
MINING IS-PART-OF ASSOCIATION PATTERNS FROMSEMISTRUCTURED DATAKE WANGSchool of Computing ScienceSimon Fraser UniversityE-mail: wangk@cs.sfu.caHUIQING LIUBioInformatics CentreNational University of SingaporeEmail: huiqing@bic.nus.edu.sgOne example of semistructured data sources is the World Wide Web (WWW).In the semistructured world, the individual schema contained in each object hasreplaced the external schema of the data. An immediate implication on datamining is that it has to deal with both data and schemas. This requires thedata generalization to trace the role of objects and handle structural irregularity,arbitrary nesting of ordered and unordered types, and cyclic object references. Weintroduce the framework of is-part-of association patterns to address the issue.We show applications of mining is-part-of association patterns in several disparatedomains.1 Introduction1.1 MotivationAs the amount of data available on-line grows rapidly, we �nd that more andmore of the data are semistructured. Semistructured data arise when thesource does not impose a rigid structure such as the Web and when data arecombined from several heterogeneous sources such as a data warehouse. See,for example, 1;6;15 for motivation and the workshop 20 for some recent works.Semistructured data have two essential features:Structure. Semistructured data do have structures. Figure 1shows a segment of semistructured movie objects maintained by IMDb(http://us.imdb.com). Each circle plus the text inside it represents an ob-ject, e.g., a HTML subdocument, and its identi�er, e.g., the URL. The arrowsand their labels represent object references and their roles. Object referencescan be cyclic, ordered, and up to an arbitrary level. Object references andtheir labels, often identi�able by special tags or a grammar, are importantstructural information used by semistructured query languages (e.g., 6;15). Arecent review has revealed that nearly always, references to important objects�nal: submitted to World Scienti�c on February 7, 2001 1

Movie

Movie
Movie

Title

Director
Title Director Title

Director

Writer

Name

Nationality

Award Award

Name
Birthday

Nationality

Name Name Nationality

"USA""Smith""John"March 12, 53
"ANN"

"USA"
"Peter"

"Star Wars" "Titanic"
"Gone with Wind"

"Nancy"

"USA"

CountryFigure 1. A segment of the internet movie databaseare tagged rather than in the form of free-running text 8.Irregularity of structure. Semistructured data have no �xed schema orobject class; instead, every object contains its own schema, i.e., self-describing.This semistructured nature provides the exibility needed in a heterogeneous,dynamic environment 15: the director/actor information may be found inseveral heterogeneous sources on the Web, movies in di�erent categories oractors playing di�erent roles may have di�erent structures, standards andfeatures of movies may be added and deleted, etc. As a consequence, the useris not expected to know all the details of the schema, and queries over theschema are as important as standard queries over the data.These features have important implications on a data mining task. Thestructural feature implies that the mining task can focus on the labeled objectreferences but needs to handle structural features like ordering, nesting, andcyclicity. The structural irregularity is more inuential: the mining task hasto deal with both objects and the meaning or role of objects.Other sources of semistructured data are SGML, BibTex or LaTeX �les,electronic shopping transactions, scienti�c databases, libraries of programs,production schedules, and more generally, digital libraries. In such a broadrange of applications, partial orderings among objects are common and typicalorderings are important knowledge about the data. This is illustrated in thefollowing running example.Example 1.1 Five transactions are recorded in an electronic shopping appli-cation: &t1, &t2, &t3, &t4, &t5, as de�ned in Figure 2. &a;&c;&e are identi-�ers for subtransactions, and Photo, Pizza, Paint, F loor, Wall, Furniture�nal: submitted to World Scienti�c on February 7, 2001 2

&t1 &t2 &t3 &t4 &t5

Pizza

Paint Furniture

&c &e

&a

Floor Wall

PhotoFigure 2. The OEM graph for an electronic shopping databaseare items or services requested. A circled node unorders its subnodes, whereasa squared node orders its subnodes in the order shown. For example, &t1 re-quests that services &a, Paint, Furniture be done sequentially and thatPhoto taking be done either before or after all these, where identi�er &a rep-resents two unordered services F loor and Wall. Constraints like these aretypically captured by on-line form-�lling. Interestingly, transactions &t1 and&t3 share the following similarity: &a precedes Furniture, and Photo eitherprecedes or follows both, written as f< &a; Furniture >; Photog. Findingthis similarity requires ignoring the di�erence of identi�ers &c and &e at in-termediate levels. In the real world, each service can be further described byinformation like category, special o�er, type of payment, and site/providerinformation, and similarities could exist at such levels.1.2 New requirements for generalizing dataSemistructured data, formally de�ned in Section 2, are really an is-part-ofhierarchy (in fact, a graph) in which subobjects (at a lower level) are compo-nents of a superobject (at a higher level). Very often, objects share similaritiesat low levels, though not at high levels. This is in contrast with the is-a hier-archy (i.e., a concept hierarchy) in 11;16 where similarities tend to be shared athigher levels for more general concepts. A more important di�erence is thatgeneralizing data in an is-part-of hierarchy needs to trace the roles or labelsfollowed. For semistructured data, tracing the roles of objects is necessarybecause no external schema is provided for this information. Generalizationin an is-part-of hierarchy also needs to deal with arbitrary nesting of orderedand unordered types, and cyclic object references. Finally, an is-part-of hier-archy is likely to be very large because it is the actual data, not knowledge ofthe data.�nal: submitted to World Scienti�c on February 7, 2001 3

1.3 Related workSince 3, most research on association rules has focused on improving the speedof the algorithm, see 12 for a list, and several have enlarged the applicationdomain 5;10;11;13;16;17. All of these dealt with either at �les or tables over�xed schemas. Using an is-a hierarchy has led to interesting results 9;11;16;18,but o�ered little for an is-part-of hierarchy as desired for semistructured data.Research on semistructured data, on the other hand, mainly dealt with mod-eling, searching, structure extracting, and information exchanging 1;15;20. 19classi�ed semistructured documents into prede�ned types using the vectorspace model. We considered association, not classi�cation, and treated struc-tural properties such as nesting/ordering/referencing, which are ignored byany vector space model, as the �rst-class citizen. This also distinguishes ourapproach from information retrieval where a document is treated as a set ofkeywords.We study the problem of mining association patterns from semistructureddata, called is-part-of association patterns. We formally de�ne the problem inSection 2. Section 3 highlights applications of the problem. Section 4 presentsan algorithm. Section 5 concludes the paper.2 The Problem2.1 Data representationWe adopt the Object Exchange Model (OEM) for semistructured data used in2;1;6;15. In OEM, (a) every object o is identi�ed by an identi�er &o; (b) therole of an object is described by a label; (c) the value of an object is eitheran atomic quantity, or a bag of subobjects fl1 : &o1; : : : ; lk : &okg, or a listof subobjects < l1 : &o1; : : : ; lk : &ok >, where &oi is an object identi�erand li is the label of &oi. As usual, the order of subobjects in a bag doesnot matter, but it does in a list, and repeating of subobjects is allowed ina bag or a list. val(&o) denotes the value of the object with identi�er &o.A main feature of OEM is that it is self-describing: each object contains itsown schema l1; : : : ; lk for subobjects. Table 1 shows the OEM in Example 1.1in which F loor;Wall; Paint; Furniture; Photo; Pizza are atomic quantities.Labels not used in that example.OEM can be represented by a labeled, directed, and possibly cyclic multi-graph. Each node represents an object identi�er. There is an edge (&o;&oi)labeled li if subobject li : &oi belongs to val(&o). For a bag val(&o), thenode for &o is circled and subnodes of &oi are unordered. For a list val(&o),the node for &o is squared and subnodes of &oi are ordered. Figure 2 shows�nal: submitted to World Scienti�c on February 7, 2001 4

Table 1. The OEM for an electronic shopping databasetransactions subtransactionsval(&t1) = fPhoto;&cg val(&a) = fF loor;Wallgval(&t2) = fPizza;&eg val(&c) =< &a; Paint; Furniture >val(&t3) = fPhoto;&eg val(&e) =< &a; Furniture; Furniture >val(&t4) = fPizzagval(&t5) = fPhotogthe OEM graph for the data in Example 1.1.2.2 Data generalizationInformally speaking, a generalization is a piece of partial information aboutan object, and an association pattern is a generalization frequently shared byobjects. We can de�ne a generalization of an object as a result of droppingsubobjects and recursively generalizing the remaining subobjects. However,for the sake of integration with the algorithm in Section 4, we take a \con-structive" approach that de�nes a generalization in terms of \smallest" gener-alizations. The idea is to \glue" reference paths of several descendant objectsinto a reference tree for representing a generalization. We formalize this ideabelow.Reference-paths. Consider a simple node path &o; v1; : : : ; vn (i.e., inwhich only the last node vn can repeat) in the OEM graph G. A reference-pathstarting at &o has the form [&o; l1; vj11 ; : : : ; ln; vjnn]. Each li is a label on edge(vi�1; vi) (treating &o as v0), and each superscript ji speci�es an occurrenceof subobject li : vi in val(vi�1). If vn repeats vn�i, called the ith ancestorof vn, vjnn is replaced with Ansjni . The special identi�er Ansi is the alias ofthe ith ancestor vn�i, and we will explain the reason for introducing Ansiin Section 2.3. A reference-path starting at &o contains all the informationabout how an occurrence of descendant vn is nested within object &o, and thesequence of labels l1; : : : ; ln explains the role of vn as a descendant of object&o. Reference-trees. Several reference-paths de�ne a reference-tree. Forreference-paths p1; : : : ; pk starting at &o, where no pi is a pre�x of anotherpj, the reference-tree de�ned by sequence p1; : : : ; pk is the \pre�x tree" ofthese reference-paths obtained by \gluing" together common pre�xes as muchas possible such that pi is the ith root-to-leaf path in the left-to-right order.p1 : : : pk denotes the resulting reference-tree. Consider the following reference-paths in Figure 2:�nal: submitted to World Scienti�c on February 7, 2001 5

&e

l l l

&a Furniture Furniture

l

1 2

&e

l l l

&a Furniture Furniture

l

1 2

l l

Floor Wall

&a Furniture

&c

&e

l l l

&a Furniture Furniture

l

12

P3 P2
P8 P7

P9 P10

P6 P7

P6

P7 P8 P6

l

l l

(a)
(b) (c)

(d)
&e

l l l

Furniture

l

1

P6

&a &a

Floor Wall

(e)

P9 P10

l l

&t1 &t2

&t2 &t2 &t2

&a Furniture

l

l l

&t2

&e

1

P8 P6

(f)Figure 3. Reference-treesp2 = [&t1; l;&c; l; Furniture] p7 = [&t2; l;&e; l; Furniture2]p3 = [&t1; l;&c; l;&a] p8 = [&t2; l;&e; l;&a]p6 = [&t2; l;&e; l; Furniture1] p9 = [&t2; l;&e; l;&a; l; F loor]p10 = [&t2; l;&e; l;&a; l;Wall],where l is an universal label. The superscripts of Furniture in p6 and p7denote the two occurrences of subobject l : Furniture in val(&e). All occur-rence numbers for non-repeating subobjects are omitted. Figure 3 shows sixreference-trees p3p2, p8p6, p8p6p7, p9p10p6p7, p7p8p6, and p9p6p10.Generalizations. As far as generalizing an object is concerned, iden-ti�ers at non-leaf nodes in a reference-tree are not important. The termgeneralization refers to a reference-tree with all identi�ers at non-leaf nodesignored. The generalization represented by a reference-tree with subtreess1; : : : ; sk labeled l1; : : : ; lk is written in the nested form fl1 : g1; : : : ; lk : gkgfor unordered subtrees si's, or < l1 : g1; : : : ; lk : gk > for ordered sub-trees si's, where gi's are (recursively) generalizations for subtrees si's. Forexample, in Figure 3, reference-tree p9p10p6p7 represents generalization f<Floor;Wallg; Furniture; Furniture >g. Note that any object identi�er &oand its value val(&o) are generalizations.2.3 The interestingness measureWeaker than. Some generalizations are more \informative" than oth-ers. This is compared by the\weaker than" relation below. (i{basis) Anidenti�er (including Ansi) is weaker than itself. (ii{subbag) Generalization�nal: submitted to World Scienti�c on February 7, 2001 6

fl1 : g1; : : : ; lp : gpg is weaker than generalization fl01 : g01; : : : ; l0q : g0qg if eachgi is weaker than some g0ji such that li = l0ji and ji is distinct for distincti. (iii{sublist) Generalization < l1 : g1; : : : ; lp : gp > is weaker than general-ization < l01 : g01; : : : ; l0q : g0q > if each gi is weaker than some g0ji such thatli = l0ji and j1 < : : : < jp. (iv{expansion) Generalization fl1 : g1; : : : ; lp : gpgor < l1 : g1; : : : ; lp : gp > is weaker than an identi�er &o if it is weaker thanval(&o).In words, g is weaker than g0 if all information in g can be foundin g0. Therefore, an object &o has generalization g if and only if g isweaker than &o. For example, f< fF loor;Wallg; Furniture; Furniture >g,f< &a; Furniture >g, f< fF loorg; Furniture; Furniture >g all are weakerthan f< &a; Furniture; Furniture >g, which is weaker than &t2 and &t3.Indeed, &t2 and &t3 share all the above generalizations.Handling cyclic generalizations. We now can explain the \magic"of using special identi�ers Ansi in a cyclic reference-path. Consider the twocyclic generalizations (a) and (b) in Figure 4. Intuitively, (a) is \weaker than"(b) because all information in the former are found in the latter (identi�ers atnon-leaf nodes are not important). Thanks to the alias Ans3, this is indeedrecognized in their tree representations (a') and (b'). If the original iden-ti�ers &x and &y were used instead of Ans3 in (a') and (b'), the \weakerthan" relationship would not be found due to condition (i) of \weaker than".Replacing an identi�er &o in a generalization g with any other generalization
&a &a &a &a

&b
&b

(a) (b) (a’) (b’)

Anc3 Anc3Figure 4. (a,b) using Ansi, (a',b') not using Ansiweaker than &o always yields a generalization weaker than g. By consideringonly generalizations that are not weaker than any other generalizations, wecan focus on generalizations containing identi�ers at highest possible levels.This motivates the mining problem below.De�nition 2.1 (Mining is-part-of association patterns) Consider theinput given by an OEM graph G, a minimum support MINISUP, and a collec-tion of nodes in G called transactions. The support of a generalization g is the�nal: submitted to World Scienti�c on February 7, 2001 7

number of transactions &t such that g is weaker than &t. g is frequent if thesupport of g is not less than MINISUP. g is maximally frequent if g is frequentand is not weaker than any other frequent generalization. g is a is-part-ofassociation pattern or simply pattern if g is maximally frequent. The miningproblem is to �nd all patterns.Example 2.1 Consider the OEM graph in Figure 2 with &t1; : : : ;&t5 beingtransactions. Generalization f< &a; Furniture >g has support 3 becauseit is weaker than &t1;&t2;&t3. fPhotog also has support 3. Therefore,if MINISUP is 60%, i.e., 3, f< &a; Furniture >g and fPhotog are fre-quent. Of course, any other generalization weaker than f< &a; Furniture >gare also frequent but not maximally frequent. One can verify that f<&a; Furniture >g and fPhotog are the only maximally frequent general-izations, that is, patterns.3 ApplicationsThe following list gives a taste of the application of the proposed miningproblem.Electronic shopping. Example 1.1 shows one way of discovering elec-tronic shopping patterns, i.e., by modeling partially ordered services assemistructured data and discovering typical partial orderings. The managercan use such patterns to organize service chains more e�ectively. We can alsodiscover customers' interests and access patterns, as described below.Interests/access patterns on WWW. Detecting user's interests andbrowsing patterns on the Web can help organize Web pages and attract morebusinesses. This can be modeled as mining is-part-of association patternsfrom a collection of hyperlinked Web pages that were accessed. Each page isidenti�ed by its URL and represented by a node in the OEM graph, and eachtransaction corresponds to the entry page of a browsing session. By labelingpages with either topics or site information, is-part-of association patternscapture either user's interests or access patterns.Event and causality analysis. Example 1.1 is a special case of a broadrange of applications such as job scheduling, dependency discovery, workowand process management, resource management and discovery, and medicaldiagnosis. In such applications, an object represents either an atomic or com-plex event (e.g., a transaction, a production schedule, a bill-of-materials, ahistory of symptoms and diseases, etc), and an is-part-of association patternis a regularity about how events are typically composed and how subeventsare dependent on each other.�nal: submitted to World Scienti�c on February 7, 2001 8

Schema discovery. Very often, most schemas, though not all, are typicalto objects representing similar concepts. Discovering typical schemas can helpspecify queries and guide browsing 14;20. Another motivation for discoveringtypical schemas is to build a structured layer above a less structured one,thus provide the bene�ts of standard methods 1. Within our framework, eachis-part-of association pattern is a typical schema if identi�ers at leaf nodes areconsidered matching any identi�ers in the data.Classi�cation of chemicals/proteins/living things. Chemical in-formation systems organize chemical compound �les into semistructuredtrees in which further information about each fragment occurs at eachsuccessively lower level. Classi�cation of chemical structures is basedon typical fragments in such trees. Protein structure classi�cationalso depends critically on identifying structural similarity (see CATH athttp://www.biochem.ucl.ac.uk/bsm/cath/, for example). In biology, deter-mining phylogenetic relationships is based on nested sets of derived characters(apomorphies) shared by lineages 7. Mining is-part-of association patterns isthe core of these tasks.Text clustering and searching. The organizational and topical struc-tures within a text document are usually ignored in information retrieval. Inthe semistructured view of documents, a subdocument is labeled by its topic,and keywords are atomic objects. An is-part-of association pattern for suchdocuments contains frequently co-occurred keywords grouped according totopics. Using such topic-based associations, the search for IBM catalog pricesfor personal computers will not return things such as an advertisement foran \I Bought Mac" T-shirt and the VLDB96 home page. This approach isattractive in that the topical structure is contained in the data itself, not fromthe background knowledge.4 The AlgorithmIn this section, we describe an algorithm for mining is-part-of association pat-terns. We do not assume that the OEM graph G �ts in memory. An importantproperty of our algorithm is to traverse simple paths of G in the depth-�rstmanner. Since several supernodes may reference the same subnode, nodes ad-jacent in the depth-�rst order are not guaranteed to be on the same disk page.To reduce disk access, frequently referenced nodes, i.e., those with a large in-degree and at lower levels, should be stored in memory, and infrequentlyreferenced nodes stored on disk. However, the exact implementation on diskis transparent to our algorithm. To avoid repeatedly traversing subgraphscaused by multiple edges between two nodes (recall that G is a multi-graph),�nal: submitted to World Scienti�c on February 7, 2001 9

we assume that G contains at most one edge between two nodes and thatone set of labels, denoted L(w; z), is associated with each edge (w; z). Theinformation stored at a node w includes L(w; z) and the list of pointers toz for all subnodes z of w. Therefore, for a simple path v1; : : : ; vn in G, thecross product L(v1; v2)� : : :�L(vn�1; vn) gives all possible sequences of labelstraversed by following the path.Each k-generalization, i.e., a generalization having k leaf nodes, is rep-resented by a reference-tree constructed by k reference-paths of the form[&t; l1; vj11 ; : : : ; ln; vjnn], where &t is a transaction. If we replace &t in allsuch paths with the generic transaction, denoted >, we still can construct allgeneralizations constructed before, but we only need to keep one reference-path [>; l1; vj11 ; : : : ; ln; vjnn] for all [&t; l1; vj11 ; : : : ; ln; vjnn] that di�er only inthe starting transaction &t. From now on, we assume that this replacementis made. This is analogous to 4 where there is no provision to distinguishsupporting transactions for each frequent 1-itemset.Like Apriori 4, we \grow" a frequent k-generalization using two frequent(k�1)-generalizations contained in the k-generalization. Let Fk denote the setof frequent k-generalizations. We use p1 : : : pk for both the k-generalizationand the reference-tree constructed by reference-paths p1; : : : ; pk. A supersetof Fk, called k-candidates, is computed as follows:Theorem 4.1 Let pi denote reference-paths. Every frequent k-generalizationp1 : : : pk in Fk is constructed by two frequent (k � 1)-generalizationsp1 : : : pk�2pk�1 and p1 : : : pk�2pk in Fk�1.Since a generalization does not contain the node information necessary forconstructing larger generalizations, the construction in Theorem 4.1 should befrom reference-trees to reference-trees. In fact, we will keep all reference-treesrepresenting a generalization in Fk because we do not know in advance whichone will \grow bigger".The outline of the algorithm: the algorithm has three phases. In PhaseI, F1 is computed by one pass over transactions. In Phase II, in each passover transactions Fk is computed from Fk�1. Heuristics play an essentialrole to prune the search space. In Phase III, all non-maximally frequentgeneralizations are removed.4.1 Phase I: Computing F1Consider a reference-path [>; l1; vj11 ; : : : ; ln; vjnn]. All the information of the1-generalization represented by the reference-path is coded by the tuple(l1; �1; : : : ; ln�1; �n�1; ln; vn), called the schema of the path, where �i's denotethe types of nodes vi's, which are 0 for bag and 1 for list. (�n is implied by vn,�nal: submitted to World Scienti�c on February 7, 2001 10

so not included.) For example, [>; l;&c; l;&a] and [>; l;&e; l;&a] both repre-sent the same 1-generalization fl :< l : &a >g (recall that &c and &e have listtype). Therefore, the support of 1-generalizations should be associated withthe schema of a reference-path, written sup(l1; �1; : : : ; ln�1; �n�1; ln; vn), de-�ned as the number of transactions in G from which there is a reference-pathwith schema (l1; �1; : : : ; ln�1; �n�1; ln; vn).We compute the support of 1-generalizations as follows. For each trans-action &t, we depth-�rst traverse simple paths originating at &t. On vis-iting a node vn, if v1; : : : ; vn are the non-transaction nodes on the currentpath with types �1; : : : ; �n, we increase all sup(l1; �1; : : : ; ln�1; �n�1; ln; vn)by 1 if not increased for &t, where (l1; : : : ; ln) is in the cross productL(&t; v1) � L(v1; v2) � : : : � L(vn�1; vn). (The cross product accounts alllabels on each edge (vi�1; vi).) If vn does not repeat on the current path,we visit all subnodes of vn in the depth-�rst manner, regardless of whethervisited before (from other supernodes). If vn repeats on the current path, thetraversal of all descendants of vn is pruned.Table 2. Computing support of 1-generalizationsSupport &t1 &t1;&t2 &t1;&t2;&t3 &t1;&t2;&t3;&t4 &t1;&t2;&t3;&t4;&t5sup(l;&c) 1 1 1 1 1sup(l;&e) 0 1 2 2 2sup(l; 1; l;&a) 1 2 3 3 3sup(l; 1; l; 1; l;F loor) 1 2 3 3 3sup(l; 1; l; 1; l;Wall) 1 2 3 3 3sup(l; 1; l; Paint) 1 1 1 1 1sup(l; 1; l; Furniture) 1 2 3 3 3sup(l; Photo) 1 1 2 2 3sup(l; Pizza) 0 1 1 2 2Example 4.1 Consider Example 1.1. The last column of Table 2 gives thesupport of 1-generalizations. Refer to Figure 2. For example, the traversal for&t1 visits &t1;&c;&a; F loor;Wall; Paint;Furniture in order and computesthe support as in the second column. Subsequently, the traversal for &t2changes the support to those in the third column. The last column shows the�nal values of support after all transactions are considered. Even though wehave considered the transactions in the order shown, the last column does notdepend on such an order.F1 consists of all reference-paths whose schemas have the minimum support.To �nd F1, we depth-�rst traverse simple paths originating at each transaction&t. Suppose that v1; : : : ; vn are the non-transaction nodes on the currentpath, with types �1; : : : ; �n. For each (l1; : : : ; ln) 2 L(&t; v1) � L(v1; v2) : : :�L(vn�1; vn) such that sup(l1; �1; : : : ; ln�1; �n�1; ln; vn) � MINISUP , if vnis identical to vn�i, all reference-paths [>; l1; vj11 ; : : : ; ln; Ansjni] are added to�nal: submitted to World Scienti�c on February 7, 2001 11

F1; otherwise, all reference-paths [>; l1; vj11 ; : : : ; ln; vjnn] are added to F1. Notethat F1 contains all reference-trees for each frequent 1-generalization.4.2 Phase II: Computing FkThe search space. We propose the (k � 1)-search trie, denoted �k�1, tostore Fk�1. �k�1 is a tree of maximal depth k � 1 such that each non-rootnode represents two things: (a) the frequent reference-path stored at the nodeand (b) the frequent reference-tree p1 : : : pj where p1; : : : ; pj are the reference-paths stored on the path from the root of �k�1 to the node. For 1 � j � k�1,Fj is then the set of reference-trees p1 : : : pj in (b). Each pair p1 : : : pk�2pk�1and p1 : : : pk�2pk are represented by two sibling leaf nodes at level k � 1 in�k�1 (with the root at level 0). To start with, �1 has one leaf node for eachreference-path in F1.
p1 p2 p3

p2 p3 p3 p1 p1 p2

p1 p2 p3

p2 p3 p3 p1 p1 p2

p3 p2 p1 p3 p1

p1 p2 p3

(a)

p2

(b)

(c)Figure 5. �i | level i and aboveGenerate candidates. To generate k-candidates from �k�1, for everypair p1 : : : pk�2pk�1 and p1 : : : pk�2pk represented by sibling leaf nodes l andl0, respectively, if none of pk�1 and pk is a pre�x of the other, we create anew child for l to represent the k-candidate p1 : : : pk�2pk�1pk; the new childis a copy of pk. This operation is called extending l by l0. For example,Figure 5 shows �1;�2;�3 for three reference-paths p1; p2; p3, assuming thatall generalizations are frequent.Compute support. We compute the support of k-candidates in one passover all transactions. For each transaction &t, we read the de�ning hierarchyof &t into memory and depth-�rst traverse all paths in �k starting at the root.Suppose that p1; : : : ; pj are the reference-paths on the current path of �k. Ifj = k and generalization p1 : : : pk is weaker than &t, we increase the supportat the leaf node representing p1 : : : pk. If j < k and p1 : : : pj is not weakerthan &t, the traversal into the subtree below can be pruned. This pruning issimilar to the hash-tree in 4 used for computing support of itemsets, except�nal: submitted to World Scienti�c on February 7, 2001 12

that we hash a reference-path, not an item, at at time, our hash is collision-free. After all transactions are read, we delete all leaf nodes at level k in �khaving support less than the minimum support.4.3 Pruning the search spaceThe above candidate generation su�ers from constructing too many reference-trees. Two factors contribute to this. Consider the subnodes of a node in areference-tree. First, di�erent numberings of repeating subnodes, such asl : v1; l : u1; l : v3 and l : v1; l : u1; l : v2, are considered independently,even though they make no di�erence in the generalization constructed. Thesecond numbering is natural because it uses consecutive numbers 1, 2, 3, : : : forrepeating subnodes. Second, di�erent orderings of unordered subnodes, suchas l : v1; l : u1; l : v3 and l : u1; l : v1; l : v3, are considered independently, eventhough such orderings are not important. The second ordering is lexicographic,de�ned as the order of tuples (l; v; i) for subnodes of the form l : vi.The idea of pruning the search space is to focus on the natural numberingof repeating subnodes and the lexicographic ordering of subnodes, as de�nedby canonical reference-trees below. A node in a reference-tree is lexicographicif the ordering of its subnodes (if any) is lexicographic unless the node is asquared node. A node in a reference-tree is natural if the numbering of itsrepeating subnodes (if any) is natural. A reference-tree is lexicographic (nat-ural, resp) if every node is lexicographic (natural, resp). A reference-tree iscanonical if it is both lexicographic and natural. Testing these properties isstraightforward. Since every reference-tree represents the same generaliza-tion as some canonical reference-tree, it su�ces to construct only canonicalreference-trees. However, life is not as straightforward as it sounds: Theo-
a

a a

1 1 1 1 11 1 3 1 212 13

(a) p p (b) p p (c) p p p
1 2 1 3 1 2 3

1
1 1

T T TFigure 6. Construct canonical p1p2p3 using non-canonical p1p3rem 4.1 requires some non-canonical reference-trees to be constructed. Thisis shown in Figure 6, where constructing canonical p1p2p3, i.e., by extendingp1p2 by p1p3, requires constructing non-canonical p1p3 �rst (whose number-ing is non-natural). On the other hand, extending a non-canonical p1 : : : pk�1�nal: submitted to World Scienti�c on February 7, 2001 13

always generates a non-canonical p1 : : : pk because of the non-canonical pre�xp1 : : : pk�1. For the same reason, the result p1 : : : pk cannot generate largercanonical reference-trees.Pruning 1 p1 : : : pk�2pk�1 is extended by p1 : : : pk�2pk only ifp1 : : : pk�2pk�1 is canonical and the result p1 : : : pk�1pk is lexicographic.Pruning 2 After considering all extensions in �k�1, leaf nodes at level k�1for non-canonical reference-trees can be pruned.Pruning 3 If p1 : : : pk�1 is extended into a frequent k-candidate, p1 : : : pk�1can be pruned.In fact, p1 : : : pk�1 is weaker than the frequent k-candidate generated(thus, non-maximally frequent) and is not useful once becoming a non-leafnode in �k. FollowingPrunings 2 and 3, we revise Fj to be the set of reference-trees represented by unpruned leaf nodes at level j in �k, where j � k.Therefore, Phase III below only needs to examine reference-trees representedby unpruned leaf nodes in �k. Table 3. Fireference-trees supporting transactions generalizations represented canonicalF1p1 : [>; l; Photo] &t1;&t3;&t5 fPhotogp2 : [>; l;&c; l; Furniture] &t1;&t2;&t3 f< Furniture >gp3 : [>; l;&c; l;&a] &t1;&t2;&t3 f< &a >gp4 : [>; l;&c; l;&a; l;F loor] &t1;&t2;&t3 f< fFloorg >gp5 : [>; l;&c; l;&a; l;Wall] &t1;&t2;&t3 f< fWallg >gp6 : [>; l;&e; l;Furniture1] &t1;&t2;&t3 f< Furniture >gp7 : [>; l;&e; l;Furniture2] &t1;&t2;&t3 f< Furniture >g nop8 : [>; l;&e; l;&a] &t1;&t2;&t3 f< &a >gp9 : [>; l;&e; l;&a; l; F loor] &t1;&t2;&t3 f< fFloorg >gp10 : [>; l;&e; l;&a; l;Wall] &t1;&t2;&t3 f< fWallg >gF2p3p2 &t1;&t2;&t3 f< &a; Furniture >gp4p2 &t1;&t2;&t3 f< fFloorg;Furniture >gp4p5 &t1;&t2;&t3 f< fFloor;Wallg >gp5p2 &t1;&t2;&t3 f< fWallg; Furniture >gp8p6 &t1;&t2;&t3 f< &a; Furniture >gp8p7 &t1;&t2;&t3 f< &a; Furniture >g nop9p6 &t1;&t2;&t3 f< fFloorg;Furniture >gp9p7 &t1;&t2;&t3 f< fFloorg;Furniture >g nop9p10 &t1;&t2;&t3 f< fFloor;Wallg >gp10p6 &t1;&t2;&t3 f< fWallg; Furniture >gp10p7 &t1;&t2;&t3 f< fWallg; Furniture >g noF3p4p5p2 &t1;&t2;&t3 f< fFloor;Wallg; Furniture >gp9p10p6 &t1;&t2;&t3 f< fFloor;Wallg; Furniture >gp9p10p7 &t1;&t2;&t3 f< fFloor;Wallg; Furniture >g no4.4 Phase III: The maximal phasePhase III prunes all non-maximally frequent candidates represented by un-pruned leaf nodes in �k. Observe that a i-generalization can be weaker than a�nal: submitted to World Scienti�c on February 7, 2001 14

j-generalization, where i can be less than, equal to, or greater than j. There-fore, it does not work to test only \weaker than" a larger generalization, asfor sequential patterns in 5. Instead, we need to compare the generalizationg at each unpruned leaf node in �k with generalizations g0 in the partial re-sult Max. If g is weaker than g0, we discard g immediately; otherwise, weremove all g0 in Max that are weaker than g, and add g to Max. Considerthe candidates F1; F2; F3 in Table 3. Only two candidates survive the maxi-mal phase, namely, fPhotog and f< &a; Furniture >g. All other candidatesare weaker than some of these two patterns. This veri�es that fPhotog andf< &a; Furniture >g are the only patterns as claimed in Example 2.1 forMINISUP=3. Table 3 shows the results.5 ConclusionsThe main contribution of this paper is the introduction of a general frameworkfor mining association patterns from semistructured data that are rapidlygaining popularity. In the semistructured world, while many proposals ex-ist on modeling, searching, information exchanging, and structure extracting,data mining is largely unexplored. An important implication of the semistruc-tured nature is that the mining task has to deal with both data and schemas.This requires the data generalization to trace the role of objects and han-dle arbitrary nesting of ordered and unordered types, and cyclic object ref-erences, which is not addressed by the traditional generalization method ofdropping �elds/items or replacing specialized concepts with general ones. Weaddressed this issue by proposing a generalization method for an is-part-ofhierarchy. Based on the new generalization method, we de�ned the problemof mining association patterns from semistructured data and presented a min-ing algorithm. We highlighted a wide range of applications of the presentedframework. As more and more data do not impose a rigid schema, as thoseon WWW or digital libraries, we believe that data mining tools dealing withsemistructured information are of emerging importance.References1. S. Abiteboul, \Querying semi-structured data", ICDT 1997(http://www-db.stanford.edu/ pub/papers/icdt97.semistructured.ps)2. S. Abiteboul, D. Quass, J. McHugh, J. Widom, J.L. Wiener, \The lorelquery language for semistructured data", to appear in Journal of DigitalLibraries, 1997 (http://www-db.stanford.edu/pub/papers/lorel96.ps)�nal: submitted to World Scienti�c on February 7, 2001 15

3. R. Agrawal, T. Imielinski, A. Swami, \Mining association rules betweensets of items in large databases", SIGMOD 1993, 207-2164. R. Agrawal and R. Srikant, \Fast algorithms for mining associationrules", VLDB 1994, 487-4995. R. Agrawal and R. Srikant, \Mining sequential patterns", ICDE 1995,3-146. P. Buneman, S. Davidson, G. Hillebrand, \A query language and opti-mization techniques for unstructured data", SIGMOD 1996, 505-5167. W.E. Duellman, L. Trueb, \Biology of amphibians", The Johns HopkinsUniversity Press, 19948. S.B. Hu�man, C. Baudin, \Toward structured retrieval in semi-structured information spaces", IJCAI 1997, 751-7569. S. Fortin, L. Liu, \An object-oriented approach to multi-level associationrule", CIKM 1996, 65-7210. T. Fukuda, Y. Morimoto, S. Morishita, \Data mining using two-dimensional optimized association rules: scheme, algorithms, and visual-ization", SIGMOD 1996, 13-2311. J. Han and Y. Fu, \Discovery of multiple-level association rules fromlarge databases", VLDB 1995, 420-43112. M. Holsheimer, M. Kersten, H. Mannila, H. Toivonen, \A perspective ondatabases and data mining", KDD 1995, 150-15513. R. Meo, G. Psalia, S. Ceri, \A new SQL-like operator for mining associ-ation rules", VLDB 1996, 122-13314. S. Nestorov, J. Ullman, J. Wiener, S. Chawathe, \Representative objects:concise representations of semistructured, hierarchical data", ICDE 1997(http://www-db.stanford.edu/pub/papers/representative-object.ps)15. Y. Papakonstantinuo, H.Garcia-Molina, and J. Widom, \Object ex-change across heterogeneous information sources, ICDE 1995, 251-26016. R. Srikant and R. Agrawal, \Mining generalized association rules", VLDB1995, 407-41917. R. Srikant and R. Agrawal, \Mining quantitative association rules in largerelational tables", SIGMOD 1996, 1-1218. L. Singh, P. Scheuermann, B. Chen, \Generating association rules fromsemi-structured documents using an extended concept hierarchy", CIKM199719. M. Tresch, N. Palmer, A. Luniewski, \Type classi�cation of semi-structured documents", VLDB 1995, 263-27420. The Workshop on Management of Semistructured Data 1997, Arizona,http:// www.research.att.com/~suciu/workshop-papers.html�nal: submitted to World Scienti�c on February 7, 2001 16

