
Usage Patterns to Provision for Scientific
Experimentation in Clouds

Eran Chinthaka Withana and Beth Plale
School of Informatics and Computing, Indiana University

Bloomington, Indiana, USA.
{echintha, plale}@cs.indiana.edu

Abstract—Driven by the need to provision resources on de-
mand, scientists are turning to commercial and research test-bed
Cloud computing resources to run their scientific experiments.
Job scheduling on cloud computing resources, unlike earlier plat-
forms, is a balance between throughput and cost of executions.
Within this context, we posit that usage patterns can improve the
job execution, because these patterns allow a system to plan, stage
and optimize scheduling decisions. This paper introduces a novel
approach to utilization of user patterns drawn from knowledge-
based techniques, to improve execution across a series of active
workflows and jobs in cloud computing environments. Using
empirical analysis we establish the accuracy of our prediction
approach for two different workloads and demonstrate how this
knowledge can be used to improve job executions.

Keywords-User Patterns; Knowledge-based Computing; Cloud
Computing; Predictions; Scientific Experimentation;

I. INTRODUCTION

Grid computing has addressed large-volume, large-scale
science through provisioning of infrastructure that utilizes
geographically distributed compute resources. While it has
advanced science in significant ways, its strengths, which
have supported growth, also serve to limit its use. Grid
computing, which often utilizes traditional HPC resources,
is largely batch oriented and under even moderate loads can
result in long queue times. This is a challenge to scientists
working in research areas that require responsiveness to
current conditions, such as severe weather. Grid computing
resource providers offer best-effort guarantees on the quality
of the service of these resources. Too, grid computing makes
no claims to access transparency. That is, failures in the
underlying infrastructure generally propagate upward to
the application for handling. The quota system on CPU
usage requires that maximum resource needs be known in
advance and approved through a request process. Finally job
submission requires a high level of computer science expertise
to utilize optimally. Cloud computing addresses some of the
limitations, though it introduces others, so has shown promise
as a complementary solution to grid computing. Cloud
computing resources are rented to users on an on-demand
basis and users are billed according to their usage. These
resources offer several key advantages for scientific computing
[1] that include providing a programmer with a sense of
infinite computing resources available the instant they are
needed, eliminating the need for advance reservations. The
pay-as-you-go model used by cloud providers eliminates an

up-front commitment by users. Experiments can be started
small and scaled as need grows. The pay-as-you-go model
also encourages scientists to budget for and use resources
they can and are willing to pay for. On the flip side,
cloud computing presents new issues that can be resolved
either through additional distributed infrastructure or passed
on to the scientist and these include slow interconnects,
virtualization startup times, and consumption based billing.
Grid computing infrastructures and local departmental clusters
employ fast interconnects between nodes that has had the
effect of encouraging distributed application design that takes
advantage of it. Cloud computing, however, is built on the
notion of commodity hardware, high rates of failure, and
slow interconnects - a different underlying model entirely.
On-demand provisioning of compute resources is enabled by
virtualization technologies within cloud computing resources,
but these virtualized resources have overheads of their own.

This fundamentally different distributed compute
environment could be addressed by redesigning our distributed
and parallel applications, and programming models such as
MapReduce [2] attempts to do this, but mapreduce is limited
in the applications it serves. Services are needed that aid
deployment and minimize hidden latencies in order to reduce
the total monetary cost of doing research and education
with cloud computing. One can also attempt to reduce the
level of computer science expertise required in the process.
Both of these issues we address through services that deploy
an application on a cloud resource. This middleware is
commonly called scheduling. Research in meta-scheduling
and scheduling algorithms is predominantly focused on
improving batch queue times, reducing job execution times
and securing resources as and only as needed. With grid
computing such as with the TeraGrid [3], queue times can
be significant and be dependent on factors such as total
system load, wall clock limits on a job, etc. A batch queue
by nature implies mediating access to a finite resource. Cloud
providers claim to provide access to unlimited resources, or
at least support that illusion, so queue times are effectively
non-existent. Jobs do however suffer seconds to minutes
start up overheads within virtualized environments [4] [5]
[6] [7] [8], and thus are a major source of latency that
we propose to reduce. Scheduling algorithms also focus on
optimal utilization of relatively homogeneous grid or cluster

resources through resource allocation algorithms. Maximal
utilization of a resource does not make sense either in a
domain of unlimited resources, or at least not a problem
that a user needs to deal with. But clouds, particularly when
taken across available cloud providers [9] [10] present a
heterogeneous set of resources with different hardware and
software configurations that can be maximally utilized to a
user’s advantage.

Prediction algorithms using historical data are employed in
scheduling to predict the execution times of an application.
On a cluster, this can be done by looking at the history of the
application alone. But cloud environments with their different
hardware configurations, the execution time predictions must
factor in the non-uniformity of hardware resources. Grid or
time-shared resources are designed to allocate a large fraction
of computational resources to be consumed to a single job
or user [11] whereas in cloud computing systems only a
tiny fraction of total resource availability is being used by a
given user or a job at any given time. Cloud schedulers must
in response scale to support large number of simultaneous
users. Too, the emergence of the semi-structured workflow as
a way of bringing the human into the loop of an investigative
process results in more smaller-scale and data dependent
workflows that are seen in large-scale computations. These
workflows present a challenge to the body of work on
workflow planning and execution that we discuss in the
related work section. Finally, grid computing or time-shared
resources provide an abstraction of federated resources
[11] in the form of heterogeneous hardware, network and
software resources across different administrative domains
bound together in support of virtual organizations where the
administrative domain supports authentication but membership
and authorization are at the virtual organization level. But
federated resources or virtual organizations for that matter,
are not provided for in a cloud setting.

The broader vision of our research is on giving eScience
applications options to achieving low cost execution that
minimizes turnaround time and maximizes the successful
completion rate over set workflows where the workflow set
is drawn from multiple users submitting workflows over a
fixed period of time. The solution has two primary pieces.
The first is a meta-scheduler that draws from AppleS [12]
and GRADS [13] in its use of historical information to
anticipate future activity. The second is a resource abstraction
service, which shares aspects in common with Nimrod/G [14].

In this paper our focus is on the former and propose an
algorithm to predict future jobs by extracting user patterns
from historical information. These predictions will, we posit,
reduce the impact of high startup overheads for the class of
applications that are time-critical. We use knowledge-based
techniques to extract patterns from a knowledge-base, which
can start either from zero knowledge or pre-populated job
information consisting of connections between jobs. The

similar cases retrieved from the knowledge-base will be used
to predict the future jobs, helping to reduce or hide the
impact of startup overhead. We assess our algorithm using
two different workloads representing individual scientific jobs
executed in at a Los Alamos National Lab supercomputer and
the other from set of experiments submitted by three users
using five workloads. For these latter workloads we establish
the accuracy of our predictions and the amount of time that
can be saved in these job executions.

The remainder of this paper is organized as follows. Section
II discusses related work and Section III focuses on the formal
description of our algorithm. Section IV describes the system
implementation and Section V lays out the performance eval-
uation. Section VI concludes and discusses future work.

II. RELATED WORK

Scientists have in the past typically submitted jobs to batch
queues and then waited for their eventual execution on a shared
computational resource. But since cloud computing shifts this
trend to acquire computational resources on demand, scientists
have evaluated cloud computing resources for scientific job
executions [15] [16] [17] [18] [19]. Prediction algorithms have
been used to improve job execution in large-scale comput-
ing resources. These algorithms concentrate on prediction of
execution times [20], job start times [21], queue-wait times
[22] and resource requirements [23]. Prediction algorithms
used to improve job executions in time-shared resources
and cloud computing resources can be widely classified into
two categories, namely statistical model based and artificial
intelligence (AI) based algorithms. The statistical methods
mainly focus on formulating a model and then deriving result-
ing statistical properties of a prediction parameter(s) through
simulations. Previous work on predictions based on statistical
analysis and modelling methods help to improve the job execu-
tions on time-shared resources. Work on this area concentrated
on predicting execution times [24], job start times [21], queue
wait times [25] [26] and resource requirements [21]. AppleS
[12] in particular argues that a good scheduler must involve
some prediction of application and system performance. The
predictive models in AppleS have been used to evaluate and
rank the schedule candidates. Ganapathi et al, [27] propose
a statistical model to predict the resource requirements and
execution times for Cloud computing applications. Inspired
by the statistical techniques to predict query performance in
parallel databases [28], Ganapathi et al, predict the perfor-
mance of MapReduce [2] jobs by correlating pre-execution
features and post-execution performance metrics. Artificial
intelligence methods focus on learning from past experiences
or using multiple exhaustive search algorithms together with
heuristics to build a system for predictions. There is previous
work related to prediction of execution times in time-shared
resources [20] [29] [30], and prediction of job start times,
queue wait times [22] [30] and resource requirements [31],
using historical information. These methods use techniques
including instance-based learning [32], genetic algorithms

[33], case-based learning [34], etc., together with heuristics for
search and optimization. Hui et al, [29] proposes an instance-
based learning [32] technique to predict application run times
and queue wait times of large-scale grids from mining his-
torical workloads. Most of the grid or time-shared scheduling
techniques will not work in cloud computing environments
without re-examination because they optimize metrics that are
not the primary causes of latency in a cloud environment. Our
work is different from the above AI approaches in that we
use knowledge-based techniques to predict the next jobs to be
executed in a cloud computing environment with the goal of
improving the total execution time of a suite of workflows
active at any one instant. To our understanding there has
been no work on predicting next jobs to execute for cloud
computing environments using knowledge-based or artificial
intelligence methods. Matsuoka et al, [35] proposes a similar
approach to improve execution times of grid applications by
overlapping the execution of data staging with compute bound
tasks. This work complements ours.

III. CONCEPTUAL MODEL FOR PREDICTION

A. Time Critical Scientific Experimentation
The scientific experimentation process often involves a large

number of workflows. For example, in the LEAD project
[36], meteorology researchers might approach a day’s in-
vestigations by running one or two short-term workflows
to identify interesting events in the atmosphere. They then
will launch a suite of workflows, for instance, a parameter
sweep, to understand the model behaviour under a particularly
mesoscale phenomena. In response the system examines this
as a collection of workflows that can be optimized. Also
the usage of the same workflow or experiment, as well as
a suite of workflows, can differ from domain to domain. For
example, a meteorologist running a forecast workflow might
run another forecast workflow over a small region and shorter
time frame. But an agriculture researcher attempting to make
predictions of growth or the harvest yield of an area, might
run a single weather forecast run followed by a different
set of jobs/workflows after the forecasting workflow. These
examples are time-critical in that they require access to the
latest environmental observational data at time of execution,
and must begin immediately.

B. Formal Analysis
Suppose a sequence of jobs form the critical path of a

scientific experiment. As shown in Figure 1, there are N + 1
jobs to be executed and the total experiment takes T∞ time to
complete. Each job has to be set up before being executed. For
example, if a job has to be setup to run inside a virtualized
environment, the virtual machine (VM) must be started and
proper services have to be deployed and started before being
executed. Defining this startup overhead and the execution
time of the ith job as si and ti, respectively, one gets T∞
as the following:

T∞ =

N∑
i=0

(si + ti) =

N∑
i=0

si +

N∑
i=0

ti

Fig. 1: Serialized execution of n jobs

Fig. 2: Serialized execution of jobs, with advanced acquisition
and preparation

Suppose further that the probability of successfully predict-
ing the next job is r, where (0 < r < 1) and unsuccessful
prediction is (1− r). Total experiment time (T∞) has (1− r)

chance of having
n∑

i=0

si component in it thus giving the T∞

as:

T∞ = (1− r)

N∑
i=0

si +

N∑
i=0

ti

T∞ =

N∑
i=0

si +

N∑
i=0

ti − r

N∑
i=0

si (1)

The insight from equation (1) is that the upper bound of

the execution time for the DAG is reduced by r

N∑
i=0

si. The

time savings depends upon the critical path (N), the set-up
time si and more importantly, the accuracy of the prediction
r. If predictions can be made accurately, then the serialized
execution of jobs in the critical path (Figure 1) can be changed
to overlapped job execution and set-up of the environments
(Figure 2).

We define percentage time reduction as,

Percentage time reduction =

r

N∑
i=0

si

N∑
i=0

(si + ti)

For simplicity, assuming equal job execution times and
set-up times for all the jobs,

Percentage time reduction = r∗(s∗N)
(t+s)∗N = r∗s

(t+s) =
r

t
s+1

Figure 3 demonstrates the variation of percentage time
reduction against work-to-overhead ratio (t/s), for different
levels of prediction accuracies. This figure helps to determine
the prediction accuracy needed to gain the required time
reduction at a given work-to-overhead ratio. For example,
when work-to-overhead ratio is 2.5, the system needs to have

Fig. 3: Variation of percentage time reduction with respect
to execution time to set-up time ratio for different prediction
accuracy levels

Fig. 4: System Architecture
at least 70% accuracy in predictions to achieve 20% reduction
in total time. But, the amount of time reduction that can be
gained is reduced exponentially with the increase of work-
to-overhead ratio. Also with a given work-to-overhead ratio,
the percentage of time reduction increases with the prediction
accuracy levels.

IV. SYSTEM

A. Architecture

Our prediction engine is middleware that sits between a
user and a cloud scheduler. The prediction engine we propose
can also be used as a gateway for a community of users
interacting with cloud-based systems, because it is scientific
domain independent. Figure 4 shows the architecture of our
system. Following is a listing of the steps taken to handle a
job request coming in to the system.

1) When a job request enters the system, it will start two
independent tasks, one to check whether the job already
has prediction information (Job Execution Environment
Preparation) and the second task to predict the next job
that will be coming after this job request (Job Predictor).

a) If this job is already predicted, then the relevant
details are retrieved and handed over to the cloud
scheduler service.

b) If the job is not predicted, the system will start two
independent parallel tasks.
i) task 1 : hands over the job to the scheduler to

prepare the environment and execute the job

ii) task 2 : will try to find out the reason for system
not being able to predict the job

2) The job prediction component predicts the next expected
job by extracting user patterns from historical informa-
tion, using a Case-based reasoning approach.

3) The prediction component, after receiving a prediction,
notifies the scheduler to prepare the environment for the
predicted job and saves enough data in the system so
that the prepared environment can be retrieved when the
actual job arrives.

1) Case-based Reasoning System: Our system uses Case-
based reasoning (CBR) [34] to store and retrieve similar cases
from the system. The logical reasoning model inside CBR
is closer to how humans use past experiences to face new
tasks. It uses a problem resolutions and a learning process. It
first retrieves similar cases from the knowledge-base and then
reuses the retrieved older cases to find a solution. Adaptation
of a retrieved case to the current problem is the next step. Once
it is adapted, the new case is stored in the system to retrieve
later. Architecture of the CBR system inside our system is
shown in 5.During the retrieval process, mentioned above,
CBR system employs a similarity score to give a value to the
similarity between two cases (discussed in Section IV-A2).
Depending on the score and a given threshold, the system
will retrieve 0 or more cases. This system will minimize
the wrong predictions because if the system cannot find a
similar case with the given similarity threshold, system will
refrain predicting from next jobs. Once a case is selected, out
of the provided solutions, the system will look at the next
jobs associated with the selected case. Based on a probability
model, the highest probable next application of the retrieved
solution is predicted as the next application of the current job.
When the actual job arrives, system saves the actual job as the
next job of the previous job updating the probability values.
For example, if application B and C are executed 3 times and
7 times respectively after application A, then p(B|A) = 0.3
and p(C|A) = 0.7. Then the system will predict application
C as the highest probable application that will be following
application A. If this prediction turns out to be true, compared
to the actual case coming in to the system next, P (C|A)
will increase to 8

11 = 0.73 and p(B|A) will be reduced to
0.27. If the prediction turns out to be wrong, the p(C|A) and
p(B|A) will change to 0.64 and 0.36 respectively, increasing
the probability of application B. Because of the probability
model being used, previous errors will improve the accuracy
of our predictions. In our system, meta-data from a previous
job execution is considered a case. CBR is ideal for our job
prediction algorithm, because it enables to identify prominent
set of parameters to be used and uses the similarity between
these parameters to select the similar cases, yielding best
matches. This section explains the case organization and how
cases are retrieved based on the similarity. This approach is
similar to the approach defined in here [30]. Two memory
organizations of cases are used in our system. In flat memory
organization of cases, all cases are at the same level and

nearest neighbour algorithm will be used to find similar cases.
In structured memory organization, decision trees or B-Trees
are used for case organization. Even though flat memory
organization is always guaranteed to provide the best case
match, it requires more computation time. On the other hand
in complex tree structures, even though less computation time
is required, the best matching case is not guaranteed to be
retrieved. Our CBR system design, shown in Figure5, is based
on the PredCase flow diagram defined in Nassif2010 [30]. A
new job coming in to the system is encapsulated within a
Problem object. These problem objects contain the parameters
to be used during the similarity evaluation phase. Then the
CBR system evaluates the similarity of this case with the
ActualCase objects existing inside the knowledge-base. These
ActualCase objects contain meta-data about the previous job
executions. Since this evaluation happens in the run time,
when a new job is received, the system can suffer from
performance issues if a flat memory hierarchy is used. So it is
important to switch to the structural memory hierarchy, when
the case base grows beyond a certain level. After the similarity
evaluations (explained in section 5.2), CBR system returns a
list of ActualCase objects to the prediction system. Prediction
system, then selects a best case out of the returned cases. The
naive way to select a single case from the return solutions
is to select the case with the highest similarity score. Then
the system looks at the next cases of the most similar case.
Prediction system selects the highest occurring case, from the
next cases, and predicts that as the next case that is coming
from the user, and hands over details about the next case to
Scheduler to prepare itself for the next case. Since we used
username and the parameters that user used previously, as
features during the similarity calculation, we deduce that the
selected case is based on user patterns.

Fig. 5: CBR system (adapted from PredCase flow diagram in
Nassif2010 [30])

2) Similarity Measurement: Each job contains a set of
attributes (user id, application name, data sizes, memory usage,
number of processors, etc.,) to uniquely identify itself. Deter-
mining the similarity between two cases requires comparing
each and every attribute in two given cases. During the case
retrieval phase, similarity between attributes of two cases is

compared to obtain local similarity, which in turn is weighted
to obtain the global similarity measure. The weighting en-
sures the emphasis on correct attributes during the similarity
measurement and heuristics are used to come up with correct
weights. Similarity between two cases A and B is defined as

Sim(A,B) =

n∑
i=0

ωi(aibi)

where,
ai and bi are corresponding attributes from case A and B
sim(aibi) is the local similarity between attributed ai and bi
ωi is the associated weight for the attribute.

The selection of the case depends on this calculated similar-
ity being compared against a given threshold level (T). For a
case to be selected it should have the highest similarity score
with respect to the given Case G, among all the other cases
and this score should be higher than the given threshold. i.e.
a case S is selected iff

∀X 6= S, Sim(X,G) < Sim(S,G)

and

Sim(S,G) > Threshold

Commonly used similarity calculation methods can be
found here [37]. Local similarity calculation is not the same
for all the attributes. During the local similarity score calcu-
lations, values of the attributes, inside cases, can range from
string literals to numeric to decimals. Also the outcome of a
comparison can be discrete or continuous values. For example,
matching of user name is always a true/false answer. But
matching data sizes is not. Out of the job attributes defined
in one of our workloads, we carried out an initial evaluation
to find the most significant attributes that contribute to the
similarity measure. Results of this evaluation helped us to
identify 6 most significant attributes to describe a job in
the system. Starting with random set of weights for these
attributes, the weights were tuned manually to obtain the
best similarity scores. But when we increase the number of
attributes in the job to uniquely represent and distinguish jobs,
we are planning to use machine learning techniques to learn
the weights.

V. EVALUATION

A. Assumptions

We make the following assumptions about the job workload
coming in to the system and the cloud scheduler used to
schedule jobs.

1) The execution of a task completely uses the virtual
machine(s) assigned to the job and no other jobs can
be executed on the same node concurrently.

2) Our framework has unlimited access to the cloud com-
puting provider resources and our system can use any
number of virtual machines at a given point of time.

3) Compared to the task execution time, the resource prepa-
ration time is significant.

User Workflows in the experiment
User 1 Workflow 1, Workflow 2, Workflow 5
User 2 Workflow 2, Workflow 4
User 3 Workflow 2, Workflow 3, Workflow 4

TABLE I: Workflows included inside user experiments

4) The number of unique applications inside the workload
is low compared to the number of total jobs in the
workload

5) The job execution times are known before hand (this
helps to approximate the work-to-overhead ratio).

In our evaluation of the prediction algorithm, based on user
patterns, we focus on the following use cases.

B. Use Cases

We use two workloads to represent the two methods of
job submissions. Individual Jobs Workload: We obtained a
job log [38] containing two years (October ’94 to September
’96) of accounting records produced by the DJM software
running on the 1024-node CM-5 at Lost Alamos National Lab,
listed in Parallel Workload Archive [38], and submitted those
jobs to our prediction system. We used the first 40000 job
submissions which contained 762 unique applications being
invoked. Workflow Use Case: We defined three experiments,
each containing 2-3 workflows, executed by three different
users. Figure 6 shows the workflows used and Table I shows
the workflows contained in the experiments. There were 25
unique applications inside these workflows.

Fig. 6: Workflows Used in Evaluation

We ran these experiments 100 times, for each user. The
workflow simulator we wrote, to facilitate the evaluation, takes
each workflow from the experiment and submits the jobs inside
the workflow to our prediction system. Given the current job,
if the system has predicted this job, then the prediction is
marked as accurate. A wrapper written for the job prediction
system records the accuracy of predictions for each and every
job submitted to the system. It counts the number correct
predictions, up to that point and records that as a percentage,
relative to the total number of jobs, with the job number.

To compare the predictions our system, we also imple-
mented a predictions system based on the service name,
without looking at the user. Services coming after each and
every service are recorded, and when a new service arrives to

the system, the service with maximum occurrence to the new
services, retrieved from earlier cases, is predicted as the next
case.

All the evaluations were run inside a windows box with a
2.0GHz dual-core processor, 4GB memory and on a 64-bit
operating system.

Average Accuracy of Predictions
Figure 7 shows the results of our experiment, when ran

against the individual jobs retrieved from the parallel work-
loads [38]. For this workload, our system has saturated around
78% accurate predictions, while service name based predic-
tions could only saturate around 30% accuracy, making the
predictions of our system close to 2.5 times better than base
case (Figure 11).

Fig. 7: Individual jobs workload

Fig. 8: Workflow workload

Fig. 9: Time saved for single job use case

Fig. 10: Time saved for workflows use case

Fig. 11: Prediction accuracies for use cases

Figure 8 shows the results of our experiment, when ran
against the workflow workload. For this workload, our system
has saturated around 96% accurate predictions, while service
name based predictions could only saturate around 54% mak-
ing the predictions of our system close to 2 times better than
the base case (Figure 11). As can be seen in both the graphs,
it takes certain number of cases to get in to an acceptable
level of prediction accuracy. The upward steep curve shows
the learning period of the system, and once the graph get in
to a horizontal line, the system has learned enough information
to predict the jobs. The number of jobs required to get in to
acceptable level of accuracy is different from one job mix to
the other.

Time Saved Figure 9 and Figure 10 show the total run
time of jobs executed with predictions, with predictions using
service name based predictions and with predictions using user
pattern based predictions. For this experiment it is assumed
that the set-up time for a job is 3 minutes (this is a close
approximation to the average time it takes to reserve compu-
tational resources in Amazon EC2).

Single jobs use case has saved more time because of the
predictions, because the set-up time is significant compared to
the average job execution times. With a prediction accuracy of
78%, our prediction system could reduce the total execution
time by a factor of 2.5. The maximum time for a job is
4870s and 78 seconds for the smallest job with 984 seconds
being the average for jobs inside our workflow use case. When
the system starts learning, it slowly improves the prediction
accuracy saving more time in the scientific experiment. At
the end of the simulation of 100 job runs, our prediction

framework had saved 206 hours in total job execution time.
Figure 11 shows the summary results of this experiment.
For single jobs, which are coming in to a system, user
patterns based system could perform 2.5 times better than the
service name based predictions. For the workflow use case our
proposed system is almost 2 times better.

VI. DISCUSSION AND FUTURE WORK

This paper presents a new framework for efficiently schedul-
ing scientific jobs in to Cloud computing systems, exploiting
the usage patterns embedded inside historical information.
It uses CBR techniques to retrieve user patterns from a
knowledge base.

Initial evaluation results show that the system is efficient
for both individual jobs, with around 78% accuracy, and for
workflow based systems, with around 96% accuracy. The
number of jobs required to get in to the stable level of accuracy
depends the uniqueness of the applications in the workload. If
there are more unique applications in the workload, it will take
more number of cases to get in to the highest level of accuracy,
because of the learning rate. From Figure 3, one can find out
the level of accuracy needed to achieve the expected amount
of time reduction which in turn can be used to find the number
of cases required to get the expected level of accuracy. Also
as shown in Figure 3, the effectiveness of the system depends
on the characteristics of the job mix and the amount of time
reduction needed by a user. For example, we also used HPC2N
and OSC data sets from parallel workloads archive [38] and
we could achieve 90% prediction accuracy within first 100
jobs and this number is improved to 98% with more cases.

This work focuses on efficiently utilizing cloud resources to
minimize scientific job execution. But we plan to improve our
system on following directions to improve the effectiveness
of job executions in clouds. Current similarity measurement
calculations required manual turning of weight assignments.
But we will also evaluate the use of machine learning tech-
niques to classify the cases in the knowledge-base. The trained
classifier will improve the similarity calculation and will in
turn will improve the accuracy of predictions. Second, we
want to use CBR techniques to optimize on the cost, time
and also reliability of executions - we believe that a similar
approach can be used to retrieve previous cases and predict
this quality of service parameters of current cases, using CBR
techniques. Third, we want to extend our work on resource
abstraction layer [39], the job management system for time-
shared systems, to provide a common level of abstraction
to interact with multiple cloud providers - different cloud
providers have their own interfaces to provision computational
resources, move and store data and carry out job executions.
But if a middleware can hide the complexities between these
cloud providers and time-shared resources, then the scheduler
can pick different providers, depending on a given set of
optimization parameters and run jobs on multiple providers,
without worrying about the complexities.

ACKNOWLEDGEMENT

This work is funded in part by NSF CNS 0720580. The
authors would like to thank Dennis Gannon (Microsoft Re-
search), David Leake and Chathura Herath (Indiana Univer-
sity) for their invaluable inputs to this research and Dror
Feitelson for archiving workload logs on parallel machines
[38].

REFERENCES

[1] M. Armbrust et al., “Above the clouds: A berkeley view of cloud
computing,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-28, 2009.

[2] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[3] C. Catlett, “The philosophy of TeraGrid: building an open, extensible,
distributed TeraScale facility,” in ACM International Symposium on
Cluster Computing and the Grid. Published by the IEEE Computer
Society, 2002.

[4] J. S. Chase, D. E. Irwin, L. E. Grit, J. D. Moore, and S. Sprenkle,
“Dynamic virtual clusters in a grid site manager.” in HPDC. IEEE
Computer Society, 2003, pp. 90–103.

[5] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes, “A case for
grid computing on virtual machines,” in ICDCS ’03: Proceedings of
the 23rd International Conference on Distributed Computing Systems.
Washington, DC, USA: IEEE Computer Society, 2003, p. 550.

[6] I. Foster, T. Freeman, K. Keahy, D. Scheftner, B. Sotomayer, and
X. Zhang, “Virtual clusters for grid communities,” in CCGRID ’06:
Proceedings of the Sixth IEEE International Symposium on Cluster
Computing and the Grid. Washington, DC, USA: IEEE Computer
Society, 2006, pp. 513–520.

[7] K. Keahey, T. Freeman, J. Lauret, and D. Olson, “Virtual workspaces for
scientific applications,” Journal of Physics: Conference Series, vol. 78,
p. 012038 (5pp), 2007.

[8] B. Sotomayor, K. Keahey, and I. Foster, “Overhead matters: A model
for virtual resource management,” in VTDC ’06: Proceedings of the
2nd International Workshop on Virtualization Technology in Distributed
Computing. Washington, DC, USA: IEEE Computer Society, 2006,
p. 5.

[9] “Amazon elastic computing cloud,” http://aws.amazon.com/ec2/.
[10] “Windows azure platform,” http://www.microsoft.com/windowsazure/.
[11] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Yous-

eff, and D. Zagorodnov, “The eucalyptus open-source cloud-computing
system,” in Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid-Volume 00. IEEE
Computer Society, 2009, pp. 124–131.

[12] F. Berman et al., “Adaptive computing on the grid using apples,” IEEE
Transactions on Parallel and Distributed Systems, vol. 14, no. 4, pp.
369–382, 2003.

[13] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon,
L. Johnsson, K. Kennedy, C. Kesselman, J. Mellor-Crumme et al.,
“The GrADS project: Software support for high-level grid application
development,” International Journal of High Performance Computing
Applications, vol. 15, no. 4, p. 327, 2001.

[14] R. Buyya, D. Abramson, and J. Giddy, “Nimrod/G: An architecture for a
resource management and scheduling system in a global computational
grid,” in hpc. Published by the IEEE Computer Society, 2000, p. 283.

[15] C. Hoffa, G. Mehta, T. Freeman, E. Deelman, K. Keahey, B. Berriman,
and J. Good, “On the use of cloud computing for scientific workflows,”
eScience, IEEE International Conference on, vol. 0, pp. 640–645, 2008.

[16] K. Keahey, R. Figueiredo, J. Fortes, T. Freeman, and M. Tsugawa,
“Science clouds: Early experiences in cloud computing for scientific
applications,” Cloud Computing and Applications, vol. 2008, 2008.

[17] J. Yu, R. Buyya, and C. K. Tham, “Cost-based scheduling of scientific
workflow application on utility grids,” in E-SCIENCE ’05: Proceedings
of the First International Conference on e-Science and Grid Computing.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 140–147.

[18] E. Deelman, G. Singh, M. Livny, B. Berriman, and J. Good, “The
cost of doing science on the cloud: the montage example,” in SC ’08:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing.
Piscataway, NJ, USA: IEEE Press, 2008, pp. 1–12.

[19] D. J. Abadi, “Data management in the cloud: Limitations and opportu-
nities,” IEEE Data Eng. Bull., vol. 32, pp. 3–12, 2009.

[20] W. Smith, I. Foster, and V. Taylor, “Predicting application run times
using historical information,” in Job Scheduling Strategies for Parallel
Processing. Springer, p. 122.

[21] H. Li, D. Groep, J. Templon, and L. Wolters, “Predicting job start times
on clusters,” in ccgrid. IEEE, 2004, pp. 301–308.

[22] D. Nurmi, J. Brevik, and R. Wolski, “QBETS: Queue bounds estimation
from time series,” in Job Scheduling Strategies for Parallel Processing.
Springer, pp. 76–101.

[23] A. A. Julian, J. Bunn, R. Cavanaugh, F. V. Lingen, M. A. Mehmood,
H. Newman, C. Steenberg, and I. Willers, “Predicting the resource
requirements of a job submission arshadali,” in In Proceedings of the
Conference on Computing in High Energy and Nuclear Physics (CHEP
2004, 2004, p. 273.

[24] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao, “Application-
level scheduling on distributed heterogeneous networks,” in Proceedings
of the 1996 ACM/IEEE conference on Supercomputing (CDROM). IEEE
Computer Society, 1996, p. 39.

[25] A. B. Downey, “Predicting queue times on space-sharing parallel com-
puters,” in IPPS ’97: Proceedings of the 11th International Symposium
on Parallel Processing. Washington, DC, USA: IEEE Computer
Society, 1997, pp. 209–218.

[26] A. Downey, “Using queue time predictions for processor allocation,” in
Job Scheduling Strategies for Parallel Processing, ser. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 1997, vol. 1291, pp.
35–57.

[27] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson,
“Statistics-Driven Workload Modeling for the Cloud,” Technical Re-
port UCB/EECS-2009-160, EECS Department, University of California,
Berkeley, Tech. Rep., 2009.

[28] A. Ganapathi, H. Kuno, U. Dayal, J. Wiener, A. Fox, M. Jordan, and
D. Patterson, “Predicting multiple metrics for queries: Better decisions
enabled by machine learning,” in Proc. IEEE Int. Conf. on Data
Engineering (ICDE), 2009.

[29] H. Li, D. Groep, and L. Wolters, “Efficient response time predictions by
exploiting application and resource state similarities,” in Proceedings of
the 6th IEEE/ACM International Workshop on Grid Computing. IEEE
Computer Society, 2005, pp. 234–241.

[30] L. N. Nassif, J. M. Nogueira, A. Karmouch, M. Ahmed, and F. V.
de Andrade, “Job completion prediction using case-based reasoning for
grid computing environments: Research articles,” Concurr. Comput. :
Pract. Exper., vol. 19, no. 9, pp. 1253–1269, 2007.

[31] A. Ali, A. Anjum, J. Bunn, R. Cavanaugh, F. Van Lingen, R. Mc-
Clatchey, M. Mehmood, H. Newman, C. Steenberg, M. Thomas et al.,
“Predicting the resource requirements of a job submission,” Computing
in High Energy Physics, Interlaken, Switzerland, 2004.

[32] D. Aha, D. Kibler, and M. Albert, “Instance-based learning algorithms,”
Machine learning, vol. 6, no. 1, pp. 37–66, 1991.

[33] D. Goldberg, Genetic Algorithms in Search and Optimization. Addison-
wesley, 1989.

[34] D. B. Leake, Case-Based Reasoning: Experiences, Lessons and Future
Directions. Cambridge, MA, USA: MIT Press, 1996.

[35] S. Matsuoka, N. Sarai, S. Kuratomi, K. Ono, and A. Noma, “Role of
individual ionic current systems in ventricular cells hypothesized by a
model study,” The Japanese journal of physiology, vol. 53, no. 2, pp.
105–123, 2003.

[36] K. Droegemeier, D. Gannon, D. Reed, B. Plale, J. Alameda, T. Baltzer,
K. Brewster, R. Clark, B. Domenico, S. Graves et al., “Service-oriented
environments for dynamically interacting with mesoscale weather,”
Computing in Science & Engineering, vol. 7, no. 6, pp. 12–29, 2005.

[37] A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues,
methodological variations, and system approaches,” AI communications,
vol. 7, no. 1, pp. 39–59, 1994.

[38] D. Feitelson, “Parallel workload archive,”
http://www.cs.huji.ac.il/labs/parallel/workload/.

[39] E. Chinthaka, S. Marru, and B. Plale, “Sigiri: Towards a light-
weight job management system for large scale systems,” School
of Informatics and Computing, Indiana University, Bloomington,
Indiana, Tech. Rep. TR681, 2009, http://www.cs.indiana.edu/cgi-
bin/techreports/TRNNN.cgi?trnum=TR681.

