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Abstract

We introduce “hybrid” Max 2-CSP formulas consisting
of “simple clauses”, namely conjunctions and disjunc-
tions of pairs of variables, and general 2-variable clauses,
which can be any integer-valued functions of pairs of
boolean variables. This allows an algorithm to use both
efficient reductions specific to AND and OR clauses, and
other powerful reductions that require the general CSP
setting.

Parametrizing an instance by the fraction p of non-
simple clauses, we give an exact (exponential-time)
algorithm that is the fastest polynomial-space algorithm
known for Max 2-Sat (and other p = 0 formulas,
with arbitrary mixtures of AND and OR clauses); the
only efficient algorithm for mixtures of AND, OR, and
general integer-valued clauses; and tied for fastest for
general Max 2-CSP (p = 1). Since a pure 2-Sat input
instance may be transformed to a general CSP instance
in the course of being solved, the algorithm’s efficiency
and generality go hand in hand.

Our novel analysis results in a family of running-
time bounds, each optimized for a particular value of p.
The algorithm uses new reductions introduced here,
as well as recent reductions such as “clause-learning”
and “2-reductions” adapted to our setting’s mixture of
simple and general clauses. Each reduction imposes
constraints on various parameters, and the running-time
bound is an “objective function” of these parameters
and p. The optimal running-time bound is obtained by
solving a convex nonlinear program, which can be done
efficiently and with a certificate of optimality.

1 Introduction

1.1 Treatment of “hybrid” Sat–CSP formulas

We show a polynomial-space algorithm that solves
general instances of integer-valued Max 2-CSP (formally
defined in Section 2), but takes advantage of “simple”
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Running Time Problem Space Reference

O⋆
(

2m/2.879
)

Max 2-Sat poly [13]
O⋆

(

2m/3.448
)

Max 2-Sat poly [1] (implicit)

O⋆
(

2m/4
)

Max 2-Sat poly [5]
O⋆

(

2m/5
)

Max 2-Sat poly [4]

O⋆
(

2m/5
)

Max 2-CSP poly [15]

O⋆
(

2m/5.263
)

Max 2-CSP poly [16]
O⋆

(

2m/5.217
)

Max 2-Sat poly [7]

O⋆
(

2m/5.5
)

Max 2-Sat poly [9]
O⋆

(

2m/5.769
)

Max 2-Sat exp [6]

O⋆
(

2m/5.769
)

Max 2-CSP exp [17]

O⋆
(

2m/5.88
)

Max 2-Sat poly [10]
O⋆

(

2m/6.215
)

Max 2-Sat poly [14]

O⋆
(

2m/5.263
)

Max 2-CSP poly (here)

O⋆
(

2m/6.321
)

Max 2-Sat poly (here)

Table 1: A historical overview of algorithms for Max
2-Sat and Max 2-CSP

clauses to reduce the running time, where simple clauses
are unit-weighted conjunctions and disjunctions.

Let us give a simple example. In the instance

(x1 ∨ x2) + (x2 ∨ x4) + (x2 ∧ x3) + 3 · (x1 ∨ x3)

+(2 · (x2) − 5 · x4 + (x2 ⊕ x4)),(1.1)

the first two clauses are unit-weighted disjunctive
clauses, the third is a unit-weighted conjunction, the
fourth is a disjunction with weight 3, and the last is a
general integer-valued CSP clause (any integer-valued
2 × 2 truth table). Thus this example has 3 simple
clauses (the first three) and 2 non-simple clauses.

Both Max 2-Sat and Max 2-CSP have been exten-
sively studied from the algorithmic point of view. For
variable-exponential running times, the only two known
algorithms faster than 2n for Max 2-CSP (or even Max
2-Sat) are those by Williams [19] and Koivisto [8], both
with running time O⋆

(

2n/1.262
)

. They employ beautiful
ideas, but have exponential space complexity.

For clause-exponential running times, there has
been a long series of improved algorithms; see Table 1.
To solve Max 2-Sat, all early algorithms treated pure
2-Sat formulas. By using more powerful reductions



closed over Max 2-CSP but not Max 2-Sat, the Max
2-CSP generalization of Scott and Sorkin [16] led to a
faster algorithm. Then, several new Max 2-Sat-specific
reductions once again gave the edge to algorithms
addressing Max 2-Sat particularly.

In this paper we get the best of both worlds by using
both especially efficient reductions specific to Max 2-
Sat (actually, we allow conjunctive as well as disjunctive
clauses), and powerful CSP reductions. While it is likely
that Max 2-Sat algorithms will become still faster, we
believe that further improvements will continue to use
this method of combination.

1.2 Results Let p be the fraction of non-simple
clauses in the input instance, no matter how this
fraction changes during the execution of the algorithm
(in example (1.1), p = 2/5). The algorithm we present
is the fastest known polynomial-space exact algorithm
for p = 0 (including Max 2-Sat but also instances with
arbitrary mixtures of AND and OR clauses); fastest for
all p < 0.29 (where no other algorithm is known, short
of solving the instance as a case of general Max 2-CSP);
and tied with [17] for fastest for 0.29 ≤ p ≤ 1 (notably
for Max 2-CSP itself), though [17] solves real- as well as
integer-valued CSPs. For the well-studied classes Max
2-Sat and Max 2-CSP, our algorithm has running times
O⋆

(

2m/6.321
)

and O⋆
(

2m/5.263
)

, respectively.
For “cubic” instances, where each variable appears

in at most three 2-variable clauses, our analysis gives
running-time bounds that match and generalize the best
known when p = 0 (including Max 2-Sat); improve on
the best known when 0 < p < 1/2; and match the best
known for 1/2 ≤ p ≤ 1 (including Max 2-CSP).

We derive running-time bounds that are optimized
to the fraction p of non-simple clauses; see Table 2.
Every such bound is valid for every formula, but the
bound derived for one value of p may not be the best
possible for a formula with a different value.

1.3 Method of analysis, and hybrid Sat–CSP

formulas Since a fair amount of machinery will have to
be introduced before we can fully explain our analysis,
let us first give a simplified overview. Our algorithm
reduces an instance to one or more smaller instances,
which are solved recursively to yield a solution to the
original instance. We view a Max 2-CSP instance as
a constraint graph G = (V, E ∪ H) where vertices rep-
resent variables, the set of “light” edges E represents
simple clauses and the set of “heavy” edges H respre-
sents general clauses. The reductions are usually local
and change the constraint graph’s structure, and a re-
lated measure, in a predictable way.

For example, if G has two degree-4 vertices sharing

two simple clauses, a “parallel-edge” reduction replaces
the two simple clauses with one general clause, changing
the vertices’ degrees from 4 to 3, giving a new constraint
graph G′. With the measure µ including weights we

and wh for each simple and general clause, and weights
w3 and w4 for each vertex of degree 3 and 4, this
reduction changes an instance’s measure by µ(G′) −
µ(G) = −2we + wh − 2w4 + 2w3. An inductive proof
of a running-time bound O⋆

(

2µ(G)
)

will follow if the
measure change is non-positive. Thus, we constrain that
−2we + wh − 2w4 + 2w3 ≤ 0.

An algorithm requires a set of reductions covering
all instances: there must always be some applicable
reduction. Just as above, each reduction imposes a
constraint on the weights. One reduction’s constraint
can weaken those of other reductions, by limiting the
cases in which they are applied. For example, if we
prioritize parallel-edge reduction, we may assume that
other reductions act on graphs without parallel edges.
Reductions producing a single instance, or any number
of isomorphic instances, yield linear constraints (as in
[15–17]); reductions producing distinct instances yield
nonlinear, convex constraints.

If a set of weights giving a measure µ satisfies all the
constraints, the analysis results in a proof of a running-
time bound O⋆

(

2µ(G)
)

for an input instance G. To
get the best possible running-time bound subject to
the constraints, we wish to minimize µ(G). To avoid
looking at the full degree spectrum of G, we constrain
each vertex weight wd to be non-positive, and then
ignore these terms, resulting in a (possibly pessimistic)
running-time bound O⋆

(

2|E|we+|H|wh

)

.
If G is a Max 2-Sat instance, to minimize the

running-time bound is simply to minimize we subject
to the constraints: as there are no heavy edges in the
input instance, it makes no difference if wh is large.
This optimization will yield a small value of we and
a large wh. Symmetrically, if we are treating a general
Max 2-CSP instance, where all edges are heavy, we need
only minimize wh. This optimization will yield weights
we, wh that are larger than the Max 2-Sat value of we

but smaller than its wh. For a hybrid instance with
some edges of each type, minimizing |E|we + |H |wh

is equivalent to minimizing (1 − p)we + pwh, where
p = |H |/(|E|+|H |) is the fraction of non-simple clauses.
This will result in weights we and wh each lying between
the extremes given by the pure 2-Sat and pure CSP
cases; see Figure 1.

Thus, a new aspect of our approach is that it results
in a family of nonlinear programs (NLPs), not just one:
the NLPs differ in their objective functions, which are
tuned to the fraction p of non-simple clauses in an input
instance. The optimization done for a particular value
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Figure 1: Plot of we (red), wh (green), and the running-
time exponent (1−p)we+pwh (blue) versus the fraction
p of non–simple 2-clauses. The three values are equal
(and exactly 0.19) for p > 0.29. Both we and wh appear
to be piecewise constant: the resolution of the graph is
in p increments of 0.0001, and all the small changes are
meaningful

of p, by construction, gives a running-time bound that
is the best possible (within our methods) for an input
instance with this fraction of non-simple clauses, but
(because the constraints are the same in all the NLPs)
that is valid for all instances; see the caption of Table 2.

1.4 Novel aspects of the analysis Our introduc-
tion of the notion of hybrids between Max 2-Sat and
Max 2-CSP, discussed above, is the main distinguishing
feature of the present work. It yields a more general
algorithm, applicable to CSP instances not just Sat in-
stances, and gives better performance on Max 2-Sat by
allowing both efficient Sat-specific reductions and pow-
erful reductions that go outside that class. This is surely
not the final word on Max 2-Sat algorithms, but we ex-
pect new algorithms to take advantage of this hybrid
approach.

A secondary point is that CSP reductions such as
combining parallel edges or reducing on small cuts mean
that in other cases it can be assumed that a graph
has no parallel edges or small cuts. This simplifies
the case analysis, counter-balancing the complications
of considering two types of edges.

Our analysis uses a now-common method, but with
some novel aspects. Specifically, we analyze a reduction-
based algorithm with a potential-function method akin
to the measures used by [11, 12], the quasi-convex
analysis of [2], the “measure and conquer” approach
of [3], the (dual to the) linear programming approach
of [17], and much older potential-function analyses in

mathematics and physics. The goal is to solve a NLP
giving a set of weights which minimizes a running-
time bound, while respecting constraints imposed by the
reductions. The hybrid view marks the biggest change
to this approach, since, as already discussed, it means
that the objective function depends on the fraction of
non-simple clauses, so there is a continuum of NLPs,
not just one.

Also, it is common to make some assumptions about
the weights, but we try to avoid this, instead only limit-
ing the weights by the constraints necessitated by each
reduction. This avoids unnecessary assumptions com-
promising optimality of the result, which is especially
important in the hybrid realm where an assumption
might be justified for Sat but not for CSP, or vice-versa.
It also makes the analysis more transparent.

Our nonlinear programs are convex, allowing them
to be solved quickly and with certificates of optimality.
While this should be true of some previous works, we
have not seen it observed before.

As is often the case with exact algorithms, regu-
larity of an instance is important, and in our analysis
we treat this with explicit weights penalizing regularity
(motivated by a similar accounting for the number of
2-edges in a hypergraph in [18], and the “forced moves”
in [17]). This introduces some extra bookkeeping but
results in a more structured, more verifiable analysis.

We introduce several new reductions, including a
2-reduction combining ideas from [9] (for the Sat case)
and [17] (the CSP case), a “super 2-reduction”, and a
generalization of the “clause-learning” from [10].

2 Definitions

We use the value 1 to indicate Boolean “true”, and
0 “false”. The canonical problem Max Sat is, given
a boolean formula in conjunctive normal form (CNF),
to find a boolean assignment to the variables of this
formula satisfying a maximum number of clauses. Max
2-Sat is Max Sat restricted to instances in which each
clause contains at most 2 literals.

We consider a class more general than Max 2-Sat,
namely integer-valued Max (2,2)-CSP; we abbreviate
this to Max 2-CSP. An instance (G, S) of Max 2-
CSP is defined by a constraint graph (or multigraph)
G = (V, E) and a set S of score functions. There is
a dyadic score function se : {0, 1}2 → Z for each edge
e ∈ E, a monadic score function sv : {0, 1} → Z for
each vertex v ∈ V , and (for bookkeeping convenience)
a single niladic score “function” s∅ : {0, 1}0 → Z.

A candidate solution is a function φ : V → {0, 1}
assigning values to the vertices, and its score is

s(φ) :=
∑

uv∈E

suv(φ(u), φ(v)) +
∑

v∈V

sv(φ(v)) + s∅.



An optimal solution φ is one which maximizes s(φ).
A hybrid instance F = (V, E, H, S) is defined by

its variables or vertices V , normal or light edges E
representing conjunctive clauses and disjunctive clauses,
heavy edges H representing arbitrary (integer-valued)
clauses, and a set S of monadic functions and dyadic
functions. Its light-and-heavy-edged constraint graph is
G = (V, E, H), though generally we just think of the
graph (V, E ∪ H); no confusion should arise. We write
V (F ) and V (G) for the vertex set of an instance F or
equivalently that of its constraint graph G.

In a graph G, we define the (open) neighborhood
of a vertex u as N(u) := {v : uv ∈ E ∪ H} \ {u}
(excluding u will not matter once we simplify our graphs
and make them loopless), and the closed neighborhood
as N [u] := N(u) ∪ {u}. Generalizing, a set of vertices,
U , has (open) neighborhood N(U) =

(
⋃

u∈U N(u)
)

\U ,
and (open) second neighborhood N2(U) = N(N(U))\U .
For a single vertex u, define N2(u) := N2({u}).

We define the degree deg(u) of a vertex u to be the
number of edges incident on u where loops are counted
twice, and the degree (or maximum degree) of a formula
F (or its constraint graph G) to be the maximum
of its vertex degrees. Without loss of generality we
assume that there is at most one score function for each
vertex. Then, up to constant factors the space required
to specify an instance F with constraint graph G =
(V, E, H) is the instance size |F | = 1 + |V |+ |E|+ |H |.

We use the symbol ⊡ to end the description of a
reduction rule or the analysis of a case, and 2 to end
a proof. Some proofs and details had to be omitted in
this extended abstract due to space constraints.

3 Algorithm and outline of the analysis

We will show an algorithm which, on input of a hybrid
instance F , returns an optimal coloring φ of F ’s vertices
in time O⋆

(

2we|E|+wh|H|
)

, which is to say in time

T (F ) ≤ poly(|F |)2we|E|+wh|H|.(3.2)

3.1 Algorithm and central argument The algo-
rithm is recursive: on input of an instance F , in time
polynomial in the instance size |F |, F is reduced to a sin-
gle instance F ′ (a simplification) or to several instances
F1, . . . , Fk (a splitting), each of smaller size; the algo-
rithm solves the reduced instance(s) recursively; and,
again in time poly(|F |), the algorithm constructs an
optimal solution to F from the solutions of the reduced
instances.

The central argument is to establish (3.2) for sim-
plified formulas of maximum degree ≤ 6. We do this
now, in Lemma 3.1, with the bulk of the paper devoted
to verifying the lemma’s hypotheses. Lemma 3.1 gives

a bound, T (F ) ≤ |F |k2µ(F ), which is stronger if (as we
will ensure) for some constant C and every simplified
instance F of degree ≤ 6, the measure µ(F ) satisfies

µ(F ) ≤ we|E| + wh|H | + C.(3.3)

Lemma 3.1. (Main Lemma) Suppose there exists an
algorithm A and constants D, c ≥ 1, such that on input
of any hybrid CSP instance F of maximum degree ≤ D,
A either solves F in time at most 1, or decomposes F
into instances F1, . . . , Fk all with maximum degree ≤ D,
solves these recursively, and inverts their solutions to
solve F , using time at most |F |c for the decomposition
and inversion (but not the recursive solves). Further
suppose that for a given measure µ,

(∀F ) µ(F ) ≥ 0,(3.4)

and, for any decomposition done by algorithm A,

(∀i) |Fi| ≤ |F | − 1, and(3.5)

2µ(F1) + · · · + 2µ(Fk) ≤ 2µ(F ).(3.6)

Then A solves any instance F of maximum degree ≤ D
in time at most |F |c+12µ(F ).

We will often work with the equivalent to (3.6), that

k
∑

i=1

2µ(Fi)−µ(F ) ≤ 1.(3.6′)

3.2 Measure We will use a measure µ on simplified
instances of maximum degree 6, where µ is a sum of
weights associated with light edges, heavy edges, and
vertices of various degrees (at most 6), and constants
associated with the maximum degree d of F and whether
F is regular (for regularity, not distinguishing between
light and heavy edges):

µ(F ) := ν(F ) + δ(F ), with(3.7)

ν(F ) := |E|we + |H |wh +
∑

v∈V

wdeg(v), and(3.8)

δ(F ) :=

6
∑

d=4

χ(maxdeg(G) ≥ d)Cd(3.9)

+

6
∑

d=4

χ(G is d-regular)Rd.

Here χ(·) is the indicator function: 1 if its argument is
true, 0 otherwise.

To satisfy condition (3.3) it is sufficient that

(∀d) wd ≤ 0;(3.10)

this is also necessary for large regular instances. Since
we are now only considering instances of degree ≤ 6, we
interpret “∀d” to mean for all d ∈ {0, 1, . . . , 6}.



3.3 Peripheral argument

Lemma 3.2. Suppose that every simplified Max 2-CSP
instance F of degree at most D ≤ 6 can be solved in time
O⋆

(

2µ(F )
)

. Then every instance F of degree at most

D can be solved in time O⋆
(

2µ(F )
)

. Moreover, if for
D = 6 the corresponding µ has we, wh ≥ 1/7, then every
instance F can be solved in time O⋆

(

2we|E|+wh|H|
)

.

3.4 Optimizing the measure The task of the rest
of the paper is to produce the comprehensive set of
reductions hypothesized by Lemma 3.1 (to any formula
there should be some reduction we can apply), and
a measure µ satisfying the hypotheses. For a 2-Sat
instance we would like µ to have we as small as possible;
more generally, for a formula with m(1 − p) simple
clauses and mp general integer-valued clauses, we wish
to minimize (1 − p)we + pwh.

For each reduction, the hypothesized constraint
(3.5) will be trivially satisfied, and it will be straight-
forward to write down a constraint ensuring (3.6′).
We then solve the nonlinear program of minimizing
(1 − p)we + pwh subject to all the constraints.

Minimizing (1 − p)we + pwh for a given set of
constraints can be done with an off-the-shelf nonlinear
solver, but finding a set of reductions resulting in a small
value remains an art.

With the constraints established in the next sec-
tions, we will obtain our main result.

Theorem 3.1. Let F be an instance of integer-weighted
Max 2-CSP in which each variable appears in at most
∆(F ) 2-clauses, and there are (1 − p(F ))m conjunctive
and disjunctive 2-clauses, and p(F )m other 2-clauses.
Then, for any pair of values we, wh in Table 2 (not
necessarily with the table’s p equal to p(F )), the above
algorithm solves F in time O⋆

(

2m·((1−p(F ))we+p(F )wh)
)

.

Which of the constraints are tight strongly depends
on p and ∆(F ).

3.5 The measure’s form Let us explain the rather
strange form of the measure. Ideally, it would be defined
simply as ν, and indeed for the measure we ultimately
derive, most of our simplifications and splittings satisfy
the key inequality (3.6′) with ν alone in place of µ.
Unfortunately, for regular instances of degrees 4–6,
satisfying (3.6′) would require a larger value of we.

Viewing (3.6′) equivalently as
∑k

i=1 2µ(Fi)−µ(F ) ≤ 1,
adding a cost Rd to the measure of a d-regular instance
F means that if a d-regular instance F is reduced to
nonregular instances Fi of degree d, each difference
µ(Fi) − µ(F ) is smaller by Rd than the corresponding

difference ν(Fi) − ν(F ). We will therefore want

(∀d ∈ {4, 5, 6}) Rd ≥ 0.(3.11)

If a nonregular instance F of degree d is reduced to
instances Fi one or more of which is d-regular, there
will be a corresponding penalty: for each d-regular Fi,
µ(Fi) − µ(F ) is ν(Fi) − ν(F ) + Rd.

The case where a nonregular instance of degree d
produces a regular instance Fi of degree < d can be
dispensed with simply by choosing Cd sufficiently large
to reap whatever additional reward is needed. Our
splitting rules are generally local and will never increase
measure by more than a constant, so some constant Cd

suffices. Also, our reductions never increase the degree
of an instance, so Cd will never work against us, and
there is no harm in choosing it as large as we like. Thus,
we never need to consider the cases where the instance
degree decreases, nor the values Cd.

The remaining cases where a nonregular instance
has regular children will be considered on a case-by-
case basis for each reduction. Generally, for a child
to become regular means that, beyond the constraint-
graph changes taken into account in the baseline case
(with the child nonregular), all the vertices of degree less
than d must have been removed from the instance by
simplifications. Accounting for these implies a further
decrease in measure that compensates for the increase
by Rd.

4 Some initial constraints

Let us write w(v) for the weight of a vertex v (so
w(v) = wd for a vertex of degree d), and similarly
w(e) for the weight of an edge (we or wh depending
on whether e is light or heavy). Sometimes it will be
helpful to think of ν(F ) as

ν(F ) =
∑

v∈V

(

w(v) + 1
2

∑

e : v∈e

w(e)
)

,(4.12)

the sum of the weights of the vertices and their incident
half edges. We define (and thus constrain)

ad = wd + 1
2dwe.(4.13)

Considering d-regular Max 2-Sat instances, we ensure
(3.4) by

(∀d) ad ≥ 0 and(4.14)

(∀d ∈ {4, 5, 6}) Cd, Rd ≥ 0.(4.15)

As heavy edges generalize light ones, we ≤ wh.1 For
intuitive purposes let us reveal that we will find that

1For the most part we will only write down constraints that
are necessary, typically being required for some reduction to
satisfy (3.6′), but we make a few exceptions early on.



p 0 0.1 0.2 1
∆(F ) we wh w we wh w we wh w we wh w

3 0.10209 0.23127 0.10209 0.10209 0.23125 0.11501 0.10209 0.23125 0.12793 0.16667 0.16667 0.16667
4 0.14662 0.31270 0.14662 0.15023 0.26952 0.16216 0.15023 0.26951 0.17409 0.18751 0.18751 0.18751
5 0.15522 0.30876 0.15523 0.15664 0.27892 0.16887 0.15664 0.27892 0.18109 0.19001 0.19001 0.19001

≥ 6 0.15820 0.31174 0.15821 0.15925 0.28154 0.17148 0.16520 0.25074 0.18231 0.19001 0.19001 0.19001

Table 2: Values of we, wh and w := pwh +(1− p)we according to the fraction p of heavy edges and the maximum
degree ∆(F ) of a formula F . For any pair (we, wh) in the table, a running-time bound of O⋆

(

2m·((1−p)we+pwh)
)

is valid for every formula, regardless of its fraction p(F ) of non-simple clauses, but the pair obtained when the
table’s p equals p(F ) gives the best bound.

0 = a0 = a1 = a2 < a3 < · · · < a6. Typically
wh ≤ 2we, but not always. This “intuition” changed
several times as the paper evolved, which supports the
value of making as few assumptions as possible, instead
just writing down constraints implied by the reductions.

5 Simplification rules and their weight

constraints

We use a number of simplification rules (reductions of
F to a single simpler instance F1 or F ′). We have
already ensured constraint (3.4) by (4.14) and (4.15).
Constraint (3.5) of Lemma 3.1 will be trivially satisfied
by all our simplifications, so our focus is on ensuring
that each reduction satisfies (3.6′).

Some of the simplification rules are standard, the
CSP 1-reductions are taken from [17], the CSP 2-
reductions combine ideas from [17] and [9], and a “super
2-reduction” is introduced here. For vertices of degree
5 we use a splitting reduction taken from [10] that we
generalize to hybrid instances. Considering δ later, here
we show that each simplification from F to F ′ satisfies

ν(F ′) ≤ ν(F ).(5.16)

5.1 Combine parallel edges Two parallel edges
(light or heavy) with endpoints x and y may be collapsed
into a single heavy edge [17]. If one of the endpoints,
say x, of the two parallel edges has degree 2, collapse the
parallel edges and immediately apply a 1-reduction (see
reduction 5.6) on x (of degree 1), which removes x from
the constraint graph. To ensure (5.16) we constrain

(∀d ≥ 2) − a2 − ad + ad−2 ≤ 0 :(5.17)

the left hand side is ν(F ′) − ν(F ) thought of as sub-
tracting a vertex of degree 2 and replacing a vertex of
degree d by one of degree d−2. For the case that x and
y have degree d ≥ 3, we constrain

(∀d ≥ 3) − 2ad + 2ad−1 − we + wh ≤ 0 :(5.18)

thought of as replacing two vertices of degree d by two
vertices of degree d− 1 and replacing a light by a heavy

edge. If deg(x) 6= deg(y), the resulting constraint is a
half–half mixture of (5.18) with d = deg(x) and another
with d = deg(y), and is thus redundant. ⊡

5.2 Remove loops If the instance includes any edge
xx ∈ E ∪ H , the nominally dyadic score function
sxx(φ(x), φ(x)) may be replaced by a (or incorporated
into an existing) monadic score function sx(φ(x)). This
imposes the constraints

(∀d ≥ 2) − ad + ad−2 ≤ 0.(5.19)

Note that we may ignore constraint (5.17) now as it is
weaker than (5.19) by (4.14). ⊡

We may from now on assume the constraint graph
is simple.

5.3 0-reduction If v is a vertex of degree 0, reduce
the instance F to F ′ by deleting v and its monadic
score function sv. Constraint (3.5) is satisfied, since
|F ′| = |F |−1. Constraint (5.16) is satisfied iff −w0 ≤ 0.
On the other hand, wd ≤ 0 (inequality (3.10)), implying
that w0 = 0, and thus

a0 = 0.(5.20)

We will henceforth ignore vertices of degree 0 com-
pletely. ⊡

5.4 Delete a small component For a constant C
(whose value we will fix later (reduction 7.1)), if the
constraint graph G of F has components G′ and G′′ with
1 ≤ |V (G′′)| < C, then F may be reduced to F ′ with
constraint graph G′. The reduction and its correctness
are obvious, noting that F ′′ may be solved in constant
time. Since ν(F ′) − ν(F ) = −

∑

v∈V (G) adeg(v), it is

immediate from (4.14) that (5.16) is satisfied. ⊡

5.5 Delete a decomposable edge If a dyadic score
function sxy(φ(x), φ(y)) can be expressed as a sum of
monadic scores, s′x(φ(x)) + s′y(φ(y)), then delete the
edge and add s′x to the original sx, and s′y to sy. The



constraint imposed is that

(∀d ≥ 1) − ad + ad−1 ≤ 0.(5.21)

Note that we may ignore constraint (5.19) now as it is
weaker than (5.21). ⊡

Two remarks. First, together with (5.20), (5.21)
means that

0 = a0 ≤ a1 ≤ · · · ≤ a6.(5.22)

Second, if an edge is not decomposable, the assign-
ment of either endpoint has a (nonzero) bearing on the
optimal assignment of the other, as we make precise in
Remark 1. We will exploit this in Lemma 6.1, which
shows how “super 2-reduction” opportunities (reduc-
tion 6.1) are created.

Remark 1. Let biasy(i) := sxy(i, 1) − sxy(i, 0), the
“preference” of sxy for setting φ(y) = 1 over φ(y) = 0
when x is assigned φ(x) = i. Then sxy is decomposable
iff biasy(0) = biasy(1).

5.6 1-reduction This reduction comes from [17],
and works regardless of the weight of the incident edge.
Let y be a vertex of degree 1, with neighbor x. We
use the fact that the optimal assignment of y is an
easily-computable function of the assignment of x, and
thus y and its attendant score functions sy(φ(y)) and
sxy(φ(x), φ(y)) can be incorporated into sx(φ(x)).

Since the reduction deletes the vertex of degree 1
and its incident edge (light, in the worst case), and
decreases the degree of the adjacent vertex, (5.16) is
ensured by (5.22). ⊡

5.7 1-cut Let x be a cut vertex isolating a set of
vertices A, 2 ≤ |A| ≤ 10. (The 1-cut reduction
extends the 1-reduction, thought of as the case |A| = 1.)
Informally, for each of φ(x) = 0, 1 we may determine
the optimal assignments of the vertices in A and the
corresponding optimal score; adding this score to the
original monadic score sx gives an equivalent instance
F ′ on variables V \ A.

This simplification imposes no new constraint on
the weights. Vertices in A are deleted and x has its
degree reduced; by (4.14) and (5.21), neither increases
the measure ν. ⊡

5.8 2-reduction Let y be a vertex of degree 2 with
neighbors x and z. Then y may be contracted out of
the instance: the old edges xy, yz, and (if any) xz are
replaced by an edge xz which in general is heavy, but is
light if there was no existing edge xz and at least one
of xy and yz was light.

If there is an edge xz then deg(x), deg(y) ≥ 3 and
we use the general Max 2-CSP 2-reduction from [17].
Arguing as in the 1-reduction above, here the optimal
assignment of y depends only on the assignments of x
and z, and thus we may incorporate all the score terms
involving y into sxz(φ(x), φ(z)). The effect is that y
is deleted, three edges (in the worst case all light) are
replaced by one heavy edge, and the degrees of x and z
decrease by one. Thus, we constrain

(∀d ≥ 3) − a2 − we + wh − 2ad + 2ad−1 ≤ 0.(5.23)

If xy or yz is heavy, then ν(F ′) − ν(F ) ≤ −wh + we,
and we will capitalize on this later.

Finally, we consider the case where there was no
edge xz. If xy and yz are both heavy, then as in the
first case we apply the general Max 2-CSP reduction
to replace them with a heavy edge xz, giving ν(F ′) −
ν(F ) ≤ −wh +we. Otherwise, at least one of xy and yz
is light, and it can be shown that the resulting edge xz
is light. If both xy and yz are light, ν(F ′) − ν(F ) ≤
−a2 ≤ 0, while (once again) if one of xy and yz is heavy,
ν(F ′) − ν(F ) ≤ −wh + we. ⊡

5.9 2-cut Let {x, y} be a 2-cut isolating a set of
vertices A, 2 ≤ |A| ≤ 10. (The 2-cut reduction
extends the 2-reduction, thought of as the case |A| =
1.) Similarly to the 1-cut, for each of the four cases
φ : {x, y} → 0, 1 we may determine the optimal
assignments of the vertices in A and the corresponding
optimal score; adding this score function to the original
dyadic score sxy gives an equivalent instance F ′ on
variables V \ A.

In general, ν′ − ν may be equated with the weight
change from deleting the original edge xy if any (guar-
anteed by (5.21) not to increase the measure), deleting
all vertices in A (a change of −

∑

v∈A adeg(v)), replac-
ing one half-edge from each of x and y into A with a
single heavy edge between x and y (not affecting their
degrees, and thus a change of −we+wh), then removing
any half-edges remaining from other edges in {x, y}×A
Thus we can assure ν′ − ν ≤ 0 by −2a3 − we + wh ≤ 0,
which is already imposed by (4.14) and (5.18). ⊡

6 Some useful tools

The property of disjunction and conjunction on which
we rely to treat them more efficiently (besides having
range {0, 1}) is that they are monotone in each variable.
Obviously exclusive-or is not monotone, and it seems
that it cannot be accommodated by our methods.

6.1 Super 2-reduction Suppose that y is of degree 2
and that its optimal color C ∈ {0, 1} is independent of



the colorings of its neighbors x and z, i.e.,

(∀D, E) sy(C) + syx(C, D) + syz(C, E)

= max
C′∈{0,1}

sy(C
′) + syx(C′, D) + syz(C

′, E).(6.24)

In that case, sy(φ(y)) can be replaced by sy(C) and
incorporated into the niladic score, sxy(φ(x), φ(y)) can
be replaced by a monadic score s′x(φ(x)) := sxy(φ(x), C)
and combined with the existing sx. The same holds for
syz, resulting in an instance with y deleted. ⊡

A super 2-reduction is better than a usual one since
y is deleted, not just contracted.

We will commonly split on a vertex u, setting
φ(u) = 0 and φ(u) = 1 to obtain instances F0 and F1,
and solving both.

Lemma 6.1. After splitting a simplified instance F on
a vertex u incident to a vertex y of degree 3 whose other
two incident edges xy and yz are both light, in at least
one of the reduced instances F0 or F1, y is subject to a
super 2-reduction.

Proof. In the clauses represented by the light edges xy
and yz, let b ∈ {−2, 0, 2} be the number of occurrences
of y minus the number of occurrences of ȳ. Following
the fixing of u to 0 or 1 and its elimination, let biasy :=
sy(1) − sy(0). Given that F was simplified, the edge
uy was not decomposable, so by Remark 1 the value of
biasy in F0 is unequal to its value in F1. First consider
the case b = 0. If biasy ≥ 1, the advantage from biasy

for setting φ(y) = 1 rather than 0 is at least equal to
the potential loss (at most 1) from the one negative
occurrence of y in xy and yz, so the assignment φ(y) = 1
is always optimal. Symmetrically, if biasy ≤ −1 we may
set φ(y) = 0. The only case where we cannot assign y is
when biasy = 0 = −b/2. Next consider b = 2. (The case
b = −2 is symmetric.) If biasy ≥ 0 we can fix φ(y) = 1,
while if biasy ≤ −2 we can fix φ(y) = 0. The only case
where we cannot assign y is when biasy = −1 = −b/2.
Thus, we may optimally assign y independent of the
assignments of x and z unless biasy = −b/2. Since
biasy has different values in F0 and F1, in at least one
case biasy 6= −b/2 and we may super 2-reduce on y.

Lemma 6.1 relies on biasy taking integral values,
and is the sole reason our algorithm works with integer-
valued CSP clauses but not real-valued ones.

6.2 Splitting on vertices of degree 5 Kulikov and
Kutzkov [10] introduced a clever splitting on vertices
of degree 5. The basic idea is the same one that went
into our 2-reductions: in some circumstances an optimal
assignment of a variable is predetermined. In addition
to generalizing from degree 3 to degree 5 (from which

the generalization to every degree is obvious), [10] also
applies the idea somewhat differently.

The presentation in [10] is specific to 2-Sat. Reading
their result, it seems unbelievable that it also applies to
Max 2-CSP as long as the vertex being reduced upon
has only light edges (even if its neighbors have heavy
edges), but in fact the proof carries over unchanged.

Lemma 6.2. (clause learning) In a Max 2-CSP in-
stance F , let u be a variable of degree 5, with light edges
only, and neighbors v1, . . . , v5. Then there exist “pre-
ferred” colors Cu for u and Ci for each neighbor vi such
that a valid splitting of F is into three instances: F1

with φ(u) = Cu; F2 with φ(u) 6= Cu, φ(v1) = C1;
and F3 with φ(u) 6= Cu, φ(v1) 6= C1, and φ(vi) = Ci

(∀i ∈ {2, 3, 4, 5}).

7 Splitting reductions and preference order

Recall that if we have a nonempty simplified instance F ,
we will apply a splitting reduction to produce smaller
instances F1, . . . , Fk, simplify each of them, and argue
that

∑k
i=1 2µ(Fi)−µ(F ) ≤ 1 (inequality (3.6′)). We apply

splitting reductions in a prescribed order of preference,
starting with division into components.

7.1 Split large components If the constraint graph
G of F has components G1 and G2 with at least C ver-
tices each (C is the same constant as in the simplifi-
cation rule (5.4)), decompose F into the corresponding
instances F1 and F2.

Note that ν(F1) + ν(F2) = ν(F ), and ν(Fi) ≥ Ca3

since Fi has at least C vertices, all degrees are at least 3,
and the ai are nondecreasing. Thus ν(F1) ≤ ν(F )−Ca3.
Also, δ(F1) − δ(F ) is constant-bounded. Assuming
that a3 > 0 (following from the splitting on degree 3
vertices), then for C sufficiently large,

µ(F1) − µ(F ) = ν(F1) − ν(F ) + δ(F1) − δ(F )

≤ −Ca3 +
∑6

d=4
(Rd + Cd) ≤ −1.

The same is of course true for F2, giving 2µ(F1)−µ(F ) +
2µ(F2)−µ(F ) ≤ 1 as required. ⊡

If F ’s constraint graph is connected, the splitting
we apply depends on the degree of F . Separate case
analyses are needed for degrees 3-6, and space does not
allow presenting all of them. We show the treatment of
degree 5 since it uses the full range of techniques.

8 Instances of degree 5

In this section we present the splitting rules for vertices
of degree 5. Note that the simplification rules imply
that F has minimum degree 3. For any d ≥ 3, we
define hd := min3≤i≤d{ai − ai−1}. This is the minimum



possible decrease of measure resulting from a good
degree-reduction, that is the decrease of the degree of
a vertex of degree i with 3 ≤ i ≤ d by the deletion
of a half-edge. Such deletions always occur with the
same sign in our NLP — the larger hd, the weaker each
constraint is — and therefore the above definition can be
expressed in our mathematical program by inequalities

(∀3 ≤ i ≤ d) hd ≤ ai − ai−1.(8.25)

As an overview of this section, if there is a 3-cut
isolating a set S with 6–10 vertices, at least one having
degree 5, the algorithm splits on a vertex in the cut.
Otherwise, the algorithm chooses a vertex u of degree 5
with — if possible — at least one neighbor of degree at
most 4, and splits on u either by setting u to 0 and 1 or
using the clause-learning splitting of Lemma 6.2.

8.1 3-cut If there is a 3-cut C = {x1, x2, x3} isolating
a set S of vertices such that 6 ≤ |S| ≤ 10 and S contains
a vertex of degree 5 then splitting on x1 leaves constraint
graphs where {x2, x3} form a 2-cut. Thus S ∪ {x1}
are removed from both resulting instances (a5 + 6a3), a
neighbor of x1 outside S∪C has its degree reduced (h5),
a heavy edge x2x3 may appear but at least 2 half-edges
incident on x2 and x3 disappear (−wh + we), and the
resulting instances may become 5-regular (−R5). So,
the measure decreases in both instances by at least a5 +
6a3+h5−wh +we−R5. Constraint (3.6′) of Lemma 3.1
is thus assured if 2 · 2−a5−6a3−h5+wh−we+R5 ≤ 20 = 1.
We will henceforth express such constraints by saying
that the case has splitting number at most

(

a5 + 6a3 + h5 − wh + we − R5,(8.26)

a5 + 6a3 + h5 − wh + we − R5

)

.

From now on we may assume that each degree-5 variable
u has |N2(u)| ≥ 4. ⊡

8.2 5-regular If every vertex has degree 5, first
consider the case in which F0 and F1 are 5-regular.
Since splitting on u decreases the degree of each vertex
in N(u), and none of our reduction rules increases the
degree of a vertex, every vertex in N(u) must have been
removed from F0 and F1 by simplification rules. This
gives a splitting number of at most

(6a5, 6a5).(8.27)

If neither F0 nor F1 is 5-regular (R5), then u is removed
(a5) and the degree of its neighbors decreases (5h5).
Thus, the splitting number is at most

(a5 + 5h5 + R5, a5 + 5h5 + R5).(8.28)

If one of F0 and F1 is 5-regular, the resulting constraint
is no stronger than (8.27) or (8.28). ⊡

Otherwise, let u be a degree-5 vertex with a min-
imum number of degree-5 neighbors, pi be the num-
ber of degree-i neighbors of u (p5 < 5), and H :=
χ(u is incident to a heavy edge). Depending on the val-
ues of H and pi we will use either clause-learning split-
ting or normal 2-way splitting.

8.3 5-nonregular, 2-way splitting If H = 1 or
p3 ≥ 1 or p5 ≤ 2, we use the standard splitting, setting
u to 0 and to 1 and simplifying to obtain F0 and F1.
If Fi is not regular, the measure decrease is at least
∆r

5 := a5+
∑5

i=3 pihi+H(wh−we), and if Fi is 5-regular,

it is at least ∆r
5 := a5 +

∑5
i=3 piai + H(wh − we) − R5.

If ≥ 1 branch is regular the splitting number is at most
(

∆r
5, ∆r

5

)

or
(

∆r
5, ∆r

5

)

.(8.29)

If both branches are nonregular, we use that any degree-
3 neighbor of u either has a heavy edge not incident
to u (additional measure decrease of wh − we), or in
at least one branch may be super 2-reduced (additional
2h5). At the start of the first super 2-reduction, every
vertex has degree 2 or more. Each of the two “legs” of
the super 2-reduction propagates through a (possibly
empty) chain of degree-2 vertices before terminating
either in a good degree reduction or by meeting a vertex
that was reduced to degree 1 by the other leg. In
the latter case all the vertices involved had degree 2,
thus were neighbors of u originally of degree 3; also,
there must have been at least three of them to form
a cycle, and the remaining 2 or fewer vertices in N(u)
contradict the assumption that F was simplified. Thus,
the splitting number is at most

(

∆r
5 + χ(p3 ≥ 1)2h5, ∆r

5

)

or
(

∆r
5 + χ(p3 ≥ 1)(wh − we), ∆r

5 + χ(p3 ≥ 1)(wh − we)
)

.

⊡

8.4 5-nonregular, clause learning If H = 0 and
p3 = 0 and p5 ∈ {3, 4}, let v be a degree-5 neighbor
of u with a minimum number of degree-5 neighbors
in N2 := N2(u). The clause learning splitting (see
Lemma 6.2) sets u in the 1st branch, u and v in the
2nd branch, and all of N [u] in the 3rd branch. In each
of the branches, the resulting instance could become 5-
regular or not.

In the 1st branch, the measure of the instance
decreases by at least

∆51 := min

{

a5 +
∑5

i=4 pihi (5-nonregular case)

a5 +
∑5

i=4 piai − R5 (5-regular case).



In the analysis of the 2nd and 3rd branch we
distinguish the cases where v has ≤ 1 degree-5 neighbor
in N2, and where v (thus every degree-5 neighbor of u)
has ≥ 2 degree-5 neighbors in N2.

In the 2nd branch, if v has ≤ 1 neighbor of degree
5 in N2, the measure decreases by at least

∆1
52 := min

{

a5 +
∑5

i=4 pihi + a4 + 3h4 + h5,

a5 +
∑5

i=4 piai − R5.

The degree reductions 3h4 + h5 do not appear in the
regular case as they may pertain to the same vertices as
the deletions

∑

piai. If v has ≥ 2 degree-5 neighbors in
N2, µ decreases by at least

∆2
52 := min

{

a5 +
∑5

i=4 pihi + a4 + 4h5,

a5 +
∑5

i=4 piai + 2a5 − R5.

It is possible to show that in the 3rd branch, the
measure decreases by at least ∆1

53 if v has ≥ 2 degree-5
neighbors in N2 and by at least ∆2

53 otherwise, where

∆1
53 := min

{

a5 +
∑5

i=4 piai + 4h5 + χ(p5 = 4)h5,

a5 +
∑5

i=4 piai + 4a3 − R5,

∆2
53 := min

{

a5 +
∑5

i=4 piai + 6h5 + gp4
,

a5 +
∑5

i=4 piai + 2a5 + 2a3 − R5.

and gp4
:= χ(p4 = 1) ·min{2h5,−h5 +h4 +h3}. Finally,

the splitting number of this case is at most

(∆51, ∆
1
52, ∆

1
53) or (∆51, ∆

2
52, ∆

2
53).(8.30)

⊡
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