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Distributed Maximum Likelihood for Simultaneous
Self-Localization and Tracking in Sensor Networks

Nikolas Kantas, Sumeetpal S. Singh, and Arnaud Doucet

Abstract—We show that the sensor self-localization problem
can be cast as a static parameter estimation problem for Hidden
Markov Models and we implement fully decentralized versions of
the RecursiveMaximumLikelihood and on-line Expectation-Max-
imization algorithms to localize the sensor network simultaneously
with target tracking. For linear Gaussian models, our algorithms
can be implemented exactly using a distributed version of the
Kalman filter and a novel message passing algorithm. The latter
allows each node to compute the local derivatives of the likelihood
or the sufficient statistics needed for Expectation-Maximization.
In the non-linear case, a solution based on local linearization in
the spirit of the Extended Kalman Filter is proposed. In numerical
examples we demonstrate that the developed algorithms are able
to learn the localization parameters.

Index Terms—Collaborative tracking, sensor localization, target
tracking, maximum likelihood, sensor networks.

I. INTRODUCTION

T HIS paper is concerned with sensor networks that are
deployed to perform target tracking. A network is com-

prised of synchronous sensor-trackers where each node in the
network has the processing ability to perform the computations
needed for target tracking. A moving target will be simultane-
ously observed by more than one sensor. If the target is within
the field-of-view of a sensor, then that sensor will collect mea-
surements of the target. Traditionally in tracking a centralized
architecture is used whereby all the sensors transmit their mea-
surements to a central fusion node, which then combines them
and computes the estimate of the target’s trajectory. However,
here we are interested in performing collaborative tracking, but
without the need for a central fusion node. Loosely speaking,
we are interested in developing distributed tracking algorithms
for networks whose nodes collaborate by exchanging appro-
priate messages between neighboring nodes to achieve the
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same effect as they would by communicating with a central
fusion node.
A necessary condition for distributed collaborative tracking

is that each node is able to accurately determine the position of
its neighboring nodes in its local frame of reference. (More de-
tails in Section II.) This is essentially an instance of the self-lo-
calization problem. In this work we solve the self-localization
problem in an on-line manner. By on-line we mean that self-lo-
calization is performed on-the-fly as the nodes collect measure-
ments of the moving target. In addition, given the absence of a
central fusion node collaborative tracking and self-localization
have to be performed in a fully decentralized manner, which
makes necessary the use of message passing between neigh-
boring nodes.
There is a sizable literature on the self-localization problem.

The topic has been independently pursued by researchers
working in different application areas, most notably wireless
communications [1]–[5]. Although all these works tend to be
targeted for the application at hand and differ in implementation
specifics, they may however be broadly summarized into two
categories. Firstly, there are works that rely on direct measure-
ments of distances between neighboring nodes [2]–[5]. The
latter is usually estimated from the Received Signal Strength
(RSS) when each node is equipped with a wireless trans-
ceiver. Given such measurements, it is then possible to solve
for the geometry of the sensor network but with ambiguities
in translation and rotation of the entire network remaining.
These ambiguities can be removed if the absolute position of
certain nodes, referred to as anchor nodes, are known. Another
approach to self-localization utilizes beacon nodes which
have either been manually placed at precise locations, or their
locations are known using a Global Positioning System (GPS).
The un-localized nodes will use the signal broadcast by these
beacon nodes to self-localize [1], [6]–[8]. We emphasize that
in the aforementioned papers self-localization is performed
off-line. The exception is [8], where they authors use Max-
imum Likelihood (ML) and Sequential Monte Carlo (SMC) in
a centralized manner.
In this paper we aim to solve the localization problem without

the need of a GPS or direct measurements of the distance be-
tween neighboring nodes. The method we propose is signifi-
cantly different. Initially, the nodes do not know the relative
locations of other nodes, so they can only behave as indepen-
dent trackers. As the tracking task is performed on objects that
traverse the field of view of the sensors, information is shared
between nodes in a way that allows them to self-localize. Even
though the target’s true trajectory is not known to the sensors,
localization can be achieved in this manner because the same
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target is being simultaneously measured by the sensors. This
simple fact, which with the exception of [9]–[11] seems to have
been overlooked in the localization literature, is the basis of our
solution. However, our work differs from [9], [10] in the appli-
cation studied as well as the inference scheme. Both [9], [10]
formulate the localization as a Bayesian inference problem and
approximate the posterior distributions of interest with Gaus-
sians. Reference [10] uses a moment matching method and ap-
pears to be centralized in nature. The method in [9] uses in-
stead linearization, is distributed and on-line, but its implemen-
tation relies on communication via a junction tree (see [12] for
details) and requires an anchor node as pointed out in ([13,
Sect. 6.2.3]). In this paper we formulate the sensor localization
problem as a static parameter estimation problem for Hidden
Markov Models (HMMs) [14], [15] and we estimate these static
parameters using aML approach, which has not been previously
developed for the self-localization problem.We implement fully
decentralized versions of the two most common on-line ML
inference techniques, namely Recursive Maximum Likelihood
(RML) [16]–[18] and on-line Expectation-Maximization (EM)
[19]–[21]. A clear advantage of this approach compared to pre-
vious alternatives is that it makes an on-line implementation
feasible. Finally, [11] is based on the principle shared by our ap-
proach and [9], [10]. In [11] the authors exploit the correlation
of the measurements made by the various sensors of a hidden
spatial process to perform self-localization. However for rea-
sons concerned with the applications being addressed, which is
not distributed target tracking, their method is not on-line and is
centralized in nature.
The structure of the paper is as follows. We begin with the

specification of the statistical model for the localization and
tracking problem in Section II. In Section III we show howmes-
sage passing may be utilized to perform distributed filtering. In
Section IV we derive the distributed RML and on-line EM algo-
rithms. Section V presents several numerical examples on small
and medium sized networks. In Sections VI we provide a dis-
cussion and a few concluding remarks. The Appendix contains
more detailed derivations of the distributed versions of RML
and EM.

II. PROBLEM FORMULATION

We consider the sensor network where denotes the
set of nodes of the network and is the set of edges (or commu-
nication links between nodes). We will assume that the sensor
network is connected, i.e., for any pair of nodes there
is at least one path from to . Nodes are adjacent or
neighbors provided the edge exists. Also, we will
assume that if , then as well. This im-
plies is that communication between nodes is bidirectional. The
nodes observe the same physical target at discrete time inter-
vals . We will assume that all sensor-trackers are syn-
chronized with a common clock and that the edges joining the
different nodes in the network correspond to reliable commu-
nication links. These links define a neighborhood structure for
each node and we will also assume that each sensor can only
communicate with its neighboring nodes.

The hidden state, as is standard in target tracking, is defined
to comprise of the position and velocity of the target,

, where and is
the target’s and position while and is the ve-
locity in the and direction. Subscript denotes time while
superscript denotes the coordinate system w.r.t. which these
quantities are defined. For generality we assume that each node
maintains a local coordinate system (or frame of reference) and
regards itself as the origin (or center of) its coordinate system.
As a specific example, consider the following linear Gaussian

model:

(1)

where is zero mean Gaussian additive noise with variance
and are deterministic inputs. The measurement made

by node is also defined relative to the local coordinate system
at node . For a linear Gaussian observation model the measure-
ment is generated as follows:

(2)

where is zero mean Gaussian additive noise with variance
and is deterministic. Note that the time varying obser-

vation model is different for each node. A
time-varying state and observation model is retained for an Ex-
tended Kalman Filter (EKF) implementation in the non-linear
setting to be defined below. It is in this setting that the need
for sequences and arises. Also, the dimen-
sion of the observation vector need not be the same for dif-
ferent nodes since each node may be equipped with a different
sensor type. For example, node may obtain measurements of
the target’s position while node measures bearing. Alterna-
tively, the state-space model in (1)–(2) can be expressed in the
form of a Hidden Markov Model (HMM):

(3)

(4)

where denotes the transition density of the target and the
density of the likelihood of the observations at node .
Fig. 1(a) illustrates a three node setting where a target is being

jointly observed and tracked by three sensors. (Only the position
of the target is shown.) At node 1, is defined relative to the
local coordinate system of node 1 which regards itself as the
origin. Similarly for nodes 2 and 3. We define to be the
position of node in the local coordinate system of node . This
means that the vector relates to the local coordinate system
of node as follows (see Fig. 1):

The localization parameters are static as the nodes
are not mobile. We note the following obvious but important
relationship: if nodes and are connected through intermediate
nodes then

(5)

This relationship is exploited to derive the distributed filtering
and localization algorithms in the next section.We define so
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Fig. 1. Left: a three node network tracking a target traversing its field of view.
The trajectory of the target is shown with the solid line. Each node regards it-
self as the center of its local coordinate system. At time a measurement is
registered by all three nodes. The ellipses show the support of the observa-
tion densities for the three nodes, i.e., the support of is defined as
all such that ; similarly for the rest. The filtering update
step at node 1 will clearly benefit from the observations made by nodes 2 and
3. The localization parameters are the coordinates of node 1 in the
local coordinate systems of node 2 and 3 respectively. While was defined
to be the state of the target, which includes its velocity, for this illustration only,

is to be understood as the position of the target at time w.r.t. the co-
ordinate system of node . Right: Average absolute tracking error is plotted
against the number of nodes to illustrate the benefit of collaborative tracking.
The results are obtained using a centralized implementation with 50 indepen-
dent runs, time steps for a chain sensor network of different length and

. (a) Three node
joint tracking example. (b) Joint tracking error vs number of nodes.

that the dimensions are the same as the target state vector. When
the state vector is comprised of the position and velocity of the
target, only the first and third components of are relevant
while the other two are redundant and set to and

. Let

(6)

where for all is defined to be the zero vector.
Let denote all the measurements received by the network

at time , i.e., . We also denote the sequence
by . In the collaborative or joint filtering

problem, each node computes the local filtering density:

(7)

where is the predicted density and is related to
the filtering density of the previous time through the following
prediction step:

(8)

The likelihood term is

(9)

where the superscript on the densities indicate the coordinate
system they are defined w.r.t. (and the node the density belongs
to) while the subscript makes explicit the dependence on the lo-
calization parameters. Let also and denote the pre-
dicted and filtered mean of the densities and

, respectively, where the dependence on is sup-
pressed in the notation. The prediction step in (8) can be imple-
mented locally at each node without exchange of information,
but the update step in (7) incorporates all the measurements of
the network. Fig. 1(a) shows the support of the three observa-
tion densities as ellipses where the support of is de-
fined to be all such that ; similarly for the
rest. The filtering update step at node 1 can only include the
observations made by nodes 2 and 3 provided the localization
parameters and are known locally to node 1, since the
likelihood defined in (9) is

The term joint filtering is used since each sensor benefits from
the observation made by all the other sensors. An illustration of
the benefit w.r.t. the tracking error is in Fig. 1(b). We will show
in Section III that it is possible to implement joint filtering in
a truly distributed manner, i.e., each node executes a message
passing algorithm (with communication limited only to neigh-
boring nodes) that is scalable with the size of the network. How-
ever joint filtering hinges on knowledge of the localization pa-
rameters which are unknown a priori. In Section IV we will
propose distributed estimation algorithms to learn the localiza-
tion parameters, which refine the parameter estimates as new
data arrive. These proposed algorithms in this context are to the
best of our knowledge novel.

A. Nonlinear Model

Most tracking problems of practical interest are essentially
nonlinear non-Gaussian filtering problems. SMC methods, also
known as Particle Filters, provide very good approximations
to the filtering densities [22]. While it is possible to develop
SMC methods for the problem presented here, the resulting al-
gorithms require significantly higher computational cost. We
refer the interested reader to ([13, Ch. 9]) for more details. In the
interest of execution speed and simplicity, we employ the lin-
earization procedure of the Extended Kalman filter (EKF) when
dealing with a non-linear system. Specifically, let the distributed
tracking system be given by the following model:

where and are smooth con-
tinuous functions. At time , each node will linearize its state
and observation model about the filtered and predicted mean,
respectively. Specifically, a given node will implement:

(10)

(11)
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where for a mapping .
Note that after linearization extra additive terms appear as seen
in the setting described by (1)–(2).

B. Message Passing

Assume at time , the estimate of the localization parameters
is , with known to node only. To per-
form the prediction and update steps in (7)–(8) locally at each
node a naive approach might require each node to access to all
localization parameters and all the different model param-
eters . A scheme that requires all this
information to be passed at every node would be inefficient due
to excessive communication and redundant computations. The
core idea in this paper is to avoid this by storing the parame-
ters in across the network and perform required computations
only at the nodes where the parameters are stored. The results
of these computations are then propagated in the network using
an efficient message passing scheme.

Algorithm 1: Generic message passing at time

At , compute:

(12)

(13)

for compute:

(14)

(15)

end for

Message passing is an iterative procedure with
iterations for each time and is steered towards the develop-
ment of a distributed Kalman filter, whose presentation is post-
poned for the next section. In Algorithm 1 we define a recur-
sion of messages which are to be communicated between all
pairs of neighboring nodes in both directions. Here de-
note the neighbors of node excluding node itself. At iteration
the computed messages from node to are matrix and vector
quantities of appropriate dimensions and are denoted as

and respectively. The source node is indicated by the first
letter of the superscript. Note that during the execution of Al-
gorithm 1 time remains fixed and iteration should not be
confused with time . Clearly we assume that the sensors have
the ability to communicate much faster than collecting measure-
ments. We proceed with a simple (but key) lemma concerning
the aggregations of sufficient statistics locally at each node.
Lemma 1: At time , let be a collection of matrices

where is known to node only, and consider the task of
computing and at each node of a
network with a tree topology. Using Algorithm 1 and if is at
least as large as the number of edges connecting the two farthest
nodes in the network, then

and .
(The proof, which uses (5), is omitted.) An additional advan-

tage here is that if the network is very large, in the interest of

speed onemight be interested in settling with computing the pre-
sented sums only for a subset of nodes and thus use a smaller
. This also applies when a target traverses the field of view

of the sensors swiftly and is visible only by few nodes at each
time. Finally, a lower value for is also useful when cycles are
present in order to avoid summing each more than once, al-
beit summing only over a subset of .

III. DISTRIBUTED JOINT FILTERING

For a linear Gaussian system, the joint filter
at node is a Gaussian distribution with a specific mean
vector and covariance matrix . The derivation of the
Kalman filter to implement is standard upon
noting that the measurement model at node can be written
as where the th block of
, satisfies . However,

there will be “non-local” steps due to the requirement that
quantities
and be available locally at
node . To solve this problem, we may use Lemma 1
with and in order to compute

we will define that is an addi-

tional message similar to .
Recall that are known local variables that arose due

to linearization. Also to aid the development of the distributed
on-line localization algorithms in Section IV, we assume that for
the time being the localization parameter estimates are
time-varying and known to the relevant nodes they belong. For
the case where that , we summarize the resulting
distributed Kalman filter in Algorithm 2, which is to be im-
plemented at every node of the network. Note that messages
(16)–(18) are matrix and vector valued quantities and require
a fixed amount of memory regardless of the number of nodes
in the network. Also, the same rule for generating and com-
bining messages are implemented at each node. The distributed
Kalman filter presented here bears a similar structure to the one
found in [23].
In the case modifications to Algorithm 2 are as

follows: in (19), to the right hand side of , the term
should be added and all instances of should be replaced with

. Therefore the assuming does not com-
promise the generality of the approach. A direct application of
this modification is the distributed EKF, which is obtained by
adding the term to the right hand
side of in (19), and replacing all instances of with

. In addition, one
needs to replace with .

IV. DISTRIBUTED COLLABORATIVE LOCALIZATION

Following the discussion in Section II we will treat the sensor
localization problem as a static parameter estimation problem
for HMMs. The purpose of this section is to develop a fully
decentralized implementation of popular Maximum Likelihood
(ML) techniques for parameter estimation in HMMs. We
will focus on two on-line ML estimation methods: Recursive
Maximum Likelihood (RML) and Expectation-Maximization
(EM).



5042 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 10, OCTOBER 2012

Algorithm 2: Distributed Filtering

1: for :
2: Let the localization parameter be and the set of
collected measurements be . Initialize
messages and
for all neighboring nodes as:

3: for exchange the messages
and defined

below between all neighboring nodes :

(16)

(17)

(18)

4: end for
5: Update the local filtering densities at each node :

(19)

(20)

(21)

(22)

6: end for

The core idea in our distributed ML formulation is to store the
parameter across the network. Each node
will use the available data from every node to estimate ,
which is the component of corresponding to edge . This
can be achieved computing at each node the ML estimate:

(23)

Note that each node maximizes its “local” likelihood function
although all the data across the network is being used.
On-line parameter estimation techniques like the RML and

on-line EM are suitable for sensor localization in surveillance
applications because we expect a practically indefinite length
of observations to arrive sequentially. For example, objects will
persistently traverse the field of view of these sensors, i.e., the
departure of old objects would be replenished by the arrival of
new ones. A recursive procedure is essential to give a quick

up-to-date parameter estimate every time a new set of obser-
vations is collected by the network. This is done by allowing
every node to update the estimate of the parameter along edge

, according to a rule like

(24)

where is an appropriate function to be defined. Similarly
each neighbor of will perform a similar update along the
same edge only this time it will update .

A. Distributed RML

For distributed RML, each node updates the parameter of
edge using

(25)

where is a step-size that should satisfy and
.

The gradient in (25) is w.r.t. . The local joint predicted
density at node was defined in (8) and is a
function of , and likelihood term is given in
(9). Also, the gradient is evaluated at while
only is available locally at node . The remaining values
are stored across the network. All nodes of the network will im-
plement such a local gradient algorithm with respect to the pa-
rameter associated to its adjacent edge. We note that (25) in the
present form is not an on-line parameter update like (24) as it re-
quires browsing through the entire history of observations. This
limitation is removed by defining certain intermediate quantities
that facilitate the online evaluation of this gradient in the spirit
of [17], [18] (see in the Appendix for more details).

Algorithm 3: Distributed RML

for : let the current parameter estimate be . Upon
obtaining measurements the following filtering
and parameter update steps are to be performed.

Filtering step: Perform steps (2–5) in Algorithm 2.

Parameter update: Each node of the network will
update the following quantities for every edge :

(26)

(27)

(28)

Upon doing so the localization parameter is updated:

end for
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The distributed RML implementation for self-localization
and tracking is presented in Algorithm 3, while the derivation
of the algorithm is presented in the Appendix. The intermediate
quantities (26)–(28) take values in and may be initialized
to zero matrices. For the non-linear model, when an EKF
implementation is used for Algorithm 2, then Algorithm 3
remains the same.

B. Distributed On-Line EM

We begin with a brief description of distributed EM in an off-
line context and then present its on-line implementation. Given
a batch of observations, let be the (off-line) iteration index
and be the current estimate of after
distributed EM iterations on the batch of observations .

Each edge controlling node will execute the following E and
M steps to update the estimate of the localization parameter for
its edge. For iteration

where .
To show how the E-step can be computed we write

as

where was defined in (9). Note that

is a function of (and not just ) and the
-dependence of arises through the likelihood
term only as is -independent. This means that in order
to compute the E-step, it is sufficient to maintain the smoothed
marginals: , where

and means integration w.r.t. all vari-
ables except . For linear Gaussian models this smoothed den-
sity is also Gaussian, with its mean and covariance denoted by

respectively.
The M-step is solved by setting the derivative of

w.r.t. to zero. The details are
presented in the Appendix and the main result is:

where , defined in (16)–(18), are propa-
gated with localization parameter for all observations from
time 1 to . Only is a function of . To perform the
M-step, the following equation is solved for

(29)

Note that is a function of quantities available locally to node
only. TheM-step can also be written as the following function:

where are three summary statistics of the form:

with being defined as follows:

(30)

(31)

Note that for this problem and are state independent.
An on-line implementation of EM follows by computing re-

cursively running averages for each of the three summary sta-
tistics, which we will denote as . At each time
these will be used at every node to update using

. Note that is the same function for every
node. The on-line implementation of distributed EM is found in
Algorithm 4. All the steps are performed with quantities avail-
able locally at node using the exchange ofmessages as detailed
in Algorithm 2. Here is a step-size satisfying the same con-
ditions as in RML and can be initialized arbitrarily, e.g., the
zero vector. Finally, it has been reported in [24] that it is usually
beneficial for the first few epochs not to perform the M step in
(32) and allow a burn-in period for the running averages of the
summary statistics to converge.

Algorithm 4: Distributed on-line EM

for : let the current parameter estimate be . Upon
obtaining measurements the following filtering
and parameter update steps are to be performed.

Filtering step: Perform steps (2–5) in Algorithm 2. Also
compute .

Parameter update: Each node of the network will
update the following quantities for every edge :

Upon doing so the localization parameter is updated:

(32)

end for
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Fig. 2. Various sensor networks of different size and topology. (a) 11 node
sensor network, (b) 44 node sensor network, (c) 11 node sensor network with
cycles.

V. NUMERICAL EXAMPLES

The performance of the distributed RML and EM algorithms
are studied using a Linear Gaussian and a non-linear model. For
both cases the hidden target is given in (1) with ,
where is zero mean Gaussian additive noise with variance
, and

and is the identity matrix. For the linear model the observa-
tions are given by (2) with

where are constants different for each node and are assigned
randomly from the interval [0.75, 1.25]. For the non-linear
model we will use the bearings-only measurement model. In
this model at each node , the observation is:

with . For the remaining parameters we set
and for all . In Fig. 2 we

show three different sensor networks for which we will perform
numerical experiments.
In Fig. 3 we present various convergence plots for each of

these networks for . We plot both dimensions of the
errors for three cases:
• in (a) and (d) we use distributed RML and on-line EM
respectively for the network of Fig. 2(a) and the linear
Gaussian model.

• in (b) and (e) we use distributed RML for the bearings
only tracking model and the networks of Fig. 2(a) and
(b), respectively. Local linearization as discussed in
Sections II-A, III, and IV-A was used to implement the
distributed RML algorithm. We remark that we do not
apply the online EM to problems where the solution to the
M-step cannot be expressed analytically as some function
of summary statistics.

• in (c) and (f) we use distributed RML and on-line EM
for respectively for the network of Fig. 2(c) and the linear
Gaussian model. In this case we used .

All errors converge to zero. Although both methods are theo-
retically locally optimal when performing the simulations we

Fig. 3. The convergence of the localization parameters’ estimates to is
demonstrated using appropriate error plots for various sensor networks. Left:
Parameter error after each iteration for each edge of the medium sensor network
of Fig. 2(a). In each subfigure left and right columns show the errors in the x- and
y- coordinates respectively; (a) is for RML and (d) is for EM. Middle: Same er-
rors when using RML for the nonlinear bearings-only observation model; (b) is
for medium sized network of Fig. 2(a) and (e) for the large network of Fig. 2(b).
Right: Same errors for network with cycles seen in Fig. 2(c); (c) for RML and
(f) for EM. (a) RML for tree network. (b) Nonlinear RML for tree network. (c)
RML for network with cycles. (d) EM for tree network. (e) Nonlinear RML for
large network. (f) EM for network with cycles.

did not observe significant discrepancies in the errors for dif-
ferent initializations. For both RML and on-line EM we used
for a constant but small step-size,
and 0.025 respectively. For the subsequent iterations we set

. Note that if the step-size decreases too
quickly in the first time steps, these algorithms might converge
too slowly. In the plots of Fig. 3 one can notice that the dis-
tributed RML and EM algorithms require comparable amount
of time to converge with the RML being usually faster, with the
converge rate depending on the network, the value of and the
simulation parameters.
To investigate this further we varied and and recorded

the root mean squared error (RMSE) for obtained for the net-
work of Fig. 2(b) using 50 independent runs. For the RMSE at

time wewill use , where

denotes the estimated parameter at epoch obtained from
the th run. The results are plotted in Fig. 4 for different cases:
• in (a) and (b) for we show the RMSE for

. We observe that in every case the RMSE keeps
reducing as increases. Both algorithms behave similarly
with the RML performing better and showing quicker con-
vergence. One expects that observations beyond your near
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Fig. 4. Comparison of distributed RML and on-line EM. (a) (and (b)
resp.): RMSE for RML (and on-line EM resp.) against for

. (c) (and (d) resp.): RMSE for RML (and
on-line EM resp.) for . (a) RML for
different K. (b) EM for different K. (c) RML for different . (d) EM for
different .

immediate neighbors are not necessary to localize adjacent
nodes and hence the good performance for small values
of .

• in (b) and (c) we show the RMSE for RML and on-line EM
respectively when . We observe that
EM seems to be slightly more accurate for lower values of
with the reverse holding for higher values of the ratio.

In each run the same step-size was used as before except for
RML and , where we had to reduce the step size by a
factor of 10.

VI. CONCLUSION

We have presented two distributed ML methods to perform
collaborative tracking and self-localization. We exploited the
fact that different nodes collect measurements of a common
target. The methods rely on a message passing scheme, which
provides the appropriate summary statistics for computing the
filtering density and performing parameter updates. There is
good empirical evidence that the distributed implementations
of ML proposed in this paper are stable and do seem to settle
at reasonably accurate estimates. A theoretical investigation of
the properties of the schemes would be an interesting but chal-
lenging extension. Finally, as pointed out by one referee, another
interesting extension would be to develop consensus versions of
Algorithm 1 in the spirit of gossip algorithms in [25] or the ag-
gregation algorithm of [26] which might be particularly relevant
for networks with cycles, which are dealt with here by using an
appropriate value for .

APPENDIX A
DISTRIBUTED RML DERIVATION

Let be the estimate of the true pa-
rameter given the available data . Consider an

arbitrary node and assume it controls edge . At
time , we assume the following quantities are avail-
able: . The
first of these quantities is the derivative of the conditional
mean of the hidden state at node given , i.e.,

. This quantity
is a function of the localization parameter . is the
variance of the distribution and is
independent of the localization parameter. The log-likelihood
in (25) evaluates to

where all independent terms have been lumped together in
the term ‘const’. (Refer to Algorithm 2 for the definition of
the quantities in this expression.) Differentiating this expression
w.r.t. yields

(25) requires to be evaluated at
. Using the (19)–(22) and the assumed knowledge of

we can evaluate the derivatives on
the right-hand side of this expression:

(33)

(34)

(35)

Using (5) we note that for the set of vertices for which the
path from to includes edge (the identity
matrix) whereas for the rest . For all the nodes
for which , let them form a sub tree
branching out from node away from node . Then the last sum
in the expression for evaluates
to

where messages were defined in Algorithm 2.
Similarly, we can write the sum in the expression for as

(again refer to Algorithms 2) to obtain

(36)
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To conclude, the approximations to
for the subsequent

RML iteration, i.e., (25) at time , are given by

while are given by (19)–(22). The approxi-
mation to follows from differentiating (22).

are only approximations because they are
computed using the previous values of the parameters, i.e., .

APPENDIX B
DISTRIBUTED EM DERIVATION

For the off-line EM approach, once a batch of observations
have been obtained, each node of the network that controls an
edge will execute the following E and M step iteration ,

where it is assumed that node controls edge . The quantity
is the joint distribution of the hidden states at

node given all the observations of the network from time 1 to
and is given up to a proportionality constant

where was defined in (9). Note that

(and hence ) is a function of
and not just . Also, the -dependence of
arises through the likelihood term only as is inde-
pendent. Note that

where is a constant independent of . Taking the expectation
w.r.t. gives

where all terms independent of have been lumped together
as ‘const’ and is the mean of under .
Taking the gradient w.r.t. and following the steps in the
derivation of the distributed RML we obtain

where is defined in (16)–(18). Only

is a function of . It is trivial then to show that the
M-step is given by (29), whereby can be recovered by stan-
dard linear algebra using quantities available locally to node
and . One can use the fact that

to show that the M-step can be performed
with quantities available locally to node only. Recall that

. Therefore

the summary statistics should be defined using functions
and as shown in (30)–(31) and are given by

and the M-step function becomes

.
We will now proceed to the on-line implementation. Let at

time the estimate of the localization parameter be . For
every and , let be the running

averages (w.r.t. ) for and , respectively.

The recursions for are trivial:

where needs to satisfy and

. For we first set
and define the recursion

(37)

Using standardmanipulations with Gaussians we can derive that
is itself a Gaussian density with mean

and variance denoted by , respectively, where
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It is then evident that (37) becomes ,
with:

where and . Finally, the recursive calculation
of is achieved by computing

Again all the steps are performed locally at node , which can
update parameter using .
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