities. A configu-
ration is a pair (v,d) consisting of a node v and a tuple d € {0, ..., k,oco}F+1,
Let 7 be a (partial) play ending in node v. The configuration of 7 is the tuple
(v,do, ..., dy) such that d; := d (i) for all i < k.



We are now ready to present a formula defining the winning region for Player
0 in a simple backtracking game with priorities 0,...,k. The structure of the
formula is similar to the structure of ¢(x) for parity games, in the sense that
for games with k& + 1 priorities we have k 4+ 1 nested fixed points of the form
gfp Roxd . Ifp Rizd. ... fp Ryaxd and a ¢ which is first-order, up to the IFP-
subformula defining the order of the bisimulation types. In its various nested
fixed points the formula builds up sets of configurations (z, dy, . . . , dx) such that
if (z,do,...,dx) € Rg(z), then Player 0 can extend any partial play 7, ending
in node x with d.(j) = d; for all 0 < j < k, to a winning play. As the d; range
over 0 to n := |G| and also may take the value co, we would, strictly speaking,
need to encode each d; by a pair of elements. However, to simplify notation, we
only use one variable for each d; and allow it to take all possible values. We also
use a constant co and variables i, j, ... for constants between 0 and k. Finally,
in the case distinctions below we write d; = m for I3m € {0,...,n} Ad; =m.

The inner formula 1 is split in two parts ¥g V 1 taking care of positions
where Player 0 moves and positions where Player 1 moves. We first present the
formula 1g(x, Ro, ..., Ri) defining positions in V; from which Player 0 can win.

o(z,d) == Vox AV, 2(x) :i/\/\f:iJr1 dy =00 A

ElyEld'E:Ey/\\/j 2(y) = j A Rjyd A

di=coNj>ind=d Vv
j<i/\d':(do,...,dj,oo,...,oo)\/
Bx A dm # oo Ri(z,dy, . ..,di—1,m,00,...,00) V

di=mA j>iAnd =dV
j:i/\d/:(do,...,di_l,di—1,00,...,00)\/
j<i/\d':(do,...,dj,oo,...,oo)

The first line of the formula states that x has to be in V{, the priority of =
is ¢, for some 4, and the tuple (do, ..., dx) has co at all positions greater than i.
This corresponds to the fact that a node of priority i releases all backtracking
moves on higher priorities. Now, Player 0 can win from configuration (z,d) if
she can move to a successor y of x from which she wins the play. That she can
win from y means that if (y,d’') is the configuration reached when she moves
from (z,d) to y, then (y,d') € Rg(y)- The second row of the formula states the
existence of such a successor y and the rest of the formula defines what it means
for (y,d’) to be the configuration reached from x when moving to y.

The next formula 1), takes care of nodes x € V.

P1(z,d) == Viz AV, 2(z) = i/\/\f:i_,’_1 d =00 A
(Bx — Vm < oo Ri(z,do, ..., di—1,m,00,...,00)) A
Vy(Exy — V; 2(y) =3 A 3d’ Rjyd'A
di:oo/\jZi/\d/:(do,...,di,oo,...,oo)\/
j<i/\d':(do,...,dj,oo,...,oo)\/
di=mA j>iANd=dV
j:i/\ d/:(do,...,difl,dif1,00,...,00)\/
J<iA d':(do,...,dj,oo,...,oo)\/
m =0 A Bx)



A node x € V; with configuration (z, d) is good for Player 0 if Player 1 has no
choice but to move to a node from which Player 0 wins. The formula is defined
similarly to 1¢ only that in the second line we ensure that if z € B then Player
0 must win the m-step game from x for all m, as otherwise Player 1 could make
a backtracking move and win, and further Player 0 now also wins the m-step
game from x where m = 0.

With 1o and v defined we can present the formula ¢g(z) true for a node =
in a simple backtracking game with k + 1 priorities if, and only if, Player 0 has
a linear winning strategy from = with local backtracking.

wo(x) := [gfp Roxd . Ifp Roxd . ... fp Rrad . (Yo V ¥1)](x, 00, ...,00)

The next step is to show that the formula indeed defines the winning region
for Player 0. This is done by showing that whenever for a node x the tuple
(x,00,...,00) satisfies ¢ then Player 0 has a winning strategy for the game
starting at z.

It is a simple observation that the formula ¢ defining the winning positions
for Player 1 analogous to (g is equivalent to the dual formula of ¢y. Thus,
all nodes z either satisfy g or ¢; and therefore g defines the winning region
for Player 0 and analogously (1 defines the winning region for Player 1. This
establishes the next theorem.

Theorem 4.6. Winning regions of simple backtracking games are definable in
IFP.

Note that the definition of simple games involves semantic conditions, i.e. the
players having linear strategies. It is open whether there is a purely syntactic
criterion on game graphs allowing for the same kind of results.
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