
_ ~- ~-..---~.- -._I -- --~-_ -- ~. ~. -

Codesign Of Graphics Hardware Accelerators

Jon P. Ewins, Phil L.Watten, Martin White’, Michael D. J. McNeill, Paul F. Lister

Centre for VLSI and Computer Graphics,
University of Sussex,

England

Abstract

The design of a hardware architecture for a computer graphics
pipeline requires a thorough understanding of the algorithms
involved at each stage, and the implications these algorithms have
on the organisation of the pipeline architecture. The choice of
algorithm, the flow of pixel data through the pipeline, and bit
width precision issues are crucial decisions in the design of new
hardware accelerators. Making these decisions correctly requires
intensive investigation and experimentation. The use of hardware
description languages such as VHDL, allow for sound top down
design methodologies, but their effectiveness in such experimental
work is limited. This paper discusses the use of software tools as
an aid to hardware development and presents applications that
demonstrate the possibilities of this approach and the benefits that
can be attained from an integrated codesign design environment.

CR Categories and Subject Descriptors: D.3.2
[Programming Languages] Language Classifications - Object
Oriented Programming; 1.3.1 [Computer Graphics]: Hardware
Architecture - Graphics Processors; 1.3.3 [Computer Graphics]:
Picture/Image Generation - Display Algorithms.

Additional Key Words and Phrases: 3D graphics, object
oriented programming, codesign, VHDL, C-F+, component and
design reuse

1 INTRODUCTION

The Centre for VLSI and Computer Graphics at Sussex University
is involved in the research of advanced algorithms in computer
grnphics and in their implementation in state of the art ASIC and
PPGA based architectures. The hardware description language
VHDL (Very High Speed Integrated Circuit Hardware
Description Language), is used as the main platforms for this
work. The use of such a language permits the adoption of a ‘Top
Down’ design methodology which allows the designer to focus on
a more nbstract level of functionality[111.

‘iCcntre for VLSI and Computer Graphics,
University of Sussex, Frdmer, Brighton

Bnst Sussex, BNI 9QT. England
wwil: M.WhiteBsussex.ac.uk

Permission to m&c digitnl/hnrd copies of all or part of this mntcrinl for
pcnonpl or clnrsroom nsc is gnntcd without 12~ provided that the topics
nre not mndc or distributed lb prolit or commercial ndwntngc. the copy-
ri@t notice, the title ofthc publication and its date appear. nnd notice is
givcll tllat copyright is by pcrmi~ion of the ACM. Inc. TO copy othcnvisc.
to reput~listl, to post on servers or 10 rcdistributz to lists, r+ircs spccitic
permission nndlor fee

I99 7 SIGGRA PWEwogrophics Workshop
Copyriglll 1997 AChl O-89731-961-0197~~..S3.SO

This means that a design can be planned more quickly and
accurately in it’s entirety. The use of VHDL provides the
hardware designer with other advantages, such as technology
independence, etc. which are beyond the scope of this paper[l,
111.

In this paper we describe techniques in which software languages
such as C-t+ can be used in conjunction tiih VHDL to increase
the level of abstraction possible during the design process, and
improve overall productivity. Much work has been carried out in
the field of hardware/software codesign [2,4,7], but little has been
specific to computer graphics[S]. We expand on the ideas
developed in Galadriel [6]. This paper discusses the use of
software as an essential tool in the design process of algorithms
from a conceptual level through to their architectural
implementation, as well as a tool for general hardware modelling
and development. Specific emphasis is placed on the design and
development of computer graphics related algorithms and the
design of 3D graphics pipelines.

Throughout this paper the term software will be used to refer
specifically to languages such as C++ and in particular Windows
based applications. The term hardware will refer to physical
hardware implementations and hardware description languages
(HDLs) such as VHDL.

The following sections will start with a discussion on the
comparison of the advantages of software applications versus
hardware description languages, and describe how the two can be
integrated together to produce an efficient and productive design
environment. The following sections will then present the
requirements for such an environment in the form of the system
implemented at Sussex.

2 SOFTWARE VERSUS HARDWARE
DESCRIPTION LANGUAGES

Although VHDL allows the designer to operate initially at a more
abstract (behavioural) level before final Register Transfer Level
(RTL) designs are implemented, simulation of models in
behavioural VHDL do incur a relative time penalty when
compared to a corresponding simulation in a software language
such as C-t+, and it’s efficiency in investigative and experimental
work is limited.

Table 1 shows an example of the simulation performance of both
languages. A comparison of both behavioural VHDL and C++
performing identical non-trivial operations was carried out. The
operation performed was the complete setup computation
requirement of triangles for scan conversion with linear edge
functions [8], Gouraud shading, perspectively correct texture
mapping[3] and antialiasing[9]. This involves 64 additions, 64
multiplications and 7 reciprocal operations. The tests were
performed for both one million and ten million triangles using

103

I
* I

I

1

I

/
i

I

1

!
,

, /

,
/

\
I

I

1
I

I

behavioural VHDL written and run from the Model Tech V-
System platform and Microsoft Visual C++ version 4.2. The C++

was compiled and run in both Release and Debug modes and all
three were based on a Pentium Pro 200MHz machine.

1 ,OOO,OOO triangles

10,000,OOO triangles

Behavioural VHDL

135seconds

20 minutes

C++ Debug

25 seconds

250 seconds

C-H Release

14 seconds

140 seconds

Table 1 Performance Comparison of VHDL and C++

The times given here show that the difference in performance of
C++ to behavioural VHDL is in the ratio of S-6:1 for debug mode
C++ and g-10:1 for release mode. It might be argued that during
the development of new algorithms a large proportion of time is
spent in the debug mode. However, during long term simulation
runs a 9-10 times release mode performance improvement is
achieved.

An alternative suggestion for the conceptual level development of
algorithms is the use of interpreted languages such as Microsoft
Visual Basic. These languages have the advantage that alterations
can be made to the code as the program is running. Therefore, as
an error is seen in the graphical output of say a new scan
conversion algorithm, the code can be altered before the next
pixel is drawn.

As well as such quantitative performance issues, there are more
qualitative issues that should be considered. The use of software
languages and their advanced development platforms provide
other benefits. The advanced debugging environments of these
languages can greatly improve the productivity of designing and
developing algorithms at a conceptual level. Also, we have
produced VRML parsers and Cu. ‘plug-ins’ for commercial
modelling software packages, such as Kinetix 3D Studio Max,
that provide an abundant model database supply and the
simplified production of full multi-frame complex animations.
Databases of any form can be created with ease to model any area
of investigation that is required.

It is also possible for the software lo be augmented to product
statistical evaluations of the algorithms under dcvclopmcnt
Multithreaded run-time performance monitoring is one such
possibility. Through accurate modelling of hardware number
representation and bit width precision, the software allows rapid
experimentation with immediate visual results, The graphical
interfaces of Windows based applications can allow the user to
make run-time alterations to the data path bit widths as well as to
alter modes of operation and algorithm selection. The Algorithm
Prototyping Environment presented here is an example of an
application developed at Sussex for just such operations.

3 AN INTEGRATED DEVELOPMENT
Of course, VHDL has other important advantages, but at the basic
algorithmic level it is not interactive. The key to design efficiency
is deciding where and when to invoke VHDL and when to use
C++. An algorithm’s functionality during the initial design phase
can be modelled as abstractly as necessary, and it is more
important at this stage to produce results and pictures with ease.
Our software environment can provide abundant data bases and
simplify generation of images, and even complex animations. The
same software can then transform such data into formats for use
by a VHDL testbench.

ENVIRONMENT

As discussed above, a large selection of software tools can be
developed to work alongside VHDL to aid in algorithm research
and hardware design. Figure 1 shows the relationship between the
software and hardware design processes of our integrated
environment.

Integrated
Development
Environment

NCW
Algorithm

‘c: Idea

Database Generation
c p, 3” S,“dlo M;lr. YXML

Software Class Library
Bchnviournl

- 1 A;;z;h; 1 1 AfCo$i~ 1 3 lOOlS
‘.& Algolnhm evsivruo

*n,m.,,oa PIoduEllon

Software Model

Data Flow
Madelling
Framework
(DFMF)

4

GUI

Algorilhm
Prolotyplng c Test Vcclor

Envtmnmcnl Gcnerntion

(APE)
4

VHDL
Inlcraclivc Dcslgn

AldS Hardware. TcstBcnch
Device Drivers ICI

Figure 1: An Integrated Development Environment

104

L _ ._--_ .
,,-‘

i \’ .,_, ~

a: --;~‘-*-- -,T-&: 7..-;-:r.-;F,-.. -- =., - :~-.- :--.- :. ---- -~--,T-.‘y-I;-y~-, -. - ‘-~‘7,~~.T, ~cl~ ,;,” - ,_ . -

- -,.__ :,y. >I(, ,,,, :.:,. --,,- _,.-- - .;.‘,\ . -:-<; “,:, ..-:-,L -.

I

.’ . I.. . _.I,._ :..
-, ,. _, ,1- ’ ^ \

I-,’
. . ,.. (’ *

The Data Flow Modelling Framework and the Algorithm
Prototyping Environment software, form the main structure of the
Software Model. In brief, the Data Flow Modelling Framework is
used to simulate the structure of an architecture. It does this by
allowing the code to be modularised into algorithmic blocks with
the flow of data between these blocks and their organisation being
deIinable by the user.

The Algorithm Prototyping Environment is a particular
implementation of a graphics pipeline based on this framework. It
provides a comprehensive graphical user interface that allows the
designer to open a large selection of databases, make interactive
alterations to algorithm selection and to alter bit width precision
figures and supplies a range of on line design aid tools.

Using this code, at the conceptual level, the Software Model
simulates the behaviour of new algorithms both individually and
as a part of an overall structure, e.g. a rendering pipeline. This
model allows the rapid prototyping of new ideas and structural
organisations. The algorithms can then be progressed further to
allow the testing of performance issues such as fixed and floating
point precision and how they effect the visible results. It is
important that an accurate means of bit width precision modelling
be used.

Finnlised algorithms are added to a C-t-+ class library for reuse as
components in future software simulations of new architectures.
Such software models, if well written and documented, act as
excellent examples of the complexities and subtleties of each
algorithm.

Another important part of the development environment is the use
of good databases, e.g. small and large and varied databases which
test the algorithms sufficiently. As mentioned above, to meet this
requirement we have developed a ‘plug-in’ to 3D Studio Max as
well as VRML parsers. These allow new designs (algorithms and
architectures) to be tested with images and animations selected
from a large range of databases compatible with 3D Studio Max.

As the VHDL architecture is produced, based on the initial
algorithmic decisions reached from the software simulation, the
software model is modified simultaneously to match any
unforeseen changes in the architectural requirements and used to
provide rapid feedback as to the implications of such changes.

During hardware development the software can provide test data
for particular individual parts of the pipeline design. Eventually
the development process will reach a point where the software
plntform is solely a means of supplying services such as database
production, output data interpretation and visualisation and tools
such as image compare operations.

It should be noted that the software model contains a version of
the setup code identical to that to be used with the device drivers.
In this way we can allow the same scene data to produce setup
data for both the software simulation and the physical hardware
itself, The image compare tools then allow comparison of
expected and achieved results.

At the end of the design process the software development will
result in a software based reference model to accompany the
completed hardware design. Such a software based reference
model was recently used by Microsoft, for the Chicken Crossing
demonstration for the Talisman architecture[lO].

3.1 Development Environment Features

1. Algorithm Investigation
Accelerates the implementation of new algorithms
and provides an environment in which to test them
both individually and as part of an entire pipeline
Allows drawing of individual pixels, primitives or
entire scenes selectively
Provides methods of performance monitoring

2. Architectural Modelling
. Change the organisation and order of execution of

the algorithmic blocks to investigate and verify
potential new architectures

. Ability to select between different algorithms

3. Low Level Algorithm Modelling
l Incorporation of accurate bit width precision

operations
l Change rapidly the accuracy and resolution of

algorithms and analyse the effect, e.g. texture
co-ordinate interpolation from floating point to 8.16
fixed point

4. Production of Test Stimuli or Vectors
9 Provision of real world scene data from, for

example, commercial packages such as Kinetix 3D
Studio Max and VRML files

l Rendering of these databases using the software
simulation for comparison purposes

l Production of test stimuli for driving VHDL
hardware modules or setup data for driving the
physical hardware

5. Provision of On line tools for result analysis
l Provision of image analysis tools, e.g. zoom in

functions, image compare etc.

6. Rapid production of real results
l Images and full animations
. Statistical data for algorithmic evaluation

4 DATA FLOW MODELLING
FRAMEWORK

The Dam Flow Modelling Framework (DFMF) forms the
backbone of our hardware modelling environment. It allows the
developer to model the operation of the hardware structure
through modularisation of the code structure into distinctive
process elements. These process elements can simulate the
breakdown of the basic hardware structure and the flow of data
between them to whatever degree is chosen.

This breakdown may range from an early layout of the main
functional algorithmic units of a graphics pipeline, such as scan
conversion to texture read and so on, to a the modelling of the
physical partitioning in a multiple FPGA based architecture, right
down to full register transfer level partitioning. Although, RTL
descriptions are usually done in VHDL.

The diagram in Figure 2 outlines the basic structure of this frame
work and indicates the C-t-t- class structures involved. Here the

105

functional process element examples are based on a projective rendering pipeline.

f Cmmins tmintcrs IO cxh Pnxess

k Pipeline Elemml object cypc - pldymtrrphic

(...... calling implcmen& cxh clcmml in

l Emulation lhc pipeline.

l (SxPipeltneEmutate) Each pass cmulale one lunclional
bltrk ~vclcof thcninelinc.

FunctioN: InitiaUr&ddPE,
DoPmess, Dal;lExchnn~c

elcmmtvialheGl&alDtiClass ApoinIcrlolhisclassis
provided via the cwalmdal umsvU*r where once OTT

initialiition and setup (PRS) dala lmds should kc prfomrd.
c J

is used as D mpmilmy
for all impmtantglokd

data in the data flow
mrulelling fmmcwork
c.g. it acti a B Pmpm

Figure 2: Data Flow Modelling Framework Class Structure

4.1 Pipeline Emulation DoProcess~ and DataExchange(). Different Process element
blocks are derived as required from the SxProcessElcment clnss

The Data Flow Modelling Framework is designed primarily for
the modelling of a graphics pipeline. For this reason the main
operation is encapsulated within the class SxPipelineEmulator and
controlled from four main functions: Initialise(), AddPE(),

and formed into a pipeline structure with the function InitinliscO
which in turn uses the AddPE() function to include the process
elements in the order desired. The code fragment in Figure 3
provides an example of this operation.

,,--
BOOL Pipeline::Initialise(SxGlobalData *p) //Supply pointer to Global Data Class
(

BOOL bcontinue;
pGlobalData = p;
bcontinue = pGlobalData->Setup(l;
if (bcontinue)
t

//Call setup functions in SxGlobalData

//Creation of pipeline in order of process elements organisation
//Note that AddPE accepts pointers to instances of derived process
//element classes, each of which is provided with a pointer to SxGlobalData

AddPE(neur PEScanConvert(pGlobalData) 1;
if(bTextureFlag)
1

AddPE(new PETextureRead(pGlobalData));
1
AddPE(new PEColourInterpolate(pGlobalData) 1;
AddPE(new PEIlluminate(pGlobalData));

106

^_ _ _.. ~~. _ - __ ,----~ -

AddPE (new PEXYZInterpolate (pGlobalData)) ;
AddPE (new PEBlendFunctions (pGlobalData)) ;

//Pipeline Organisation Control
m_pDataIn = GetFirstProcessElementO->GetInStack();
m_pDataOut = GetLastProcessElementO->GetOutStack();
return TRUE;

1
else return FALSE;

1
//----------------------- ___________________----------------

Figure 3 Code fragment showing the pipeline initialisation process

Using this basic structure any combination of process element process element reorganisation during run time. Figure 4 shows a
blocks can be placed together to form different structures. The schematic representation of the pipeline organisation created with
use of user specified conditional blocks in this code allows the above code.

Input Dab Stacks Output Data Stacks
LlFO QUEUE

POP
.

Push

I 1 T

Figure 4: Pipeline Modelling with Data Stacks

As can be seen in Figure 4, each process element has a separate data read from the input stack, processed and then written to the
input and output stack, the format of which is discussed in section output stack. When all the process elements have been processed,
4.3. The use of separate independent input and output stacks the function DataExchangeO passes the stack pointers so that the
nllows concurrent data flow to be modelled sequentially. The output stack of one process element becomes the input stack of
operation of the pipeline is performed with cyclic calls to the the next and so on, thus simulating the flow of data through a
functions DoProcess and DataExchange DoProcess pipeline. This operation is shown in Figure 5.
implements the functionality of each process element in turn with
//--------------------------------- __-____________-____------- __-__-____-____-___---

= new Pipeline () ;
EDRAW

//Create instance of pipeline emulation class
= p->Initialise(m_pGlobalData); //Initialise the pipeline

if(bDRAW) Ctl = 0;
else ct1 = -STOP;

urhile(! (Ctl & -STOP) 1
1

p->DataExchange (1; //Performs Stack Data Flow Operation
p->DoProcess () ; //Performs functionality of each process element

// Retrieval of pixel data from final process element
1 ct1 = p->GetOutStack()->PoP(

blue = p->GetOutStack()->PcP()
green = p->GetOutStack()->PcP(
red = p->GetOutStack()->PcP(
Y = p->GetOutStack (1 ->PcP (
x = p->GetOutStack() ->PcP (

:,----------------------------------- -.

I

,

,

,

;

I

-~-___-___--__---_~--~~~--~~--~~~--~~~-~~~~-

Figure 5: Code fragment showing the call to Initialiseo and the framework operation

107

_-

I
I

I
/
I

/

i
I
/

,

4

1
1
1

I

j

I
/

1

I
’ I

,
I
I
I
‘_

The process element functional blocks are derived as required
from a base class called SxProcessElement that consists of:

l Three main controlling virtual functions Begino, Go() and
End0 that the user is invited to override to include his/her
own functionality.

l A set of core functions and data members that each derived
class inherits. These include pointers to input and output The basic format of this class as presented to the user is shown in
LIFO data stacks and the fimctions Pop0 and Push0 for the code fragment in Figure 6. Note that it is laid out in a familiar
accessing and writing the data to and from these stacks. ‘Wizard’ manner.

l A pointer to a global data repository class that is provided in
the constructor that can be used to provide access to any
external data source.

/I- ---
class YOUR,CLASS-NAME : public SxProcessElement
1
public :

. . .

. . .

. . .
void Begin () ;
void Go();
void EndO;
//Add your member functions below
//i.e. void YOUR-FUNCTION-NAME

protected:

1;

//Add your member variables below
//i.e. int m-YOUR-NAME;

void YOUR-CLASS-NAME::BeginO
(

//TO DO: Obtain your variables from the input register
//i.e. m-YOUR-VARIABLE = PopO;

1

void YOUR-CLASS-NAME::Go()
(

//TO DO: Add you implementation code
//i.e. m-YOUR-VARIABLE ++;

1

void YOUR-CLASS-NAME::End()
1

//TO DO: Add your variables to the output register
//i.e. Push(m_YOUR-VARIABLE);

;,---- _______------------_____________________~~~~-----------~~~~~~~~~~~~~~~~~~~~~~~
Figure 6: Code fragment showing the layout of the Process Element Class

As can be seen, an implementation of this class will involve the
inclusion of user created member variables that are added by the
system to the header file. A pointer to a global data repository
class is passed to each instance of the PE class via it’s constructor
where all ‘once off data load and initialisation procedures are
then performed. The BeginO, Go0 and EndO functions of each
process element are then called in turn by the DoProcess
function for each cycle of the pipeline emulation. The normal
operation can be summarised as:

Begin0 ‘Pop’ing of data from the input stack onto the member
variables

Go0 Functionality of the process block. Instantiations of
algorithm classes and processing of pixel data

End0 ‘Push’ing the required output data onto the output stack

108

The exact operations performed by these member functions arc
completely dependent on the specific implementation. Nowcver,
the suggested method of implementation is USC instances of
framework independent algorithmic classes within a bare
framework structure. The idea is to maintain a level of abstraction
between the pipeline functional blocks and the actual algorithm
classes. This is discussed further in section 5. The data flow

modelling framework should be treated as a platform on which to
build specific implementations.

4.2 The Data Stacks

The data stacks form the basis of the data flow mechanism. Thcrc
are two for each Process Element, an input and an output stack.
In order to give the software the flexibility it requires, the user
implementing a new design or reorganising an existing one should
have the freedom to alter the number and type of the data values

pnssing into and out of the process elements as required, with the
minimum effort.

To this end the data stacks need to be dynamic in size and
demonstrate a degree of data type independence. Dynamic sizing
is nchieved through the use of the Last In First Out (LIFO) stack
operation with data pushed on and popped off the stack as needed.
This is basically a linked list class structure. Pseudo data type
independence is achieved by utilising our own user defined data
type class in the data storage stacks. By applying this class to all
dnta in the stacks and to the process element algorithmic classes as
required, we introduce a consistency in the stack operation and
provide a powerful means of data flow control. The data flow
type class can be written to deal with numerous data structures
such as floating point and fixed point operations.

In our implementation a class was created that allowed not only C
standard double 64 bit floating point precision, but also an
nccurote custom floating point and fixed point precision
modelling system that allows user defined bit width decisions to
be implemented. Here the use of C++ allows overloaded
operators to implement these operations in a completely seamless
manner, Also the careful use of these stacks allows the pipeline to
exhibit any degree of parallelism required.

4.3 Test Vector Generation

At this point we can see how this software environment can then
be used to integrate with the VHDL design work being carried
out, At the simplest level, the pipeline structure can be split open
at any point to allow the inclusion of a VHDL test bench as shown
in Figure 7.

Input Data Stacks Output Data St&s

pffqq

VHDL Simulation

~~~~ 

Figure 7: Integration of VHDL Test Bench with the 
Software Model 

As well as just using the software to write out test data for the 
VHDL test bench at any desired point, a file sharing mechanism 
has been developed that allows the run time integration of the 
included portion of VHDL with the software model. Other 
approaches currently under development include the use of 
Windows sockets operations for network communication. 

___^_. _~. _~^_._. -- _.- -.-- --~ -- 

5 ALGORITHM PROTONPING 
ENVIRONMENT 

The Algorithm Prototyping Environment (APE) is an application 
written in Ctt based on the DFMF platform. It provides the user 
interface and algorithmic functionality of the Integrated 
Development Environment. The functional operation of each 
process element unit was performed using instances of algorithmic 
classes. Maintaining the algorithmic functionality and pipeline 
emulation functionality as distinct class structure-s both simplifies 
program maintenance and allows for the creation of a large 
component library of algorithm classes that are independent of 
any particular implementation. The future reusability of these 
classes is ensured through the use of abstract base classes for the 
general functionality of each algorithm block and by ensuring that 
all further functionality of derived classes is implemented with 
virtual functions. 

5.1 Origins Of The Algorithm Prototyping 
Environment 

The original specification for this pipeline implementation was to 
model an architecture under development at Sussex, the basic 
functional blocks of which are shown in Figure 4. The purpose of 
this work was to allow the investigation of several different 
algorithm developments in areas such as scan conversion, 
antialiasing and texture mapping. To do this the DFMF platform 
was expanded to include, as well as the basic implementation of 
this pipeline, the ability to select between the different algorithms 
and compare the results. To this end a comprehensive graphical 
user interface was developed from which numerous features have 
been and continue to be added. These include: 

. 

. 

6 

Online choice of a large and comprehensive data base of 
models 
Selection between algorithms for scan conversion, texture 
mapping, level of detail calculation, antialiasing, etc. 
Ability to override by hand every mode of operation in the 
pipeline: antialiased edges. depth compare modes, blending 
modes, etc. 
Run-time adjustment of data path bit widths 
Production of output data files from different parts of the 
pipeline-communication with VHDL models 
Analysis of the performance of the different algorithms, both 
as a visual comparisons and as numerical/statistical output. 
With Ctt; multithreaded operations can be implemented to 
allow multiple simulations and run-time performance 
monitoring 
Link to Commercial packages-animation creation 
Image compare tools-image difference compare, zoomin, 
etc. 

CONCLUSIONS AND FURTHER WORK 

In this paper we have discussed the benefits of an integrated 
software-hardware codesign environment for the design of 3D 
graphics accelerator hardware. We presented details of a frame 
work for such an environment and a specific implementation, the 
Algorithm Prototyping Environment. Although this 
implementation is related to computer graphics, the principles 
discussed in this paper can be applied to other areas of hardware 
design. 

109 



The Algorithm Prototyping Environment software and associated 
tools have been of tremendous use to the Centre for VLSI and 
Computer Graphics and it’s application and functionality continue 
to evolve. Several areas have been identified for future work: 

. 

. 

. 
! . 

j ’ 

I . 
1 

. 

7 

! 

Development of full appwizard driven framework 
Drag and drop schematic capture methods 
Schematic creation by the software 
Provision of details on gate counts and performance figures 
for components based on particular technologies 
Combined VHDUC++ library for verified components to 
allow group design experience to be retained and utilised in a 
far more efficient manner 
Use of above component library and schematic capture 
methods for generation of VHDL structural code 
Further interaction between VHDL and C++ data flow 
components. 

REFERENCES 

i [l] Peter J. Ashenden, The Designers Guide To VHDL, Pub. 
Morgan Kaufmann, 1996. 

[2] Rajesh Kumar, Gupta, Co-Synthesis Of Hurdwure And 
Software For Embedded Systems, Kluwer Academic Publishers, 
1995. 

[3] Paul S. Heckbert, Henry P. Moreton, “Interpolation For 
Polygon Texture Mapping And Shading”, State of the Art in 
Computer Graphics: Visualisation and Modelling, Springer 
Verlag, New York, 1991, pages 101-111. 

[4] Joint MCUOMI Hardware /Software Codesign Study Report, 
1996. 

[5] J. Madsen and J.P.Brage, “Codesign Analysis Of A Computer 
Graphics Application”, Design Automation For Embedded 
Systems, pages 121-145, Kluwer Academic Publishers, 1996. 

[6] M. D. J. McNeill, M. White and P. F. Lister, “Graphics 
Codesign For Multimedia Systems”, Proceeding of the Eleventh 
International Symposium on Computer and Informations 
Sciences, Turkey, November 1996. 

[7] Giavanni De Micheli and Mariagiovanna Sami, 
Hardware/Sojiware Co-design, Kluwer Academic Publishers, 
1995. 

[S] Juan Pineda, , “A Parallel Algorithm For Polygon 
Rasterization”, In Computer Graphics, Volume 22, Number 4, 
pages 17-20, Addison Wesley (1988). 

[9] Andreas Schilling, “A New Simple And Efficient Antialiasing 
With Subpixel Masks”, In Computer Graphics, Vol. 25, No. 4, 
July 1991. 

[IO] J. Torborg, J. T. Kajiya, ‘Talisman: Commodity Realtime 3D 
Graphics For The PC’, Computer Graphics Proceedings, Annual 
Corlference Series, 1996. ~~353-363. The Chicken Crossing 
Presentation shown at Siggraph ‘96 Electronic Theatre. 

/ [l l] Martin White, Marcus D. Waller, Graham J. Dunnett, Paul F. 
, Lister, and Richard L. Grimsdale, “Graphics ASIC Design Using 
I VHDL”, In Computers and Graphics, Volume 19, No. 2, pages 
I 301-308,199s. 

110 


