
Design and modelling of a high performance
differential bipolar self-timed microprocessor

R. Kelly
L.E.M. Brackenbury

Indexing tevms: SeFtimed systems, Micropipeline, Bipolur technology, Processor pwfortnance, Modelling language Verilog

Abstract: Current interest in self-timed systems is
motivated by the area, power and design effort
required for the global clock of VLSI
synchronous designs. A self-timed datapath,
based on the ARM processor, using
‘micropipeline’ control techniques has been
developed for a newly updated high performance
differential bipolar technology. The paper
describes the architectural model produced to
verify the correctness of the prototype design, and
the use of the model in evaluating and enhancing
the processor performance. Self-timed design
comprises independent blocks whose operation
depends solely on input data and unit availability.
The modelling oi. the dynamic behaviour of
blocks and the control structures required are
presented. These illustrate how easily and well the
self-timed operation is mapped onto the Verilog
modelling language. Benchmark results on the
processor indicate a factor-of-two performance
improvement over a CMOS version. The system
state at a particular instant is difficult to
determine and the effects of interactions between
modules are difficult to quantify. The use of the
model to explore design changes, particularly to
the buffering structures, is presented. This allows
the design to be ‘tuned’ to the technology. It also
enables a better understanding of total system
behaviour.

1 Introduction

Renewed interest in self-timed systems has arisen as the
problems associated with the design of the global clock
used in synchronous systems are becoming severe. Cur-
rently, significant silicon area and design effort are
required for clock generation and distribution to main-
tain skew within acceptable limits. These factors
become progressively more difficult as feature sizes
shrink.

0 IEE, 1997
IEE Proceedings online no. 19971600
Paper first received 24th March and in revised form 18th August 1997
R. Kelly is with ICL (UK) Ltd., Wenlock Way, West Gorton, Manches-
ter M12 5DR, UK
L.E.M. Brackenbury is with the Department of Computer Science, Uni-
versity of Manchester, Oxford Road, Manchester M13 9PL, UK

Self-timed systems comprise independent modules
which communicate when data is ready; there is no glo-
bal clock. As a result, a self-timed design has the
potential for reduced area and power consumption rel-
ative to its synchronous counterpart. Furthermore,
higher performance can also result since synchronous
systems need to be designed for worst-case perform-
ance whereas self-timed designs exhibit average-case
performance.

The framework used for self-timed design is that of
Sutherland’s ‘micropipelines’ [11. This is an elastic,
bounded delay, event driven pipeline where communi-
cation between stages consists of a bundle of data
accompanied by locally produced handshake control
signals which control the flow of data. This approach,
rather than a delay insensitive model, is adopted for its
relative simplicity which minimises power and area.
The feasibility of using this approach for designing a
fully operational self-timed CMOS microprocessor
based on the ARM architecture has already been dem-
onstrated [2]. A follow-on project is aimed at trans-
forming the self-timed CMOS microprocessor,
AMULET1, into the recently updated high perform-
ance differential bipolar technology manufactured by
GEC Plessey Semiconductors (GPS).

The technology transfer would demonstrate the
applicability of a ‘micropipelines’ framework to tech-
nologies other than CMOS and was also expected to
demonstrate a performance improvement due to the
inherently faster speed of the underlying technology.

Due to the prototype nature of the architecture,
design methodology and fabrication process, an essen-
tial stage in the technology transformation was the
development of a model for the self-timed microproces-
sor in the target technology. This would verify that the
proposed design was functionally correct, enable the
design to be ‘tuned’ to the target technology and act as
a tool with which to investigate architectural alterna-
tives.

2 Multilevel differential current mode logic

The target technology is multilevel differential current
mode logic (MDCML) using the newly updated proc-
ess of GPS. It has complimentary inputs and outputs,
allowing common mode noise to be rejected. High
speed results from not saturating transistors and using
signal swings of only 160mV.

The logic is arranged in a current switch tree of up to
three levels and operates from a 3V supply. This
number of levels represents the best compromise
between functionality, area and power [3].

371 IEE Proc.-Comput. Digit Tech, Vol. 144, No 6, November 1997

Fig. 1 shows a 3-input AND gate. The inputs at the
top level, level 3, are compatible with output levels
malting level shifters necessary to drive inputs at levels
1 or 2. One current path always exists between either
the true or the inverse output and ground causing this
output to be pulled low and the other to remain high;
the output pulled low corresponds to the path where all
inputs are at a high level. This means that every input
combination needs to be explicitly defined by the
circuit.

- I

level 1

Gnd
Fig. 1 MDCML 3-input AND gate

Multiple switch levels enable a complex function to
be accommodated within a gate with a single current
source. This includes a 4-10-1 multiplexer, a transpar-
ent latch with reset (this copies the output to input
when its enable is active), or any function of three vari-
ables. The use of differential signals removes the
requirement for inverters but extra silicon area is
required for the differential routing of all signals. Extra
power and area is also required for the level shifters.
Since designing in terms of the highest gate functional-
ity minimises the area, propagation delay and power,
this approach characterises MDCML design at the gate
level.

3 The Verilog modelling language

Verilog [4] is the modelling language adopted by GPS
for its MDCML designs and this section gives an
overview of the features used to model the self-timed
processor.

The processor is defined as a set of hierarchically
instantiated modules. These modules are defined at a
variety of levels, ranging from behavioural descriptions
at the algorithmic and register transfer levels to struc-
tural specifications at the gate level. Twenty-six availa-
ble Verilog primitives (such as and, or etc.) are used to
define the structural models and an example is given in
the following Section.

The syntax of Verilog for behavioural modelling is
similar to that for the ‘C’ programming language.
However, statements can be grouped together in a
sequential or concurrent block. The former is indicated
by the begin and end keywords and statements within
these keywords execute sequentially; control passes out
of the block when the last statement is executed. The
beginning and end of concurrent blocks is indicated by
the fork and join keywords. Statements within these

312

keywords execute in parallel; control passes out of the
block when all statements have executed.

In a self-timed system, there is no clock and actions
are initiated by the occurrence of event(s). The initial
statement, which is executed only once at the start of
simulation time, is used to initialise signals and internal
module variables. Thereafter, the basic Verilog con-
struct used to define the behavioural model of a self-
timed module is one or more

always @ (event(s))
<block statementistatement>

The always @ construct executes the block statement
whenever the positive or negative edge of the specified
event(s) occur. This is of particular use in the MDCML
processor where two-phase signalling is used so that
every transition on a control line signals an event. Pos-
itive and negative edges can be selected for initiating
actions using always @(posedge)/always @(negedge). In
the MDCML processor modelling, they are used within
(the few) modules where the two-phase timing needs to
be converted to four-phase.

always @ indicates an independent flow of activity
enabling the system to be modelled as a set of inde-
pendent, intercommunicating processes. In the self-
timed processor model, all behavioural functionality is
specified within always @ statements, as illustrated in
the code for the signalling protocol in Section 6.

Apart from the always @ timing control, the #<time
units> <statement> is used in the processor model for
local timing within a module. It specifies the time dura-
tion between the activity flow reaching the statement
and the time at which it is executed. A useful feature of
Verilog behavioural modelling is the ability to include
monitoring or error messages for the user. This greatly
adds to the observability of the model and assists with
debugging of the design.

4 Gate modelling

The propagation time of MDCML gates varies accord-
ing to the level at which an input is applied. When typ-
ically loaded, the difference between the top and
bottom level delay is significant. This gives the designer
an additional design parameter in formulating designs.
For example, information can be transmitted on the
lower levels in noncritical paths, or where extra delay is
required to ensure that control signals arrive after valid
data. In a similar way, signals on critical paths or fre-
quently used paths are placed at the highest level to
optimise performance. However, where more than one
input would benefit from level-3 placement, then it is
necessary to consider the expected sequence of signals
to optimise performance.

In implementing a Verilog model for each gate used
in the model, HSPICE circuit simulations were first
run. These used component models based on measure-
ments made of test samples from the prototype line.
The HSPICE simulations were used to establish the
propagation delay at each level, to investigate the effect
of output loading and input drive variations, and to
observe the skew between true and inverse outputs.

The results showed that under all driving conditions,
the observed skew between true and inverse outputs
was negligible. This enabled the Verilog modelling to
be reduced to just defining the operation of the true
phase of a signal.

IEE Proc.-Comput. Digit. Tech., Vol. 144, No. 6, November 1557

The investigation of’ loading and drive effects showed
that output loading dominated. The HSPICE equiva-
lent load which reflects increased propagation delay
due to gate loading was found empirically to be typi-
cally equal to four 11:vel-3 BUFFER loads. This has
been incorporated inta each Verilog gate model. When
loading is taken into account, the propagation differ-
ence between levels is significant, with the typical delay
from level 2 and level 1 being, respectively, 1.5 and 2
times that of the level-3 propagation time.

Twenty structural models have been used for the
gates in the processor and Fig. 2 shows the code for a
two-input AND gate. The MDCML AND gate is mod-
elled using the and (AND) and buf (BUFFER) primi-
tives with user specified delays. Input a is applied at the
top level and input b at level 2.

buf

out bB a and

’timescale lps/lps
module and2 (out, a, b):
’define andZLdelay 263
’define andZBdelay 424

input a, b;
output out;
wire delb;

and #(‘and2A-del.w) gl (out. a, delb) ;
bufX(‘and28-delaf - ‘andZA-delay) 92 (delb, b);

endmodule

Modelling a two-input AND gate Fig.2

The model uses an AND gate having a propagation
delay of 263ps and a BUFFER gate which represents
the additional propagation delay experienced by the
lower level input.

In practice the assign statement is used to replace the
instantiations of (the and and buf) primitives in the
structural models. This increases the simulator per-
formance by directly assigning values to outputs of
combinatorial primitives based on the current values
on the inputs.

5 Control

The protocol uses a iwo-phase handshake signal con-
vention and its operation between two blocks is sum-
marised in Fig. 3. F[Fj-, receiver

a

Ack Req 3- data held stable

f until Ack received
bundling constraint

b
Fig.3 Block communication
a Bundled data model
6 Timing constraints

IEE Proc.-Comput. Digit. Tech. Vol. 144, No. 6, November 1997

Data is accompanied by two control wires and transi-
tions on these indicate events between blocks. Provided
the receiver has acknowledged the receipt of the last
bundle of data, the sender is free to send further data
to the receiver. When valid data is assembled, Req
changes state to inform the receiver that new data is
present. The sender now holds the data lines stable
until the receiver accepts the data and acknowledges
this with an Ack transition. An essential requirement
for the correct operation of the protocol is that, regard-
less of the path taken, valid data arrives prior to the
Request transition at the receiving module; this is
known as the ‘bundling constraint’.

In practice the coordination of activities between and
within many modules of the processor is more complex
than indicated in Fig. 3. The most typical examples in
the design are when senders compete for the use of a
bus, or when there is a choice of control path which is
dependent upon internal conditions, or when a control
transition needs to be converted to a level.

At the gate implementation level, the transition pro-
tocol and the coordination of activities within the proc-
essor require a set of control elements. These are
summarised in Fig. 4 and apart from the XOR gate
need to be user defined.

I

XOR Muller C-Gate I
toggle

+

+

~~- Ack c

select arbiter call
Fig. 4 Transition control elements

Fig.5 Example of use of the control elements

The transition protocol described in Fig. 3 can be
implemented with the 2-input Muller C-gate. This per-

373

forms an AND function of two events (transitions) and
is extensively used in the control. The element contains
storage which is placed at the bottom level so that the
inputs can be placed at levels 2 and 3 to minimise path
delays. The XOR gate is used to merge events as its
output changes every time an input transition occurs. It
can be used when inputs are guaranteed not to be
simultaneous. The TOGGLE element steers an input
transition alternatively to the two outputs; a positive
input transition causes a transition on the ‘dot’ output
while negative input transitions drive the ‘blank’ out-
put. A TOGGLE is frequently used in conjunction with
a Muller C-gate and an XOR gate to coiivert each
input transition to a positive pulse which can be used
to enable a transparent latch, as shown in Fig. 5 . The
transition on Req is converted to a positive pulse on
the XOR output whose width is equal to the propaga-
tion delay through the XOR and TOGGLE elements.

The SELECT element directs the input transition to
the output selected by the control input sel. It is used
where there is a choice of actions dependent on internal
conditions. The remaining two elements are used where
it is necessary to synchronise activity within the proces-
sor. The ARBITER selects between one of two asyn-
chronous (transition) inputs. If it is unable to choose,
because both arrived simultaneously, then neither is
selected until the resulting metastability is resolved. The
CALL element is used where two mutually exclusive
sources request access to the same module. Since the
ARBITER outputs are mutually exclusive, the ARBI-
TER is normally used in conjunction with the CALL
element. The input selected by the ARBITER is passed
to the CALL element and is used to control any multi-
plexer selection while the CALL element issues a Req
to the receiving module.

The more complex control elements, namely the
TOGGLE, SELECT, ARBITER and CALL blocks,
can be constructed from a combination of simpler
structures comprising transparent latches, XOR gates,
Muller C-gates and in the case of the ARBITER a
comparator. Fig. 6 of the CALL element illustrates the
typical complexity of these control structures

I I

D1

I
R2 L I

Fig.6 CALL element

The allocation of inputs to the different gate levels is
performed on the basis of the expected sequence of sig-
nals. In Fig. 6, the incoming transition request R1 or
R2 will always precede the acknowledgement Ack from
the called module. Thus the later event, Ack, is placed
to propagate through the top level of the XOR and
Muller C-gates to minimise the time to generate the
done transition (D1 or D2). At a higher level, it is
advantageous to connect the most frequently occurring
calling source to R1 since the propagation delay to the
Request transition (Req) to the called module is less

374

than for R2. Similar considerations determine input
allocations in the other elements.

Apart from the XOR gate, the control elements are
modelled behaviourally based upon their constituent
transistor composition and the allocation of input sig-
nals to levels.

Self-timing encourages a modular design style where
the design is partitioned into independent, concurrent
blocks. This approach has also been adopted for the
processor timing and control. In the MDCML proces-
sor, control comprises approximately one-third of the
overall design and is partitioned into several modules
which reflect the organisation of the major data blocks
within the processor. Control modules are defined at
the gate level using the control elements and conven-
tional gates previously described. Programmable logic
arrays are also used in many places to convert a set of
input signals to the form required by a data block.

6 Modelling data blocks

The modelling of the dynamic behaviour of the data
blocks of Fig. 3 is given in Fig. 7. All control signals
are assumed to be initially at a low level. A time delay
of one unit is used to ensure that the sender’s Request
line occurs after valid data is placed on the bus. The
handshaking is initiated by the Req of the first data
sent. Thereafter Req and Ack alternate.

sender.. . receiver.

initial

begin

prepare-initial-data;

#1 R e q = 1;

end

always @ (A c k)

begin

always @ (Req)

begin

prepare-new-data; consume-data-value;

#1 Req = -Req; A c k = -Ack;

end; end;
Fig.7 Dynamic block behuviour

Consumption of data in the receiver normally
involves capturing the data in its input register when
this register becomes free. Newly prepared data in the
sender is usually valid once the sender loads its output
register. Its output register is released once the Ack sig-
nal arrives from the receiver. It should be noted that
both blocks operate at their natural rate when data is
available. This is another advantage of a self-timed sys-
tem over a clocked design.

A self-timed approach encourages modularity in
design and concurrent operation. The block structure
outlined in Figs. 3 and 7 lends itself to a ‘micropipe-
line’ implementation where the design is partitioned
into pipeline register stages, termed event registers,
without or with intervening combinatorial logic, Fig. 8.
In the former case, which shows a 4-stage FIFO buffer,
the data is accompanied by the Request and Acknowl-
edge signals while in the latter case, the Request signal
needs to be delayed until the data output from the
combinatorial logic is valid. In practice this delay is
usually best implemented by an additional data bit
which experiences more propagation and line delay
through the combinatorial logic than any other bit.

The event register comprises transition latches. A
transition on Rin is a request to capture the input data

IEE Proc.-Comput. Digit. Tech., Vol. 144, No. 6, November 1997

while a transition on ,\out signifies that the held data is
no longer required and the Register is free to enter the
transparent or pass state.

event event event event
register register register register

event
register

a
event

register

I I /- I I

b
Fig. 8 Micropipeline structure
a Without processing
b With intervening processing

32-bit event registe1 s are used extensively throughout
the self-timed MDCML design. They provide the basic
mechanism by which blocks are connected and also (as
FIFOs) provide buffering between blocks to even out
the flow of data. In the CMOS AMULET1 design,
event registers are implemented using conventional
transparent latches with control logic added to convert
the input control edges to levels which clock the latch
in the normal way. ‘This was chosen in preference to
the Capture-Pass transition latch on the basis of both
speed and area [5].

However, in bipolar technology, the structure of the
MDCML gate leads to an efficient and direct imple-
mentation of a transi tion-controlled storage element in
a single 4-to-1 multiplexer gate, Fig. 9a.

cap pass

_t
pass

a b
Fig. 9
a Logic
6 Symbol

Capture-pass storuge element in MDCML

The data inputs to the multiplexer are placed at the
top level with the control signals, Capture and Pass,
placed on the lower levels of the gate. This assignment
of signals, with control placed at lower levels than the
data, is used throughout the MDCML design to pro-
vide an inbuilt timing margin in order to meet the bun-
dling constraint. Capture and Pass signals alternate.
When the Capture and Pass states are the same the ele-
ment is transparent, while it stores data when they are
not equal. To provide the event register of Fig. 8, a

IEE Proc -Comput Digit Tech, Vol 144, No 6 , November 1997

Muller C-gate needs to be included with the storage
elements as shown in Fig. 10.

Fig. 10 Event register

The Muller C-gate only generates an output transi-
tion when a new request is present and the succeeding
stage has accepted the currently held data. The timing
to meet the bundling constraint is inherent in the struc-
ture, being provided by the propagation delay of the
Muller C-gate. If Rin and Din arrive simultaneously
and the event register is free to capture this data, the
data immediately passes through to Dout on the fastest
propagation path since the register is in the transparent
state. The capture transition is then delayed by the
Muller C-gate guaranteeing the capture of correct data
in all circumstances and that Dout precedes Rout.

When Aout is generated, it returns the register to the
pass state allowing Din to pass to Dout. Even if a new
request is waiting on the input at this time, Capture is
again delayed by the Muller C-gate so that the output
bundling constraint is met. Since the bundle timing can
be smaller when Aout is returned, Aout is placed on
level 2 of the Muller C-gate.

In practice, further timing margin at the bundled
interfaces is included as the Capture and Pass signals
for a 32-bit register require buffering.

pass=l;

always 0 (in)

if (pass) #(‘inpout) out=in;

always @ (Rin)

if (pass)
fork

(‘ Din-Dout) out=in;
#(’Rin-Rout) ROUt=-ROUt;

#(‘Rin-Ain) Ain=-Ain;

pass=O;

join

always @ (Aout)
begin

pass=l;
if (Rin!=Aout)
fork

(’Aout-Dout) out=in;
#(‘Aout-Ain) Ah=-Ain;

#(’Aout-Rout) Rout=-Rout;

pass=O;
join

e lse #(‘Aout-Dout) out-in;
end

Fig. 11 Functional codefor the event register

375

Fig. 11 shows the operational part of the behavioural
model for an event register based on the underlying
MDCML transistor structure. Because the relative
arrival of Rin and Aout is unknown, an internal varia-
ble pass is required to indicate the pasdcapture state of
the register. It is assumed to be initialised to ‘1’ (trans-
parent). The time delays (#) used are specified before
initialisation and define the delays between inputs and
outputs. These have been derived from HSPICE circuit
simulation of the structure and show an in-built bun-
dling margin of 1.211s at the output interface.

The code illustrates the use of the always @, fork and
join constructs to support independent and parallel
activity within the module. These are used in a similar
way in the behavioural modelling of the combinatorial
logic blocks between event registers. These logic blocks
are usually substantial, e.g. a multiplier, an address
incrementer, an ALU, etc., and tend to be written at
the algorithmic level. Although no detail is implied in
this model about the underlying gate structure, this is
usually known and used to define the block operation
time.

7 Self-timed ARM architecture

The Advanced RISC Machine (ARM) microprocessor
has a 32-bit loadistore RISC architecture with a three-
address register-oriented instruction set [6]. The highest
level of design of the MDCML self-timed ARM closely
follows that of the AMULET1 and the processor
organisation is shown in Fig. 12

address
interface
7
1

execui
unit

data
i n t e r f f

register bank

instr.
decode

Fi 9.1 2 Asynchronous processor organisation

Four main units of the processor can be identified in
Fig. 12: the register bank, the execution unit, the
address interface and the data interface.

The execute pipeline comprises the register bank fol-
lowed by the execution unit. The register bank contains
the processor’s general purpose and status registers. In
addition, the register bank incorporates a lock FIFO
[7]; this detects data dependencies and prevents a regis-
ter from being read if it awaits an update by a previous
instruction. It also enables read and write operations to
proceed asynchronously and concurrently without the
need to arbitrate.

The execute unit contains the processor’s computa-
tional logic. It comprises a multiplier, shifter and arith-
metic and logic unit (ALU). Normally, instructions
read one or two operands from the register bank.
These pass to the multiplier which performs a bypass
operation or an autonomous 2-bits-at-a-time multipli-
cation forming partial sum and partial carry outputs
for the ALU. The shifter is connected to the B bus
allowing a register bank operand to be shifted. The
ALU performs all other logical and arithmetic opera-
tions; its adder is a ripple carry adder with data-
dependent completion signalled when the carry propa-
gation has ceased. The ALU result is normally written
back to the register bank via the write bus.

The interface between the external memory system
and the processor consists of the address and data
interfaces. The former handles all addresses sent to
memory. It also generates addresses for the autono-
mous instruction prefetching and the multiple load and
store orders. The values of the program counter are
kept in a FIFO buffer (PC pipe) within the address
interface and its current value is available to the rest of
the system as a general purpose register.

Data to and from the memory passes through the
data interface. Incoming instructions are stored in the
Ipipe with any immediate value extracted by the imm.
extr. block. Incoming data is manipulated as required
by the data in block before being passed to the register
bank. Data to be written to memory passes to the data
out block which comprises a FIFO buffer and byte rep-
lication logic. Data written to memory needs to be syn-
chronised with the address and control information in
the address interface before the request is sent to the
memory as a single bundle.

,

rite
ata

=j==r22 control

write bus
Fig. 13 Block organisation of execute pipeline

8 Architectural modelling

As an aid to developing a full model of the processor,
the four units were individually designed down to the
RTL level. These were then behaviourally modelled in

IEE Pvoc -Comput Digit Tech, Vol 144, No 6, November 1997 316

terms of their constituent blocks and tested. As an
example, Fig. 13 shows the main control and data
blocks of the execute pipeline.

Shaded blocks represent event registers. Each data
block has an associated control block. The primary
decode block decodes the instruction and this is then
appropriately latched together with the value of PC.
The accessing of the register bank now proceeds in par-
allel with the decoding required for the later parts of
the execution. Although event registers are placed in
parallel in Fig. 13, they operate independently with
synchronisation only performed between the control
block and the data to which it is applied. Thus control
2 coordinates with the multiplier and shifter data and
control 3 with the ALU data.

The individual unit is defined as a single module with
an inputloutput signal interface which connects it to
the other units of the processor and to the processor
inputioutput pads. The unit module invokes a hierar-
chy of module calls to the blocks of the unit, typically
to a depth of three. Each hierarchical level contains
instantiations of the primitive gates and control ele-
ments for local timirig and control. The unit module
calls its associated control blocks and for large units
calls a module which in turn contains calls to all the
datapath modules including any event registers. As pre-
viously stated, the bottom level description for control
modules is normally in terms of primitive gates and
control elements while the bottom level for data mod-
ules is usually behavioural. Modules are linked through
the hierarchical levels by their input/output interface.

Although traditionally associated with synchronous
systems, Verilog proved to be a supportive environ-
ment for the modelling and testing of modules and
units of the self-timed MDCML design. The modular
hierarchical structure of Verilog is well matched to the
modelling of a self,.timed system comprising many
inter-communicating independent modules, and the
self-timed operation maps well onto its control con-
structs. In particular, a high degree of concurrency is
supported by the fork and join compound statements
which allows nondeterministic ordering of the notion-
ally parallel execution of individual statements. In
addition, the always @ construct mapped well onto the
transition signal protocol enabling many threads of
execution to be simultaneously active throughout the
model.

Verilog also enables code to assist with fault finding
to be included in the modules. In particular, a bundle
checker has been used on data buses to check that
there is a safe margin (typically Ins with this technol-
ogy) between the Request In transition and the data
arriving; this has enabled modules with insufficient tol-
erance to be identified and modified.

In general the units yielded a higher individual per-
formance than their CMOS counterparts due to their
higher inherent speed. However, in the places where
advantage is taken ol' the CMOS technology to imple-
ment functions such as a barrel shifter, or a wide
wired-OR, both of which can be implemented in princi-
ple in a single stage using pass transistors, then
MDCML technology is at a disadvantage because con-
ventional gates have lo be used. This is apparent in the
MDCML ALU when: although the datapath operation
is faster, the formaticin of the zero condition flag from
the result slows the overall operatioil time down as it
requires a multistage gate network to implement the
32-bit wide NOR function.

IEE Proc.-Comput. Digit. Tech, Vol. 144, No 6 , November 1997

control

address

write data

interrupts W-Rq

The complete processor model consists of a single
module which instantiates the major functional units.
The processor is itself contained within a module which
also consists of a simple memory management unit
(MMU) and an external memory which supports the
transition signalling protocol. The connection to the
external environment is shown in Fig. 14.

) I I t . I 1 I
I external;

) MMU I devices;
I ' I

I

-

read data

R-Ack
memory

On initialisation, the memory model is loaded with
the Verilog equivalent of the ARM instructions to be
run. Following Reset, the processor self-starts by fetch-
ing and executing the instruction at line 0 in memory.

The self-timed MDCML processor model comprising
a source file of over 100 Kbytes was tested by running
the validation suite of test programs produced and
used by Advanced RISC Machines (ARM) Limited for
their synchronous processors. Confidence in the cor-
rectness of the model was achieved when all internal
tests and the test suite passed.

The performance of the model was assessed by run-
ning the Dhrystone benchmark [8]. This does not com-
pute anything meaningful but is syntactically and
semantically correct. Furthermore it has a representa-
tive mix of instruction types which include a typical
mixture of operator types, operand types and operand
locations. Its results are dependent on factors such as
compiler influence, the timing measurement method
and cache interaction which makes comparisons
between different processors difficult. However, it pro-
vides a useful metric for the relative evaluation of
design alternatives on the MDCML processor and also
enables a comparison with the CMOS AMULET1
design.

The benchmark yielded a figure of 43 500 Dhrystones
per second for the processor based on a 5ns external
memory and typical figures for the underlying trench-
isolated 1 . 2 ~ bipolar technology. Since the compara-
ble figure for the l p n AMULET1 design is 20500
Dhrystones per second [9], this leads to the expectation
that an MDCML processor will exhibit at least a factor
of two improvement in performance over a comparable
CMOS design.

9 Performance investigations

The effect that the interaction of the many intercom-
municating self-timed modules of the system has on the
overall performance is not well understood. This makes
it difficult to predict the effectiveness of possible design
changes. The processor model is a valuable tool in
assisting the exploration of the dynamic behaviour of
the system and enabling the assessment of design
changes.

311

In order to gain a better understanding of the factors
influencing the performance and their contribution to
the efficiency, various aspects of the MDCML proces-
sor were examined.

9.7 Effect of nonsymmetrical propagation
delay
Changing the assignment of input levels of control ele-
ments alters the system timing. To assess this, inputs
were swapped on the XOR and Muller C-gates; these
dominate the control elements used. The XOR gate
generates an output event for every input event and in
the original benchmark run, the input that changes
most is assigned to the top (fastest) gate level. In the
Muller C-gate, an output event is only generated when
both input events have arrived leading to the placement
of the input event which arrives later the most often
being placed on the fastest gate level.

Swapping the inputs on the XOR and rerunning the
benchmark had only a small effect on the overall per-
formance but did indicate that it was slightly more ben-
eficial to connect the fastest gate level to the most
active input (as might be expected). Swapping the
inputs on the Muller C-gates, however, caused the sys-
tem performance to drop off by 3% illustrating the
contribution that the differing propagation delay of the
gate makes when it causes the initiation of an action to
be delayed.

9.2 Block processing performance
To investigate the effect that different, substantial
blocks operating on each instruction have on the over-
all performance, the times through the register bank
and the ALU, which are both on the datapath and the
primary decode PLA, which is in the control section,
were individually varied. The results are shown in
Fig. 15; the solid markers indicate the original block
operation time.

48 000

46 000
U)

U)

S

.
g 44000
c
U

42 000

40 000 I I I I I

0 2 4 6 8 10

processing delay time, ns
Fig. 15
0 ALU
0 register read access
A decodc PLA

Dfirysronr prrforinunce versus block i i m ~

The results indicate that both modules on the datap-
ath can be considered to be on the critical path since an
increase in block time from their nominal time
degrades the overall performance. By comparison, the
performance of the primary decode PLA is approxi-
mately constant over the block delay range and it can
therefore be assumed that its operation is overlapped

378

with the activity of the slower datapath elements. The
graphs show that for the blocks considered, design
effort to reduce the ALU time will make the greatest
contribution to the overall performance.

9.3 Pipeline occupancy efficiency
Following the AMULET1 design, it was felt that some
of the pipelines were longer than necessary. This led to
inefficiency in the use of silicon area and in the time to
progress data down the pipe since the pipe was often
empty or only partially full. The lengths of some of the
internal processor pipelines are fixed, since they per-
form a particular function or are used to prevent
potential deadlock situations. For example, the PC
pipe in the address interface must be two stages long.
The five-stage instruction FIFO pipeline in the data
interface must be three stages longer than the PC pipe
to prevent a complex deadlock state [5] . Also, the mem-
ory control pipe in the data interface must be the same
length as the instruction FIFO pipeline.

The operation of four remaining pipelines have been
examined. These are the ALU and memory lock
FIFOS in the register bank, used for storing the write
(destination) register addresses of ALU result values or
loaded memory values (respectively), the immediate
field extraction pipe in the data interface, used for
holding immediate operand values obtained from the
instruction, and the write data buffer in the data inter-
face which holds data values for transfer to memory;
the only constraint on length is that the immediate field
extraction pipe must contain at least one stage for cor-
rect system operation.

0 1 2 3

ALU lock FIFO

92

0 1 2 3 4
memory lock FIFO

54
34

10
I

0 1 2
immediate field extraction unit

88

0 1 2 3
write data buffering

Fig. 16 Pipeline occupancy

The information regarding the dynamic operation of
each of the FIFO buffering pipelines used throughout
the design has been monitored by writing a Verilog sys-

IEE PIOC -Coniput Digit Tech , Vol 144, No 6 November 1997

tem instrumentation function. This pipeline occupancy
monitor tool was connected to the external request and
acknowledge signals of the pipelines under investiga-
tion while the benchmark program was executed. The
monitor provides an indication of when valid data is
held in each stage of the pipeline to which it is
attached. The results for the original benchmark tests,
which used the same pipeline lengths as those in AMU-
LET1, are displayed in Fig. 16.

For each of the pipelines, the fraction of the total
simulation time that 1 he pipeline occupancy is a partic-
ular value is shown. For example, the ALU lock FIFO
comprises three stages; for 89% of the total time the
FIFO is empty and it contains one item for 10% of the
time (rounding error’; account for the remaining 1%).
The results suggest that the ALU lock FIFO, memory
lock FIFO and write data buffer pipelines are too long
and could be reduced to contain only 1 stage (or possi-
bly removed altogether). The immediate field extraction
pipe appears to be thl: correct length.

The investigation was extended by modifying the
length of each of the pipelines, in isolation, and noting
the effect of rerunning the benchmark. These results
are shown in Figs. i7 and 18 the ‘*’ in each graph
shows the original pipe length.

0 1 2 3 4 5 0 1 2 3 4 5

stages in Fiipeline stages in pipeline
a h - -

Fig. 17
(I ALU lock FIFO
h Memory lock FIFO

PerJosmunce versls pipeline length

44 000 r

42000 L-
0 1 2 3 4 5 0 1 2 3 4 5

a b
stages in pipeline

Perjosmance vessus pipeline length

stages in pipeline

Fig. 18
a Immediate field extraction pipe
b Write data buffering

These results indicate that on the MDCML proces-
sor, the ALU lock FIFO should be shortened to one
stage, the memory lock FIFO should be shortened to
three stages, the imm1:diate field extraction pipe should
be shortened to one stage and the write data buffer
should contain only one stage. When simultaneously
incorporated into the processor and the benchmark
again executed, the r4:sulting performance is measured
at 44045 Dhrystones per second. The increase in per-
formance (1.25%) is approximately equal to the sum of
the performance incr1:ases when the best case of each
individual pipeline griiph is considered separately.

Since the area occupied by an MDCML design is
larger than its CM013 counterpart, the saving in area
resulting from reducing pipe lengths is of greater signif-
icance in this design than the modest performance gain.

IEE Pror.-Comput Digit. Tech, Vol. 144, N o 6. November 1997

9.4 Single-port register bank operation
Considerations concerning the area of an MDCML
design mean that an area-speed compromise may be
required if an entire processor is to be integrated in a
single chip using this technology and a minimum fea-
ture size of 1 . 2 ~ .

Significant area can be saved by adopting a single
port for the read operand in the register bank rather
than the dual-access bank which is standard on ARM
microprocessors; two operand instructions would then
require sequential accesses to the bank.

Rerunning the benchmark with a single port read
facility reveals a 7% loss of performance. Most of this
loss could be recouped by directly forwarding the ALU
result to the output of the register bank. Alternatively,
Fig. 15 shows that improving the performance of the
ALU would be sufficient to maintain the performance
at the dual-port level. This latter improvement would
be relatively easy as the current design uses a simple
ripple technique in the adder.

9.5 Summary
Of the features examined, no single feature appears to
dominate the performance. Furthermore, relatively
large changes to the hardware seem to have only a rel-
atively small effect on performance.These results illus-
trate that it is difficult to relate the features of an
architecture comprising many self-timed blocks to the
performance measured or to predict the effect of design
changes on the performance. The model is a valuable
tool in allowing the design to be optimised to the tech-
nology and to measure the effect of changes to the
design.

An understanding of total system operation in a
large, complex self-timed design is at an early stage and
clearly requires significant further research. Models
such as the self- timed MDCML processor and the
tools that can be constructed in Verilog will assist in
such an investigation.

10 Conclusions

A model of a self-timed bipolar ARM processor has
been developed and implemented in Verilog as a set of
hierarchical intercommunicating self-timed control and
data modules. The model incorporates an additional
design parameter due to the nonsymmetrical propaga-
tion delay of the gates; this affects the modelling pro-
duced at all levels. The self-timed behaviour has been
found to map well onto the structures provided by the
Verilog language. This has also enabled checking and
monitoring tools to be incorporated to assist with the
debugging of the model.

The correct functioning of such a model gives confi-
dence in the prototype design and provides a valuable
tool for investigating performance. The model indicates
that the performance should be higher than that for a
comparable CMOS design with a factor of two
expected. The design changes proposed, particularly to
optimise pipeline lengths, enable the design to be
‘tuned’ to the technology to enhance performance as
well as reducing silicon area.

11 Acknowledgements

The work described in this paper was carried out as
part of the Transforming Architectural Models (TAM-
ARM) project funded within the Design Automation

379

section of the DTUSERC Advanced Technology Pro-
gramme and the authors are grateful for this support.

The authors are also grateful for material support in
various forms from their TAM-ARM partners,
Advanced RISC Machines Limited and GEC Plessey
Semiconductors. They would also like to thank past
and present members of the AMULET research group
in the Computer Science Department of the University
of Manchester for many stimulating discussions.

12 References

1 SUTHERLAND. I.E.: ‘Microoioelines’. Commun. ACM. 1989.
I I

32, (6), pp. 720-738
2 FURBER, S.B., DAY, P., GARSIDE, J.D., PAVER, N.C., and

WOODS. J.V.: ‘AMULET1 : a microoioelined ARM’. Proceed-
ings of IEEE Computer conference (CompCon’94), San Fran-
cisco, USA, March 1994, pp. 476-485

3 GEC-Plessey Semiconductors: ‘Differential logic design manual’
(FAB 4)’. 1.0 Edition, July 1988

4 Cadence Design Systems Inc.: ‘Verilog-XL reference manual’. 1
& 2, 1992

5 PAVER, N.C.: ‘The design and implementation of an asy-
chronous microprocessor’. PhD thesis, University of Manchester,
1994

6 Advanced RISC Machines (ARM) Ltd.: ‘ARM6 macrocell
datasheet’ (Cambridge England, May 1992)

7 PAVER, N.C., DAY, P., FURBER, S.B., GARSIDE, J.D., and
WOODS, J.V.: ‘Register locking in an asynchronous microproc-
essor’. Proceedings of ICCD’92, October 1992, pp. 351-355

8 WEICKER, R.P.: ‘Dhrystone: a synthetic systems programming
benchmark’, Commun. ACM, 1984, 27, (lo), pp. 1013-1030

9 FURBER, S.B., DAY, P., GARSIDE, J.D., PAVER, N.C.,
TEMPLE, S., and WOODS, J.V.: ‘The design and evaluation of
an asynchronous microprocessor’. Proceedings of ICCD’94, Octo-
ber 1994, pp. 217-220

380 IEE Proc.-Comput. Digit. Tech.. Vol. 144, No. 6, November 1997

