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Abstract—The underlying concepts of an exact QoS routing
algorithm are explained. We show that these four concepts, namely
1) nonlinear definition of the path length; 2) a k-shortest path
approach; 3) nondominance; and 4) look-ahead, are fundamental
building blocks of a multiconstrained routing algorithm. The main
reasons to consider exact multiconstrained routing algorithms
are as follows. First, the NP-complete behavior seems only to
occur in specially constructed graphs, which are unlikely to occur
in realistic communication networks. Second, there exist exact
algorithms that are equally complex as heuristics in algorithmic
structure and in running time on topologies that do not induce
NP-complete behavior. Third, by simply restricting the number
k of paths explored during the path computation, the compu-
tational complexity can be decreased at the expense of possibly
loosing exactness. The presented four concepts are incorporated in
SAMCRA, a self-adaptive multiple constraints routing algorithm.

Index Terms—Look-ahead, path dominance, QoS routing,
shortest path.

1. INTRODUCTION

ETWORK routing essentially consists of two identities,
Nthe routing protocol and the routing algorithm. The
routing protocol supplies each node in the network with a con-
sistent view of that topology and, in some cases, of its resources
at some moment in time. The routing protocol deals with the
complex dynamic processes such as topology updates, deter-
mination of significant changes, and the flooding of topology
information to each node in the network. Although proposals
for a QoS routing protocol for Internet exist, such as Q-OSPF
[1], currently there is still no QoS routing protocol in the
Internet. The only existing standardized QoS routing protocol
is the ATMF PNNI [2]. The dual of the routing protocol, the
routing algorithm, assumes a temporarily static or frozen view
of the network topology provided by the routing protocol. The
routing algorithm provides the intelligence to compute a path
from source(s) to destination(s) possibly subject to constraints
and mostly optimizing a criterion. The routing algorithm is the
main focus of this paper.

In contrast to the QoS routing protocol, the difficulty does
not lie in the existence of an exact QoS algorithm—we have
proposed SAMCRA [39], the self-adaptive multiple constraints
routing algorithm—but in its computational complexity. For
some time already, it has been known [11], [44] that QoS
routing with multiple additive link weights is an NP-com-
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plete problem! which is interpreted, in practice, as unfeasible.
Hence, only approximations (heuristics) with polynomial time
complexity of the QoS algorithm are considered feasible.
This point of view resulted in the publication of a wealth of
heuristics, each of them claiming some attractive features over
the others. These heuristics are briefly summarized in Section
III. Thus, these heuristics introduced a blurring factor in the
already complex field of QoS routing because, as we claim
here, their need or existence is argued as superfluous. Indeed,
after many years of extensive simulations on a huge number of
graphs (with independent identically distributed link weights),
we have never observed strong tendencies toward NP-com-
plete behavior. Only in specially constructed graphs with link
weights carefully chosen, NP-complete behavior emerges [27].
However, we believe that, in practical networks, this worst-case
behavior is very unlikely to occur. Thus, in practice, exact QoS
routing algorithms seem feasible.

As shown earlier [39], the Internet’s hop-by-hop routing
paradigm even requires, as necessary condition, exact routing
algorithms to prevent loops. However, even an exact QoS
routing algorithm alone is not sufficient to guarantee exactness
in hop-by-hop routing which questions the compliance of
QoS routing and the Internet’s hop-by-hop routing paradigm.
Here, we will avoid the architectural discussion whether or
not the Internet should adopt QoS routing. Rather, we believe
that future networking will embrace QoS routing as a basic
functionality in high quality networking and that optimal QoS
routing algorithms are worth to be studied. Even if QoS routing
is not used in future communication networks, a navigator tool
in a car which instructs the driver to follow the path that is both
shortest in distance and in time, seems desirable.

While considerations on NP completeness are discussed else-
where (e.g., see [41] and [27]), the aim is to review the princi-
ples of an exact QoS routing algorithm and to argue to what ex-
tent SAMCRA can be improved. Some of these principles are
scattered over our earlier papers [40], [10], [39], and presented
here coherently and more structured. The concepts discussed
are, however, not necessary conditions? for an exact routing al-
gorithm, but they seem likely to occur, although we cannot prove
this, in an exact and efficient algorithm.

Multiconstrained routing is defined in Section II. SAMCRA
is based on three concepts: 1) nonlinear definition of the path

IA problem is NP complete if it cannot be solved in polynomial time. This
means that the number of elementary computations or complexity C' grows
faster than any polynomial function if the problem parameters increase. Math-
ematically, let a be the basic parameter of problem P. Problem P is said to be
NP complete for € > 0, C'p = O(exp(ea)), as @ — oc for any algorithm that
solves problem P. If at least one algorithm is known, for which Cp = O(a®)
for some &, then P is not NP complete, but a polynomial problem. More details
can be found in Garey and Johnson [11].

2By computing all possible paths between source and destination, surely the
exact path is (exhaustively) found.
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length (Section IV); 2) k-shortest paths (Section V); and 3) non-
dominated paths (Section VI). Moreover, we demonstrate that
SAMCRA can be improved using a fourth concept 4) of look-
ahead (VII). We discuss other potential improvements in QoS
routing in Section VIII. The improved version of SAMCRA is
presented in Section IX and exemplified in Section X. Finally,
we conclude in Section XI. Improvements in data structures or
heaps are not discussed, but we refer to [6].

II. MULTICONSTRAINED ROUTING

Consider a graph G in which each link © — v from node u to
node v is characterized by a m dimensional link weight vector
B(u — v) = [wi(u — v),wa(u — v),...,wn(u — v)]
where the component w; > 0 is a QoS measure such as delay,
jitter, loss, minimum bandwidth, cost, etc. The QoS routing al-
gorithm computes the path P that obeys multiple constraints,
w;(P) < L; for all 1 < 4 < m. For example, we seek a path
for which the source-destination delay <10 ms, total cost <10
Euro, and minimum bandwidth per link is at least 1 Mb/s. The
set L; are the user requested quality of service desires and Lis
called the constraints vector. The possible QoS measures belong
to two different classes: additive? and min-max QoS measures.
For additive QoS measures, the value (further called the weight)
of the QoS measure along a path is the sum of the QoS weights
on the links defining that path. Examples of additive QoS mea-
sures are the delay, the hopcount, and the cost. Routing with two
or more additive QoS measures is proved to be NP complete by
Wang and Crowcroft [44]. For min-max QoS measures, the path
weight of the QoS measure is the minimum (or maximum) of the
QoS weights of the links that constitute that path. Typical exam-
ples of min-max measures are the minimum needed bandwidth
and (policy related) transit flags. Routing with min(max) QoS
measures consists of topology filtering, i.e., omitting all links
from the topology that do not satisfy one of the min(max) con-
straints. The reduced topology is then used as a starting point
for solving the path problem with only additive QoS measures.
Hence, we confine in the sequel to additive QoS measures for
which the weight of a path P = ny — ny — --- — ny con-
sisting of £ — 1 hops (links) equals the vector-sum of the weights
of its constituent links

k—1

W(P) =Y w(n; — nji). (D

J=1

A QoS multiple constrained path P4_, p is a path between node
A and node B that satisfies w;(Pa—p) < L; forall1 < i < m.

3For multiplicative measures, the value of the QoS measure along a path is
the product of the QoS values of the constituent edges of the path. By taking the
(sometimes negative sign of the) logarithm of the multiplicative measures on
each edge, they are transformed into positive, additive measures. An important
example is the packet loss or, more precisely, one minus the probability of packet
loss. Indeed, if at a node the average incoming traffic (number of packets/s) is A
and if p denotes the probability of packet loss, then the average outgoing traffic
equals (1 —p)A. The next hop assuring a packet loss ¢ has incoming traffic (1 —
p)A and outgoing (1 — p)(1 — ¢)A. Implicitly independence has been assumed.
Hence, along a path with h hops, the end-to-end probability of packet loss is
1 —TIr_,(1 — pi). The end-to-end packet arrival probability [TF_, (1 — px.)
is maximized by minimizing — Y7 _, log(1 — p,,), where — log(1 — p,,) are
positive, additive measures. This explains why only two different classes need
to be considered.
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With this introductory explanation, we now proceed to
the more formal definitions. Let G(N, E) denote a network
topology, where N is the set of nodes and FE is the set of links.
With a slight abuse of notation, we also use N and E' to denote
the number of nodes and the number of links, respectively.

Definition 1: Multiconstrained Path (MCP)
Problem: Consider a network G(N,FE). Each link
u — v € F is specified by a link weight vector with as
components rn additive QoS link weights w;(u — v) > 0 for
all 1 < 7 < m. Given m constraints L;, where 1 < 7 < m,
the problem is to find a path P from a source node A to a
destination node B such that

wi(P)E " wilu—v) <L 2)
(u—m)EP

forall 1 <1 < m.

A path that satisfies all m constraints is often referred to as
a feasible path. There may be many different paths in the graph
G(N, E) that satisfy the constraints. According to Definition 1,
any of these paths is a solution to the MCP problem. However, it
might be desirable to retrieve the path with smallest length [( P)
from the set of feasible paths. The precise definition of length
[(-) is important and will be discussed below in Section IV.
The problem that additionally optimizes some length function
I(-) is called the multiconstrained optimal path problem and is
formally defined as follows.

Definition 2: Multiconstrained Optimal Path (MCOP)
Problem: Consider a network G(N, E). Each linku — v € E
is specified by a link weight vector with as components 1 addi-
tive QoS link weights w; (v — v) > 0 forall 1 < i < m. Given
m constraints L;, where 1 < ¢ < m, the problem is to find a
path P from a source node A to a destination node B satisfying
(2) and, in addition, minimizing some length criterion such that
[(P) < I(P"), for all paths P’ between A and B.

Both the MCP and MCOP are instances of QoS routing.

III. RELATED WORK

Many papers have targeted the QoS routing problem, but only
a few dealt with the general MCP problem [26]. Jaffe [19] pro-
posed a shortest path algorithm using a linear combination of
the link weights. Iwata et al. [18] proposed a polynomial-time
algorithm to solve the MCP problem. The algorithm first com-
putes one (or more) shortest path(s) based on one QoS measure
and then checks if all the constraints are met. If this is not the
case, the procedure is repeated with another measure until a fea-
sible path is found or all QoS measures are examined. Chen and
Nahrstedt [4] provided two approximate algorithms for the MCP
problem. The algorithms return a path that minimizes the first
(real) weight provided that the other m — 1 (scaled down integer)
weights are within the constraints. Korkmaz and Krunz [22]
have proposed a randomized heuristic for the MCP problem.
Under the same network conditions, multiple executions of the
randomized algorithm may return different paths between the
same source and destination pair. Korkmaz and Krunz [23] also
provided a heuristic called H-MCOP. This heuristic tries to find
a path within the constraints by using the nonlinear path length
function of SAMCRA [39]. Both heuristics of Korkmaz and
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Krunz apply some form of the look-ahead function (see Section
VII). Yuan [45] presents two heuristics for the MCP problem,
which are similar to TAMCRA [10], but use a Bellman—Ford
approach. Liu and Ramakrishnan [30] considered the problem
of finding not only one but multiple shortest paths satisfying the
constraints.

Several works in the literature have aimed at addressing spe-
cial yet important subproblems in QoS routing. For example,
researchers addressed QoS routing in the context of bandwidth
and delay. Routing with these two measures is not NP complete.
Wang and Crowcroft [44] presented a bandwidth-delay based
routing algorithm which simply prunes all links that do not sat-
isfy the bandwidth constraint and then finds the shortest path
with respect to (w.r.t.) the delay in the pruned graph. A much
researched problem is the NP-complete restricted shortest path
(RSP) problem. The RSP problem only considers two measures,
namely delay and cost. The problem consist of finding a path
from A to B for which the delay obeys a given constraint and the
cost is minimum. Many heuristics have been proposed for this
problem, e.g., see [16], [36], [20], and [15]. Several path selec-
tion algorithms based on different combinations of bandwidth,
delay, and hopcount were discussed in [34] (e.g., widest-shortest
path and shortest-widest path). In addition, new algorithms were
proposed to find more than one feasible path w.r.t. bandwidth
and delay (e.g., maximally disjoint shortest and widest paths)
[38]. Kodialam and Lakshman [21] proposed bandwidth guar-
anteed dynamic routing algorithms. Orda and Sprintson [35]
considered precomputation of paths with minimum hopcount
and bandwidth guarantees. They also provided some approx-
imation algorithms that take into account certain constraints
during the precomputation. Guerin and Orda [14] focussed on
the impact of reserving in advance on the path selection process.
They describe possible extensions to path selection algorithms
in order to make them advance-reservation aware and evaluate
the added complexity introduced by these extensions. Fortz and
Thorup [12] investigated how to set link weights based on pre-
vious measurements so that the shortest paths can provide better
load balancing and can meet the desired QoS constraints. When
there exist certain specific dependencies between the QoS mea-
sures, due to specific scheduling schemes at network routers,
the path selection problem is also simplified [31]. Specifically,
if weighted fair queueing scheduling is being used and the con-
straints are on bandwidth, queueing delay, jitter, and loss, then
the problem can be reduced to a standard shortest path problem
by representing all the constraints in terms of bandwidth.

IV. DEFINITION OF THE PATH LENGTH [(P)

The weight of a path vector as defined in (1) is a vector sum.
As in linear algebra, the length of a (path) vector requires a
vector norm to be defined. The definition of the path length [( P)
is needed to be able to compare paths since the link weight com-
ponents all reflect different QoS measures with specific units.

We first review the straightforward choice of a linear path
length as proposed by Jaffe [19]

m

(P) =" diwi(P) = d - @(P) A3)

i=1

w,(P)

wy(P)

Fig. . Inm = 2 dimensions, each path P between the source node and the
destination node has a point representation in the (w; (P), w2 (P)) plane. The
parallel lines shown are equilength lines dyw;(P) + daws(P) = 1, which
contain solutions with equal length . Clearly, all solutions lying above a certain
line have a length larger than the ones below or on the line. The shortest path
returned by Dijkstra’s algorithm applied to the reduced graph, is the first solution
(encircled) intersected by a set of parallel lines with slope —(d1)/(d>). In this
example, the shortest path (encircled) lies outside the constraints area.

w,(P)

L, wi(P) 5
‘1

Fig. 2. Illustration of curved equilength lines.

where d; are positive real numbers. By replacing the link weight
vector @W(u — wv) of each link u — v in the graph G by the
single metric d - W(u — v) according to (3), the mn-parameter
problem is transformed to a single parameter problem enabling
the use of Dijkstra’s shortest path algorithm. The Dijkstra algo-
rithm applied to the reduced graph will return a “shortest” path
P that minimizes [(P) defined by (3).

When scanning the solution space with a straight equilength
line I[(P) = [ as in Fig. 1, the area scanned outside the con-
straint region is minimized if the slope of the straight equilength
lines satisfies (dy)/(d2) = (Lz2)/(L1). In m dimensions, the
largest possible volume of the solution space that can be scanned
subject to w;(P) < L; is reached for the plane which passes
through the maximum allowed segments L; on each axis. The
equation of that plane is Y.~ (w;(P))/(L;) = 1. Hence, the
best choice in (3) is d; = (1)/(L;) forall 1 < 7 < m. In that
case, half of the constraint volume is scanned before a solution
outside that volume with [(P) > 1 can possibly be selected. In
addition, this optimum choice also normalizes each component
w;(P) by L; (in a specific unit) as is required because [( P) must
be dimensionless. In spite of the advantage that the simple Dijk-
stra shortest path algorithm can be used, the drawback of (3) is
that the shortest path does not necessarily satisfy all constraints.

As illustrated in Fig. 2, curved equilength lines match the
constraint boundaries much better. The nonlinear definition

= [wiP)]7)
l,(P) = — 4
«(P) <Z;[L}) @
is well known as Holder’s g-vector norm [13] and is funda-
mental in the theory of classical Banach spaces (see Royden [37,

ch. 6]). Obviously, the best match is obtained in the limit when
q — oo since then the equilength lines are rectangles precisely
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graph with three measures
and three constraints (14, 11 and 22)

o
o
(<]

0.86
. 091
1 095

shortest path from a to node e

shortest path from a to node i

Fig. 3. Illustration of the property that, when using a nonlinear
path length definition, subsections of shortest paths are not
necessarily shortest paths. Indeed, the length l(a — b — e) =
max((4+3/14),(14+7/11),(74+1/22)) ~ 0.727 is smaller than
lla - ¢ - ¢) = max((2+5/14),(3+3/11),(9+8/22)) ~ 0.772,
although @ — ¢ — e is a subsection of the shortest path.

conform to the constraint boundaries. In that case, the definition
(4) reduces to the maximum vector component divided by the
corresponding constraint

loo(P) = (&)

1<i<m

1)

max |:

If the shortest path computed with length definition (5) has
length larger than 1 and, hence, violates at least one of the
constraints, no other path will satisfy the constraints. Thus,
finding the shortest path with the definition (5) of path length
solves the multiple constraints problem. However, the shortest
path is not guaranteed to be found with Dijkstra’s algorithm,
which relies on the property of a linear path length definition
that subsections of shortest paths are also shortest paths.
Unfortunately, in multiple dimensions and using a nonlinear
definition of the path length, the subsections of shortest paths
are not necessarily shortest paths as exemplified in Fig. 3.
The proof that this important property holds for any nonlinear
length function is found in ([39, Appendix]). As a consequence,
possibly more than one path in each node needs to determined,
which will lead us, quite naturally, to consider a k-shortest path
algorithm (with & > 1).

Although the definition (5) is chosen for SAMCRA, the pre-
sented framework applies for any* definition of length [( - ) that
obeys the vector norm criteria: 1) [(p) > 0 for all nonzero vec-
tors p and I(p) = 0 only if = 0 and 2) for all vectors, 7
and 4 holds the triangle inequality I(§ + @) < I(p) + (@). If
p'and @ are nonnegative vectors (i.e., all vector components are
nonnegative), we have [(p'+ @) > [(p) because the length of
a nonnegative vector cannot decrease if a nonnegative vector is
added.

V. k-SHORTEST PATH ALGORITHM

The k-shortest path algorithm (Chong ef al., [7]) is similar
to Dijkstra’s algorithm. Instead of storing at each intermediate
node only the previous hop and the length of the shortest path
from the source to that intermediate node, we can store the

4Some example length functions are presented in [25].
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Fig. 4. Dominated paths. In (a), P, dominates P, but in (b), neither P; nor
P, is dominant. The shortest path is encircled.

shortest, the second shortest, the third shortest, etc., up to the
k-shortest path together with the corresponding length. It is
possible to store less than & paths at a node, but not more. In
the case that the value of k is not restricted, the k-shortest path
algorithm returns all possible paths ordered in length between
source and destination. The value of k£ can be limited as in
SAMCRA’s companion TAMCRA [10]. In that case, there is
always a possibility that the end-to-end shortest path cannot
be found. SAMCRA chooses “self-adaptively” the required
value of k, at each node n of the graph GG, which contrasts
with the k-shortest path algorithm and TAMCRA where at
each node n, the same value of k is allocated and, hence,
the same storage in the queue of paths per node. We define
ksamcra = maxneig(kn) as a measure for SAMCRA’s
complexity.

The fact that k,, is not restricted in SAMCRA, implying that
all possible paths between source and destination may need to
be computed, gives rise to the alluded NP-complete character
of the MCP problem. In [42], we have shown that the number
of all possible paths between source and destination is less than
or equal to |e(N — 2)!|, where e ~ 2.718. This bound is pre-
cisely attained in the complete graph. It scales in the number of
nodes N in a nonpolynomial fashion. Thus, the maximum value
kmax < |e(N — 2)!] for any graph. Bounds for the minimum
value ki, needed to find the exact path are difficult to obtain in
general. Observe that ksanicra > Kmin and that only an overall
optimal exact algorithm operates with k.

VI. DOMINATED PATHS

The third idea, essentially a state space reduction technique
that dramatically can increase the computational efficiency, is
the concept of dominated paths. “Path dominance” can be re-
garded as a multidimensional relaxation. Relaxation is a key
property of single parameter shortest path algorithms (such as
Dijkstra and Bellman—Ford) as explained by Cormen et al. [8].

A. Definition of Nondominance

Confining to m = 2 dimensions, we consider two paths
P; and P> from a source to some intermediate node, each
with path weight vector (w1(Py), w2(P1)) = (x1,y1), and
(w1 (P2),wa(P2)) = (w2,y2), respectively. Fig. 4 represents
two possible scenarios for these two paths.

In Fig. 4(a), P is shorter than P, and w;(Py) < w;(Py) for
all 1 < ¢ < m components. In that case, any path from the
source to the final destination node that uses P; will be shorter
than any other path from this source to that destination that
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Fig. 5. (a) Only two partial paths should be maintained in parallel. (b) Any

path dominated by all should be discarded. The X refers to dominated paths.

makes use of Ps. Indeed, if, for all 4, w;(P1) < w;(P2), then
w;(P1) + u; < w;(Pa) + w; for any u,. For all definitions of
length [( - ) satisfying the vector norm criteria [such as (5)] then
holds I(w(Py) + @) < l[(W(P») + @) for any vector @. Hence,
we certainly know that P, will never be a subpath of a shortest
path, and, therefore, P> should not be stored in the queue. Using
the terminology of Henig [17], P is said to be dominated by P;
if for all 4, w;(P1) < w;(Ps).

In Fig. 4(b), both paths have crossing abscissa and or-
dinate points: w;(P1) < w;(P) for some indices 4, but
w;(P1) > w;(P,) for at least one index j. In such scenarios,
the shortest path [P, in Fig. 4(b) with definition (5)] between
the source and some intermediate node is not necessarily part
of the shortest path from source to destination. This is demon-
strated in Fig. 4(b) by adding the path vector (x3,ys) which
completes the path toward the destination. It illustrates that
P> (and not the shortest subpath F;) lies on that shortest path.
Hence, if two subpaths have crossing abscissa-ordinate values,
all m components of both paths must be stored in the queue.
Alternatively, two paths are nondominant if W(P;) — @W(P2)
is not a suitable link weight vector (or path vector) because at
least one of its components is negative or zero.

In summary, a path P is called nondominated if there> does
not exist a path P’ for which w; (P’) < w;(P) for all link weight
components 4, except for at least one j for which w;(P") <
w; (P ) .

B. Attainable Bound for ki ax

The worst-case amount of simultaneously stored paths is de-
termined by the granularity of the constraints. In reality, most
protocols will only allocate a fixed, positive number of bits per
metric. In that case, the constraints L; can be expressed as an in-
teger number of a basic metric unit. For example, the delay com-
ponent can be expressed in units of milliseconds. The worst-case
number of partial paths that have to be maintained in parallel in
each node is min(L4, Lo) as shown in Fig. 5.

Since the concept of path dominance reduces the m-dimen-
sional solution state space, the worst-case number of partial
paths is

H:l1 Li

?
maxi<i<m Li

le(N —2)!] 6)

kmax = min

SIf there are two or more different paths between the same pair of nodes that
have an identical weight vector, only one of these paths suffices. In the sequel,
we will, therefore, assume one path out of the set of equal weight vector paths
as being nondominated and regard the others as dominated paths.

A w,P)

by() t—z

b,(n)

L,

wiP)) “//N

Wo(Py)

|

»

w,(P)

w,(Py) wi(P) L,

Fig. 6. Look-ahead constraints check in two dimensions m = 2: the addition
of the intermediate paths link weight vector @(7) and the lowest possible

remaining link weight vector b(n) must lie within the constrained region.

where the second argument of the min-operator denotes the
maximum number of paths that exists between two nodes in any
graph (see [42]). The second bound applies in the case that the
granularity is infinitely small or, equivalently, for real values of
w;. In [41], the following theorem and corollary are proved.

Theorem 3: 1If all weight components have a finite granu-
larity, the number of nondominated paths within the constraints
cannot exceed ([}~ L;)/(maxi<i<m L;).

Corollary 4: The first bound ([]\"; L;)/(maxi<i<m, L;) in
(6) on the number of nondominated paths within the constraints
can be attained.

VII. LOOK-AHEAD

Our first version of SAMCRA [39] operated without the look-
ahead concept [30], [22]. In this paper, we will show that the
inclusion of look-ahead significantly improves the performance
of SAMCRA.

A. Look-Ahead Concept

Besides path dominance, the look-ahead concept can be
viewed as an additional® mechanism to reduce the search space
of possible paths. The idea, first introduced in the field of
Artificial Intelligence by Lin [29] and Newell and Ernst [32], is
to further limit the set of possible paths by using information
of the remaining subpath toward the destination. In the course
of the execution, SAMCRA version 1 only used past and
next neighbor information. The look-ahead concept proposes
to compute the shortest path tree rooted at the destination to
each node n in the graph G for each of the m link weights
separately (Fig. 6). Hence, for each link weight component
1 < 1 < m, the lowest value from the destination to a node
n € N is stored in the queue of that node 7. In total, Dijkstra’s
shortest path algorithm is executed m times resulting in NV — 1
vectors with shortest values for each link weight component
from a node n to the destination B. The basic importance of
look-ahead is to provide each node n with an exact, attainable
lower bound of w;(P,—p) for each individual link weight
component i. We denote by P;_, 5.; the shortest path in the link
weight component ¢ from node n to the destination B. Since
Dijkstra’s shortest path algorithm is run m times for each link
weight separately, the shortest path P* is likely different

n—B;i
from P;_, . ; for different link weight components ¢ # j. For

There may exist more search-space reduction methods. The use or even ex-
istence of other search-space reduction methods may rely on the specifics of the
topology and link weight structure.
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example, in the topology of Fig. 7, the shortest path from 1
to Bis P/ .5y = 1 — 3 — B for link weight component
land P 5, =1— A — 2 — 3 — B for component 2.

—

Let us denote the vector with these lower bounds by b(n) with
b,(TL) = wi(P;—vB;i)'

We will now demonstrate why these exact, attainable lower
bounds b, (n) are so useful. First, at any intermediate node n and
for each suitable path P4_.,,, the inequality

Wi(Pasn) +bi(n) <L; 1<i<m @)
should be satisfied for all constraints. Indeed, if the sum of the
link weight component of a subpath P4_,,, from the source
A to the intermediate node n and the lowest possible value
bi(n) = w;i(P;_, p.;) of the shortest remaining subpath P;__ 5 ;
from that intermediate node n to the destination B exceeds the
constraint L;, then subpath P4_,,, can never be complemented
with a path P,,_, p to satisfy the constraint L;. Hence, the sub-
path P4_,, that violated one of the inequalities in (7) should
not be considered further as a possible candidate of the multi-
constrained routing problem. The check of compliance to the
inequalities (7) can reduce the number of paths in the search
space of possible paths.

A second improvement is an update of maxlength in
SAMCRA’s metacode (see Section IX) based on the knowledge
of the m shortest paths Pj_, 4, computed with Dijkstra. If
the length I(P5_, 4;) = I(Pi_p;) < 1, this means that the
inverse path Pj_,p.; that minimizes the sum of the ith link
weight component possesses an m-dimensional length smaller
than 1, and, thus, that it meets all the constraints. This implies
that there already exists a path from source A to destination B
with length shorter than 1 and that the overall shortest path must
at least be smaller or equal in length than this path P} _ 5 ;.

The third improvement of look-ahead is to store in each queue
(Pa—n +P;{_,B;i) instead of [( P4, ), as previously in the first
version [39]. Thus, the length of the sum of the vector W(P4—_.,,)
and the lower bound vector b (n) is the comparison metric stored
in the queue at each node. This change favors the paths with
lowest “predicted” end-to-end length rather than the path with
the lowest length so far. Observe that, in the end, at the destina-
tion queue, the stored “predicted” lengths are precisely the same
as the actual lengths. The following example illustrates how the
use of “predicted” length can improve the computational effi-
ciency.

B. Example of Look-Ahead

Fig. 7 illustrates the SAMCRA version 1 search method
without look-ahead, while Fig. 8 shows the operations of
SAMCRA version 2 with look-ahead. Each link in the topology
has two measures and the constraints vector is L = (10,10).
In Fig. 7, SAMCRAUVI1 searches the shortest path starting from
the neighbors of the source node (step 1). The two new lengths
of the subpaths will be stored in the queue of the nodes 1 and
2, respectively. The next subpath to be extracted is the one
with lowest length. Thus, the subpath in the queue of node 1 is
extracted and its neighbors are scanned. The new subpath with
length 0.8 is stored in node 3 (step 2). The next shortest subpath
with length 0.3 is extracted and after scanning the neighbors
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Fig. 7.

Original operation of SAMCRA without look-ahead improvement.

Fig. 8. SAMCRA with look-ahead. The two lower bound values
(b1(n), bz(n)) are displayed at the right of the node in rectangular.

(step 3), a new subpath is stored in node 3 with length 0.4. This
is also the shortest subpath and it is consequently extracted
from the queue of node 3. Finally, the destination node B is
reached with the shortest length path (0.7) and SAMCRAv1
stops. The shortest path A-2-3-B with length 0.7 is found. Note
that node 3 has stored 2 subpaths in order to find the shortest
path.

In Fig. 8, first the Dijkstra algorithm for each measure has
been executed from destination node B to all the nodes. The
lower bounds obtained are drawn in a rectangular box at the right
of the node number. Similarly, as in the SAMCRAv1 operation,
the search starts from the source node A to its neighbors. Two
new subpaths are found, but this time the “predicted” length
is stored instead of the real length. Hence, for node 1, a new
subpath with length 0.8 is stored and for node 2 one with 0.7
(step 1). The next subpath to be extracted is from node 2 and
colored in grey (step 2). It has one neighbor in node 3. The
predicted length 0.7 is stored in the queue of node 3. This is
still the shortest length and, hence, also extracted from node 3.
Finally, the destination is reached from node 3 with a shortest
length of 0.7. As shown, the shortest path A-2-3-B is also found
but with less effort. With look-ahead, node 3 only needs to store
one subpath.

C. Complexity of Look-Ahead

The additional complexity of the three look-ahead im-
provements is the sum of 1) m times Dijkstra’s complexity
O(mN log N + mFE) and 2) m times the computation of the
length of a path, which is at most O(m?2N'). Hence, only for a
sufficiently large number of nodes N, the look-ahead concept
is expected to improve the performance, mainly by limiting the
search space of possible paths. Just this search space of possible
paths can grow as a factorial, i.e., O((IV — 2)!) for large N,
which suggests that the improvements will pay off the small
increase in complexity. A detailed analysis in Section VII-E
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shows that the incorporation of the three look-ahead improve-
ments leads to a gain in large networks.

D. Additional Features of Look-Ahead

Instead of employing Dijkstra’s shortest path algorithm per
individual link weight component, other multiple parameter
routing algorithms (e.g., TAMCRA with small k or Jaffe’s
linear length algorithm) can be used to determine end-to-end
predictions. In that case, a reverse shortest path tree rooted at
the destination B is computed and each node n in the graph
only receives one path length {(Pg_,,) corresponding to the
length used in the multiple parameter routing algorithm.

For any nonlinear length holds that [(P4_.p) <
l(Pa—y)+1(P,—p). For length (5), the constraints require that
l(Pa—p) < 1such that the look-ahead tests (7) can be replaced
by the possibly too stringent test {(Pa—,) < 1 — [(P,—pB).
In the case that TAMCRA is used with small (restricted) k,
even the lengths /(Pp_,,) cannot be guaranteed to be the
smallest possible. Hence, SAMCRA equipped with TAMCRA
as look-ahead cannot be guaranteed to be exact for the MCOP;
it is only exact for the less restrictive MCP [28]. However, since
nonlinear length algorithms are likely to outperform linear
length algorithms, TAMCRA may lead SAMCRA’s search
sooner into the correct direction.

In the case of a linear length, as in Jaffe’s algorithm with
length (3), the lengths I(Pp_,,,) = [(P}_, 5) are shortest, and,
hence, they can serve as single lower bounds b(n). Clearly, the
advantage of a routing algorithm with a linear length is that an
attainable lower bound can be obtained.

E. Performance Increase With Look-Ahead
To assess the performance increase with look-ahead, we de-
fine two efficiency measures

Elksamcravi] — Elksamcravz]
ElksamcrAwvi]

m =

and
max[ksaMcRAv»1] — Max[ksAMCRAv2]

772 max[ksaMCRAw1]
where ksamcra = maxgeg(k,) refers to the maximum
number of paths stored in a node n of the graph G. The ex-
pectation and maximum operator is over all graphs of a certain
class. SAMCRAVI1 refers to the first version of SAMCRA and
SAMCRAV2 refers to SAMCRA with look-ahead (see Section
IX). Many simulations on the class G,(N) of random graphs’
have indicated that the class of random graphs is not a “hard”
topology class. Therefore, we have confined the simulations
to the much “harder” two-dimensional (2-D) lattice with uni-
formly distributed link weights € [0,1). One of the measures
for the “computational hardness” of a class of topologies is
the average hopcount of an arbitrary path in that topology. For
uniform link weights, the average hopcount in a random graph
scales as O(log N), while it scales as O(v/N) in a 2-D lattice.
Each simulation run consisted of creating 10* square lattices
with side [v/N]. The source was chosen in the upper left corner

7A random graph [3] of the class G, (V) consists of N nodes and the prob-
ability of being a link between a pair of different nodes is p.
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Fig. 10. 7 as a function of N, when m = 2 and the constraints are strict.

and the destination in the lower right corner to ascertain a large
hopcount. We have simulated with two sets of constraints,
named loose and strict. The loose constraints were generated
by computing the Dijkstra shortest paths for each of the m
measures. For all constraints, L; is set to the maximum 7th
component of the m paths, L; = maxi<;j<m(wi(P}_p.;))-
The choice of these loose constraints allows any of the m
Dijkstra paths to obey the constraints. The strict constraints
are chosen, such that there only exists one feasible path in the
graph in which case the MCP equals the MCOP. In total, 10*
values for ksanvcrae1 and for ksanicrar2 were obtained in
each simulation run. The mean and the maximum over these
10# trials have been used to compute the efficiencies 71 and 72,
plotted in Figs. 9-12 as a function of IV and rmn, respectively. All
figures display that » > 0 which implies a gain in efficiency.
The closer 7 is to 1, the higher the efficiency. Hence, all figure
show a substantial increase in efficiency. However, a peculiar
peak appears in Figs. 9 and 10. After this peak, the efficiency
seems to slowly saturate to a fixed gain. This may be attributed
to the choice of length that is stored in the queue, i.e., the
predicted end-to-end length or the real subpath length. If NV
grows, it is more likely that the m shortest Dijkstra paths that
constitute the lower bounds b are different. At the beginning
of the computation, when the predicted end-to-end length is
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almost completely dominated by b, this may lead to scanning
in erroneous directions. As we approach the destination, the
predicted end-to-end length will become more accurate and
hence the look-ahead concept will be more effective. Finally,
when m = 2, the nondominance property is very strong (for
both algorithms) and will reduce much of the search space. The
efficiency gain obtained by look-ahead will therefore be min-
imal. However, when m grows, nondominance becomes weaker
and look-ahead stronger. This property is indeed observed in
Figs. 11 and 12. For independent link weight components and
growing m, the probability that a path violates the constraints
increases as indicated in [39]. The vector b helps to detect such
violations earlier, which improves the efficiency.

VIII. ALTERNATING PATH SEARCH

A potential improvement in computational efficiency stems
from the idea to search for the best path alternatively from the
source A and destination B. We have called that improvement
over Dijkstra’s shortest path algorithm, the alternating Dijkstra
algorithm. It was first proposed by Dantzig [9] in 1960 and the
correct algorithm was provided by Nicholson [33]. The effi-
ciency gain of the alternating Dijkstra shortest path algorithm
can be significant for some class of graphs as presented and ex-
plained in Section VIII-A.
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Fig. 13. Example of a difficult topology for the Dijkstra algorithm.

Fig. 14. Because the number of hops of the shortest (upper) path is unequal,
the middle link is counted twice before a node on this path is extracted twice. The
end-to-end length of the upper path (I(P) = 4) is discovered before the node
on the lower path is extracted twice. The length of the lower path (I(P) = 4.5)
is larger than the length of the upper path and this lower path should therefore
not be returned.

The concept of alternating path search originated after ob-
serving that the Dijkstra algorithm examines a number of “un-
necessary” nodes. Especially when the shortest (sub)path grows
toward the destination, it can make an increasingly number of
unnecessary scans. To reduce the number of unnecessary scans,
it is better to start scanning from the source node A as well as
from the destination node B. Fig. 13 presents a graph, which
was deemed a difficult topology in [5], because the Dijkstra al-
gorithm needs to evaluate all nodes before reaching the desti-
nation. This situation is circumvented if we alternate between
scanning from the source node and scanning from the destina-
tion node?®. In that case, a large part of the topology will not be
scanned, clearly resulting in a higher efficiency.

Alternating between two directions and meeting in the middle
is not enough to always find the shortest path, as illustrated in
Fig. 14. We also need to keep track of the minimum shortest
path length found so far. Since we execute the Dijkstra algo-
rithm from two sides, we need two queues ) 4 and )p. The
alternating Dijkstra algorithm extracts a node u by alternating
between () 4 and Q. If a node u has been extracted from @) 4
and from ) g and if the end-to-end path length is smaller than or
equal to the shortest discovered (but not extracted) shortest path
so far, then we have found the shortest path by concatenating
the two subpaths from A to w and u to B.

A. In One Dimension m = 1

In this section, we compare the expected efficiency gain of
alternating Dijkstra versus the classical Dijkstra algorithm. Our

81n the case of a directed graph, the scan procedure from destination B toward
A should proceed in the reversed direction of the links.
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EXN as a function of N for the class random graphs and the 2-D

performance measure is based on the average number of ex-
tracted nodes of both algorithms

L S Matesnaing (1)
EXN = — Z Zalternating %)
r nDijkstra('L)

i=1
where T’ refers to the total number of examined topologies in
a particular class of graphs and naisernating (¢) and npjjkstra(¢)
refers to the number of extracted nodes by alternating Dijkstra
and the classical Dijkstra algorithm, respectively. We have con-
sidered the same two classes of graphs as in Section VII-E pos-
sessing a different law for the hopcount, namely the random
graph G o(N) and the regular 2-D lattice.

For the link weights, we used uniformly distributed random
variables in the range [0, 1). In each class of graphs, we have gen-
erated a connected graph, calculated the shortest path between
two randomly chosen (different) nodes with both algorithms and
stored the number of extracted nodes. This procedure was re-
peated 7' = 10* times. The results for both classes of graphs,
for different sizes of IV, are plotted in Fig. 15.

Fig. 15 shows that for very small graphs (i.e., N < 25) the
classical Dijkstra algorithm is more efficient than the alternating
Dijkstra algorithm. However, for larger graphs, the alternating
Dijkstra algorithm displays a higher efficiency. For uniform link
weights, this efficiency gain is smallest for the class of 2-D lat-
tices, where it seems to saturate at 62% of Dijkstra’s extracted
nodes. This gain is already substantial. However, the efficiency
gain in the class of random graphs is much larger and continues
to decrease with N in our simulated range. The reason most
likely lies in the random structure of the graph, which makes it
more probable for the classical Dijkstra algorithm to scan nodes
that are outside of “the scope” of the shortest path.

We present an order estimate for the gain plotted in Fig. 15.
The shortest path tree in the class of random graphs G, () with
independent exponential or uniformly distributed link weights
is a uniform recursive tree (URT) [43]. An URT grows by at-
taching a new node uniformly to any of the already existent
nodes in the URT. In the alternating Dijkstra algorithm, two sep-
arate URTs are grown, URT 4 and URT g rooted at source A
and destination B, respectively. The scanning processes create

3 4
3 1
4 1
1 5

Fig. 16. Example of bidirectional search in multiple dimensions.

two URTs of about equal size. Let v denote the typical size of
the URTs when they meet (along the shortest path from A to
B). When the two URTs meet, any node in URT 4 can be po-
tentially attached to any node in URT g, corresponding roughly
to v? possibilities. This implies that both URTs are connected
if the number of interconnection possibilities includes about all
nodes, hence v = O(N), from which v = O(v/N). This es-
timate explains that the performance measure EXN decreases
roughly as O(N~%%), where simulations (up to N = 8000)
give EXN = O(N~0-45),

The argument why EXN — 0.6 in the 2-D lattice is as fol-
lows. Since the link weights are uniformly distributed, we may
expect that the shortest path tree grows as an isotropic diffu-
sion process with radius r around A and B, respectively. The
number of nodes in each circle is about ar2, where « is a con-
stant. When these two circles touch each other, the shortest path
is found, which happens if 27 is about the distance R between
A and B. In the case of the classical Dijkstra algorithm, only
the circle from A finds the shortest path if node B is enclosed,
which needs about «R? nodes to be discovered. Hence, in the
alternating shortest path algorithm, about 22 nodes need to be
discovered, while « R = 4ar? in the classical Dijkstra process,
which leads to a gain factor of 0.5. The actually simulated value
is somewhat less, a gain of about 0.4, which is mainly due to ne-
glecting the effect of the finite boundaries in the square lattice.
In summary, by taking into account the underlying graph struc-
ture, it is possible to estimate roughly the performance measure
EXN or efficiency gain of the alternating Dijkstra over classical
Dijkstra algorithm.

B. Extension to Multiple Dimensions m > 1

Extending the alternating search as described in the previous
section from m = 1 dimension to m > 1 dimensions is not a
trivial task. The complicating factor is the nonlinear length (5),
which causes that subsections of shortest paths in m > 1 di-
mensions are not necessarily shortest paths themselves. If two
shortest paths (one originating in source node A and the other
at destination node B) in /. > 1 dimensions meet at an inter-
mediate node, the resulting complete path is not necessarily the
shortest path from A to B. We must keep track of the shortest
length of the complete paths found so far. Even if a new com-
plete path exceeds the length of a previously found complete
path, that new path cannot be discarded as illustrated in Fig. 16.
In this figure, the links represent paths, with their corresponding
path weight vector. The arrows indicate the order of arrival of
these subpaths at node ¢. Once the first two subpaths have arrived
at node ¢, we have our first complete path with weight vector
(7, 4). If the constraints are (10, 10), then the length of this path
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INITIALIZE(G,m, A, B)

1 foreachv € N

2 counter[v] < 0

3 maxlength «— 1.0

4 fori=1,..m

5 DUKSTRA(G, 4, B,i) — bi(n), Pi_ p.;
6  ifl(P;_ p,;) < maxlength
7 maxlength — I(P}_ p.;)

8 queue @ «— 0

9 counter[A] < counter[A] +1

1

0 INSERT(Q, A, counter[ A], NIL, [(b(A)))

Fig. 17. Meta-code initialization phase.

equals 0.7. Once the third path arrives at node ¢, it makes a com-
plete path with the second path, with total length 0.8. However,
we cannot remove this subpath, because combined with path 4, it
forms the shortest path with link weight vector (5, 6) with length
0.6. This example also illustrates that we will have to connect at
some intermediate node with multiple paths.

These problems in multiple dimensions complicate to decide
and to predict when the true shortest path has been found. In
other words, a stop criterion for SAMCRA is absent. Using
this alternating search, SAMCRA can only be exact if we con-
tinue the search for paths until the queue is empty. The alter-
nating search in m > 1 dimensions has more potential for the
MCP problem, where the routing algorithm can stop as soon
as one complete path obeys the constraints or for QoS algo-
rithms that use a linear length function. In [28], we have pro-
posed HAMCRA, a bidirectional variant of SAMCRA which
solves the MCP problem exact.

IX. SAMCRA ALGORITHM

In the previous section, we have listed the four concepts for
an exact and efficient QoS routing algorithm. The first three
concepts are present in SAMCRA version 1, whereas the fourth
look-ahead concept was missing. Instead of proposing a new
MCP algorithm, we present a second version of SAMCRA
that uses this look-ahead principle. We will preserve the name
SAMCRA for this algorithm. In the meta-code, some functions
(INSERT, EXTRACT-MIN, and DECREASE-KEY) are borrowed
from Cormen et al. [8].

A. Meta-Code

The subroutine INITIALIZE (see Fig. 17) initializes the neces-
sary parameters for the main algorithm and computes the look-
ahead information. Lines 1 and 2 set the number of stored paths
(counter) at each node to zero. Maxlength refers to the max-
imum length that a (sub)path may have. Paths with length >
maxlength can be discarded, because they either violate the
constraints or are larger than an already found end-to-end path.
Maxlength is set to 1.0 in line 3, corresponding to the constraint
values. The look-ahead lower bounds b are calculated in line 5
with the function DUKSTRA(G, A, B, ). This function finds for
each individual QoS measure ¢ the lower bounds b;(n) from any
node n € N to the destination node B. An efficient way is to
compute, for each measure 7, a shortest path tree with the Dijk-
stra algorithm from the destination B to all other nodes. More-
over, for each measure 7, we store the shortest paths from A to B.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 12, NO. 5, OCTOBER 2004

FEASIBILITY(G, u, 7, v,counter,d, w,maxlength)
1 dominated < 0
2 for j = 1, ...,counter[v]
3 if((dluil] + @ — ) - dilj]) < 0
OR I(d[v[4]]) > maxlength
v[j] «— BLACK

4

5 else if(cf[v[j]] - (([[u[z]] + W(u — 7;)) < ()i)
6 dominated «— 1

7 return dominated

Fig. 18. Meta-code feasibility.

UPDATEQUEUE(Q, u, i, v, j, d, w, 7, counter[v],
predicted length)
1 forj = 1,....counter[v]
2 if(v]j] = BLACK AND
1 (d[u )] + b’[wJ) > predicted_length)

3 DECREASE-KEY(Q, v, j,predicted length)
4 dlv[f]] < dluli] + @(u — v)

5 mold]] < wuli]

6 stop

7 counter[v] < counter[v] +1
8 INSERT(Q, v,counter[v], predicted length)

9 dlv[counter[v]]] — (cf[u[zﬂ + W(u — v))
10 w[v[counter|v]]] « wli]

Fig. 19. Meta-code updatequeue.

For each of these m shortest paths, line 6 computes the length
(5) and checks whether one of them has a lower length than
maxlength. If this happens, in line 7, maxlength is updated
with the new lower value, because if we already have a path with
length <1.0, it is pointless to evaluate paths with larger length.
SAMCRA starts with the source node A, which is inserted into
the queue (line 10).

The subroutine FEASIBILITY (see Fig. 18) checks whether
paths dominate each other or violate the maxlength value. A
(sub)path w][7] refers to the ith path that is stored at node . The
vector d(uli]) represents a subpath weight vector @(P4_.,).
FEASIBILITY extends the sth path at node u toward the neigh-
boring node v, where counter|v] nodes are already stored. The
weight vector of this extended path equals d[u[i] + @W(u —
v). For each of the counter|v] subpaths v[j] stored at node v
(lines 2-3), the path weight vector d[v[j]] is subtracted from
d[u[i]] + W(u — v) to verify whether the resulting vector is
a suitable link weight vector. If all components of the difference
vector are nonpositive, then the subpath v[j] is dominated by the
extended path (see Section VI). Line 3 also checks whether the
subpath v[j] violates the maxlength value. If the subpath v[j]
is either dominated or exceeds maxlength, it need not be con-
sidered anymore and is marked black in line 4. A path marked
black has become obsolete and may be replaced by a new path.
Line 5 checks whether the extended path itself is dominated by
a subpath v[j]. If so, it is labeled “dominated.” Our final subrou-
tine is called UPDATEQUEUE (see Fig. 19).

UPDATEQUEUE has the task of updating the queue () with
a new path, namely the extended path from w[i] to node
v. Lines 1-2 check if any black paths exist with larger
predicted_length than the new extended path. If so, it replaces
the black path v[j] with the extended path in lines 3-5. Line
3 decreases the predicted_length of subpath v[j] with the
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SAMCRA(G, m, A, B, L)
1 INITIALIZE(G, m, A, B) — b
2 while(Q # 0)
3 EXTRACT-MIN(Q)) — u[i]
4 uli] < GREY
5 if(u = B)
6  STOP — return path
7 else
8  for each v € Adj[u]\{m[u[i]], A}
9 FEASIBILITY(G, u, i, v, counter, d, w, maxlength)
— dominated
10 predicted length « { ((f[u[z}] + W(u — v) + I;[v])
11 if (predicted_length < maxlength
AND dominated # 1)

12 UPDATEQUEUE(Q, u, 1, v, j, d, w, 7, counter{v],
predicted_length)
13 if (v = B AND
predicted_length < maxlength)
14 maxlength « predicted length

Fig. 20. Meta-code SAMCRA.

smaller predicted_length from the extended path and updates
the path weight vector (line 4) and predecessor list (line 5).
If the queue () is updated through decrease_key in lines 3-5,
the subroutine UPDATEQUEUE stops in line 6 and returns to the
main algorithm. However, if lines 1-6 fail and no black paths
can be replaced, then the extended path is inserted in the queue
(lines 7-10). The real length of this subpath is not stored, but
its predicted_length.

The main algorithm (see Fig. 20) starts with the execution of
the subroutine INITIALIZE (line 1). Provided the queue @ is not
empty (otherwise no feasible path is present), the extract_min
function in line 3 selects the minimum path length in the queue
@ and returns wu[7], the ith path P4_,, stored in the queue at
node u. With these numbers and the predecessor list 7, the entire
path can be reconstructed via backtracing. The extracted path is
marked grey in line 4. If the node u, corresponding to the ex-
tracted path wu[é], equals the destination B, the shortest path sat-
isfying the constraints is returned. If © # B, the scanning pro-
cedure is initiated in line 8. Line 8 describes how the th path up
to node u is extended toward its neighboring node v, except for
the previous node where it came from. The previous node on the
path w[7] is stored in the predecessor list 7. Returning to this pre-
vious node induces a loop, which must be avoided. Since the link
weights are nonnegative, paths that have a loop are always dom-
inated by paths without loops. This property relieves us from the
time-consuming task of storing/backtracing the entire path w[]
to avoid loops. Line 9 invokes the FEASIBILITY subroutine to
check whether all stored paths at node v are nondominated and
obey maxlength. FEASIBILITY also checks whether the new ex-
tended path is not dominated by previously stored paths at node
v. In line 10, the length of the predicted end-to-end path weight
vector (composed of the real subpath weight vector from A to
v plus the lower bound vector from v to d) is calculated. Line
11 tests if the new extended path is nondominated and has a
predicted_length < maxlength. If this is the case, it can be
stored and the queue must be updated (line 12). Removing paths
for which predicted_length > maxlength is the search-space
reduction of the look-ahead concept. Finally, maxlength can be
updated in lines 13-14.

B. Complexity of SAMCRA

The calculation of the worst-case complexity of SAMCRA as
presented above will be computed. First, the worst-case com-
plexity of the subroutines is determined, after which we will
compute the total worst-case complexity of SAMCRA.

The initialization phase has a polynomial-time complexity.
Initializing counter takes mnO(N) times, executing heap-opti-
mized Dijkstra (lines 4-5) leads to mO(N log N + E) and m
times computing a length of a path (line 6) leads to mO(mN).
The other operations take O(1), leading to a total worst-case
complexity of O(N + mNlogN + mE + m?N + 1) =
O(mN log N + mE + m?N).

The complexity of the FEASIBILITY subroutine depends on the
calculation of length and verification of dominance. Calculating
the length (5) of a weight vector takes O(m) while verifying
path dominance between two paths takes O(m) at most. Since
there can be at most k., paths at a node, the FEASIBILITY sub-
routine takes at most O(kyaxm).

The complexity of the subroutine UPDATEQUEUE depends on
the specifics of the heap structure (e.g., Fibonacci or relaxed
heaps). Lines 1 and 2 take at most O(ky,.xm). The heap func-
tions DECREASE-KEY (line 3) and INSERT (line 8) can be per-
formed in O(1). Updating d (lines 4 and 9) takes at most O(m).

The total worst-case complexity of UPDATEQUEUE leads to
O(kmaxm). The total worst-case complexity of SAMCRA
is constructed as follows. The initialization phase adds
O(mN log N +mE + m?2N). The queue () can never contain
more than ky.x/N path lengths. When using a Fibonacci or
relaxed heap to structure the queue, selecting the minimum
path length among k.. N different path lengths takes at most
a calculation time of the order of O(log(kmaxV)) [8]. As each
node can be selected at most k,,,x times from the queue, the
extract_min function in line 3 takes O(kmaxN log(kmaxN))
at most. Returning a path in line 6 takes at most O(N). The
for-loop starting on line 8 is invoked at most k.5 times from
each side of each link in the graph, leading to O(kmaxF).
FEASIBILITY takes O(kpaxm). Calculating the length in line
10 takes O(m) and updating the queue takes O(kmaxm).
Combining all those contributions yields a total worst-case
complexity of SAMCRA of O(mN log N + mE + m*>N +
N + kmax N 10g(kmax N) + k2, .mE) or

max

Csamcra = O (kmaxN log(kN) + k2. mE)  (8)

max

where m is fixed. When the link weights are real numbers, the
granularity is infinitely small implying that the first argument in
(6) is infinite and, hence, kpax = O(N!) = O(exp(N lu N)).
In this case, the QoS routing problem is NP-complete. But,
as argued before, in practice, these measures will have finite
granularity such that the link weights w; are integers (in units
specified by the QoS qualifier), hence ky,.x is limited by the
first, finite argument in (6), which does not depend on the size
of the topology. This means that, for a fixed number of con-
straints m and finite granularity in the constraints, SAMCRA
has a pseudo-polynomial-time complexity [11].

For a single constraint (m = 1 and ky.x = 1), SAMCRA’s
complexity reduces to the complexity of the Dijkstra algorithm
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Example of the operation of SAMCRA (initialization).

Fig. 21.

Chijkstra = O(IV log N + E). By restricting k at the expense of
possibly loosing exactness, an optimized version of TAMCRA
is obtained. It is also possible to stop SAMCRA, when a feasible
path (not necessarily shortest) is found, which significantly re-
duces the execution time especially for loose constraints. In par-
ticular, for the MCP problem, this option is recommended.

X. EXAMPLE OF THE OPERATION OF SAMCRA

Consider the topology drawn in the top of Fig. 21. We are
asked to find a path from the source node A to the destination
node B subject to the constraints vector L = (10, 10).

SAMCRA returns the shortest path satisfying the L-vector
in seven steps (including initialization). Whenever a path is ex-
tracted from the queue (line 3 of the meta-code), the corre-
sponding box is colored in grey. The arrows refer to lines 8—12.
The algorithm stops when the first entry of the destination node
B is extracted from the queue.

In step Init of Fig. 21, the initialization phase of SAMCRA is
displayed. The lower bound vectors g(n) are displayed in boxes
besides the nodes. The initialization phase also examines the
two shortest Dijkstra paths P} _, ., and P} _, ., from A to B,
where P} 5., = ACEFB with (P} _p,) = (4,12) and
where P} _ g, = ADEB with w(P}_, 5.,) = (8,4). The path
P} _, p.o lies within the constraints, w;(P}_, 5.,) < L; fori =
1,2,and P} _ 5, haslength [(P}_ 5,) = 0.8 which is smaller
than the initialized maxlength=1, and, therefore, maxlength is
lowered® to 0.8.

The main algorithm starts in step 1 of Fig. 22 by scanning
the neighbors of node A. In step 2, the path with the min-
imum predicted end-to-end length, which corresponds to node

3

E in Fig. 22 with {(@(Pag) + b(E)) = 0.5, is extracted

9If only a solution to the MCP problem is required, the algorithm can be
stopped since a feasible path from A to B has been found.
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Example of the operation of SAMCRA (step 1 and 2).

Fig. 22.

from the queue and the scanning procedure from FE is in-
voked. The path Pygp with W(Pagp) = (4,4) is not stored
because it is dominated by the previously stored path Psp
stored at node D. The same holds for the path toward node
C, Pygc. Besides being dominated by the previously stored
path Pac, its length {(W(Pagc)) also exceeds maxlength.
The paths toward nodes B and F' are stored and maxlength
is updated with the length of the end-to-end path Psgp.
In step 3, shown in Fig. 23, the scanning procedure from
node D is invoked. In step 4, two subpaths at node F' are
stored: PAEF_'with W(Pagr) = (4,5) and predicted length
l(?l_;(PAEF)+b(F)) = 0.7 and PApgr Withu_;(PADEF) = (5/4)
and predicted length [(#( Papgr) + b(F)) = 0.6. In step 5, in
Fig. 24, a new end-to-end path Pspgrp is found with predicted
length 0.6. Maxlength is, therefore, set to 0.6. Note that this
predicted length equals the real length, because we have a
complete path from A to B. In this next and final step, we
extract the destination node B. This implies that the shortest
path minimizing the length (5) and within the constraints
has been found. By using the predecessor list 7, this shortest
path Papgrp is reconstructed in the reverse direction (as in
Dijkstra’s algorithm).

Since the granularity is 1 (the vector components are all inte-
gers), we observe that, although with (6), kpax = 10, ki = 2
suffices for the exact solution because two queue entries are
needed at node F, all the other nodes store less entries. If k
was restricted to 1, no path satisfying the constraints would have
been found. SAMCRA always guarantees that, if there is a com-
pliant path, this path is certainly found.
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Fig. 23. Example of the operation of SAMCRA (step 3 and 4).

@ maxlength = 0.6

Fig. 24. Example of the operation of SAMCRA (step 5 and 6).

XI. CONCLUSION

Four basic concepts for a QoS routing algorithm have been
introduced and explained: the nonlinear length, the need to com-
pute k shortest paths, the principle of path dominance, and the
look-ahead concept. The look-ahead concept is demonstrated
as a valuable improvement to SAMCRA. The look-ahead con-
cept is a nice example that illustrates how basic algorithms like
SAMCRA can evolve over time. There still seems room for im-
provement and it is unclear whether a final version of an algo-
rithm can ever be achieved. Another possible improvement for
MCP is expected when path searching is alternatively performed
at the source and the destination side.

Therefore, as guidelines for future research topics, we be-
lieve there is more value in searching for new ideas that im-
prove exact QoS routing algorithms such as SAMCRA than in
proposing new heuristics. In addition, fine-tuning QoS routing
algorithms for special classes of topologies, for example the
class of power law graphs that contain the Internet, is a second
suggestion. At least, as mentioned in the Introduction, we be-
lieve that pinpointing the classes of graphs for which the QoS
MCOP problem is not NP complete, is important to understand
the specifics that lead to NP completeness and to have hard guar-
antees that applications of the MCOP problem to these graphs
is feasible in practice. In the classes of graphs that lead to NP
completeness, a bound on the parameter & (as in TAMCRA) is
necessary at the expense of possibly losing exactness.
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