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One example of semistructured data sources is the World Wide Web (WWW).
In the semistructured world, the individual schema contained in each object has
replaced the external schema of the data. An immediate implication on data
mining is that it has to deal with both data and schemas. This requires the
data generalization to trace the role of objects and handle structural irregularity,
arbitrary nesting of ordered and unordered types, and cyclic object references. We
introduce the framework of is-part-of association patterns to address the issue.
We show applications of mining is-part-of association patterns in several disparate
domains.

1 Introduction

1.1 Motwation

As the amount of data available on-line grows rapidly, we find that more and
more of the data are semistructured. Semistructured data arise when the
source does not impose a rigid structure such as the Web and when data are
combined from several heterogeneous sources such as a data warehouse. See,
for example, 1815 for motivation and the workshop 2° for some recent works.
Semistructured data have two essential features:

Structure.  Semistructured data do have structures. Figure 1
shows a segment of semistructured movie objects maintained by IMDb
(http://us.imdb.com). Each circle plus the text inside it represents an ob-
ject, e.g., a HTML subdocument, and its identifier, e.g., the URL. The arrows
and their labels represent object references and their roles. Object references
can be cyclic, ordered, and up to an arbitrary level. Object references and
their labels, often identifiable by special tags or a grammar, are important
structural information used by semistructured query languages (e.g., ©15). A
recent review has revealed that nearly always, references to important objects
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Figure 1. A segment of the internet movie database

are tagged rather than in the form of free-running text 8.

Irregularity of structure. Semistructured data have no fixed schema or
object class; instead, every object contains its own schema, 1.e., self-describing.
This semistructured nature provides the flexibility needed in a heterogeneous,
dynamic environment !°: the director/actor information may be found in
several heterogeneous sources on the Web, movies in different categories or
actors playing different roles may have different structures, standards and
features of movies may be added and deleted, etc. As a consequence, the user
is not expected to know all the details of the schema, and queries over the
schema are as important as standard queries over the data.

These features have important implications on a data mining task. The
structural feature implies that the mining task can focus on the labeled object
references but needs to handle structural features like ordering, nesting, and
cyclicity. The structural irregularity is more influential: the mining task has
to deal with both objects and the meaning or role of objects.

Other sources of semistructured data are SGML, BibTex or LaTeX files,
electronic shopping transactions, scientific databases, libraries of programs,
production schedules, and more generally, digital libraries. In such a broad
range of applications, partial orderings among objects are common and typical
orderings are important knowledge about the data. This is illustrated in the
following running example.

Example 1.1 Five transactions are recorded in an electronic shopping appli-
cation: &t1, &t2, &t3, &t4, &15, as defined in Figure 2. &a, &c, &e are identi-

fiers for subtransactions, and Photo, Pizza, Paint, Floor, Wall, Furniture
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Figure 2. The OEM graph for an electronic shopping database

are items or services requested. A circled node unorders its subnodes, whereas
a squared node orders its subnodes in the order shown. For example, &1 re-
quests that services &a, Paint, Furniture be done sequentially and that
Photo taking be done either before or after all these, where identifier &a rep-
resents two unordered services Floor and Wall. Constraints like these are
typically captured by on-line form-filling. Interestingly, transactions &t1 and
&13 share the following similarity: &a precedes Furniture, and Photo either
precedes or follows both, written as {< &a, Furniture >, Photo}. Finding
this similarity requires ignoring the difference of identifiers &c¢ and &e at in-
termediate levels. In the real world, each service can be further described by
information like category, special offer; type of payment, and site/provider
information, and similarities could exist at such levels.

1.2 New requirements for generalizing data

Semistructured data, formally defined in Section 2, are really an is-part-of
hierarchy (in fact, a graph) in which subobjects (at a lower level) are compo-
nents of a superobject (at a higher level). Very often, objects share similarities
at low levels, though not at high levels. This is in contrast with the is-a hier-
archy (i.e., a concept hierarchy) in '1:1¢ where similarities tend to be shared at
higher levels for more general concepts. A more important difference is that
generalizing data in an ¢s-part-of hierarchy needs to trace the roles or labels
followed. For semistructured data, tracing the roles of objects is necessary
because no external schema is provided for this information. Generalization
in an is-part-of hierarchy also needs to deal with arbitrary nesting of ordered
and unordered types, and cyclic object references. Finally, an is-part-of hier-
archy 1s likely to be very large because it is the actual data, not knowledge of
the data.
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1.8  Related work

Since 3, most research on association rules has focused on improving the speed

of the algorithm, see '? for a list, and several have enlarged the application
domain >1911L1316,17 = Al of these dealt with either flat files or tables over
fixed schemas. Using an is-a hierarchy has led to interesting results %1116:18
but offered little for an is-part-of hierarchy as desired for semistructured data.
Research on semistructured data, on the other hand, mainly dealt with mod-
eling, searching, structure extracting, and information exchanging 11520, 19
classified semistructured documents into predefined types using the vector
space model. We considered association, not classification, and treated struc-
tural properties such as nesting/ordering/referencing, which are ignored by
any vector space model, as the first-class citizen. This also distinguishes our
approach from information retrieval where a document is treated as a set of
keywords.

We study the problem of mining association patterns from semistructured
data, called is-part-of association patterns. We formally define the problem in
Section 2. Section 3 highlights applications of the problem. Section 4 presents
an algorithm. Section 5 concludes the paper.

2 The Problem

2.1 Data representation

We adopt the Object Exchange Model (OEM) for semistructured data used in
21615 In OEM, (a) every object o is identified by an identifier &o; (b) the
role of an object is described by a label; (c¢) the value of an object is either
an altomic quantity, or a bag of subobjects {l; : &o1,...,lx : &og}, or a list
of subobjects < Iy : &oy,...,ly : &or >, where &o; is an object identifier
and [; is the label of &o0;. As usual, the order of subobjects in a bag does
not matter, but it does in a list, and repeating of subobjects is allowed in
a bag or a list. val(&o) denotes the value of the object with identifier &o.
A main feature of OEM is that it is self-describing: each object contains its
own schema Iy, ..., [ for subobjects. Table 1 shows the OEM in Example 1.1
in which Floor, Wall, Paint, Furniture, Photo, Pizza are atomic quantities.
Labels not used in that example.

OEM can be represented by a labeled, directed, and possibly cyclic multi-
graph. FEach node represents an object identifier. There is an edge (&o, &0;)
labeled I; if subobject {; : &o; belongs to val(&o). For a bag val(&o), the
node for &o is circled and subnodes of &o; are unordered. For a list val(&o),
the node for &o is squared and subnodes of &o; are ordered. Figure 2 shows
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Table 1. The OEM for an electronic shopping database

transactions subtransactions
val(&tl) = {Photo, &c} | val(&a) = {Floor, Wall}
val(&t2) = {Pizza, &e} | val(&c) =< &a, Paint, Furniture >
val(&t3) = {Photo, &e} | val(&e) =< &a, Furniture, Furniture >
val(&td) = {Pizza}
(&25)

val(&t5) = {Photo}

the OEM graph for the data in Example 1.1.

2.2 Data generalization

Informally speaking, a generalization is a piece of partial information about
an object, and an association pattern is a generalization frequently shared by
objects. We can define a generalization of an object as a result of dropping
subobjects and recursively generalizing the remaining subobjects. However,
for the sake of integration with the algorithm in Section 4, we take a “con-
structive” approach that defines a generalization in terms of “smallest” gener-
alizations. The idea is to “glue” reference paths of several descendant objects
into a reference tree for representing a generalization. We formalize this idea
below.

Reference-paths. Consider a simple node path &o,vq,...,v, (i.e., in
which only the last node v, can repeat) in the OEM graph G. A reference-path
starting at &o has the form [&o, 11, v]", ... l,,vi*]. Each [; is a label on edge
(vi_1,v;) (treating &o as vg), and each superscript j; specifies an occurrence
of subobject [; : v; in val(vi_l): If v, repeats v,_;, called the ith ancestor
of v,, vin is replaced with Ans!". The special identifier Ans; is the alias of
the ¢th ancestor v,_;, and we will explain the reason for introducing Ans;
in Section 2.3. A reference-path starting at &o contains all the information
about how an occurrence of descendant v,, is nested within object &o, and the
sequence of labels Iy, ..., 1, explains the role of v,, as a descendant of object
&o.

Reference-trees. Several reference-paths define a reference-tree. For
reference-paths pq, ..., p; starting at &o, where no p; is a prefix of another
pj, the reference-tree defined by sequence pi,...,pp is the “prefix tree” of
these reference-paths obtained by “gluing” together common prefixes as much
as possible such that p; 1s the ¢th root-to-leaf path in the left-to-right order.
p1 ... pi denotes the resulting reference-tree. Consider the following reference-
paths in Figure 2:
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Figure 3. Reference-trees

p2 = [&t1,1, &e, |, Furniture] pr = [&t2,1, &e, 1, Furniture?]

ps = [&tl1,1, &e, 1, &a] ps = [&t2,1, &e, 1, &a]

pe = [&t2,1, &e, 1, Furniturel] po = [&t2,1, &e, 1, &a,l, Floor]

pro = [&i2,1, &e, 1, &a,l, Wall],
where [ 1s an universal label. The superscripts of Furniture in pg and pr
denote the two occurrences of subobject { : Furniture in val(&e). All occur-
rence numbers for non-repeating subobjects are omitted. Figure 3 shows six
reference-trees psp2, psps, pspspr, PaP1oPsP7, P7PsPs, and papspio-

Generalizations. As far as generalizing an object is concerned, iden-
tifiers at non-leaf nodes in a reference-tree are not important. The term
generalization refers to a reference-tree with all identifiers at non-leaf nodes
ignored. The generalization represented by a reference-tree with subtrees
$1,...,8; labeled Iy, ... I is written in the nested form {l; : g1,...,lx : g}
for unordered subtrees s;’s, or < l; : g1,...,lp : gx > for ordered sub-
trees s;’s, where g¢;’s are (recursively) generalizations for subtrees s;’s. For
example, in Figure 3, reference-tree pgopiopspr represents generalization {<
Floor,Wall}, Furniture, Furniture >}. Note that any object identifier &o
and its value val(&o) are generalizations.

2.8 The interestingness measure

Weaker than. Some generalizations are more “informative” than oth-
ers. This is compared by the“weaker than” relation below. (i-basis) An
identifier (including Ans;) is weaker than itself. (ii-subbag) Generalization
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{lh g1,y - gp} is weaker than generalization {l) : g,...,l; : g;} if each
g; 1s weaker than some g}l such that I; = l}, and j; 1s distinct for distinct

i. (ili-sublist) Generalization < 1 : g1,...,{, : gp > is weaker than general-
ization < Iy @ gi,...,l; : g5 > if each g; is weaker than some g} such that
li =1, and ji1 < ... < jp. (iv-expansion) Generalization {/1 : g1,...,0 : g}
or <ly:g1,...,0p : gp > 1s weaker than an identifier &o if it is weaker than
val(&o).

In words, g is weaker than ¢’ if all information in g can be found
in ¢’. Therefore, an object &o has generalization ¢ if and only if g is
weaker than &o. For example, {< {Floor, Wall}, Furniture, Furniture >},
{< &a, Furniture >}, {< {Floor}, Furniture, Furniture >} all are weaker
than {< &a, Furniture, Furniture >}, which is weaker than &2 and &t3.
Indeed, &t2 and &t3 share all the above generalizations.

Handling cyclic generalizations. We now can explain the “magic”
of using special identifiers Ans; in a cyclic reference-path. Consider the two
cyclic generalizations (a) and (b) in Figure 4. Intuitively, (a) is “weaker than”
(b) because all information in the former are found in the latter (identifiers at
non-leaf nodes are not important). Thanks to the alias Anss, this is indeed
recognized in their tree representations (a’) and (b’). If the original iden-
tifiers &a and &y were used instead of Anss in (a’) and (b’), the “weaker
than” relationship would not be found due to condition (i) of “weaker than”.
Replacing an identifier &o in a generalization g with any other generalization

N A A A

Anc3 Anc3

@ (b) @) ®)

Figure 4. (a,b) using Ans;, (a',b’) not using Ans;

weaker than &o always yields a generalization weaker than g. By considering
only generalizations that are not weaker than any other generalizations, we
can focus on generalizations containing identifiers at highest possible levels.
This motivates the mining problem below.

Definition 2.1 (Mining is-part-of association patterns) Consider the
input given by an OEM graph ¢, a minimum support MINISUP, and a collec-
tion of nodes in G called transactions. The support of a generalization g is the
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number of transactions &t such that g is weaker than &t. g is frequent if the
support of g is not less than MINISUP. g is mazimally frequent if g 1s frequent
and is not weaker than any other frequent generalization. g is a is-part-of
association pattern or simply pattern if g 1s maximally frequent. The mining
problem is to find all patterns.

Example 2.1 Consider the OEM graph in Figure 2 with &t1, ..., &b being
transactions. Generalization {< &a, Furniture >} has support 3 because
it is weaker than &t1,&12,&t3. {Photo} also has support 3. Therefore,
if MINISUP is 60%, i.e., 3, {< &a, Furniture >} and {Photo} are fre-
quent. Of course, any other generalization weaker than {< &a, Furniture >}
are also frequent but not maximally frequent. One can verify that {<
&a, Furniture >} and {Photo} are the only maximally frequent general-
izations, that is, patterns.

3 Applications

The following list gives a taste of the application of the proposed mining
problem.

Electronic shopping. Example 1.1 shows one way of discovering elec-
tronic shopping patterns, i.e., by modeling partially ordered services as
semistructured data and discovering typical partial orderings. The manager
can use such patterns to organize service chains more effectively. We can also
discover customers’ interests and access patterns, as described below.

Interests/access patterns on WWW. Detecting user’s interests and
browsing patterns on the Web can help organize Web pages and attract more
businesses. This can be modeled as mining is-part-of association patterns
from a collection of hyperlinked Web pages that were accessed. Each page is
identified by its URL and represented by a node in the OEM graph, and each
transaction corresponds to the entry page of a browsing session. By labeling
pages with either topics or site information, is-part-of association patterns
capture either user’s interests or access patterns.

Event and causality analysis. Example 1.1 is a special case of a broad
range of applications such as job scheduling, dependency discovery, workflow
and process management, resource management and discovery, and medical
diagnosis. In such applications, an object represents either an atomic or com-
plex event (e.g., a transaction, a production schedule, a bill-of-materials, a
history of symptoms and diseases, etc), and an is-part-of association pattern
is a regularity about how events are typically composed and how subevents
are dependent on each other.
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Schema discovery. Very often, most schemas, though not all, are typical
to objects representing similar concepts. Discovering typical schemas can help
specify queries and guide browsing '%2°. Another motivation for discovering
typical schemas is to build a structured layer above a less structured one,
thus provide the benefits of standard methods '. Within our framework, each
is-part-of association pattern is a typical schema if identifiers at leaf nodes are
considered matching any identifiers in the data.

Classification of chemicals/proteins/living things. Chemical in-
formation systems organize chemical compound files into semistructured
trees in which further information about each fragment occurs at each
successively lower level.  Classification of chemical structures is based
on typical fragments in such trees. Protein structure classification
also depends critically on identifying structural similarity (see CATH at
http://www.biochem.ucl.ac.uk/bsm/cath/, for example). In biology, deter-
mining phylogenetic relationships is based on nested sets of derived characters
(apomorphies) shared by lineages 7. Mining is-part-of association patterns is
the core of these tasks.

Text clustering and searching. The organizational and topical struc-
tures within a text document are usually ignored in information retrieval. In
the semistructured view of documents, a subdocument is labeled by its topic,
and keywords are atomic objects. An is-part-of association pattern for such
documents contains frequently co-occurred keywords grouped according to
topics. Using such topic-based associations, the search for IBM catalog prices
for personal computers will not return things such as an advertisement for
an “I Bought Mac” T-shirt and the VLDB96 home page. This approach is
attractive in that the topical structure is contained in the data itself, not from
the background knowledge.

4 The Algorithm

In this section, we describe an algorithm for mining is-part-of association pat-
terns. We do not assume that the OEM graph G fits in memory. An important
property of our algorithm is to traverse simple paths of G in the depth-first
manner. Since several supernodes may reference the same subnode, nodes ad-
Jjacent in the depth-first order are not guaranteed to be on the same disk page.
To reduce disk access, frequently referenced nodes, i.e., those with a large in-
degree and at lower levels, should be stored in memory, and infrequently
referenced nodes stored on disk. However, the exact implementation on disk
is transparent to our algorithm. To avoid repeatedly traversing subgraphs
caused by multiple edges between two nodes (recall that G is a multi-graph),
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we assume that G contains at most one edge between two nodes and that
one set of labels, denoted L(w, z), is associated with each edge (w, z). The
information stored at a node w includes L(w,z) and the list of pointers to
z for all subnodes z of w. Therefore, for a simple path vy,...,v, in G, the
cross product L(vy, va) X ...x L(vn_1, vy) gives all possible sequences of labels
traversed by following the path.

Each k-generalization, 1.e., a generalization having & leaf nodes, is rep-
resented by a reference-tree constructed by k reference-paths of the form
[&t,ly,vi, ... 1, vi"], where &t is a transaction. If we replace &t in all
such paths with the generic transaction, denoted T, we still can construct all
generalizations constructed before, but we only need to keep one reference-
path [T,{,vt, ... Ly, vin] for all [&t, 11, v]t, ... 1,,vi"] that differ only in
the starting transaction &t. From now on, we assume that this replacement
is made. This is analogous to * where there is no provision to distinguish
supporting transactions for each frequent 1-itemset.

Like Apriori 4, we “grow” a frequent k-generalization using two frequent
(k—1)-generalizations contained in the k-generalization. Let Fj, denote the set
of frequent k-generalizations. We use p; ...p; for both the k-generalization
and the reference-tree constructed by reference-paths pi,...,pr. A superset
of Fy,, called k-candidates, is computed as follows:

Theorem 4.1 Let p; denote reference-paths. Every frequent k-generalization
p1...pp in Py is constructed by two frequent (k — 1)-generalizations
PL-- Pk—2Pk—1 and p1...pg_apk in Fi_1.

Since a generalization does not contain the node information necessary for
constructing larger generalizations, the construction in Theorem 4.1 should be
from reference-trees to reference-trees. In fact, we will keep all reference-trees
representing a generalization in Fy because we do not know in advance which
one will “grow bigger”.

The outline of the algorithm: the algorithm has three phases. In Phase
I, Iy is computed by one pass over transactions. In Phase II, in each pass
over transactions Fj is computed from Fj_;. Heuristics play an essential
role to prune the search space. In Phase III, all non-maximally frequent
generalizations are removed.

4.1 Phase I: Computing Iy

Consider a reference-path [Ty, v{l, .y I, vin]. All the information of the
1-generalization represented by the reference-path is coded by the tuple
(I, 71, lno1, Tae1, ln, vn), called the schema of the path, where 1;’s denote
the types of nodes v;’s, which are 0 for bag and 1 for list. (7, is implied by v,,,

‘ﬁnal: submitted to World Scientific on February 7, 2001 10




so not included.) For example, [T,{, &e, !, &a] and [T,1, &e,(, &a] both repre-
sent the same 1-generalization {{ :< [ : &a >} (recall that &e and &e have list
type). Therefore, the support of 1-generalizations should be associated with

the schema of a reference-path, written sup(l1,71,...,lh—1,Tn—1,ln, vpn), de-
fined as the number of transactions in G from which there is a reference-path
with schema (I1, 71, ..., ln_1, Tn—1,1ln, vn).

We compute the support of 1-generalizations as follows. For each trans-
action &t, we depth-first traverse simple paths originating at &t. On vis-

iting a node w,, if v1,...,v, are the non-transaction nodes on the current
path with types 7,..., 7, we increase all sup(ly,7,...,lh—1,Tn-1,ln,vpn)
by 1 if not increased for &t, where ({1,...,l;) is in the cross product

L(&t,v1) X L{vi,ve) X ... X L{vy_1,v,). (The cross product accounts all
labels on each edge (v;—1,v;).) If v, does not repeat on the current path,
we visit all subnodes of v, in the depth-first manner, regardless of whether
visited before (from other supernodes). If v, repeats on the current path, the
traversal of all descendants of v, is pruned.

Table 2. Computing support of 1-generalizations

Support &il &il, &i2 &il, &i2, &is i1, &i2, &i3, &id &il, &i2, &i3, &i4, &i5
sup(l, &) 1 1 1 1 1
sup(l, &e) 0 1 2 2 2
sup(l, 1,1, &a) 1 2 3 3 3
sup(l,1,1,1,1, Floor) 1 2 B B B
sup(l,1,1,1,1, Wall) 1 2 3 3 3
sup(l, 1,1, Paint) 1 1 1 1 1
sup(l, 1,1, Furniture) 1 2 B B B
sup(l, Photo) 1 1 2 2 3
sup(l, Pizza) 0 1 1 2 2

Example 4.1 Consider Example 1.1. The last column of Table 2 gives the
support of 1-generalizations. Refer to Figure 2. For example, the traversal for
&t visits &tl, &e, &a, Floor, Wall, Paint, Furniture in order and computes
the support as in the second column. Subsequently, the traversal for &t2
changes the support to those in the third column. The last column shows the
final values of support after all transactions are considered. Even though we
have considered the transactions in the order shown, the last column does not
depend on such an order.

F consists of all reference-paths whose schemas have the minimum support.
To find Fy, we depth-first traverse simple paths originating at each transaction
&t. Suppose that vy,...,v, are the non-transaction nodes on the current
path, with types 7, ..., 7. For each ({1,...,1,) € L(&t,v1) x L(v1,v3) ... X
L(vp—1,vn) such that sup(ly,71,... . lh—1,Th-1,ln,vn) > MINISUP, if v,
is identical to vy, _;, all reference-paths [T,ly,v]*, ... l,, Ans]"] are added to
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Fy; otherwise, all reference-paths [T, 11, v{l, <o 1y, vin] are added to Fy. Note
that Fy contains all reference-trees for each frequent 1-generalization.

4.2 Phase II: Computing Fy

The search space. We propose the (k — 1)-search trie, denoted TIj;_q, to
store Fy_q. Ilx_1 is a tree of maximal depth & — 1 such that each non-root
node represents two things: (a) the frequent reference-path stored at the node
and (b) the frequent reference-tree py ...p; where py,..., p; are the reference-
paths stored on the path from the root of II;_; to the node. For1 < j < k—1,
F; is then the set of reference-trees pi...p; in (b). Each pair p1...ps_opr—1
and pi ...pgp—apr are represented by two sibling leaf nodes at level £ — 1 in
T —1 (with the root at level 0). To start with, II; has one leaf node for each
reference-path in F1.

/[\ n‘/LZ\‘=3
. - . — =L L
_— T

Figure 5. II; — level 7 and above

Generate candidates. To generate k-candidates from I;_y, for every
pair p1 ...pr—2pk—1 and py ...pg_opg represented by sibling leaf nodes { and
', respectively, if none of pr_1 and pi is a prefix of the other, we create a
new child for [ to represent the k-candidate py ...pg_spr_1pk; the new child
is a copy of pg. This operation is called extending [ by I’. For example,
Figure 5 shows I, I, II3 for three reference-paths pq, pa, ps, assuming that
all generalizations are frequent.

Compute support. We compute the support of k-candidates in one pass
over all transactions. For each transaction &t, we read the defining hierarchy
of &t into memory and depth-first traverse all paths in [Ty starting at the root.
Suppose that p1,...,p; are the reference-paths on the current path of II;. If
j = k and generalization p; ...pg is weaker than &t, we increase the support
at the leaf node representing p1...px. If j < k and p;...p; is not weaker
than &, the traversal into the subtree below can be pruned. This pruning is
similar to the hash-tree in * used for computing support of itemsets, except
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that we hash a reference-path, not an item, at at time, our hash is collision-
free. After all transactions are read, we delete all leaf nodes at level & in Il
having support less than the minimum support.

4.8 Pruning the search space

The above candidate generation suffers from constructing too many reference-
trees. Two factors contribute to this. Consider the subnodes of a node in a
reference-tree. First, different numberings of repeating subnodes, such as
Dot Dol l s v® and 12 vl 1 w1 ¢ v?, are considered independently,
even though they make no difference in the generalization constructed. The
second numbering is natural because it uses consecutive numbers 1, 2, 3, .. . for
repeating subnodes. Second, different orderings of unordered subnodes, such
asl vl {aul l:v3and {:ul,l: v, 103, are considered independently, even
though such orderings are not important. The second ordering is lexicographic,
defined as the order of tuples (/,v,) for subnodes of the form [ : v'.

The 1dea of pruning the search space is to focus on the natural numbering
of repeating subnodes and the lexicographic ordering of subnodes, as defined
by canonical reference-trees below. A node in a reference-tree is lexicographic
if the ordering of its subnodes (if any) is lexicographic unless the node is a
squared node. A node in a reference-tree is natural if the numbering of its
repeating subnodes (if any) is natural. A reference-tree is lexicographic (nat-
ural, resp) if every node is lexicographic (natural, resp). A reference-tree is
canonical if 1t is both lexicographic and natural. Testing these properties is
straightforward. Since every reference-tree represents the same generaliza-
tion as some canonical reference-tree, it suffices to construct only canonical
reference-trees. However, life is not as straightforward as it sounds: Theo-

- b h
a
EES a= at 1= 2t 1= a=

(&) P11 P> B P1 P3 > P11 P> P3

Figure 6. Construct canonical pjp2ps using non-canonical pjps

rem 4.1 requires some non-canonical reference-trees to be constructed. This
is shown in Figure 6, where constructing canonical pypaps, 1.e., by extending
p1p2 by p1ps, requires constructing non-canonical p;ps first (whose number-
ing is non-natural). On the other hand, extending a non-canonical py ...pg_1
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always generates a non-canonical p; ...p; because of the non-canonical prefix
P1-..pr—1. For the same reason, the result p; ...pg cannot generate larger
canonical reference-trees.

Pruning 1 py...pg_opg—1 is extended by pi...pg_apr only if
P1-..Pr—2Pk—1 18 canonical and the result p; ...pg_1pg 18 lexicographic.
Pruning 2 After considering all extensions in Il;_1, leaf nodes at level k£ —1
for non-canonical reference-trees can be pruned.

Pruning 3 If p; ...pg_1 is extended into a frequent k-candidate, py ...pg_1
can be pruned.

In fact, p1...pg—1 1s weaker than the frequent k-candidate generated
(thus, non-maximally frequent) and is not useful once becoming a non-leaf
node in II;. Following Prunings 2 and 3, we revise F}; to be the set of reference-
trees represented by unpruned leaf nodes at level j in Iy, where j < k.
Therefore, Phase III below only needs to examine reference-trees represented
by unpruned leaf nodes in Ij.

Table 3. F;
reference-trees [ supporting transactions | generalizations represented canonical
Fy
p1 : [T,1, Photo] &1, &13, &i5 Photo)
po [T, 1, &c, I, Furniture] &1, &i2, &i3 < Furniture >J
p3 [T, 1, &c, I, &a] &1, &i2, &i3 < &a >7
pa : [T, 1, &c, 1, &a,l, Floor] &1, &i2, &i3 < {Floor} >J
py : [T, 1, &c, 1, &a, I, Wall] &A1, &2, &i3 < AWall} >)
pg : [T, 1, &e, I, Furniturel] &tl, &2, &13 {< Furniture >}
p7 : [T, 1, &e, I, Furniture?] &11, &12, &13 < Furmiture >} no
ps : [T, 1, &e, 1, &a] &1, &i2, &i3 < &a >F
pg [T, 1, &e, 1, &a,l, Floor] &1, &i2, &i3 < {Floor} >)
pig i [T, 1, &e, |, &a, l, Wall] &1, &i2, &i3 < {Wall} >}
Fo
Papa &I, &i2, &i3 < &a, Furniture >J
Papa &1, &i2, &i3 < {Floor}, Furniture >%
P4aps &1, &i2, &i3 < {Floor, Wall} >J
Pspa &1, &i2, &i3 < {Wall}, Furniture >}
Pape &1, &i2, &i3 < &a, Furniture >J
PPy &1, &i2, &i3 < &a, Furniture >J no
Pope &A1, &2, &i3 < {Floor}, Furniture >J
Popy &1, &i2, &i3 < {Floor), Furniture >J no
PoPin &1, &i2, &i3 < {Floor, Wall} >}
PlOPE &1, &i2, &i3 < {Wall}, Furniture >}
PlOPT &1, &i2, &i3 < {Wall}, Furniture >} no
Fa
PaP5P2 &1, &i2, &i3 < {Floor, Wall}, Furniture >
PoPi0Pe &A1, &2, &i3 < {Floor, Wall}, Furniture >
PoPlOPY &1, &i2, &i3 < {Floor, Wall}, Furniture > no

4.4 Phase III: The marimal phase

Phase III prunes all non-maximally frequent candidates represented by un-
pruned leaf nodes in IT;. Observe that a :-generalization can be weaker than a

‘ﬁnal: submitted to World Scientific on February 7, 2001 14




j-generalization, where ¢ can be less than, equal to, or greater than j. There-
fore, it does not work to test only “weaker than” a larger generalization, as
for sequential patterns in °. Instead, we need to compare the generalization
g at each unpruned leaf node in II; with generalizations g’ in the partial re-
sult Maz. If g is weaker than ¢', we discard g immediately; otherwise, we
remove all ¢’ in Max that are weaker than g, and add ¢ to Maz. Consider
the candidates Fy, Fy, F3 in Table 3. Only two candidates survive the maxi-
mal phase, namely, { Photo} and {< &a, Furniture >}. All other candidates
are weaker than some of these two patterns. This verifies that {Photo} and
{< &a, Furniture >} are the only patterns as claimed in Example 2.1 for
MINISUP=3. Table 3 shows the results.

5 Conclusions

The main contribution of this paper is the introduction of a general framework
for mining association patterns from semistructured data that are rapidly
gaining popularity. In the semistructured world, while many proposals ex-
ist on modeling, searching, information exchanging, and structure extracting,
data mining is largely unexplored. An important implication of the semistruc-
tured nature 1s that the mining task has to deal with both data and schemas.
This requires the data generalization to trace the role of objects and han-
dle arbitrary nesting of ordered and unordered types, and cyclic object ref-
erences, which is not addressed by the traditional generalization method of
dropping fields/items or replacing specialized concepts with general ones. We
addressed this issue by proposing a generalization method for an is-part-of
hierarchy. Based on the new generalization method, we defined the problem
of mining association patterns from semistructured data and presented a min-
ing algorithm. We highlighted a wide range of applications of the presented
framework. As more and more data do not impose a rigid schema, as those
on WWW or digital libraries, we believe that data mining tools dealing with
semistructured information are of emerging importance.
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