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Abstract 

The design of a hardware architecture for a computer graphics 
pipeline requires a thorough understanding of the algorithms 
involved at each stage, and the implications these algorithms have 
on the organisation of the pipeline architecture. The choice of 
algorithm, the flow of pixel data through the pipeline, and bit 
width precision issues are crucial decisions in the design of new 
hardware accelerators. Making these decisions correctly requires 
intensive investigation and experimentation. The use of hardware 
description languages such as VHDL, allow for sound top down 
design methodologies, but their effectiveness in such experimental 
work is limited. This paper discusses the use of software tools as 
an aid to hardware development and presents applications that 
demonstrate the possibilities of this approach and the benefits that 
can be attained from an integrated codesign design environment. 

CR Categories and Subject Descriptors: D.3.2 
[Programming Languages] Language Classifications - Object 
Oriented Programming; 1.3.1 [Computer Graphics]: Hardware 
Architecture - Graphics Processors; 1.3.3 [Computer Graphics]: 
Picture/Image Generation - Display Algorithms. 

Additional Key Words and Phrases: 3D graphics, object 
oriented programming, codesign, VHDL, C-F+, component and 
design reuse 

1 INTRODUCTION 

The Centre for VLSI and Computer Graphics at Sussex University 
is involved in the research of advanced algorithms in computer 
grnphics and in their implementation in state of the art ASIC and 
PPGA based architectures. The hardware description language 
VHDL (Very High Speed Integrated Circuit Hardware 
Description Language), is used as the main platforms for this 
work. The use of such a language permits the adoption of a ‘Top 
Down’ design methodology which allows the designer to focus on 
a more nbstract level of functionality[ 111. 
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This means that a design can be planned more quickly and 
accurately in it’s entirety. The use of VHDL provides the 
hardware designer with other advantages, such as technology 
independence, etc. which are beyond the scope of this paper[l, 
111. 

In this paper we describe techniques in which software languages 
such as C-t+ can be used in conjunction tiih VHDL to increase 
the level of abstraction possible during the design process, and 
improve overall productivity. Much work has been carried out in 
the field of hardware/software codesign [2,4,7], but little has been 
specific to computer graphics[S]. We expand on the ideas 
developed in Galadriel [6]. This paper discusses the use of 
software as an essential tool in the design process of algorithms 
from a conceptual level through to their architectural 
implementation, as well as a tool for general hardware modelling 
and development. Specific emphasis is placed on the design and 
development of computer graphics related algorithms and the 
design of 3D graphics pipelines. 

Throughout this paper the term software will be used to refer 
specifically to languages such as C++ and in particular Windows 
based applications. The term hardware will refer to physical 
hardware implementations and hardware description languages 
(HDLs) such as VHDL. 

The following sections will start with a discussion on the 
comparison of the advantages of software applications versus 
hardware description languages, and describe how the two can be 
integrated together to produce an efficient and productive design 
environment. The following sections will then present the 
requirements for such an environment in the form of the system 
implemented at Sussex. 

2 SOFTWARE VERSUS HARDWARE 
DESCRIPTION LANGUAGES 

Although VHDL allows the designer to operate initially at a more 
abstract (behavioural) level before final Register Transfer Level 
(RTL) designs are implemented, simulation of models in 
behavioural VHDL do incur a relative time penalty when 
compared to a corresponding simulation in a software language 
such as C-t+, and it’s efficiency in investigative and experimental 
work is limited. 

Table 1 shows an example of the simulation performance of both 
languages. A comparison of both behavioural VHDL and C++ 
performing identical non-trivial operations was carried out. The 
operation performed was the complete setup computation 
requirement of triangles for scan conversion with linear edge 
functions [8], Gouraud shading, perspectively correct texture 
mapping[3] and antialiasing[9]. This involves 64 additions, 64 
multiplications and 7 reciprocal operations. The tests were 
performed for both one million and ten million triangles using 
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behavioural VHDL written and run from the Model Tech V- 
System platform and Microsoft Visual C++ version 4.2. The C++ 

was compiled and run in both Release and Debug modes and all 
three were based on a Pentium Pro 200MHz machine. 

1 ,OOO,OOO triangles 

10,000,OOO triangles 

Behavioural VHDL 

135seconds 

20 minutes 

C++ Debug 

25 seconds 

250 seconds 

C-H Release 

14 seconds 

140 seconds 

Table 1 Performance Comparison of VHDL and C++ 

The times given here show that the difference in performance of 
C++ to behavioural VHDL is in the ratio of S-6:1 for debug mode 
C++ and g-10:1 for release mode. It might be argued that during 
the development of new algorithms a large proportion of time is 
spent in the debug mode. However, during long term simulation 
runs a 9-10 times release mode performance improvement is 
achieved. 

An alternative suggestion for the conceptual level development of 
algorithms is the use of interpreted languages such as Microsoft 
Visual Basic. These languages have the advantage that alterations 
can be made to the code as the program is running. Therefore, as 
an error is seen in the graphical output of say a new scan 
conversion algorithm, the code can be altered before the next 
pixel is drawn. 

As well as such quantitative performance issues, there are more 
qualitative issues that should be considered. The use of software 
languages and their advanced development platforms provide 
other benefits. The advanced debugging environments of these 
languages can greatly improve the productivity of designing and 
developing algorithms at a conceptual level. Also, we have 
produced VRML parsers and Cu. ‘plug-ins’ for commercial 
modelling software packages, such as Kinetix 3D Studio Max, 
that provide an abundant model database supply and the 
simplified production of full multi-frame complex animations. 
Databases of any form can be created with ease to model any area 
of investigation that is required. 

It is also possible for the software lo be augmented to product 
statistical evaluations of the algorithms under dcvclopmcnt 
Multithreaded run-time performance monitoring is one such 
possibility. Through accurate modelling of hardware number 
representation and bit width precision, the software allows rapid 
experimentation with immediate visual results, The graphical 
interfaces of Windows based applications can allow the user to 
make run-time alterations to the data path bit widths as well as to 
alter modes of operation and algorithm selection. The Algorithm 
Prototyping Environment presented here is an example of an 
application developed at Sussex for just such operations. 

3 AN INTEGRATED DEVELOPMENT 
Of course, VHDL has other important advantages, but at the basic 
algorithmic level it is not interactive. The key to design efficiency 
is deciding where and when to invoke VHDL and when to use 
C++. An algorithm’s functionality during the initial design phase 
can be modelled as abstractly as necessary, and it is more 
important at this stage to produce results and pictures with ease. 
Our software environment can provide abundant data bases and 
simplify generation of images, and even complex animations. The 
same software can then transform such data into formats for use 
by a VHDL testbench. 

ENVIRONMENT 

As discussed above, a large selection of software tools can be 
developed to work alongside VHDL to aid in algorithm research 
and hardware design. Figure 1 shows the relationship between the 
software and hardware design processes of our integrated 
environment. 

Integrated 
Development 
Environment 

NCW 
Algorithm 

‘c: Idea 

Database Generation 
c p, 3” S,“dlo M;lr. YXML 

Software Class Library 
Bchnviournl 

- 1 A;;z;h; 1 1 AfCo$i~ 1 3 lOOlS 
‘.& Algolnhm evsivruo 

*n,m.,,oa PIoduEllon 

Software Model 

Data Flow 
Madelling 
Framework 
(DFMF) 

4 

GUI 

Algorilhm 
Prolotyplng c Test Vcclor 

Envtmnmcnl Gcnerntion 

(APE) 
4 

VHDL 
Inlcraclivc Dcslgn 

AldS Hardware. TcstBcnch 
Device Drivers ICI 

Figure 1: An Integrated Development Environment 
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The Data Flow Modelling Framework and the Algorithm 
Prototyping Environment software, form the main structure of the 
Software Model. In brief, the Data Flow Modelling Framework is 
used to simulate the structure of an architecture. It does this by 
allowing the code to be modularised into algorithmic blocks with 
the flow of data between these blocks and their organisation being 
deIinable by the user. 

The Algorithm Prototyping Environment is a particular 
implementation of a graphics pipeline based on this framework. It 
provides a comprehensive graphical user interface that allows the 
designer to open a large selection of databases, make interactive 
alterations to algorithm selection and to alter bit width precision 
figures and supplies a range of on line design aid tools. 

Using this code, at the conceptual level, the Software Model 
simulates the behaviour of new algorithms both individually and 
as a part of an overall structure, e.g. a rendering pipeline. This 
model allows the rapid prototyping of new ideas and structural 
organisations. The algorithms can then be progressed further to 
allow the testing of performance issues such as fixed and floating 
point precision and how they effect the visible results. It is 
important that an accurate means of bit width precision modelling 
be used. 

Finnlised algorithms are added to a C-t-+ class library for reuse as 
components in future software simulations of new architectures. 
Such software models, if well written and documented, act as 
excellent examples of the complexities and subtleties of each 
algorithm. 

Another important part of the development environment is the use 
of good databases, e.g. small and large and varied databases which 
test the algorithms sufficiently. As mentioned above, to meet this 
requirement we have developed a ‘plug-in’ to 3D Studio Max as 
well as VRML parsers. These allow new designs (algorithms and 
architectures) to be tested with images and animations selected 
from a large range of databases compatible with 3D Studio Max. 

As the VHDL architecture is produced, based on the initial 
algorithmic decisions reached from the software simulation, the 
software model is modified simultaneously to match any 
unforeseen changes in the architectural requirements and used to 
provide rapid feedback as to the implications of such changes. 

During hardware development the software can provide test data 
for particular individual parts of the pipeline design. Eventually 
the development process will reach a point where the software 
plntform is solely a means of supplying services such as database 
production, output data interpretation and visualisation and tools 
such as image compare operations. 

It should be noted that the software model contains a version of 
the setup code identical to that to be used with the device drivers. 
In this way we can allow the same scene data to produce setup 
data for both the software simulation and the physical hardware 
itself, The image compare tools then allow comparison of 
expected and achieved results. 

At the end of the design process the software development will 
result in a software based reference model to accompany the 
completed hardware design. Such a software based reference 
model was recently used by Microsoft, for the Chicken Crossing 
demonstration for the Talisman architecture[lO]. 

3.1 Development Environment Features 

1. Algorithm Investigation 
Accelerates the implementation of new algorithms 
and provides an environment in which to test them 
both individually and as part of an entire pipeline 
Allows drawing of individual pixels, primitives or 
entire scenes selectively 
Provides methods of performance monitoring 

2. Architectural Modelling 
. Change the organisation and order of execution of 

the algorithmic blocks to investigate and verify 
potential new architectures 

. Ability to select between different algorithms 

3. Low Level Algorithm Modelling 
l Incorporation of accurate bit width precision 

operations 
l Change rapidly the accuracy and resolution of 

algorithms and analyse the effect, e.g. texture 
co-ordinate interpolation from floating point to 8.16 
fixed point 

4. Production of Test Stimuli or Vectors 
9 Provision of real world scene data from, for 

example, commercial packages such as Kinetix 3D 
Studio Max and VRML files 

l Rendering of these databases using the software 
simulation for comparison purposes 

l Production of test stimuli for driving VHDL 
hardware modules or setup data for driving the 
physical hardware 

5. Provision of On line tools for result analysis 
l Provision of image analysis tools, e.g. zoom in 

functions, image compare etc. 

6. Rapid production of real results 
l Images and full animations 
. Statistical data for algorithmic evaluation 

4 DATA FLOW MODELLING 
FRAMEWORK 

The Dam Flow Modelling Framework (DFMF) forms the 
backbone of our hardware modelling environment. It allows the 
developer to model the operation of the hardware structure 
through modularisation of the code structure into distinctive 
process elements. These process elements can simulate the 
breakdown of the basic hardware structure and the flow of data 
between them to whatever degree is chosen. 

This breakdown may range from an early layout of the main 
functional algorithmic units of a graphics pipeline, such as scan 
conversion to texture read and so on, to a the modelling of the 
physical partitioning in a multiple FPGA based architecture, right 
down to full register transfer level partitioning. Although, RTL 
descriptions are usually done in VHDL. 

The diagram in Figure 2 outlines the basic structure of this frame 
work and indicates the C-t-t- class structures involved. Here the 
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functional process element examples are based on a projective rendering pipeline. 

f Cmmins tmintcrs IO cxh Pnxess 

k Pipeline Elemml object cypc - pldymtrrphic 

(...... calling implcmen& cxh clcmml in 

l Emulation lhc pipeline. 

l (SxPipeltneEmutate) Each pass cmulale one lunclional 
bltrk ~vclcof thcninelinc. 

FunctioN: InitiaUr&ddPE, 
DoPmess, Dal;lExchnn~c 

elcmmtvialheGl&alDtiClass ApoinIcrlolhisclassis 
provided via the cwalmdal umsvU*r where once OTT 

initialiition and setup (PRS) dala lmds should kc prfomrd. 
c J 

is used as D mpmilmy 
for all impmtantglokd 

data in the data flow 
mrulelling fmmcwork 
c.g. it acti a B Pmpm 

Figure 2: Data Flow Modelling Framework Class Structure 

4.1 Pipeline Emulation DoProcess~ and DataExchange(). Different Process element 
blocks are derived as required from the SxProcessElcment clnss 

The Data Flow Modelling Framework is designed primarily for 
the modelling of a graphics pipeline. For this reason the main 
operation is encapsulated within the class SxPipelineEmulator and 
controlled from four main functions: Initialise(), AddPE(), 

and formed into a pipeline structure with the function InitinliscO 
which in turn uses the AddPE() function to include the process 
elements in the order desired. The code fragment in Figure 3 
provides an example of this operation. 

,,-------------------------------------------------------- 
BOOL Pipeline::Initialise(SxGlobalData *p) //Supply pointer to Global Data Class 
( 

BOOL bcontinue; 
pGlobalData = p; 
bcontinue = pGlobalData->Setup(l; 
if (bcontinue) 
t 

//Call setup functions in SxGlobalData 

//Creation of pipeline in order of process elements organisation 
//Note that AddPE accepts pointers to instances of derived process 
//element classes, each of which is provided with a pointer to SxGlobalData 

AddPE(neur PEScanConvert(pGlobalData) 1; 
if(bTextureFlag) 
1 

AddPE(new PETextureRead(pGlobalData)); 
1 
AddPE(new PEColourInterpolate(pGlobalData) 1; 
AddPE(new PEIlluminate(pGlobalData) ); 
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AddPE (new PEXYZInterpolate (pGlobalData) ) ; 
AddPE (new PEBlendFunctions (pGlobalData) ) ; 

//Pipeline Organisation Control 
m_pDataIn = GetFirstProcessElementO->GetInStack(); 
m_pDataOut = GetLastProcessElementO->GetOutStack(); 
return TRUE; 

1 
else return FALSE; 

1 
//----------------------- ___________________---------------- 

Figure 3 Code fragment showing the pipeline initialisation process 

Using this basic structure any combination of process element process element reorganisation during run time. Figure 4 shows a 
blocks can be placed together to form different structures. The schematic representation of the pipeline organisation created with 
use of user specified conditional blocks in this code allows the above code. 

Input Dab Stacks Output Data Stacks 
LlFO QUEUE 

POP 
. 

Push 

I 1 T 

Figure 4: Pipeline Modelling with Data Stacks 

As can be seen in Figure 4, each process element has a separate data read from the input stack, processed and then written to the 
input and output stack, the format of which is discussed in section output stack. When all the process elements have been processed, 
4.3. The use of separate independent input and output stacks the function DataExchangeO passes the stack pointers so that the 
nllows concurrent data flow to be modelled sequentially. The output stack of one process element becomes the input stack of 
operation of the pipeline is performed with cyclic calls to the the next and so on, thus simulating the flow of data through a 
functions DoProcess and DataExchange DoProcess pipeline. This operation is shown in Figure 5. 
implements the functionality of each process element in turn with 
//--------------------------------- __-____________-____------- __-__-____-____-___--- 

= new Pipeline () ; 
EDRAW 

//Create instance of pipeline emulation class 
= p->Initialise(m_pGlobalData); //Initialise the pipeline 

if(bDRAW) Ctl = 0; 
else ct1 = -STOP; 

urhile( ! (Ctl & -STOP) 1 
1 

p->DataExchange ( 1; //Performs Stack Data Flow Operation 
p->DoProcess ( ) ; //Performs functionality of each process element 

// Retrieval of pixel data from final process element 
1 ct1 = p->GetOutStack()->PoP( 

blue = p->GetOutStack()->PcP( ) 
green = p->GetOutStack()->PcP( 
red = p->GetOutStack()->PcP( 
Y = p->GetOutStack ( 1 ->PcP ( 
x = p->GetOutStack() ->PcP ( 

:,----------------------------------- -. 

I 

, 

, 

, 

; 

I 

_-~_-___-___--__---_~--~~~--~~--~~~--~~~-~~~~- 

Figure 5: Code fragment showing the call to Initialiseo and the framework operation 
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The process element functional blocks are derived as required 
from a base class called SxProcessElement that consists of: 

l Three main controlling virtual functions Begino, Go() and 
End0 that the user is invited to override to include his/her 
own functionality. 

l A set of core functions and data members that each derived 
class inherits. These include pointers to input and output The basic format of this class as presented to the user is shown in 
LIFO data stacks and the fimctions Pop0 and Push0 for the code fragment in Figure 6. Note that it is laid out in a familiar 
accessing and writing the data to and from these stacks. ‘Wizard’ manner. 

l A pointer to a global data repository class that is provided in 
the constructor that can be used to provide access to any 
external data source. 

/I- --------------------------------------------------------------------------------- 
class YOUR,CLASS-NAME : public SxProcessElement 
1 
public : 

. . . 

. . . 

. . . 
void Begin ( ) ; 
void Go(); 
void EndO; 
//Add your member functions below 
//i.e. void YOUR-FUNCTION-NAME 

protected: 

1; 

//Add your member variables below 
//i.e. int m-YOUR-NAME; 

void YOUR-CLASS-NAME::BeginO 
( 

//TO DO: Obtain your variables from the input register 
//i.e. m-YOUR-VARIABLE = PopO; 

1 

void YOUR-CLASS-NAME::Go() 
( 

//TO DO: Add you implementation code 
//i.e. m-YOUR-VARIABLE ++; 

1 

void YOUR-CLASS-NAME::End() 
1 

//TO DO: Add your variables to the output register 
//i.e. Push(m_YOUR-VARIABLE); 

;,---- _______------------_____________________~~~~-----------~~~~~~~~~~~~~~~~~~~~~~~ 
Figure 6: Code fragment showing the layout of the Process Element Class 

As can be seen, an implementation of this class will involve the 
inclusion of user created member variables that are added by the 
system to the header file. A pointer to a global data repository 
class is passed to each instance of the PE class via it’s constructor 
where all ‘once off data load and initialisation procedures are 
then performed. The BeginO, Go0 and EndO functions of each 
process element are then called in turn by the DoProcess 
function for each cycle of the pipeline emulation. The normal 
operation can be summarised as: 

Begin0 ‘Pop’ing of data from the input stack onto the member 
variables 

Go0 Functionality of the process block. Instantiations of 
algorithm classes and processing of pixel data 

End0 ‘Push’ing the required output data onto the output stack 
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The exact operations performed by these member functions arc 
completely dependent on the specific implementation. Nowcver, 
the suggested method of implementation is USC instances of 
framework independent algorithmic classes within a bare 
framework structure. The idea is to maintain a level of abstraction 
between the pipeline functional blocks and the actual algorithm 
classes. This is discussed further in section 5. The data flow 

modelling framework should be treated as a platform on which to 
build specific implementations. 

4.2 The Data Stacks 

The data stacks form the basis of the data flow mechanism. Thcrc 
are two for each Process Element, an input and an output stack. 
In order to give the software the flexibility it requires, the user 
implementing a new design or reorganising an existing one should 
have the freedom to alter the number and type of the data values 



pnssing into and out of the process elements as required, with the 
minimum effort. 

To this end the data stacks need to be dynamic in size and 
demonstrate a degree of data type independence. Dynamic sizing 
is nchieved through the use of the Last In First Out (LIFO) stack 
operation with data pushed on and popped off the stack as needed. 
This is basically a linked list class structure. Pseudo data type 
independence is achieved by utilising our own user defined data 
type class in the data storage stacks. By applying this class to all 
dnta in the stacks and to the process element algorithmic classes as 
required, we introduce a consistency in the stack operation and 
provide a powerful means of data flow control. The data flow 
type class can be written to deal with numerous data structures 
such as floating point and fixed point operations. 

In our implementation a class was created that allowed not only C 
standard double 64 bit floating point precision, but also an 
nccurote custom floating point and fixed point precision 
modelling system that allows user defined bit width decisions to 
be implemented. Here the use of C++ allows overloaded 
operators to implement these operations in a completely seamless 
manner, Also the careful use of these stacks allows the pipeline to 
exhibit any degree of parallelism required. 

4.3 Test Vector Generation 

At this point we can see how this software environment can then 
be used to integrate with the VHDL design work being carried 
out, At the simplest level, the pipeline structure can be split open 
at any point to allow the inclusion of a VHDL test bench as shown 
in Figure 7. 

Input Data Stacks Output Data St&s 

pffqq 

VHDL Simulation 

~~~~ 

Figure 7: Integration of VHDL Test Bench with the 
Software Model 

As well as just using the software to write out test data for the 
VHDL test bench at any desired point, a file sharing mechanism 
has been developed that allows the run time integration of the 
included portion of VHDL with the software model. Other 
approaches currently under development include the use of 
Windows sockets operations for network communication. 

___^_. _~. _~^_._. -- _.- -.-- --~ -- 

5 ALGORITHM PROTONPING 
ENVIRONMENT 

The Algorithm Prototyping Environment (APE) is an application 
written in Ctt based on the DFMF platform. It provides the user 
interface and algorithmic functionality of the Integrated 
Development Environment. The functional operation of each 
process element unit was performed using instances of algorithmic 
classes. Maintaining the algorithmic functionality and pipeline 
emulation functionality as distinct class structure-s both simplifies 
program maintenance and allows for the creation of a large 
component library of algorithm classes that are independent of 
any particular implementation. The future reusability of these 
classes is ensured through the use of abstract base classes for the 
general functionality of each algorithm block and by ensuring that 
all further functionality of derived classes is implemented with 
virtual functions. 

5.1 Origins Of The Algorithm Prototyping 
Environment 

The original specification for this pipeline implementation was to 
model an architecture under development at Sussex, the basic 
functional blocks of which are shown in Figure 4. The purpose of 
this work was to allow the investigation of several different 
algorithm developments in areas such as scan conversion, 
antialiasing and texture mapping. To do this the DFMF platform 
was expanded to include, as well as the basic implementation of 
this pipeline, the ability to select between the different algorithms 
and compare the results. To this end a comprehensive graphical 
user interface was developed from which numerous features have 
been and continue to be added. These include: 

. 

. 

6 

Online choice of a large and comprehensive data base of 
models 
Selection between algorithms for scan conversion, texture 
mapping, level of detail calculation, antialiasing, etc. 
Ability to override by hand every mode of operation in the 
pipeline: antialiased edges. depth compare modes, blending 
modes, etc. 
Run-time adjustment of data path bit widths 
Production of output data files from different parts of the 
pipeline-communication with VHDL models 
Analysis of the performance of the different algorithms, both 
as a visual comparisons and as numerical/statistical output. 
With Ctt; multithreaded operations can be implemented to 
allow multiple simulations and run-time performance 
monitoring 
Link to Commercial packages-animation creation 
Image compare tools-image difference compare, zoomin, 
etc. 

CONCLUSIONS AND FURTHER WORK 

In this paper we have discussed the benefits of an integrated 
software-hardware codesign environment for the design of 3D 
graphics accelerator hardware. We presented details of a frame 
work for such an environment and a specific implementation, the 
Algorithm Prototyping Environment. Although this 
implementation is related to computer graphics, the principles 
discussed in this paper can be applied to other areas of hardware 
design. 
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The Algorithm Prototyping Environment software and associated 
tools have been of tremendous use to the Centre for VLSI and 
Computer Graphics and it’s application and functionality continue 
to evolve. Several areas have been identified for future work: 
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Development of full appwizard driven framework 
Drag and drop schematic capture methods 
Schematic creation by the software 
Provision of details on gate counts and performance figures 
for components based on particular technologies 
Combined VHDUC++ library for verified components to 
allow group design experience to be retained and utilised in a 
far more efficient manner 
Use of above component library and schematic capture 
methods for generation of VHDL structural code 
Further interaction between VHDL and C++ data flow 
components. 
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