
  

  

Abstract— This paper presents a Fuzzy Wavelet Neural 
Network (FWNN) for identification and control of a dynamic 
plant.  The FWNN is constructed on the basis of fuzzy rules 
that incorporate wavelet functions in their consequent parts. 
The architecture of the control system is presented and the 
parameter update rules of the system are derived. Learning 
rules are based on the gradient decent method and Genetic 
Algorithm (GA). The structure is tested for the identification 
and the control of the dynamic plants commonly used in the 
literature. It is shown that the proposed structure results in a 
better performance despite its smaller parameter space. 

I. INTRODUCTION 
ECENTLY the soft computing methodologies such as     
fuzzy logic, neural networks, genetic algorithms are 

used to solve the control problems of dynamic systems that 
are characterized with uncertainties in terms of structure and 
parameters. These uncertainties cannot adequately be 
described by deterministic models and therefore 
conventional control approaches based on such models are 
unlikely to result in the required performance. Fuzzy 
technology is an effective tool for dealing with complex, 
nonlinear processes that are characterized with ill-defined 
and uncertain factors. The rule base of such fuzzy systems is 
usually created using the knowledge of human experts. 
However, for some complicated processes, this knowledge 
may not be sufficient and several approaches [1,2] have 
been proposed for the generation of the IF-THEN rules. 
Nowadays for this purpose, the use of neural networks 
(NNs) has taken more importance. In this paper the 
combination of fuzzy logic, neural networks and wavelet 
technology are used to solve identification and control of 
dynamic systems.  

Numerous different neural and fuzzy structures are 
proposed for solving identification and control problems [2-
10] and their parameter update algorithms are given. A well 
known structure is the Adaptive Neuro-Fuzzy Inference 
system (ANFIS) [2], another one is known as NEFCON 
(neural fuzzy controller) [3], both being available for 
implementation under MATLAB/SIMULINK. In [4] a 
variable structure system theory based training procedure is 
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proposed and in [5] its use in a neuro-adaptive scheme for 
the control of electrical drives is described and experimental 
results are presented. In [6] and [7] fuzzy neural networks 
are used for direct adaptive control of dynamic plants and 
for robust adaptive control of robot manipulators 
respectively. Some of the neuro-fuzzy structures proposed 
utilize recurrent neural networks. In [8] a recurrent fuzzy 
network is used for nonlinear modelling. In [9] a TSK-type 
recurrent neuro-fuzzy neural network (TRFN) is developed 
and in [10] the use of random set theory in a fuzzy scheme 
for identification of dynamic plants is considered.  

Most NN structures seen in literature use the sigmoid 
activation function in neurons. However, the sigmoid 
function is not orthogonal and its energy is infinite, and this 
leads to a slow convergence speed. A relatively less 
common structure is the one that use wavelet functions. 
Wavelet is local function that has limited duration. A 
wavelet neural network (WNN) has a nonlinear regression 
structure that use basis functions in the hidden layer to 
achieve input-output mappings. The integration of the 
localization properties of wavelets and the learning abilities 
of NN results in the advantages of WNN over NN for 
complex nonlinear system modelling [11,12] and some 
researchers [13-16] have used such structures for solving 
approximation, classification, prediction, and control 
problems.  

A fuzzy wavelet neural network (FWNN) combines 
wavelet theory with fuzzy logic and neural networks.  The 
synthesis of a fuzzy wavelet neural inference system 
includes the determination of the optimal definitions of the 
premise and the consequent part of fuzzy IF-THEN rules. 
Several researchers [17-24] have used a combination of 
fuzzy technology and WNN for solving signal processing 
and control problems. In [17] a fuzzy system with a linear 
combination of basis function is proposed and in [18-20] the 
wavelet network model of a fuzzy inference system is 
proposed. In [18] the membership functions are chosen from 
a family of scaling functions and the fuzzy system is 
developed by using wavelet techniques. A fuzzy wavelet 
network that includes the combination of three subnets: 
pattern recognition subnet, fuzzy reasoning subnet and 
control synthesis subnet is presented in [21]. The use of such 
multilayer structures complicates the architecture of the 
system. A FWNN structure that is constructed on the base of 
a set of fuzzy rules is proposed in [22] and used for the 
approximation nonlinear functions. Other wavelet based 
approaches include FWNN structures developed for control 
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of dynamic plants [23] and for time-series prediction [24]. 
Wavelet transform has the ability to analyze non-

stationary signals to discover their local details. Fuzzy logic 
allows to reduce the complexity of the data and to deal with 
uncertainty. NNs have self-learning capability that increases 
the accuracy of the model. Their combination allows us to 
develop a system with fast learning capability that can 
describe nonlinear systems that are characterized with 
uncertainties. In this paper these methodologies are 
combined to construct a fuzzy wavelet neural inference 
system to solve identification and control problems. In the 
following section, its 7-layer structure is explained. In Sec. 
3, the parameter update rules based on the gradient descent 
method are derived, the GA learning is described. In Sec. 4, 
the simulation studies are presented for both identification 
and control cases. 

II. FUZZY WAVELET NEURAL NETWORK 
Wavelets are defined in the following form 
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In above, )(xjΨ  represents the family of wavelets 

obtained from the single ψ(x) function by dilations and 
translations, where  },...,,{ 21 mjjj aaa=ja  and 

},...,,{b 21 mjjj bb=jb  are the dilation and the translation 

parameters, respectively. },...,,{ 21 mxxx=x are the input 

signals. ψ(x) is localized in both time space and frequency 
space and is called a mother wavelet. 

Wavelet networks include wavelet functions in the 
neurons of the hidden layer of the network. The output of 
WNN is calculated as 
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Here )(xjΨ  is the wavelet function of the j-th unit of the 

hidden layer, wj are weight coefficients between the input 
and the hidden layers, ai  and bj are the parameters of wavelet 
function as described above. WNN has good generalization 
ability, can approximate complex functions to some 
precision very compactly and can be easily trained than 
other networks, such as multilayer perceptrons and radial 
based networks [12,15]. A good initialization of the 
parameters of WNNs enables to obtain fast convergence.  A 
number of methods are proposed in literature for the 
initialization of the wavelets, such as the orthogonal least 
square procedure [12] and the clustering method [15]. An 
optimal initial choice of the dilation and the translation 
parameters of the wavelet increases the training speed and 
results in fast convergence. The approximation and 

convergence properties of WNN are presented in [14]. 
This paper presents a fuzzy wavelet neural network that 

integrates wavelet functions with Takagi-Sugeno-Kang 
(TSK) fuzzy model. The kernel of the fuzzy system is the 
fuzzy knowledge base that consists of the input-output data 
points of the system interpreted into linguistic fuzzy rules. 
The consequent parts of TSK type fuzzy IF-THEN rules are 
represented by either a constant or a function. In most fuzzy 
and neuro-fuzzy models a linear function is used. In the case 
of modeling of complex non-linear processes a high number 
of rules may be required to achieve the desired accuracy. 
Increasing the number of the rules leads to an increase in the 
number of neurons in the hidden layer of the network.  In 
this paper, the use of wavelet (rather than linear) functions 
are proposed to improve the computational power of the 
neuro-fuzzy system.  The rules used thus have the following 
form: 
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In above,  x1, x2, …,xm are the input variables, y1, y2, …, 
yn are the output variables, Aij is a membership function for 
i-th term of the j-th input defined as a Gaussian function. l is  
the number of rules. Conclusion parts of the rules contain 
Mexican Hat wavelet functions. The use of wavelets with 
different dilation and translation values allows us to capture 
different behaviours and the essential features of the 
nonlinear model under these fuzzy rules. The proper fuzzy 
model that is described by the set of IF-THEN rules can be 
obtained by learning the dilation and the translation 
parameters of the conclusion parts and the parameters of the  
membership function of the premise parts. Here, because of 
the use of wavelets, the computational strength and the 
generalization ability of FWNN is improved, and, FWNN 
can describe the nonlinear process with the desired 
accuracy. 

The structure of fuzzy wavelet neural network proposed 
in this paper is depicted in Fig. 1. It includes seven layers. In 
the first layer the number of nodes is equal to the number of 
input signals. These nodes are used for distributing input 
signals. In the second layer each node corresponds to one 
linguistic term. For each input signal entering into the 
system the membership degree to the fuzzy set which that 
input value belongs to is calculated. To describe the 
linguistic terms, the Gaussian membership functions are 
used. 
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In (4) m is the number of external input signals, n is the 
number of fuzzy rules (hidden neurons in third layer), 

ijij σ and c  are the center and the width of the Gaussian 
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membership functions of the j-th term of i-th input variable, 
respectively and μ1j(xi) is the membership function of the i-
th input variable for the j-th term. 

In the third layer the number of nodes correspond to the 
number of rules R1, R2,…,Rn. Each node represents one 
fuzzy rule. Here to calculate the values of the output signals 
of the layer AND (min) operation is used. In below, Π 
represents the min operation. 

 

∏=
i
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These μl(x) signals are the input signals for the next layer, 
which is the consequent layer. It includes n Wavelet 
Functions (WFs). In the fifth layer the output signals of the 
third layer are multiplied by the output signals of the 
wavelet functions. The output of the l-th wavelet is 
calculated as 
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Here 
il
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il a

bx −
=z  and   and ilil ba are the parameters 

of the wavelet function between the i-th (i=1,..,n) input and 
the l-th output of (l=1,..,n) the wavelet.   In the sixth and the 
seventh layers the defuzzification is made to calculate the 
output of the whole network.  In this layer the contribution 
of each wavelet to the output of the FWNN is determined. 
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In above,  yl are the output signals of the wavelet neural 
networks. 

The number of parameters N to be updated in the FWNN 
structure is determined by the number of parameters of the 
Gaussians, the number of parameters of the wavelets and the 
number of weights (w). 

In [17-24], some fuzzy wavelet structures have been 
designed. In this paper, the consequent parts of fuzzy rules 
are computed using formula (6). In contrast to the other 
FWNN structures seen in the literature, in this paper a 
variable z is used in the wavelet, defined as z=(x-b)/a, where 
a and b are the parameters of the wavelet function, and x is 
input signal of the network. That is to say the difference 
between the input signal x and the Mexican-hat wavelet 
centre is calculated. In the existing literature, e.g. [17,22], 
the input signal x is directly used as a parameter  of the 
wavelet. 

In the synthesis of a FWNN, there are two steps; one is 
the decision on its structure, the second is related to finding 
the optimal values of the parameters of FWNN. The former 
can be named as structure learning and the latter as 
parameter learning. The number of rules defines the 
structure of the FWNN.  Here the main problem is the 
determination of the number of fuzzy rules. The relation 
between the input and output data set is described by these 
rules. In this work, a clustering approach is used, the details 
of which will not be given due to lack of space. Each rule 
corresponds to one cluster.  Defining the cluster centers for 
the input data set leads to the definition of the rules for the 
control system. The input data with higher firing levels are 
located near to the cluster centers, the data with low firing 
level are located far from the cluster centre. After defining 
the structure, the learning of the FWNN parameters is 
performed. 
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Fig. 1.  Structure of FWNN 
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III. LEARNING 
In this paper, two different approaches are used for 

updating the parameters of the FWNN, namely a gradient 
based approach and a genetic algorithm based approach. 

A. Gradient Based Approach 
In the case of the identification problem described below, 

a gradient based learning algorithm with adaptive learning 
rate is adopted for parameter updating. The latter guarantees 
the convergence and speeds up the learning of the network. 
In addition, a momentum is used to speed-up the learning 
process. The parameters to be updated are the parameters of 
the membership functions in the second layer of the network 
(cij(t) and σij(t); i=1,..,n,  j=1,..,m) and the parameters of 
wavelets (ail(t), bil(t),wl(t); i=1,..,m,  l=1,..,n) in the 
consequent part. The initial values are generated randomly. 

At the first step, the value of the following cost function is 
calculated. 
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Here O is the number of output signals of the network (in 
our case O=1) and d

iu  and iu  are the desired and the current 
output values of the network, respectively. The parameters 

lw , ila , lb  (i=1,..,m, l=1,..,n) of the wavelet neural 
network and the parameters of the membership functions 

ijij σ and c  (i=1,..,m,  j=1,..,n) of the neuro-fuzzy structure 

are adjusted by using the following formulas. 
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Here γ is the learning rate, λ is the momentum, m is the 
number of input signals of the network (input neurons) and 
n is the number of rules (the hidden neurons).  

The values of derivatives in (9) and (10) can be calculated 
by the following formulas. 
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l=1,..,n, j=1,..,n Using equations (11-14) the derivatives in 
(9) and (10) are calculated and an update of the parameters 
of the FWNN is carried out. 

B. Learning using GA 
When no training data is available or supervised training 

is computationally very demanding GA approach is used. 
Dynamic system control is one such problem. At the same 
time, sometimes the network learning using the gradient 
method for nonlinear processes has “local minima” problem 
and could not find a global optimal solution. Genetic 
Algorithm (GA) is effective optimization technique that can 
be used to improve training of the FWNN and avoid “local 
minima” problem. In the dynamic system control problem 
discussed below, a real coded GA is used for learning, the 
number of chromosomes, which is the population size, being 
generated randomly. These chromosomes consist of genes 
that represent the network parameters, i.e. the parameters of 
the membership functions and the parameters of the 
wavelets of FWNN.  

GA operators are applied for training the parameters of 
the FWNN. The main operations in GA are selection, 
crossover and mutation. The aim of the selection is to give 
more reproductive chances to population members (or 
solutions) that have higher fitness values. Crossover and 
mutation are two main components in the reproduction 
process in which selected pairs mate to produce the next 
generation. The purpose of crossover and mutation is to give 
the next generation of solutions chances to differ from their 
parental solutions.  It gives children chances to differ from 
their parents, and hope that some of the children can be 
closer to the optimal destination than their parents. The 
tournament selection is applied for obtaining of new 
generation. In this method two members of the population 
are selected and their fitness values are compared. The 

1298

Authorized licensed use limited to: ULAKBIM UASL - BOGAZICI UNIVERSITESI. Downloaded on February 19, 2009 at 07:43 from IEEE Xplore.  Restrictions apply.



  

member with the higher fitness is selected for the next 
generation. 

The real coded multipoint crossover operation is used for 
correction of individuals. According to the crossover rate the 
individuals are selected for the crossover operation in order 
to generate the new solution. A high value of crossover rate 
leads to a quick generation of the new solution. The typical 
value of crossover rate is in the interval 0.5-1. After a 
crossover operation two parent members X=(x1 x2 … xn) and 
Y=(y1 y2 … yn) will have the following form. 

)',...,','(' 21 nxxxX =  and  )',...,','(' 21 nyyyY = .  
The crossover operation is performed using the following 
formula. 

)(      );( 11111111
ooonooon yxyyxyxx −+=−+= δδ    (15) 

when F(x1)>F(y1). The σ is changed between 0 and 0.5. 
After crossover operation the mutation operation is 

applied. In this operation, for each gene, a random number is 
generated. If this random number is less than the mutation 
rate, then the corresponding gene is selected for mutation. 
During mutation a small random number, taken from the 
interval [0,1], is added to the selected gene in order to 
determine its new value. 

IV. SIMULATION STUDIES 
In order to evaluate the performance of the proposed 

structure a number of simulation studies are carried out for 
both identification and control purposes, the plant models 
being taken from literature in order to be able to make a 
direct performance comparison. 

A.  Identification performance studies 
The identification problem involves the finding of the 

relation between the input and the output of the system. In 
Fig. 2 the structure of the identification scheme is shown. 
The inputs to the FWNN identifier are the external input 
signals, its one- two-,…, di- step delayed values and the one-
, two-,…,do- step delayed outputs of the plant. Here the 

problem is to find such values of parameters of FWNN that 
by using them in the system for all input values of u(k) the 
difference between plant output y(k) and network output 
yn(k) will be minimum. Here y(k) is plant output, yn(k) is 
output of FWNN system. 

Example 1. As an example the second order nonlinear 
plant that has been used in [25,9] is considered.  

  y(k)=f(y(k-1),y(k-2)y(k-3),u(k),u(k-1))                  (16) 

In above 
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and y(k-1), y(k-2), y(k-3) are one-, two- and three- step 
delayed outputs of the  plant, u(k) and u(k-1) are current and 
one step delayed inputs of the plant. As can be seen, the 
current output of plant depends on previous input and output 
signals. To generate less number of parameters of the 
FWNN, only the current state of system and the control 
signal are fed into the FWNN as inputs. Increasing the 
number of input signals allow to increase the number of 
parameters of network. The FWNN with three fuzzy rules is 
applied for identification of dynamic plant (16). For the 
identification of the plant, the following excitation signal is 
used. 
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The gradient decent algorithm is applied for learning of 
the parameter values of FWNN. The initial values of the 
parameters are generated in the interval [–1, 1]. The training 
is continued for 200 epochs with 1000 time steps in each 
epoch. As a performance criterion the following root-mean-
square-error (RMSE) is used (where K=1000).  
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Fig.2. Identification scheme 
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TABLE I 
SIMULATION RESULTS OF DIFFERENT MODELS  

Models Network 
Parameters 

RMSE 
train test 

RFNN  112 0.0114 0.0575 
RSONFIN [27] 36 0.0248 0.0780 
Feedforward NFS 48 0.0203 0.0521 
TRFN-S [9] 33 0.0084 0.0346 

FWNN 27 0.0282 0.0301 
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As a result of training, three fuzzy rules are generated and 
the parameters of the FWNN are determined. When the 
number of parameters is N=27 and, the value of root mean 
square error (RMSE) of identification obtained after training 
was 0.0282. RMSE value of FWNN for test data was 
0.0301. Fig.3 depicts the evolvement of the RMSE values 
over 200 epochs. Fig.4 compares the actual plant output 
with that of the FWNN identifier. Table 1 compares the 
RMSE values with the other approaches reported in the 
literature, namely Recurrent Fuzzy Neural Network 
(RFNN), RSONFIN [27], feedforward neural fuzzy system 
(NFS) and TRFN-S [9]. 

B.  Control performance studies 
Gradient algorithm can be used for FWNN design when 

input-output training patterns are available then. When 
input-output training patterns aren’t available or expensive 
to collect, another learning algorithm is required [9]. In this 
section, the GA is applied for design of FWNN for control 
purposes.  The structure of the FWNN based control system 
is as shown in Fig. 5. Here y(k) is the output signal of the 
plant, g(k) is the set-point signal, e(k) and e’(k) are the error 
and the change in error, respectively. D represents 
differentiation. Using these signals the learning of the 

parameters of the FWNN structure is carried out in a closed-
loop fashion and thus the IF-THEN rules of the controller is 
generated. The consequent parts of the rules results in the 
control signal to be applied to the plant. 

Example 2. The proposed FWNN structure is used for the 
control of the dynamic described by the following difference 
equation.  
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Three fuzzy rules are used in FWNN structure and 
consequently 27 parameters have to be updated. The initial 
values of the parameters of FWNNs are generated randomly 
in the interval [–10, 10] and a GA based approach is used to 

reach the optimal values. The 50 chromosomes are 
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Fig. 6.  The fitness values on each generation   
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Fig. 5.  Structure of FWNN based control system. 

TABLE II 
SIMULATION RESULTS OF FWNN BASED CONTROL OF DYNAMIC PLANT 

Models Network 
Parameters 

RMSE 
Mean   Best 

ERNN+GA[26] 40 1.504 1.439 
TRFN-G[9] 33 1.086 0.887 
FWNN 27 0.6859 0.5876 
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generated as initial solution. The tournament selection, 
multipoint crossover and mutation operations are applied. 
Crossover rate is taken as 0.8, the probability of mutation is 
taken as 0.05. The training of FWNN system is performed 
for 200 data points. The fitness value is calculated as: 

J=1/( ∑∑
==

−
K

k

ps

i
kyg

1

2

1
))(( ). Here k=1,..,200 data points, 

ps is population size (ps=1,..,50). is Fig. 6 depicts the fitness 
values for each generation and in Fig. 7 the time response 
characteristics of the control system is shown. The best and 
the averaged RMSE values over 200 time steps are given in 
Table 2. This performance is compared with the other 
methods proposed in the literature, namely ERNN with 
Genetic Algorithm (ERNN+GA) [26] and TRFN with 
Genetic learning (TRFN-G) [9].  As can be seen, the RMSE 
value for the FWNN model is less than that of the other 
approaches. 

V. CONCLUSION 
In this paper a fuzzy neural structure that uses wavelet 

functions is proposed for identification and control of 
dynamic plants. The proposed structure incorporates the 
advantages of wavelet function, neural networks and fuzzy 
logic. Using the gradient decent algorithm and GA the 
parameter update rules are derived. Several simulation 
studies are carried out for both identification and control 
purposes. The plant models are taken from the literature to 
enable a direct performance comparison. Simulation results 
demonstrate that Fuzzy Wavelet Neural Network can 
converge faster and is more adaptive to new data. In both the 
identification and the control cases, the performance is much 
better, resulting in smaller RMSE values, despite the smaller 
number of parameters.  
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