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INTRODUCTION 
 
 

High-throughput data acquisition technologies in molecular biology, including 

rapid DNA sequencers, gene expression microarrays and other microchip-based assays, 

are providing an increasingly comprehensive parts list of a biological cell.  Although this 

parts list may be far from complete at this time, the so-called “post-genomic era” has now 

begun in which the goal is to integrate the parts and analyze how they interact to 

determine the system’s behavior.  This integration is being facilitated by the creation of 

databases, knowledgebases and other information repositories on the internet.  How these 

huge amounts of information will be used to answer biological questions and predict 

behavior will keep multidisciplinary teams of scientists busy for many years.  A key 

question is how the expression of genes is regulated in response to various intracellular 

and external conditions and stimuli.  The current paradigm is that the secret to life could 

be found in the genetic code; however, the expression of genes and the unfolding of the 

regulatory molecular networks in response to the environment may well be the defining 

attribute of the living state.   

This chapter focuses on gene regulatory networks (GRNs).  A “gene regulatory 

network” refers to a set of molecules and interactions that affect the expression of genes 

located in the DNA of a cell.  Gene expression is the combination of transcription of 

DNA sequences, processing of the primary RNA transcripts, and translation of the 

mature messenger RNA (mRNA) to proteins in ribosomes.  This picture is often referred 

to as the “central dogma” and it has been the canonical model for the flow of information 

from the genetic code to proteins.  These processes are shown schematically as steps 

labeled τ , ρ  and σ  in Fig 1.  
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Figure 1.  A schematic representation of a gene regulatory network involving 

modules of molecular classes (shown in boxes); the modules shown are the 

transcriptional units in the genome (G), primary transcripts (Ro), mature 

transcripts (R), primary proteins (Po), modified proteins (P), and metabolites (M).  

The labeled steps shown in black lines are transcription (τ), RNA processing (ρ), 

translation (σ), protein modification (µ), metabolic pathways (π), and genome 

replication (α).  The feedback interactions shown in gray lines are discussed in 

the text.  Filled circles represent either inhibition or activation.
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The step labeled µ  in Fig 1 represents modification of primary proteins to render 

them functional; examples would be post-translational covalent modifications (e.g. 

phosphorylation) and binding with other proteins or other molecules.  Represented within 

the set of steps µ  are the many regulatory events (other than transcription and translation) 

affecting gene expression and the overall physiology of the cell. 

The complexity of GRNs may arise from the many possible feedback loops 

shown as gray lines in Fig 1.  In step τ , proteins could be directly involved in 

transcription, as in the case of transcription factors binding to upstream regulatory 

regions of genes.  Many RNA and protein molecules cooperate in the translation step σ  

in Fig 1; examples are tRNA, rRNA, and ribosomal proteins.  

The first goal of this chapter is to survey sources of data and other information 

that can be used to generate models of GRNs.  The focus is on biological databases and 

knowledgebases that are available on the internet, especially those that attempt to 

integrate heterogeneous information including molecular interactions and pathways.  The 

second goal of this review is to summarize current models of GRNs and how they can be 

extracted from biological databases.  Depending on the nature of the data, different 

granularities of GRN models can be generated, ranging from probabilistic graphical 

models to detailed kinetic or mechanistic models.  A crucial issue in the design of 

pathways databases is how to represent information having various levels of uncertainty.  

Because of its central importance in GRN modeling, an extensive discussion of pathway 

ontology is given.  Lastly, the third goal is to discuss theoretical and computational 

methods for the analysis of detailed models of GRNs.  In particular, a summary is given 
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of various tools already developed in the field of reaction network analysis.  Particular 

emphasis of the discussion is on exploiting information on network structure to deduce 

potential behavior of GRNs without knowing quantitative values of rate parameters. 

 

 

FORMAL REPRESENTATION OF GRNS 

 

The GRN of Fig 1 can be formally translated to a set of general dynamical 

equations.  The modules (in boxes) in the GRN represent the following classes of 

biomolecules: 

G   : vector of all transcriptional units (TUs) involved in the GRN (in terms, for  

        example, of gene dosage per TU); 

Ro  : vector of primary RNA transcripts corresponding to the TUs in G; 

R   : vector of messenger RNA (mRNA), transfer RNA (tRNA), ribosomal  

RNA (rRNA), and other processed RNAs; 

Po  : vector of newly translated (primary) proteins; 

P    : vector of modified proteins; 

M    : vector of metabolites. 

 

Disregarding the replication of the genomic DNA (step α) and the changes in the 

metabolome M for now (i.e. assume G and M to be constant), a mathematical 

representation of the dynamics of the GRN in Fig 1 would be the following set of vector-

matrix equations: 
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  dRo/dt  =  τG – ρRo – δ1Ro 

  dR/dt  =  ρRo – δ  2R                         [1] 

  dPo/dt  =  σR – µPo – δ  3Po 

  dP/dt  =  µPo – δ  4P 

 

The “RNA transcription” matrix τ  is a diagonal matrix (i.e. all off-diagonal entries are 0) 

with the non-zero entries being, in general, functions of R, P, and M as depicted by the 

feedback loops in Fig 1.  The “RNA-processing matrix” ρ  is a diagonal matrix with the 

non-zero entries being, in general, functions of R and P.  The diagonal matrix σ  is called 

the “protein translation” matrix.  The diagonal matrix µ is called the “protein 

modification” matrix (which includes all post-translational modifications, and protein-

protein interactions).  Fig. 1 shows the dependence of σ  and µ  to R, P, and M.  The 

diagonal matrices δ i are “degradation” matrices which account for the degradation of 

RNA and protein molecules as well as their transport or dilution.  Because of the general 

dependence of the matrices to the variables R, P and M, the above equations are 

nonlinear equations in these variables.   

An example of a GRN is given next to illustrate the formal representation just 

described.  The example also demonstrates the art of modeling and reduction of the 

network into minimal mathematical models. 
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AN EXAMPLE OF A GRN: THE LAC OPERON 

 

The lac operon in the bacterium Escherichia coli is a well-studied GRN.  This 

prokaryotic gene network has been the subject of numerous reviews;1-4  it is discussed 

here primarily to illustrate the various aspects of GRN modeling, starting with the 

information on genome organization (operon structure) to knowledge on protein-DNA 

interactions, protein-protein interactions and the influence of metabolites.   

Understanding the lac operon begins by looking at the genome organization of E. 

coli.  The complete genome sequence of various strains of this bacterium can be accessed 

through the webpage of the National Center for Biotechnology Information 

(http://www.ncbi.nlm.nih.gov).  From the homepage menu, clicking Entrez followed by 

Genome gives the link to complete bacterial genomes including E. coli.  Genes in the 

circular chromosome of E. coli are organized into ‘operons’.  An operon is a cluster of 

genes whose expression is controlled by a common set of operator sequences and 

regulatory proteins.5  The genes in the cluster are usually involved in the synthesis of 

enzymes needed for the metabolism of a molecule.  Several reviews on the influence of 

operon structure on the dynamical behavior of GRNs are available.6-7 

The lac operon is shown in Fig 2A.  The GRN involves the gene set 

{lacZ, lacY, lacA, lacI} and the regulatory sequences {O1, O2, O3, A} as shown in Fig 

2A.  The gene lacI encodes a repressor protein that binds the operator sequences O1, 
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Figure 2.   The Lac Operon.  (A) The expression of the genes lacZ, lacY and lacA as one 

transcriptional unit is controlled by the upstream regulatory sequences including the 

operator regions O1, O2 and O3 where the repressor protein (the product of the lacI gene) 

binds.  The CRP/cAMP protein complex binds the sequence A resulting in increased 

transcription.  (B) A schematic representation of the key pathways regulating the Lac 

Operon.  (Figure is modified from Ref. 3). 
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O2, and O3 thereby repressing the synthesis of the lacZ-lacY-lacA transcript.  Gene lacZ 

encodes the β-galactosidase enzyme, gene lacY encodes a permease, and gene lacA 

encodes a transacetylase. The CRP/cAMP complex binds the sequence A and enhances 

transcription.   

The key pathways that generate the switching behavior of the GRN are shown in 

Fig 2B.  This switching behavior of the lac operon explains the diauxic growth (shift 

from glucose to lactose utilization) of E. coli.  If there is glucose in the growth medium, 

the operon is always OFF because glucose inhibits cAMP and lactose transport into the 

cell.  If glucose is absent, the operon would remain OFF unless some lactose is present 

inside the cell (which is true when glucose is depleted and lactose from the outside can 

now enter the cell); an initially small amount of internal lactose increases rapidly due to 

at least two positive feedback loops as shown in Fig 2B.  It is the positive feedback loop 

involving lactose transport that ultimately controls the influx of lactose. 

 In terms of the formal representation of the lac operon according to Fig 1, the 

vectors of variables corresponding to the model shown in Fig 2B are the following: 

G  = [ GZYA  GI   GCRP ]T  where GZYA is the base sequence on DNA that includes genes 

lacZ, lacY, and lacA, and transcribed as one transcriptional unit ([ ]T means ‘transpose’); 

GI is the DNA sequence containing gene lacI, and GCRP is the transcribed DNA sequence 

containing gene CRP.  Ro  =  [ RZYA,o   RI,o   RCRP,o ]T is the vector of primary transcripts; 

R  =  [ RZ   RY   RI   RCRP ]T is the vector of mature transcripts.  Note that the transcript 

RA (corresponding to gene A) is not included because it is not considered further in the 

dynamics of the GRN.  Po  =  [ PZ,o   PY,o   PI,o   PCRP,o ]T is the vector of primary protein 
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translates; P  =  [ P4Z   PYm   P4I   PCRP.cAMP ]T  is the vector of mature, modified, and 

active proteins; the protein PZ (β-galactosidase) is tetrameric in its functional form, the 

permease PY acts at the plasma membrane (hence the subscript ‘m’ in PYm), the repressor 

protein PI is tetrameric, and CRP’s binding with cAMP is necessary for its DNA-binding 

activity.  M  =  [ Glu   Lac   Allo   cAMP ]T  is the vector of metabolites (Glu = glucose, 

Lac = lactose, Allo = allolactose, cAMP = cyclic adenosine monophosphate).  The GRN 

for the lac operon model using the representation of Fig 1 is shown in Fig 3. The first 

equation in [1] would look like this: 

 

      [2] 

           

where τ11 would be a function of PI and PCRP.cAMP.  For example, one could choose the 

function  τ11  =  (c1+c2PCRP.cAMP)/(c3+c4PI
n) to represent the activation of transcription by 

the protein complex PCRP.cAMP  and inhibition by the tetrameric repressor PI (the n and ci’s 

are constant parameters; n should be greater than 1 because of the tetrameric complex of 

PI). 
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Figure 3.  The Lac Operon in accordance with the scheme shown in Fig 1.  See text for 

details. 
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 New mathematical models and reviews on the lac operon have appeared 

recently.2-4  Yildirim and Mackey2 used delay differential equations to account for the 

transcriptional and translational steps that are missing in their model.  An earlier detailed 

kinetic model was proposed and analyzed by Wong, Gladney and Keasling.1  Recently, 

Vilar, Guet, and Leibler4 used a 4-variable model that captures many of the essential 

dynamics of the lac operon.  Note that the Vilar-Guet-Leibler model is essentially a three-

variable model.  The bistability exhibited by the model was used as the explanation for 

the ON-OFF behavior of the lac operon. 

At the single-cell level, the operon is either ON or OFF  (all-or-nothing induction) 

as shown in the recent experimental report of Ozbudak et al.3  These authors exploited the 

positive feedback loop between the permease (y) and the inducer (x), and used the 

following mathematical model to represent the positive feedback loop: 

 

 τydy/dt = α( 1/[1+R/Ro]) – y          [3] 

            τxdx/dt = βy – x 

                                     where  R/RT  =  1/[1 + (x/xo)n] 

and R = concentration of active LacI, Ro = initial concentration of active LacI, RT = total 

concentration of LacI tetramers, xo = initial concentration of LacY (permease), and the 

rest of the symbols are parameters.   The parameter n allows consideration of the fact that 

the repressor is a tetramer.  This simple model generates bistability in which the all-or-

nothing transition is associated with a saddle-node bifurcation.  The simple set of 

equations above was useful in guiding the authors’ experiments in showing ON-OFF 
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behavior as well exploring the phase diagram (coordinates of which are the variables x 

and y, for example) for bistable and monostable regions. 

 The lac operon illustrates several important points in modeling GRNs.  Although 

the operon structure is not a general property of all genomes, one can expect that genomic 

DNA sequence organization affects the dynamics of the GRN;  this is primarily due to 

co-expression of genes found in the same transcriptional units or co-regulation of genes 

by transcription factors that recognize promoter regions having similar regulatory 

sequences.  Another lesson from the lac operon is that abstraction of the complex GRN 

may be sufficient to understand the behavior of the system.  This abstraction was 

facilitated by prior knowledge of the influence of network topology on dynamical 

behavior, e.g. bistability arising from positive feedback loops.8  A discussion on how 

network structure alone influences system behavior is provided in the penultimate section 

of this chapter. 

 

 

HIERARCHIES OF GRN MODELS: FROM PROBABILISTIC GRAPHS TO 

DETERMINISTIC MODELS 

 

The general representation of GRNs in Fig 1 considers groups of molecules 

according to their chemical classes (DNA, RNA, proteins, metabolites) whose 

“interactions” merely encode the broad concepts of transcription, post-transcriptional 

processing, translation and post-translational modifications.  Depending on the nature of 
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available experimental information, specific models of gene regulatory networks can be 

constructed at various levels of detail. 

 Networks, in general, are described by their graphical structures.  A graph is 

basically a set of ‘nodes’ and a set of ‘edges’, the latter being the representations of the 

interactions or associations among nodes.  Progressively more detailed mechanistic 

information can be added to a graph as they become available.  At one extreme of the 

spectrum of models, the nodes in the graph could be just a set of genes (and no other 

kinds of objects), with certain pairs of genes linked by undirected edges if these pairs are 

known to “interact” or are “associated” in some way.  Sometimes the nodes could be 

proteins and the edges represent physical interactions.  Because of the correspondence 

between proteins and genes (albeit not generally one-to-one), protein-protein interaction 

networks may imply some underlying GRN structure.  In general, nodes in a graph can be 

defined according to the level of detail that is sufficient to describe a particular feature, 

function or behavior of the system.  For example, the nodes in Fig 1 represent various 

classes of molecules.  A node could also represent a subnetwork or module with specific 

cellular function. 

An edge of a graph is assigned a direction if there is information on causality, i.e. 

that one node affects the state of the other.  A directed edge can be further characterized 

as either “activating” or “inhibiting”.  As more quantitative data are available, it may be 

possible to identify the “strength” of an edge.  For dynamic models, the strength of an 

edge would, for example, require identification of rate expressions as functions of the 

states of the nodes.  At this point, a dynamic model encoded in deterministic differential 

equations is possible.  Finally, at the other extreme in the spectrum of GRN models, 
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microscopic details of the interactions between individual molecular species are known 

and molecular dynamic simulations are possible. 

 As the example of the lac operon illustrates, abstract models involving differential 

equations that do not necessarily reflect the detailed mechanism are sometimes used 

when the goal is primarily to explore possible system dynamics arising from the structure 

of the network.  Associated with the process of ‘abstraction’ is the problem of reducing 

the network into a smaller set of ‘modules’ and their interactions.  Modules can range 

from individual molecules or genes, to a set of genes or proteins, or to functional 

subnetworks with definable cellular functions.  Similar ideas have been discussed 

recently by Vilar et al.4 in their work on the lac operon.  The lac operon is an example of 

a well-defined small model system in which a considerable amount of biological 

knowledge and mechanistic understanding have already accumulated so that refined 

mathematical modeling can be carried out.  Many other focused models and 

corresponding mathematical model formalisms have been reviewed recently by de Jong.9  

In contrast, constructing the network graph of gene interactions from large-scale gene 

expression measurements is just beginning and is, at times, controversial.  Since this field 

has been reviewed10-13 recently only a brief account is given below. 

High-throughput gene expression measurements using DNA microarrays provide 

global snapshots of the dynamics of gene networks at the RNA level.  Expression data are 

intrinsically noisy and conclusions derived from them are probabilistic in nature.  

Furthermore, the mRNA levels are averages from cell populations.  Gene network 

reconstruction from microarray data also suffers from the so-called ‘dimensionality 

problem’11 because the number of genes is much greater than the number of microarray 
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experiments.  Statistical analysis of gene expression data usually employ clustering 

methods to find genes with similar expression patterns across time series or across 

different experimental conditions (e.g. see Refs. 14-15).  The assumption is that clustered 

or co-expressed genes are somehow co-regulated or perhaps share similar functions.  The 

results of clustering in terms of GRN modeling could therefore be a coarse-grain network 

composed of modules (nodes), each module representing a set of genes with similar 

functions.   

Graphical models that combine probability theory and graph theory are suitable 

frameworks for inferring GRNs from gene expression data.10, 16  In general, these 

graphical models are probability models for multivariate random variables whose 

independence structure can be represented by a conditional independence graph.  

Recently, Friedman10 reviewed the field of probabilistic graphical models for gene 

networks, including Bayesian networks.  In a Bayesian network, the nodes represent 

random variables (e.g. genes and their expression levels) while the edges show 

conditional dependence relations.  Husmeier17-18 has also reviewed the applications of 

Bayesian networks to microarray data.  Bayesian networks were first applied to the 

problem of reverse engineering of GRNs from microarray expression data by Friedman et 

al.,19 Pe’er et al.,20 and Hartemink et al.21  Other examples of graphical models employing 

various statistical methods are discussed by Wang, Myklebost and Hovig.16 

 Zak et al.22 have argued that inferring the GRN structure from expression data 

alone is impossible.  However, promising results come from more recent work showing 

that properly designed perturbation experiments do permit network reconstruction (see 

Refs. 12, 13, 18, 23-25).  Two papers23-24 extended ideas from metabolic control analysis 
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to suggest perturbation experiments designed to determine the direction and strengths of 

interactions between genes.  Also, Gardner et al.25 used systematic perturbations 

combined with least-squares regression to infer the gene network topology and weights of 

interactions.  

In general, the issues encountered during the creation of a GRN graph are similar 

to those faced when designing a pathway or interaction database.  These issues will be 

discussed in more detail in the section on ‘pathway ontology’ below.  An extensive 

discussion on this ontology is provided because it is a crucial stepping stone for future 

projects concerned with the extraction of GRN models from pathways databases.  

Pathways databases are relatively recent developments in bioinformatics.  These 

databases are built from more elementary databases and it is important to be aware of the 

many heterogeneous bioinformatics resources available, most of them on the internet.  

Thus, a brief guide is given next. 

 

 

A GUIDE TO DATABASES AND KNOWLEDGEBASES ON THE INTERNET 

 

The field of bioinformatics has naturally arisen to cope with the deluge of data 

generated by high-throughput technologies in genomics, transcriptomics, proteomics, and 

other –omics.  These data are organized into databases (DBs) and knowledgebases (KBs), 

many of which are publicly available on the internet.  Comprehensive and realistic 

modeling of GRNs should tap into the information contained in these DBs and KBs.  

Thus, it is expected that the next generation of modelers will have to be sufficiently 
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aware of bioinformatics resources.  It is for this reason that an overview of the major 

bioinformatics DBs and KBs is provided here, although their utility for modeling GRNs 

may not be direct and obvious at this time.  It was alluded to in the discussion of the lac 

operon that understanding the operon structure of the genomic DNA was necessary to 

understand the dynamics of the network.  In general, relating genome organization to 

GRN dynamics is a very difficult and still a very much open problem.  This section 

begins with genomic sequence databases in anticipation of their future use in helping 

predict GRN structures; a specific example would be that of finding regulatory sequences 

where transcription factors bind thereby linking one gene product to the transcription of 

another gene. 

To date, the genomes of more than 150 organisms have been sequenced, and 

many more sequencing projects are currently going on or planned.  Publicly available 

DNA sequence data as well as functional and structural data on proteins are accumulating 

at an exponential rate, virtually doubling every year.  The major sequence and structure 

repositories which are regularly updated are listed in Table 1.   
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Table 1. Major sequence and structure repositories 

 

Database  Description  URL  

GenBank Repository of all publicly available annotated 
nucleotide and protein sequences http://www.ncbi.nlm.nih.gov/ 

EMBL Database Repository of all publicly available annotated 
nucleotide and protein sequences http://www.ebi.ac.uk/embl.html 

DDBJ (DNA Data 
Bank of Japan) 

Repository of all publicly available annotated 
nucleotide and protein sequences http://www.ddbj.nig.ac.jp 

PIR Protein information resource: protein sequence 
database http://pir.georgetown.edu/ 

Swiss-Prot Highly annotated curated protein sequence database  http://www.expasy.org/sprot 

PDB  Protein structure databank:  Collection of publicly 
available 3D structures of proteins and nucleic acids  http://www.rcsb.org/pdb 

 
 
 
 
 
 

Table 2. Protein sequence and structure property databases 
 

Database  Description  URL  

eMOTIF Protein sequence motif database http://motif.stanford.edu/emotif 
InterPro Integrated resource of protein families, domains  http://www.ebi.ac.uk/interpro 
iProClass Integrated protein classification database http://pir.georgetown.edu/iproclass/ 
ProDom Protein domain families http://www.toulouse.inra.fr/prodom.html 

CDD Conserved domain database: covers protein domain 
information from Pfam, SMART and COG databases 

http://www.ncbi.nlm.nih.gov/Structure/cdd
/cdd.shtml 

CATH Protein structure classification database http://www.biochem.ucl.ac.uk/bsm/cath/ 
CE  Repository of  3D Protein structure alignments http://cl.sdsc.edu/ce.html 
SCOP Structural classification of proteins  http://scop.mrc-lmb.cam.ac.uk/scop 
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The partners of the International Nucleotide Sequence Databases (INSD), namely 

GenBank, EMBL and DDBJ, share their nucleic acid sequence data for a comprehensive 

coverage of all available genome information.  Swiss-Prot is a manually curated protein 

sequence database with a high level annotation of protein function and protein 

modifications, including links to property, structure and pathways databases.  PIR is 

similar to Swiss-Prot, with the former providing some options for sequence analysis.  

Recently, UniProt Knowledgebase (http://www.uniprot.org) was established with the aim 

of unifying and linking protein databases with cross-references and query options.  

  Some of the major protein sequence and structure property databases are listed in 

Table 2.  Although there are many more general or specialized property databases 

available,26 the list given in Table 2 is a good start for exploring protein property 

databases.  Table 3 gives a list of gene expression repositories.   

It is very difficult for one person to keep up with the rapidly increasing number of 

genomics, proteomics, and interactomics and metabolomics databases, let alone their 

intended usage.26  To alleviate this problem, an increasing number of integrated database 

retrieval and analysis systems tools are being developed for the purpose of data 

management, acquisition, integration, visualization, sharing and analysis.  Table 4 lists 

promising examples of these tools, which are regularly maintained and updated.  

GeneCards is an integrated database of human genes, genomic maps, proteins, and 

diseases, with software that retrieves, combines, searches, and displays human genome 

information.  GenomNet is of particular interest since its analytical tools are
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Table 3. Gene expression databases 

 

Database  Description  URL  

ArrayExpress Microarray gene expression data collection database http://www.ebi.ac.uk/arrayexpress  

CIBEX 
Center for Information Biology gene: a public 
repository for high-throughput experimental data in 
gene expression  

http://cibex.nig.ac.jp 

GeneNote Database of  human genes expression profiles in 
healthy tissues  http://genecards.weizmann.ac.il/genenote/ 

GEO Gene Expression Omnibus: a high-throughput gene 
expression data repository  http://ncbi.nlm.nih.gov/geo 

SMD Stanford Microarray Database; Raw and normalized 
data from microarray experiments 

http://genome-
www.stanford.edu/microarray 

 

 

 
Table 4. Integrated database retrieval and analysis systems 

 
Database  Description  URL  

GeneCards Database of human genes, proteins and their involvement 
in  diseases http://bioinfo.weizmann.ac.il/cards 

GenomeNet Network of database and computational services for 
genome research http://www.genome.ad.jp/ 

NCBI Retrieval system for searching several linked databases http://www.ncbi.nlm.nih.gov 

PathPort/ToolBus  
Collection of web-services for gene prediction and 
multiple sequence alignment, along with visualization 
tools  

https://www.vbi.vt.edu/pathport 
 

SRS-EBI Integration system for both data retrieval and applications 
for data analysis 

http://srs.ebi.ac.uk 
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tightly linked with the KEGG pathways database (discussed in the next section).  ToolBus 

comprises several data analysis software platforms such as multiple sequence alignment, 

phylogenetic trees, generic XML viewer, pathways and microarray analysis, which are 

linked to each other as well as to major databases.  SRS and NCBI serve as general data 

retrieval portals as well as to provide links to specific analysis tools.  

 

PATHWAYS DATABASES AND PLATFORMS 
 
 

Along with recent advances in genomics and proteomics, requirements for 

analysis, expansion and visualization of cell signaling, GRNs and protein-protein 

interaction maps are leading to the development of data representation and integration 

tools.  Pathways databases can be classified into four groups according to their 

interactome data content and representation as listed in Table 5.  Only those websites that 

are regularly maintained are included in the list.  The first group of databases represents 

binary interaction databases.  BIND, DIP, and MINT document experimentally 

determined protein-protein interactions from peer-reviewed literature or from other 

curated databases.  BIND and MINT store experimental conditions used to observe the 

interaction, chemical action, kinetics and other information linked to the original research 

articles. 

Static image databases are very good sources of pathway diagrams which provide 

a broad introductory view of cell regulatory pathways along with good reviews and links.
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Table 5.  Pathways databases and platforms 

 
Database  Description  URL  

BIND Biomolecular interaction network database http://www.bind.ca 

BindingDB Collection on experimental data on the noncovalent 
association of molecules in solution 

http://www.bindingdb.org 
 

BRENDA 
Enzyme Information System: sequence, structure, 
specificity, stability, reaction parameters, isolation 
data  and  molecular functions ontology 

http://www.brenda.uni-koeln.de 

DIP Database of interacting proteins http://dip.doe-mbi.ucla.edu 

IntAct project Public repository for annotated protein–protein 
interaction data http://www.ebi.ac.uk/intact 

InterDom Putative interacting protein domain database derived 
from multiple sources http://interdom.lit.org.sg 

B
in

ar
y 

in
te

ra
ct

io
ns

  

MINT A molecular interaction database http://mint.bio.uniroma2.it/mint/ 

ACSF Signaling resource for signal transduction elements http://www.signaling-gateway.org/ 

BioCarta Molecular relationship map pages  from areas of 
active research  http://www.biocarta.com 

St
at

ic
 im

ag
es

 

STKE Signal transduction knowledge environment http://stke.org/ 

BRITE Biomolecular relations in information transmission 
and expression  http://www.genome.ad.jp/brite 

KEGG  
Kyoto encyclopedia of genes and genomes: 
molecular interaction networks of  metabolic and  
regulatory pathways  

http://www.genome.ad.jp/kegg 

BioCyc A collection of databases that describes the genome 
and metabolic pathways of a single organism 

http://biocyc.org/ 
 

M
et

ab
ol

ic
 si

gn
al

in
g 

PathDB A data repository and a system for building and 
visualizing cellular networks http://www.ncgr.org/pathdb 

aMAZE 
A system for the representation, annotation, 
management and analysis of biochemical and gene 
regulatory  networks 

http://www.amaze.ulb.ac.be/ 

Cytoscape Software platform for visualizing molecular 
interaction networks http://www.cytoscape.org/ 

GeneNet Database on gene network components and a 
program for the data visualization. 

http://wwwmgs.bionet.nsc.ru/mgs/gnw/gene
net 

PATIKA Software platform for pathway analysis tool for 
integration and knowledge acquisition http://www.patika.org/ 

PathwayAssist 
Tool for analysis, expansion and visualization of 
biological pathways, gene regulation networks and 
protein interaction maps 

http://www.ariadnegenomics.com/products/
pathway.html 
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TRANSPATH Gene regulatory network and microarray analysis 
system. 

http://www.biobase.de/pages/products/datab
ases.html 
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ACSF, STKE and Biocarta are comprehensive knowledgebases on signal transduction 

pathways and other regulatory networks. 

Metabolic signaling databases contain detailed information on metabolic 

pathways.  These DBs have well established data structures but have non-uniform 

ontologies.  BioCyc is a collection of pathway/genome databases for many bacteria and 

up to 14 species of other organisms.  Enzyme catalyzed reactions, or the gene that 

encodes that enzyme or the structures of chemical compounds in pathways and reactions, 

can be displayed by BioCyc ontology based software for a given biochemical pathway.  

In addition BioCyc supports computational tools for simulation of metabolic pathways.  

KEGG is a frequently (daily) updated group of databases for the computerized 

knowledge representation of molecular interaction networks in metabolism, genetic 

information processing, environmental information processing, cellular processes and 

human diseases.  The data objects in the KEGG databases are all represented as graphs 

and various computational methods for analyzing and manipulating these graphs are 

available. 

The fourth category of the DBs and software platforms listed in Table 5 is 

concerned with regulatory signaling networks.  GeneNet, aMAZE and PATIKA possess 

very similar ontologies for representing and analyzing molecular interactions and cellular 

processes.  PATIKA and GeneNet provide graphical user interfaces for illustrating 

signaling networks . The aMAZE tool called LightBench 27 allows users to browse 

information stored in the database which covers chemical reactions, genes and enzymes 

involved in metabolic pathways, and transcriptional regulation.  Another aMAZE tool 

called SigTrans is a database of models and information of signal transduction pathways.  
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Both GeneNet and PATIKA are composed of a server-side with a database and 

client-side.  In addition to its database components, a PATIKA client-side editor software 

provides an integrated, multi-user environment for visualizing, entering and manipulating 

networks of cellular events independent of an additional web-browser. 

Cytoscape and PathwayAssist are similar software tools for automated analysis, 

integration and visualization of protein interaction maps.  In these tools, automated 

methods for mining PubMed and other public literature databases are incorporated to 

facilitate the discovery of possible interactions or associations between genes or proteins. 

 

 

ONTOLOGIES FOR GRN MODELING 

 

 Bioinformatics is now moving towards the direction of creating tools, languages 

and software for the integration of heterogeneous biological data and their analysis at the 

level of cellular systems and beyond.  This direction requires establishing appropriate 

‘ontologies’ to annotate the various parts and events occurring in the system.  An 

ontology is a set of controlled and unambiguous vocabulary for describing objects and 

concepts.28 

 

Current Gene, Interaction, and Pathway Ontologies  

At the genome level, the Gene OntologyTM (GO) Consortium 

(http://www.geneontology.org) introduced a comprehensive bio-ontology that is aimed to 

cover genes in all organisms.  GO provides unique identifiers for each concept related to 
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“molecular function”, “biological process” and “cellular component” searchable through 

the AmiGO tool (http://www.godatabase.org).  Note that these three concepts (especially 

the concept of “biological process”) can be interpreted in terms of memberships of genes 

in cellular pathways; hence GO can be considered as part of a pathway ontology.  

A conventional approach for representing cellular pathways is the use of static 

diagrams such as those found in the websites of ACSF, BioCarta and STKE  (see Table 

5).  These diagrams are often not reusable, and the pathway representations are far from 

being uniform and consistent among different websites; this is because the various 

representations carry implicit conventions rather than explicit rules as required by formal 

ontologies.  Because pathways are basically composed of components and steps or 

processes, the development of interaction databases is a logical first step (see sample 

databases in Table 5-Binary interactions).  These databases provide diverse amount of 

binary interaction data, which could then be used for building networks.   

Among the cellular pathways, metabolic pathways are generally more detailed 

and structured because of more advanced knowledge about metabolism in cells (see 

Table 5-Metabolic signaling).  In all of these databases, the proteins are classified 

according to the Enzyme Commission list of enzymes (EC numbers).  These metabolic 

DBs have strict ontologies which are focused on protein activities relevant to metabolic 

pathways.  Due to a detailed knowledgebase and ontology, metabolic pathways are quite 

amenable to kinetic modeling and computer simulations.29 
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Whole-cell modeling platforms 

There are a number of whole-cell modeling and simulation software environments 

(e.g. Virtual Cell, E-Cell and CellWare) with their specific ontologies.  Virtual Cell 30  

provides a subcellular localization-based visual environment for modeling cellular events.  

The ontology is mainly based on a single mechanistic physiological model that encodes 

the general structure and function of a cellular event such as release of calcium and its 

effects on the cell.  In Virtual Cell a cell is considered as distinct geometrical sub-

domains containing specific cellular components with known concentration.  This model 

allows users to proceed through Virtual Cell simulation tools.  Even though Virtual Cell 

has some applications relevant to GRNs (e.g. Ran-protein dependent transport of proteins 

between cytosol and nucleus), the platform may have difficulties in modeling events that 

occur only in one cellular compartment with unknown molecular concentrations.  

E-Cell 31-32 is a generic software platform for visualization, modeling and 

simulation of whole cell events.  E-Cell provides several graphical interfaces for user 

definable models of certain cellular states.  A cell model can be constructed with three 

classes of objects (entities): substances, genes and reaction rules.  The E-Cell ontology 

shares several similarities with the PATIKA ontology which is discussed in the next 

section.  

CellWare 33 is a multi-algorithmic software platform for modeling and simulation 

of cellular events.  It has several toolboxes including tools for user-dependent model 

description, definition and construction using a graph editor. A simulation toolbox 

contains various simulation algorithms and interfaces from which a user can choose.  
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Ontology for modeling multi-scale and incomplete networks 

  The current state of our knowledge on cellular regulatory pathways is still 

fragmented, incomplete, and uncertain in many respects despite accumulating data.  A 

pathway ontology should be able to represent available information even when it is 

incomplete, thus allowing incremental construction of pathways.  In addition, the 

ontology must have the flexibility for continuous modification of data without 

compromising the integrity of the network being built.  Therefore the ontology must 

describe integrity rules of the pathway data, enabling the construction of a robust model 

of the system.  A data integrity rule should state that for every instance of a bioentity (see 

below), a primary key with an accession number such as (SwissProt ID) must exist and 

be unique.  The seamless integration of various hierarchies of detail or scale is a key 

problem in modeling and in the representation of complex systems like a cell.   

Pathway visualization using diagrams or graphs facilitates the creation of a 

mathematical model of a GRN.  An efficient visualization scheme is generated when an 

ontology uses intuitive images.  The ontology should offer ways to reduce the complexity 

of the information at some stage of the modeling process. 

The discussion in the next sub-section focuses on an ontology that is suitable for 

modeling incomplete information and abstractions of varying levels of complexity.  This 

ontology has been recently implemented in a pathway database tool named PATIKA 

(Pathway Analysis Tool for Integration and Knowledge Acquisition).34-35  The Pathway 

Database System (PDS) developed by Krishnamurthy et al.36 shares several basic 

similarities with PATIKA in terms of database organization and visualization.  As in 

PATIKA, PDS provides tools for modeling, storing, analyzing, visualizing and querying 
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biological pathways.  However, PDS does not define a formal ontology for GRNs but 

instead follows the rules of KEGG metabolic pathway ontology and uses KEGG data.  

 

An ontology for cellular processes  

States and bioentities.  Components of a GRN are macromolecules (e.g. DNAs, 

RNAs or proteins), small molecules (e.g. ions, GTP or ATP), or physical events (e.g. 

heat, radiation or mechanical stress).  Often, these players share a common synthesis 

pathway and/or are chemically very similar.  For example, the p53 protein has many 

states including its native, phosphorylated, nuclear or MDM2-bound forms.  These states 

are represented as nodes in the network graph, while maintaining their biological or 

chemical groupings under a common bioentity.  

Transitions.   A transition represents a cellular event and each is represented as a 

separate node in the graph (see Fig 4 and Fig 5).  A state may go through a certain 

transition, may be produced by a transition, or may affect a transition as being an 

activator or inhibitor.  When a transition occurs, all of its products are generated.  
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Figure 4.  An illustration of the basic features of the PATIKA ontology.  States, 

transitions, and interactions are represented by circles, rectangles and lines, respectively. 

The bioentity “S1” has 3 states (namely, S1, S1' and S1'' ) located in two distinct 

subcellular compartments (cytoplasm and nucleus) which are separated by a third 

compartment, the nuclear membrane.  S1 and S1' are both in the cytoplasm.  S1 is 

phosphorylated through transition T1 giving rise to a new state, the phosphorylated S1'.  

S1' is translocated to the nucleus through transition T2 and becomes S1''.  T1 has two 

effector states, S2 (inhibitor) and S4 (unspecified effect).  T2 has an activator type of 

effector (S3) representing, for example, the nuclear pore complex.  
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Figure 5.  Proposed tree structure used to classify transitions in the PATIKA ontology.  If 

the nature of a transition can not be defined in the existing ontology, it can be considered 

as generic transition to be defined and added in the ontology.   
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Compartments.  Transitions also include transport of molecules between cell 

compartments. The set of transitions that a state can be involved in is strictly related to its 

compartment; accordingly a change in the compartment means a change in the state’s 

information context.  The state’s compartment is a part of the ontology.  As the 

compartments and their vicinity are cell-type dependent, compartmental structure can be 

modeled as part of the ontology.  Cell membranes create an additional complexity since 

not only can a molecule be located completely inside the membrane, it may also 

communicate with both sides of the membrane as part of the events involved in adjacent 

compartments.  So membranes are considered as separate compartments in the ontology. 

Molecular complexes.  In biological systems, molecules often form complexes in 

order to perform certain tasks (Fig 6).  Each member of a molecular complex can be 

considered as a new state of its associated bioentity.  The intrinsic specific binding 

relations affect the function of a molecular complex.  Therefore these binding relations 

must be represented in the model ontology.  Moreover, members of a molecular complex 

may independently participate in different transitions; thus one should be able to address 

each member individually (Fig 6).  In addition, a molecular complex may contain 

members from neighboring compartments (e.g. receptor-ligand complexes). 

Abstractions.   Various levels of abstractions are employed in the analysis of 

complex cellular events.  A set of transitions can be described as a single ‘process’ (e.g. 

the MAPK pathway), and a set of related processes may be classified under one ‘cellular 

mechanism’ (e.g. apoptosis).  Some explicit examples of abstractions are shown in Fig 6.  

In cases where it is not identified which state among a set of states constitutes the 
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substrate or effector of a transition, or where target transition of an effector is unclear, we 

may need to abstract these states (or transitions) as a single state (or transition) to 

represent the available information despite its incomplete nature.  

The PATIKA pathway ontology  
 

A pathway is an abstraction of a certain biological event and is the primary 

abstraction in the PATIKA ontology.35  The context of this abstraction can change from a 

single molecule–molecule interaction to a complete network of all the interactions in a 

cell.  In PATIKA, a pathway is represented by a pathway graph, which is a compound 

graph.37  A pathway graph is defined by an interaction graph G = (V , E) along with a 

number of rules on the topology; V is the union of a finite set of states Vs and a finite set 

of transitions Vt .  E is the union of interactions of five sets: substrate edges Es, product 

edges Ep, activator effector edges Ea, inhibitor effector edges Ei, effector of unknown type 

edges Eu, and each directed edge belonging to either Vt × Vs (for product edges) or to Vs × 

Vt (for remaining interaction edge types).  Every state has a defined type: DNA, RNA, 

protein, small molecule or physical factor.  States are also associated with a specific 

compartment.  Identical states in different compartments are considered as separate 

states.  States of the same biological origin and/or similar chemical structure are grouped 

under a biological entity or simply bioentity that act as state and transition connectivity 

data holders in PATIKA.  
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Figure 6.   A pathway containing two abstractions and a molecular complex C1 

(composed of three states S1, S2 and S3).  Super-state S4 is an example of an abstraction in 

which the state S4-P or S4’ may act as an activator of transition T2.   S5 leads to the 

dissociation of complex C1 acting on either before or after the dissociation of S2. 

Therefore S5 may be an activator of either T3 or T4 ;  thus, S5 is illustrated as the activator 

of super-transition T3-4.  
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Every transition must be affiliated with at least one substrate and one product 

edge.  It may have an arbitrary number of effectors, a combination of which defines the 

exact behavior for the transition. Transitions are classified according to the tree shown in 

Fig 5.  A transition is not associated with a specific compartment; instead, its 

compartment is determined by its interacting states.  Different types of molecules (e.g. 

protein, DNA and RNA) have distinct user interfaces for easier visual discrimination in 

PATIKA.  Compartmental information is also modeled.  PATIKA also implements 

collaborative construction and modification to existing regulatory signaling data on the 

database.  Therefore PATIKA maintains version numbers as part of the ID of each graph 

object.  Thus it is possible that while a user is working on a PATIKA graph locally, others 

might change the topology and/or properties of states and transitions in the PATIKA 

database.  

 

EXTRACTING MODELS FROM PATHWAYS DATABASES   
 
 

A clear pathway ontology, as discussed in the previous section, will allow 

systematic methods for extracting GRN models from the interactions stored in a 

pathways database.  The specific model would, of course, depend on the particular 

biological question being asked.  Here, a brief example is given of how a model is 

extracted from a network of interactions taken from some of the databases listed in Table 

5.   The work of Aguda and Tang38 on the G1 checkpoint of the cell cycle is used as an 

example.  A cell cycle checkpoint is a surveillance mechanism that arrests or slows down 

cell cycle progression if something goes wrong, e.g. DNA damage.  The significance of 
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elucidating the control mechanism of the G1 checkpoint lies in the observation that many 

human cancers are associated with nonfunctional G1 checkpoints.   

A qualitative network of the G1-S transition is shown in Fig 7.  The network was 

generated by integrating information from the published literature, including sequence 

analysis of upstream regulatory regions of genes that are targeted by the E2F 

transcription factor family.  Aguda and Tang38 were interested in finding a minimal 

subnetwork that is sufficient to explain the switching behavior of the G1 checkpoint.  The 

key step towards finding this subnetwork was the hypothesis that there is a core set of 

interactions with an intrinsic instability that ultimately generates a switching behavior 

(see refs. 38 and 39 for details; network stability analysis is discussed in the next section).  

Experimentally, the activity of cyclin E/CDK2 is used as a marker for the entry into the S 

phase of the cell cycle.  Hence, this minimal set of interactions must include 

cyclinE/CDK2. 

In the network graph shown in Fig 7, the arrows are interpreted as “activation” 

and the hammerheads as “inhibition”.  From this qualitative network, a network stability 

analysis (discussed in the next section) pointed to a core mechanism involving cyclin 

E/CDK2, Cdc25A, p27Kip1 and their interactions.  These interactions involve two 

coupled positive feedback loops, namely, between the pair (Cdk2/Cyclin E, Cdc25A) and 

the pair (Cdk2/Cyclin E, p27).  This core mechanism was then used as the basis for a 

more detailed mechanistic model.  The dynamics of the model was coded into differential 

equations and solved in a computer.  The computer simulations reproduced the 

experimentally observed qualitative behavior of the G1 checkpoint.38   
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A discussion of the mathematical and computational tools already available for 

the analysis of GRN models is given in the next section.  Most of the models extracted 

from pathways databases are expected to be qualitative and incomplete in nature; hence 

the discussion focuses on qualitative network structures and how these structures 

influence the capacity of the system to exhibit certain dynamical behavior. 
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Figure 7.  A qualitative network involving key interactions in the G1-S transition of the 

mammalian cell cycle.  Solid lines are post-translational modifications or protein-protein 

interactions.  Dashed arrows are transcriptional steps.  Arrows mean “activation”, and 

hammerheads mean “inhibition”.  GFs = growth factors, cdk = cyclin-dependent kinase, 

pRb = retinoblastoma protein, ORC = origin recognition complex. 
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PATHWAY AND DYNAMIC ANALYSIS TOOLS FOR GRNS 

 

Selection of the appropriate network analysis tool depends on the questions being 

asked and the scale or size of the network being considered.  Questions of robustness of 

the entire system against perturbations require more consideration of global network 

properties and less of the attributes of individual processes or reactions.  Questions 

focusing on particular phenomena, such as the switching behavior of a particular set of 

genes, may require more attention to the local network details involving these genes.  

How the global and local network properties interplay to produce local or system-level 

behavior is an important problem that requires multi-scale analysis, both in time and 

space.  In this section, a brief account is given on global network properties, how large 

networks can be analyzed or reduced by identifying recurring network motifs and 

extreme pathways, and how topology or network structure alone may already determine a 

network’s stability and its capacity to exhibit certain dynamical behavior.  The goal of 

this section is not to provide a comprehensive review of the aforementioned topics (as 

they are quite broad and recent reviews will be cited) but, instead, to point out particular 

directions of analysis of a GRN model once it has been constructed. 

 

Global network properties 

Considering the very large number of interacting genes, proteins and other 

molecules in a living cell, one would first like to ask questions about global features and 

properties of the entire network.  How connected are the nodes in the network, and what 

is the mean path length between any two nodes?  Are there clusters of interactions so that 
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one may subdivide the network into modules?  How robust is the system to perturbations 

– i.e. are there redundant pathways that could take over if a pathway is cut off, so that the 

system’s function is still intact?  In general, the aim is to identify global network 

topological features that affect system function or behavior independent of the details of 

the individual nodes or interactions.  There had been various attempts at searching for 

quantifiable structural features of metabolic networks, signaling networks, and GRNs 

(see Ref. 40 for a review).  Some basic network descriptors are the degree distribution, 

the path length distribution, and the clustering coefficient.   

The degree distribution P(k) is the probability that a node is linked to k other 

nodes.  The P(k) of random networks exhibits a Poisson distribution whereas that of 

scale-free networks approximates a power law of the form P(k) ~k-γ.  An interesting 

suggestion is that most cellular networks approximate a scale-free topology41-42 with an 

exponent γ between 2 and 3.43-44  The interpretation of this suggestion is not clear. 

The path length distribution of a network tells us how far nodes are from each 

other.  Scale-free networks are ‘ultra-small’ since they have an average path length of the 

order log(log N), where N is the number of nodes.  Random networks are ‘small’ because 

their mean path length is of the order log N .43-44 

The clustering coefficient of a particular node A of a network is defined by C(A) 

= 2n(A) / (k(A)(k(A)-1)), where k(A) is the number of neighbors of A, and n(A) is the 

number of connections between the neighbors of A.40  The average clustering coefficient 

characterizes the tendency of a network to form node clusters, and is a measure of the 

network's modularity.  The average clustering coefficient of most real networks is larger 
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than that of same-size random networks.45  Cellular networks have a high average 

clustering coefficient, which indicates a highly modular structure.46-47 

 

Recurring network motifs 

One approach that could simplify the analysis of a large network is to look for 

recurring motifs which are subgraphs that are over-represented in the network.48-51 The 

motivation is that each motif can be analyzed separately for its intrinsic properties, and 

the original network may be reduced to a set of motif interactions.  Recent analysis48 

show that three-node feed-forward motifs are abundant in transcriptional regulatory 

networks and neural networks, while  four-node feedback loops are characteristic of 

electric circuits, but not of biological networks.  Remarkable evolutionary conservation 

of motifs52 and convergent evolution toward the same motif types in transcriptional 

regulatory networks of diverse species53-54 show that motifs are indeed significant 

biologically. 

 

Identifying pathway channels in networks: extreme pathway analysis 

Another way of coping with large networks involves breaking down the network 

into channels through which distinct processes are carried out.  Clarke55 developed a 

formalism called ‘Stoichiometric Network Analysis’ and was the first to show that all 

steady-state fluxes are found in a convex set called the ‘current cone’; furthermore, he 

showed that each cone has a certain number of edge vectors that can be uniquely 

determined from the stoichiometric matrix.  Clarke referred to the pathways 

corresponding to the edge vectors as ‘extreme currents’; alternatively, these are called 
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extreme pathways in this chapter.  Recent algorithms for computing extreme pathways 

can be found in references 56 and 57.  The network shown in Fig 8 serves as an 

illustration of the basic ideas of extreme pathway analysis.  In the network of Fig 8, there 

are six internal fluxes (labeled v1-v6), and four exchange fluxes (the reversible arrows b1-

b4 showing exchange across the rectangular boundary).  Except for the two cycling 

pathways corresponding to the two reversible reactions (v2-v3 and v4-v5), the five extreme 

pathways are shown in the lower panel of Fig 8.  Extreme pathway analysis has been 

extensively applied to metabolic networks.56-57 

 

Network stability analysis 

One of the usual purposes of GRN modeling is to determine the origins of 

switching or threshold behaviors.  These behaviors are often associated with the stability 

properties of the system against perturbations.  Would initial perturbations of a species or 

a reaction in the network die out or would it reverberate throughout the network?  It can 

be shown that, at least near steady states, the stability of the network is influenced by the 

network structure to a large extent. 

More often than not, kinetic or other rate parameters are unknown in GRNs.  Only 

the qualitative interactions between species are usually known, e.g. “X activates Y” or “V 

inhibits W”.  As mentioned earlier, one can interpret the meaning of these qualitative 

interactions as follows:  ∂(dY/dt)/∂X  > 0,  and ∂(dW/dt)/∂V  <  0 ,  respectively.  A  
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Figure 8.  A reaction network and its extreme pathways labeled p1-p5 (adapted from Ref. 
57)  
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‘qualitative network’ can be defined as a set of nodes (species) and a set of qualitative 

interactions (‘activation’ and ‘inhibition’).  Note that these qualitative interactions are 

none other than the elements of the Jacobian matrix of a linearized system of differential 

equations.  The state x of a linear dynamical system varies according to the differential 

equation 

   dx / dt = Ax            [4] 

where A = [aij] is an n × n matrix, and n is the number of species.  For the case of a 

biochemical network, x is the vector of perturbations from a steady state.  This dynamical 

system is stable if each solution x(t) approaches zero for t large enough. A weaker 

condition is that the dynamical system is semistable, which means that, as t becomes 

larger and larger, the solution x(t) could increase, but not at an exponential rate. It is well 

known that the dynamical system in equation [4] is stable if and only if all eigenvalues of 

A have negative real parts, and it is semistable if and only if all eigenvalues of A have 

nonpositive real part.  The eigenvalues λ of the matrix A is given by the roots of the 

characteristic polynomial: 

                   det(λI-A) = λn + α1λ
n-1 + α2λ

n-2 +… +α n-1λ + αn  =  0   [5] 

The coefficients αi are functions of the elements of A and, more importantly, the αi’s are 

functions of cycles in the qualitative network graph.58  An example of cycles would be 

the three-cycle (a12a23a31) and the one-cycle (aii).  The eigenvalues, and therefore the 

linear stability of a network, are determined only by cycles in the qualitative network 

graph. 

Suppose that only the sign pattern of the matrix A is known, i.e., the magnitudes 

of aij matrix entries are unknown but their algebraic signs are known.  If all matrices that 
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have the same sign pattern as A are stable then A is referred to as sign-stable. If all 

matrices that have the same sign pattern as A are semistable then A is sign-semistable. 

The notion of sign-semistability has a simple characterization in terms of signs of 

the entries of the matrix A (the notion of sign-stability can also be characterized in terms 

of signs of the entries of the matrix A, but in a more complicated way59 ).  A useful 

theorem60  states that A is sign-semistable if and only if three conditions are met: (i) there 

is no excitatory one-cycle, (ii) any two-cycle must be negative (i.e. one edge must be 

inhibitory and the other excitatory), and (iii) there are no cycles of length three.  Note that 

since lack of sign-semistability implies lack of sign-stability, the theorem60 on sign-

semistability also gives a set of necessary conditions for sign-stability. 

 

Predicting dynamics and bistability from network structure alone 

It will be useful to identify or classify classes of network structures that, from 

their structures alone, it is possible to tell whether they have the capacity to exhibit 

certain behavior.  Given a biochemical reaction network, one can ask the following 

question: are there circumstances under which this network would exhibit phenomena 

like periodic oscillations and/or bistability?  For example, one would want to know the 

answer to this question when modeling the cell division cycle and circadian rhythm 

where periodic oscillations are required.  For mass-action kinetics models, an extensive 

theoretical work already exists that answers this type of question for large classes of 

reaction networks.  One such set of results is the deficiency theory.61-64  The deficiency δ 

of a reaction network is a function of the number of objects and linkages in the network 

and can be computed easily even if the rate expressions and kinetic parameters are 
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unknown.  For reaction networks with δ = 0 it was shown that they do not have the 

capacity to exhibit cyclic variation or bistability.63  Feinberg also showed that some 

networks with deficiency δ > 0 also do not have the capacity for bistability, if they have 

some additional properties.64  These methods are implemented in the software package 

called Chemical Reaction Network Toolbox.64-65  Recently, other methods of deciding on 

the capacity for bistability of biochemical reaction networks were developed.66-67 The SR 

graph method of Craciun and Feinberg67 allows one to draw conclusions on the capacity 

of a network to exhibit bistability based on the properties of cycles in the graph. 

 

 

CONCLUDING REMARKS 

 

With a well defined pathway ontology, one could envisage a computer program 

that automates the analysis of complex gene regulatory networks and the extraction or 

building of GRN models; these models can then be analyzed by computer simulation and 

other mathematical methods.  An investigator would most likely start with a short list of 

genes or even a short list of specific cellular processes (from which a gene list could be 

derived using existing gene annotations such as GeneOntology).  By scouring databases, 

the computer program would then try to establish pathways among the initial set of 

genes; this step will increase the number of genes in the network and also include 

proteins and other molecules regulating the pathways.  At this point, the GRN is a static 

graph, perhaps a qualitative network containing some information about how the nodes 

affect each other.  The computer program can now use network analysis tools to study the 
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topology of the GRN and to identify stabilizing or destabilizing cycles, extreme 

pathways, or even try to reduce the size of the network without removing the capacity for 

certain behaviors of interest.  Databases (including the published literature) containing 

experimental information will have to be consulted to validate the significance or strength 

of contribution of the pathways and cycles present in the reduced model.  The rate 

expressions and associated kinetic parameters of the individual steps in the model are 

then supplied to a solver of the dynamical equations to simulate the temporal evolution of 

the model system.  Predictions of the model will have to be compared with experimental 

data, and the process of model refinement and experimental validation could be iterated. 

As the work of Ozbudak et al.3 and Vilar, Guet and Leibler4 on the lac operon 

demonstrated, abstract kinetic models with a few variables are sometimes sufficient to 

capture the essential behavior of the system, e.g. the bistable switch in the lac operon.  It 

may seem that there is some arbitrariness in how these simple lac operon models3-4 were 

generated, since they seem to look very different and the dynamical variables are not the 

same.  However, both models preserve the common property of having a positive 

feedback loop.  The presence of such a loop has long been known, in dynamical systems 

theory, to give a system the ability to generate bistability given the right parameters.  As 

the work of Ozbudak et al.3 showed, a low-dimensional abstract model can indeed be 

predictive.  In the future, the process of extracting an abstract model from a complex 

GRN may well be carried out systematically.  The key will be the application of the 

mathematical fields of nonlinear dynamics and reaction network analysis.  As mentioned 

in this chapter, possible behavior of networks may already be predicted from their 

qualitative network structures regardless of the values of rate parameters.  The 
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development of a pathway ontology that can interface with network structure analysis 

tools will be crucial for the integration and use of the huge amounts of data stored in 

databases. 

Significant advances towards understanding gene networks are coming from 

recent work on synthetic gene networks (see ref. 68 for a recent review); the goal here is 

the construction and engineering control of genetic circuits built from well understood 

building blocks of small gene modules.  What is being learned from these man-made 

gene networks will be very useful in future analysis of the very complex GRN repertoire 

of a living cell. 
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