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Abstract—Three-dimensional electromagnetic methods are
fundamental tools for the analysis and design of high-speed sys-
tems. These methods often generate large systems of equations,
and model order reduction (MOR) methods are used to reduce
such a high complexity. When the geometric dimensions become
electrically large or signal waveform rise times decrease, time
delays must be included in the modeling.
Design space optimization and exploration are usually per-

formed during a typical design process that consequently requires
repeated simulations for different design parameter values. Effi-
cient performing of these design activities calls for parameterized
model order reduction (PMOR) methods, which are able to reduce
large systems of equations with respect to frequency and other
design parameters of the circuit, such as layout or substrate
features.
We propose a novel PMOR method for neutral delayed differ-

ential systems, which is based on an efficient and reliable combi-
nation of univariate model order reduction methods, a procedure
to find scaling and frequency shifting coefficients and positive in-
terpolation schemes. The proposed scaling and frequency shifting
coefficients enhance and improve the modeling capability of stan-
dard positive interpolation schemes and allow accurate modeling
of highly dynamic systems with a limited amount of initial uni-
variate models in the design space. The proposed method is able to
provide parameterized reduced order models passive by construc-
tion over the design space of interest. Pertinent numerical exam-
ples validate the proposed PMOR approach.

Index Terms—Delayed systems, interpolation, parameterized
model order reduction (PMOR), partial element equivalent circuit
method (PEEC).

I. INTRODUCTION

C OMPLEX high-speed systems require 3-D electromag-
netic (EM) methods [1]–[3] as analysis and design tools.

Large systems of equations are usually generated by the use of
these methods, and model order reduction (MOR) techniques
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are crucial to reduce the complexity of EMmodels and the com-
putational cost of the simulations, while retaining the impor-
tant physical features of the original system [4]–[7]. Over re-
cent years, the development of methods to build reduced order
models (ROMs) of EM systems has been intensively investi-
gated, with applications to interconnects, vias, and high-speed
packages [8]–[11]. Among all EM methods, the partial element
equivalent circuit (PEEC) method [2] has been found particu-
larly useful for modeling PCBs, interconnects, and power sys-
tems. The PEECmethod uses a circuit interpretation of the elec-
tric field integral equation (EFIE) [12], and it is especially suit-
able to problems involving both electromagnetic fields and cir-
cuits [2], [13], [14]. PEEC equivalent circuits are usually con-
nected to nonlinear circuit devices such as drivers and receivers
using a time domain circuit simulator (e.g., SPICE [15]). Com-
plex systems can result in PEEC models where the number of
circuit elements can be in the tens of thousands, and therefore
the inclusion of these PEEC models directly into a circuit sim-
ulator may be computationally intractable.
When signal waveform rise times decrease and the corre-

sponding frequency content increases or the geometric dimen-
sions become electrically large, time delays must be taken into
account and included in the modeling. A PEEC formulation
that includes delay elements, called the PEEC method [16],
becomes necessary and leads to systems of neutral delayed
differential equations (NDDEs) [17] with constant coefficients
and constant delay times in the time domain and to complex
algebraic systems of equations with frequency-dependent
matrices in the frequency domain. Simply using quasi-static
PEEC models can result in significant errors and artifacts in the
modeling [18].
Over the years, some techniques for the reduction of NDDE

systems have been proposed [19]–[24]. In [21], an equivalent
first-order system is computed by means of a Taylor expansion,
and then MOR Krylov subspace methods [6], [7] are applied.
The reduction process does not preserve the NDDE formu-
lation. In [24], an equivalent first-order system is computed
using a single-point Taylor expansion [21], and a corresponding
orthogonal projection matrix is computed using a block Arnoldi
algorithm [7]. Then, an orthogonal projection matrix for the
original NDDE system is extracted, and a reduced NDDE
system is obtained. All these previous techniques cannot ef-
ficiently handle the reduction of electrically large structures,
where delays among coupled elements cannot be neglected
or easily approximated by rational basis functions. Recently,
a novel MOR method for NDDE systems with large delays
has been proposed [25]. It is based on an adaptive multipoint
expansion and MOR of equivalent first-order systems [24].
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Traditional MOR techniques perform model reduction only
with respect to frequency. However, during the circuit synthesis
of large-scale digital or analog applications, it is also important
to predict the response of the circuit under study as a function of
design parameters, such as geometrical and substrate features.
A typical design process includes optimization and design space
exploration, and thus requires repeated simulations for different
design parameter values. Such design activities call for parame-
terized model order reduction (PMOR) methods that can reduce
large systems of equations with respect to frequency and other
design parameters of the circuit, such as geometrical layout or
substrate characteristics.
Several PMOR techniques have been proposed over the

years. Concerning rational systems, multiparameter mo-
ment-matching methods presented in [26]–[28] use a subspace
projection approach to provide parameterizedROMs,while sim-
ilar approaches are described in [29]–[31] for NDDE systems.
However, the structure of such methods may present some com-
putational problems, and the resulting reduced models usually
suffer from oversize when the number of moments to match is
high, either because high accuracy (order) is required or because
the number of parameters is large. The selection of the multidi-
mensional expansion points and the number of multiparameter
moments need to be addressed in these methods. The technique
presented in [32] combines traditional passivity-preserving
model order reductionmethods and interpolation schemes based
on a class of positive interpolation operators. A PMOR method
based on a parameterization process of matrices generated by
EM methods and projection subspaces is proposed in [33].
Overall passivity of parameterized ROMs is guaranteed over the
design space of interest in [32] and [33].
This paper proposes a PMOR method for NDDE systems,

which is based on an efficient and reliable combination of
univariate model order reduction methods, a procedure to
find scaling and frequency shifting coefficients and positive
interpolation schemes [34]. The PMOR method proposed in
this paper starts by computing a set of reduced order PEEC
models ( ROMs) using the MOR algorithm [25] for different
design parameters values. We note that the MOR method [25]
is able to perform reduction only with respect to frequency.
Then, a set of scaling and frequency shifting coefficients is
computed for the set of PEEC reduced models, which are
finally interpolated to build a parameterized reduced model. In
[32], a set of reduced models is interpolated to build a param-
eterized reduced model using standard positive interpolation
schemes. The new proposed scaling and frequency shifting
coefficients enhance and improve the modeling capability of
standard positive interpolation schemes [32] and allow accurate
modeling of highly dynamic systems with a limited amount of
initial univariate models in the design space. The new proposed
method does not have to deal with multiparameter moment
computations and related issues. The expansion points are
chosen only along the frequency axis for the ROMs using
an adaptive algorithm [25]. Under the assumptions that the
original PEEC models are passive and the MOR method used
to provide the ROMs is passivity-preserving, the proposed
PMOR method is able to build parameterized reduced models
that are passive over the entire design space of interest.

Fig. 1. Illustration of PEEC circuit electrical quantities for a conductor ele-
mentary cell.

The paper is organized as follows. Section II describes
the modified nodal analysis (MNA) equations of the PEEC
method. Section III describes the proposed PMOR method for
NDDE systems. Finally, some pertinent numerical examples
based on PEEC models validate the proposed technique in
Section IV.

II. PEEC FORMULATION

The PEEC method [2] stems from the integral equation form
of Maxwell’s equations. With respect to other EM methods, it
is worth pointing out its capability to provide a circuit interpre-
tation of the EFIE equation, thus allowing it to handle complex
problems involving both circuits and electromagnetic fields.
In the standard approach, volumes and surfaces are dis-

cretized into elementary regions, hexahedra and patches,
respectively [16] over which the current and charge densities
are expanded into a series of basis functions.
Following the standard Galerkin’s testing procedure, topo-

logical elements, namely nodes and branches, are generated,
and electrical lumped elements are identified modeling both the
magnetic and electric field coupling.
Conductors are modeled by their ohmic resistance, while di-

electrics require modeling the polarization charge due to the di-
electric polarization [35]. Magnetic and electric field coupling
are modeled by partial inductances and coefficients of potential,
respectively.
An example of PEEC circuit for a conductor elementary cell

is illustrated, in the Laplace domain, in Fig. 1, where the current
controlled voltage sources and the charge controlled
current sources model the magnetic and electric field cou-
plings, respectively.
Let us assume that the meshing process of conductors and di-

electrics has generated volume cells where currents flow and
surface cells where charge is located; the resultant number

of elementary cells of conductors and dielectrics is and ,
respectively, and that of electrical nodes is . Furthermore, let
us assume to be interested in generating an admittance repre-
sentation having output currents under voltage
excitation . If the MNA approach [36] is used, the global
number of unknowns is , and an ad-
mittance representation of the PEEC circuit is obtained [25]:

(1a)

(1b)
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where and contains all delays
, which denote the center-to-center delay matrices for

the magnetic and electric field coupling. Since this is an -port
formulation, whereby the only sources are the voltage sources at
the -port nodes, , where . Each delayed
entry of matrices and act as a delay operator for the
corresponding entry of vector . Hence, (1) can be rewritten
in the Laplace domain as

(2)

(3)

(4)

(5)

which corresponds to the admittance transfer function

(6)

The matrices and denote the quasi-static contribution.

III. PARAMETERIZED MODEL ORDER REDUCTION

Considering the influence of the design parameters
such as layout and substrate features, the

MNA formulation (1a)–(1b) becomes

(7a)

(7b)

while (6) becomes

(8)

In this section, we describe a PMOR algorithm that is able to
include, in addition to frequency, design parameters

in the reduced order model. The main objec-
tive of this PMORmethod is to accurately approximate the orig-
inal scalable system (having a high complexity) with a reduced
scalable system (having a low complexity) by capturing the be-
havior of the original systemwith respect to frequency and other
design parameters.
The proposed algorithm guarantees passivity of the parame-

terized reduced models over the entire design space of interest,
under the assumptions that the original PEEC models are pas-
sive and the MOR method used to provide the ROMs is pas-
sivity-preserving. A flowchart that describes the different steps
of the proposed PMOR method is shown in Fig. 2.

A. ROMs

The proposed PMOR technique starts by computing a set of
reduced order models of the PEEC admittancematrix

, called ROMs, using the
MOR method described in [25] for a set of points in the de-
sign space, which we call estimation design space grid. The de-
sign space is considered as the parameter space
without frequency. The parameter space contains all pa-
rameters . If the parameter space is -dimensional, the

Fig. 2. Flowchart of the proposed PMOR method.

design space is -dimensional. Two design space grids
are used in the modeling process: an estimation grid and a val-
idation grid. The first grid is utilized to build the ROMs. The
second grid is utilized to assess the capability of parameterized
reduced models of describing the system under study in a set
of points of the design space previously not used for the con-
struction of the ROMs. To clarify the use of these two design
space grids, we show in Fig. 3 a possible estimation and vali-
dation design space grid in the case of two design parameters

. A ROM is built for each red cross (x) point in
the design space. The set of ROMs is interpolated, as explained
in what follows, to build a parameterized reduced model that is
evaluated and compared with original PEEC models related to
the blue circle (o) design space points. We note that these blue
circle (o) points are not used for the generation of the ROMs.

-dimensional and scattered design space grids can also be
treated by the proposed PMOR technique that does not impose
any constraint on the number of design parameters and the dis-
tribution of ROMs in the design space.

B. Scaling and Frequency Shifting Coefficients
After the computation of the ROMs, the next step is com-

bining them together and building a multivariate representation
. The design space is divided into cells using hyperrect-

angles (regular grids) [37] or simplices (regular and scattered
grids) [38]. We note that the proposed PMOR technique can
handle regular and scattered design space grids.
Once the design space is divided into cells, a local parame-

terized model is associated to every cell that is a subdomain of
the entire design space. We indicate a cell region of the design
space as (shown in Fig. 4) and the corre-
sponding vertices as .
We note that each vertex corresponds to a ROM .

For each cell, an optimization procedure is used to find the
scaling and frequency shifting system coefficients that make
each vertex an accurate approximant of the other cell vertices.
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Fig. 3. An example of estimation and validation design space grid.

Fig. 4. An example of a design space cell .

For each vertex , a set of scaling
and frequency shifting real

coefficients are found, such that

(9)

(10)

This optimization problem can be solved using, for example,
the Matlab [39] routines fmincon and fminsearchbnd with

as an initial guess. These routines are able to impose some
constraints on the optimized coefficients, which is important
to guarantee the passivity of parameterized reduced order
models as explained in what follows. If the response of the
system under modeling needs to be computed in a specific
design space point , a subdomain that contains is to be
found. For each vertex ROM of the found subdomain, the

corresponding sets of scaling and frequency shifting co-
efficients are interpolated in and a
model is built, where
and . Finally, the set of modified ROMs

, is interpolated at an
input–output level as described in [32]. We note that if a
generic ROM has the admittance representation

(11)

then a corresponding scaled and frequency shifted version
has the admittance representation

(12)

with

(13)

The scaling coefficients can be extended to
scaling matrices such that a modified ROM

is obtained with

(14)

where superscript “ ” is the transpose operator. Even if the use
of scaling matrices can provide more flexibility in the optimiza-
tion step, we verified that the use of simple scaling coefficients
leads to good results in terms of accuracy, while making the op-
timization faster and independent from the number of ports. In
the numerical examples, scalar scaling and frequency shifting
coefficients will be used.

C. Multivariate Interpolation

Passivity is crucial when the reduced model is utilized in a
circuit simulator for transient analysis. Passive systems cannot
generate more energy than they absorb through their electrical
ports. When the system is terminated on any arbitrary passive
loads, none of them will cause the system to become unstable. A
linear network described by admittance matrix is passive
if [40]:
1) for all , where “ ” is the complex conju-
gate operator;

2) is analytic in ;
3) is a positive-real matrix, i.e.:

: and any arbitrary vector .
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Similar results are valid for a linear network described by
impedance matrix . The interpolated scaling and fre-
quency shifting real coefficients have to
satisfy the following conditions:

(15a)

(15b)

to preserve the passivity of the corresponding scaled and fre-
quency shifted ROM. If scaling matrices are used in-
stead of scaling coefficients , no particular condition has
to be satisfied by . Multivariate interpolation schemes
based on a class of positive interpolation operators [41] are
used to parameterize . These schemes are able
to guarantee the passivity of each scaled and frequency-shifted
ROM by satisfying the properties (15a)–(15b). The same pos-
itive multivariate interpolation schemes are used to interpolate
the set of modified ROMs
at an input–output level, which results in a parameterized re-
duced model passive over the entire design space.
Multivariate interpolation can be realized by means of tensor

product [42] or tessellation [38] methods. Any interpolation
scheme based on a class of positive interpolation operators can
be used.
In the bivariate case , each interpolated function ,

being in turn , can be written as

(16)

where represents the number of ROMs vertices of a spe-
cific subdomain, and each interpolation kernel is a scalar
function satisfying the following constraints:

(17)

(18)

A possible choice is to select as in piecewise linear inter-
polation.
In the general multivariate case, multivariate interpolation

methods that belong to the general class of positive interpolation
operators can be used, e.g., the piecewise multilinear and mul-
tivariate simplicial methods [37]. We note that the interpolation
kernel functions of these methods only depend on the design
space grid points, and their computation does not require the so-
lution of a linear system to impose an interpolation constraint.
These positive interpolation schemes have already been used
in [32]. In the proposed new PMOR technique, a powerful nov-
elty is introduced by the interpolation process of a set of scaling
and frequency shifting system coefficients, which increase the
modeling capability of the proposed algorithm with respect to
[32], where the interpolation process were only applied to the
ROMs treated as input–output systems.

D. Passivity Preserving Interpolation

Under the assumptions that the original PEEC models are
passive and theMORmethod used to provide the ROMs is pas-
sivity-preserving, the proposed PMOR method is able to build

parameterized reduced models that are passive over the entire
design space of interest.
A scaling coefficient or matrix is applied at the

input–output level of the system, while a frequency shifting
coefficient is a compression or expansion term for the
Laplace variable . Considering admittance and impedance
representations, if satisfy (15a)–(15b), passivity is pre-
served when these coefficients are applied to a passive system.
It is straightforward to prove that if a nonnegative scalar co-
efficient is applied to a passive system, it preserves the three
passivity conditions. A positive frequency shifting coefficient
is a compression or expansion term for the Laplace variable ,
and therefore if a system is passive in the -domain, it is also
passive in a compressed or expanded -domain.
Once a set of scaled and frequency-shifted ROMs

, which are passive, is
built for each cell in the estimation design space grid, the next
step of the proposed PMOR method is focused on combining
together these ROMs by a multivariate interpolation scheme
to obtain a parameterized ROM with overall passivity.
Conditions 1)–2) are preserved in (16) and corresponding
multivariate extensions, as they are weighted sums with real
nonnegative weights of systems respecting these two con-
ditions. Concerning Condition 3), we refer to the following
theorem [43].
Theorem 1: Any nonnegative linear combination of positive

real matrices is a positive real matrix.
Since (16) and the multivariate extensions are weighted sums

with real nonnegative weights of passive systems, condition 3)
is satisfied by construction over the entire design space of in-
terest. We have proven that all the three passivity conditions
for admittance (and impedance) representations are preserved
in our PMOR algorithm.

E. Method Complexity and Parallelization

As shown in Fig. 2, the proposed method is composed of the
following four steps with a related complexity.
1) The construction of the ROMs is performed using the
MOR method [25].

2) The computation of scaling and frequency-shifting coef-
ficients is performed using optimization routines. We re-
call that using scalar scaling and frequency-shifting coeffi-
cients leads to a good accuracy of parameterized ROMs,
while keeping the optimization process computationally
cheap and fast.

3) The multivariate interpolation of scaling and fre-
quency-shifting coefficients uses positive local inter-
polation methods with interpolation kernel functions that
only depend on the estimation grid points.

4) Comments similar to those of the previous point are valid
for the multivariate interpolation of scaled and shifted
ROMs. We recall that the estimation design space grid
is divided into cells using hyperrectangles (regular grids)
[37] or simplices (regular and scattered grids) [38]. Each
cell is defined by a specific number of vertices that are
used to perform interpolation in the cell itself.

All four steps of the proposed technique have a certain degree
of parallelism, as follows.
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Fig. 5. Structure of the three-port microstrip power-divider circuit.

TABLE I
PARAMETERS OF THE THREE-PORT MICROSTRIP POWER-DIVIDER CIRCUIT

Fig. 6. Magnitude of the bivariate ROM of .

1) Since each ROM is independent from the others, the con-
struction of a single ROM can be performed in parallel
with the others.

2) The computation of scaling and frequency-shifting coeffi-
cients can be parallelized cell by cell.

3) A parallelization cell by cell is also feasible for the multi-
variate interpolation of scaling and frequency-shifting co-
efficients.

4) Comments similar to those of the previous point are valid
for the multivariate interpolation of scaled and shifted
ROMs.

IV. NUMERICAL RESULTS

This section presents two numerical examples that validate
the proposed PMOR method. Let us define the weighted RMS-
error as

(19)

Fig. 7. Magnitude of the bivariate ROMs of and (
mm).

TABLE II
(ORDER, DELAYS) OF PEEC MODELS AND ROMS

with

(20)

where and are the number of input and output system
ports, respectively, and is the number of frequency samples.
The worst case RMS error over the validation grid is chosen to
assess the accuracy and the quality of parameterized ROMs

validation grid (21)

(22)

ehavior of the system. and it is used in the numerical examples.
The proposed PMOR algorithm was implemented in Matlab
R2009A [39], and all experiments were carried out onWindows
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Fig. 8. Structure of the three bends.

TABLE III
PARAMETERS OF THE THREE BENDS

Fig. 9. Magnitude of the trivariate ROM of for 2.56
mm (top) and 2.94 mm (bottom).

platform equipped with Intel Core2 Extreme CPU Q9300 2.53
GHz and 8 GB RAM.

Fig. 10. Magnitude of the trivariate ROMs of for
mm, 2.69 mm and for

1.15 mm, mm.

A. Three-Port Microstrip Power-Divider Circuit

A three-port microstrip power-divider circuit [44], [45] has
been modeled in this example. The structure is shown in Fig. 5.
The dimensions of the circuit are [20, 20, 0.5] mm in the
directions, and the width of the microstrips is equal to 0.8 mm.
The relative dielectric constant is equal to . A bivariate
ROM is built as a function of the length in addition to fre-
quency. Their corresponding ranges are shown in Table I.
The PEEC method is used to compute the

matrices in (1a)–(1b) for 11 values of . Then, we have built
reduced models for six values of by means of the MOR
algorithm described in [25]. Table II shows the order and the
number of delays of these PEEC models and corresponding
ROMs.
A bivariate ROM is obtained using the proposed PMOR
method with the piecewise linear interpolation scheme. Fig. 6
shows the magnitude of the parameterized reduced model
of . Fig. 7 shows the magnitude of and

for the length values mm. These
specific values have not been used in the ROMs generation
process; nevertheless, an excellent agreement between reduced
and PEEC models can be observed. The worst case RMS-error
defined in (22) is equal to 0.08. As clearly seen, the parameter-
ized reduced model captures very accurately the b
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TABLE IV
(ORDER, DELAYS) OF PEEC MODELS AND ROMS

B. Three Bends

Three bends over a ground plane with differential ports have
been modeled in this example. The structure is shown in Fig. 8.
The width of the bends and the distance of the bends from the
ground plane are equal to 1 mm. A trivariate ROM is built as
a function of the length and the spacing between the conduc-
tors in addition to frequency. Their corresponding ranges are
shown in Table III.
The PEEC method is used to compute the ma-

trices in (1a)–(1b) over the estimation grid (six values of
and five values of ) and the validation grid (five values of
and four values of ), as shown in Fig. 3. Then, we have built
ROMs in the estimation grid by means of the MOR algorithm
described in [25]. Table IV shows the order and the number of
delays of these 30 PEEC models and corresponding ROMs.
A trivariate ROM is built by means of the presented PMOR
approach with the piecewise multilinear interpolation scheme.
Fig. 9 shows the magnitude of the parameterized reduced model
of for the spacing values mm.
Fig. 10 shows the magnitude of for the length
and spacing values mm, 2.69 mm
and of for the length and spacing values 1.15
mm, mm. Even if these specific and
values have not been used in the ROMs generation process,
the model accurately describes the system under study in these
design space points. The worst case RMS-error defined in (22)
is equal to 0.065. The parameterized reduced model is able to
accurately describe the parameterized behavior of the system.

V. CONCLUSION

We have presented a new PMOR technique applicable to
NDDE systems. It is based on an efficient and reliable combina-
tion of univariate model order reduction methods, a procedure
to find scaling and frequency shifting coefficients and positive
interpolation schemes. An innovative passivity-preserving
interpolation of reduced systems at an input-output level is
proposed, which allows accurately modeling of highly dynamic
systems. The proposed method does not have to deal with
multiparameter moment computation and related issues. The
expansion points are chosen only along the frequency axis
using an adaptive algorithm. Under the assumptions that the
original PEEC models are passive and the MOR method used
to provide the ROMs is passivity-preserving, the proposed
PMOR method is able to build parameterized reduced models
that are passive over the entire design space of interest. Numer-
ical examples have validated the proposed PMOR approach on
practical application cases, showing that it is able to build very
accurate parameterized ROMs of dynamic EM systems.
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