
ArHeX: Flexible Composition of Indexes and Similarity Measures for XML

Ismael Sanz, Rafael Berlanga
Universitat Jaume I, Spain
{isanz,berlanga}@uji.es

Marco Mesiti
Università di Milano, Italy
mesiti@dico.unimi.it

Giovanna Guerrini
Università di Genova, Italy
guerrini@disi.unige.it

Abstract

This work-in-progress paper describes the features of
the ArHeX similarity-oriented XML processing toolkit [12].
ArHeX is designed to assist in the engineering of XML
similarity-oriented applications, supporting the design and
evaluation of suitable similarity measures and their associ-
ated indexes for each specific application.

1. Introduction

There are many XML database applications that require
some notions of similarity. For example, in the integration
and merging of highly heterogeneous XML databases, in
which there is no common schema, exact approaches are
impractical due to the great (and unpredictable) structural
variations of the diverse sources. Therefore, similarity mea-
sures are required to identify similar information modeled
using different structures or terminologies. Moreover, in
systems handling objects with complex structures (e.g., pro-
tein data, music retrieval systems, or shape databases) there
is a fundamental need of identifying similar objects accord-
ing to a similarity function. These applications usually re-
quire carefully tailored similarity functions that consider
both structural variations and vocabulary discrepancies oc-
curring in the collection of documents.

A crucial design issue in the development of these kinds
of similarity-based systems is that a single notion of simi-
larity that “works best” in any situation does not exist. Dif-
ferent users in different contexts may require different sim-
ilarity functions; for instance, a biologist may wish to re-
trieve proteins based on a comparison with a given amino
acid sequence, while another one may issue a query asking
for “malaria antigen” in the associated textual description,
and a third user may combine both kinds of queries. This
leads to the notion of multi-similarity systems [1], which are
designed to support multiple notions of similarity simulta-
neously. These systems require the possibility to combine
different similarity measures depending on the characteris-
tics of the data that need to be handled. This aspect is par-

ticular relevant when handling heterogeneous collections of
XML documents because heterogeneity can occur at many
different levels – from changes in the vocabulary used in
tag names to complex document-wide structural variations.
Moreover, retrieval should be performed efficiently. Thus,
similarity measures should be coupled with specifically tai-
lored indexing structures for their efficient computation.

Starting from these requirements, we are developing the
ArHeX similarity-oriented XML processing toolkit. Key
features of ArHeX are: (i) its ability to support collec-
tions which are heterogeneous at multiple levels of gran-
ularity, (ii) its flexible pattern-based query model, and (iii)
its component-based architecture. These features allow
ArHeX to support multiple user-defined similarity measures
on top of efficient indexes. The following sections describe
the features of ArHeX and the techniques it employs.

2 Measure Definition and Composition

A wide variety of similarity measures, both general pur-
pose and specifically tailored, has been proposed for XML
[7]. Each measure produces good results when the collec-
tions present specific characteristics and are hardly reusable
in other collections. General purpose measures include
metric functions such as the Manhattan or Euclidean dis-
tances; IR-like matching coefficients such as the cosine with
tf × idf weighting; entropy-based measures such as the
Kullback-Leibler divergence; and structure-oriented tech-
niques such as variants of the Tree Edit Distance algo-
rithm [11].

These similarity measures are usually obtained through
the composition of several “atomic” measures at a given
granularity level of the XML hierarchy. For instance, a
measure for complete XML documents is defined in terms
of paths similarity, which in turn requires some criterion to
compare the elements in the path. The following levels can
be devised: the whole XML document, subtrees (i.e., re-
gions of documents), paths, elements, links, attributes and
textual content (of attributes and data content elements).

This indicates that it is possible to build frameworks for
the implementation of complex XML similarity measures,

1

based on a library of basic component functions (imple-
menting the atomic measures). This does not exclude the
employment of ad-hoc measures, if necessary. For exam-
ple, the designer of a similarity-based application in the
domain of genetics may need to combine a generic text-
oriented function that matches protein names with a highly
specialized function that matches amino acid sequences.

We have thus defined a formal framework for the defin-
ition and composition of similarity measures relying on the
granularity levels of documents and then specified software
components implementing such functions that can be com-
bined to obtain new measures specific for a given context.

A Formal Specification of Similarity Measures. Let
DOC be a set of XML documents, and G = {DOC,
ELEMENT, ATTRIBUTE, PATH, REGION, CONTENT,
LINK} the granularity levels at which documents in DOC
can be compared. Given a granularity level γ ∈ G, a map-
ping function mγ can be defined for extracting from a col-
lection S ⊆ DOC the portions of documents at that gran-
ularity level. For example, the mapping functions mELEMENT

and mPATH applied on a collection S ⊆ DOC return the
set of elements (denoted mELEMENT(S)) and paths (denoted
mPATH(S)) occurring in S, respectively. A partial order re-
lation ≺G between granularity levels of G can be defined,
representing the containment relationship between granu-
larity levels; it can be read as “is lower-level than”. For in-
stance, ELEMENT ≺G PATH because the paths in mPATH(S)
are defined in terms of elements in mELEMENT(S).

A similarity measure at a given granularity level γ can
be defined as a function fγ : mγ(S) × mγ(S) → [0, 1].
Moreover, it can be expressed in terms of other lower level
similarity functions. For example, if we denote elements
by en and paths by pm, then an instance of similarity func-
tion for paths expressed in terms of a similarity function for
elements is

fPATH(p1,p2) =

∑
i,j

fELEMENT(ei, ej)

|p1||p2|

where in the simplest case fELEMENT(ei, ej) = 1 if ei = ej

and 0 otherwise, and |p| denotes the length of path p.

Measures as Components. In ArHeX, a measure com-
ponent is an implementation of a similarity function at a
given granularity level. According to the definitions above,
a component can depend on one or more lower-level com-
ponents, but it is irrelevant which concrete lower-level com-
ponent is used, as long as it belongs to the right granular-
ity level. This capability of creating complex measures by
combining simpler parts which are measures themselves is
analogous to the Composite pattern commonly used in Soft-
ware Engineering [6]; the general model for measure com-

position can be illustrated by the UML diagram in Fig. 1.
In addition, every component can be parametrized; for in-
stance, a component that computes similarity at the textual
level may allow the user to choose whether common words
(“stop words”) must be considered.

Fig. 1. Simplified UML model describing the applica-
tion of the Composite pattern to the creation of com-
plex measures: A MeasureComponent’s requirements
are fulfilled by other MeasureComponents, creating
the provides/requires hierarchy.

Using this framework, a large number of functions with
different requirements can be defined for each granularity
level. In order to characterize them, the partial ordering
of levels ≺G is extended into a provides/requires hierar-
chy typically used in software component engineering [10].
Each measure component is thus tagged with two extra
properties, whose values are chosen from a predefined set
of features: the provides property indicates the granular-
ity level at which the function operates (e.g., all node-level
functions provide the feature nodeMatch), while the re-
quires property indicates the features that must be provided
by the lower-level functions on which the function relies.

For instance, let CPATH be a component that implements
the fPATH function defined above. Then, provides(CPATH) =
{pathMatch} and requires(CPATH) = {elementMatch}.
For the component to be usable, another component that
provides elementMatch must be available.

The provides/requires hierarchy separates the represen-
tation of the components from the actual similarity function
implemented. This allows us to implement components for
generic operations (usually called “tie components” [10])
by computing an aggregated value out of the results of other
components. For instance, consider the “weighted sum” tie
component CWSUM, that can be defined for a set of n com-
ponents {C1, . . . , Cn} at the same granularity level γ and a
set of n weights {w1 . . . wn|wi ∈ IR}:

2

parameters(CWSUM) = {{C1 . . . Cn}, {w1 . . . wn}}
provides(CWSUM) =

⋂
i provides(Ci)

requires(CWSUM) =
⋃

i requires(Ci)
fCWSUM

: G×G → [0, 1]

fCWSUM
(o1,, o2) =

∑
i

wi × fCi(o1, o2)

Fig. 2 shows an instantiation of a multilevel similarity
measure that uses WeightedSum, the ArHeX implementa-
tion of CWSUM. It combines components at the node, label,
and text granularity levels. Note how the components at the
node similarity level are computed using a weighted sum.
Edge labels represent the requires/provides hierarchy.

Fig. 2. Component structure of a similarity measure

A Formal Model of Components. We have just shown
how to create components that can be glued together to form
flexible similarity measures. However, the data engineer
needs to answer higher-level questions. For instance: given
a particular component, which other components are avail-
able to fulfill its requirements? Or, is this component sound
(i.e. all of its requirements are correctly fulfilled)? This
is particularly important in collaborative methodologies, in
which sharing components among independently-working
engineers is crucial.

Our approach is to encapsulate all of the required con-
sistency rules in a declarative formalism, using a suitable
Description Logic (DL). DLs provide a set of reasoning
tasks (subsumption, instance checking, relation checking,
concept consistency and knowledge base consistency) ex-
ploited in our context to automate many of the tasks that
must be performed by the data engineer when designing a
multi-similarity system. In addition, sufficiently expressive
DLs provide “inverse functional” roles, which are exactly
equivalent to candidate keys in a database. This is useful
to support the semi-automatic specification of indexes as a
combination of index components.

The mapping between the model previously outlined and
a DL-based representation is straightforward. The rules (A-
Box in DL parlance) can be expressed in terms of the con-
cepts Component and Feature, and the roles provides and
requires. The terminological knowledge (T-Box) reflects the
current state of the system. An example of an instance of
RegionEvaluatorComponent used in Fig. 2 is:

RegionEvaluator :Component

(RegionEvaluator, regionMatch) :provides

(RegionEvaluator, nodeMatch) :requires

Complex concepts and terminological rules are built on
top of these instances. For example, the set of all compo-
nents at the “region” granularity level is expressed as

RegionEvaluatorComponent
.=

Component u ∃provides.regionMatch

The DL reasoner automatically classifies the Region-
Evaluator component as an instance of Region-
EvaluatorComponent. Similar rules can be defined for
consistency checking as outlined above.

3 Index Composition

Composition-based system have already been applied in
the context of schema matching (e.g. COMA++ [4]). How-
ever, a purely functional approach where components oper-
ate directly over the actual data is clearly not appropriate in
our large-scale Web data context. To compute these func-
tions efficiently, it is necessary to exploit suitable indexes
on the base XML data. For instance, consider a measure
component for word similarity that uses tf × idf weights.
The only way to compute such a measure efficiently in a
large collection is to add the global frequency of each word
to the index information. In ArHeX, this index informa-
tion is called index components. ArHeX indexes are built
as a composition of a base XML index plus a set of such
components. This leads us to a second feature-based pro-
vides/requires hierarchy that associates measures to index

3

components. For example, the measure depicted in Fig. 2
relies on the availability of index components that provided
facilities for partial label matching. The possibility of ex-
ploiting indexes on pre-computed aggregate values of com-
posite measures is being evaluated as well.

4 Issues in Query Processing

The dual hierarchy of measure and index components
leads naturally to two levels of algebraic optimization. First,
the tree obtained by the composition of measure compo-
nents is just a variant of an expression tree, and thus famil-
iar expression optimization techniques adapted from com-
piler technology, such as common subexpression elimina-
tion, can be applied on it. Then, using the mapping of mea-
sure components to index components, the resulting expres-
sion is translated to a physical algebra, on which cost-based
optimizations can be performed to obtain an execution plan.

Our flexible measure definition model seems naturally
fitted to a top-k query processor. There has been a lot
of recent work describing approaches for optimizing top-
k queries in an XML context; see for example [8, 9, 13].
Many of these approaches use variants of Fagin’s thresh-
old algorithm, which is suitable for monotonic aggregation
functions [5]. In our context, however, there is no guaran-
tee that the user-defined functions have this property; even
a simple case like a weighted sum with negative coefficients
(e.g., used to penalize certain features) is non-monotonic.

We are currently evaluating techniques to perform ap-
proximate top-k queries in the presence of non-monotonic
aggregation functions. To avoid evaluating all candidate re-
sults, we are studying sampling techniques to find promis-
ing subsets of the collection in which “good” results are
more probable. Analogous techniques have been used for
related problems in different contexts; see e.g. [3]. Our pre-
liminary experiments show promising results, but many is-
sues still remain open.

5 Summary

In this work-in-progress paper we have addressed the
ArHeX approach to multi-similarity systems. ArHeX sup-
ports a flexible, component-oriented way to define mea-
sures, and Description Logic-based meta-data facilities that
help support multiple measures simultaneously.Our goal is
to build a framework which can be used to build highly tai-
lored similarity-oriented systems, enhancing the adaptabil-
ity of current approaches such as XML pattern relaxation
techniques [2] and diff algorithms for change detection in
XML documents [14].

In the paper, we also raised the open problem of effi-
ciently evaluating top-k queries in non-monotonic aggre-
gation functions, of practical importance in our context.

An online version of the current prototype is available at
http://krono.act.uji.es/arhex/Demo.

References

[1] S. Adalı, P. Bonatti, M. L. Sapino, and V. S. Subrahmanian.
A Multi-similarity Algebra. SIGMOD, 402–413, 1998.

[2] S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit. FleX-
Path: Flexible Structure and Full-text Querying for XML.
SIGMOD, 83–94, 2004.

[3] D. Berleant, L. Xie, and J. Zhang. Statool: A Tool for Dis-
tribution Envelope Determination (DEnv), an Interval-based
Algorithm for Arithmetic on Random Variables. Reliable
Computing, 9(2):91–108, 2003.

[4] H. H. Do and E. Rahm. COMA - A System for Flexible
Combination of Schema Matching Approaches. VLDB, 610–
621, 2002.

[5] R. Fagin, A. Lotem, and M. Naor. Optimal Aggregation Al-
gorithms for Middleware. J. Computer and System Sciences,
66:614–656, 2003.

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software Ad-
dison Wesley, 1995

[7] G. Guerrini, M. Mesiti, and I. Sanz. An Overview of Simi-
larity Measures for Clustering XML Documents. Web Data
Management Practices: Emerging Techniques and Tech-
nologies, 56–78. Idea Group, 2006.

[8] R. Kaushik, R. Krishnamurthy, J. Naughton, and R. Ramakr-
ishnan. On the Integration of Structure Indexes and Inverted
Lists. SIGMOD, 779-790, 2004.

[9] A. Marian, S. Amer-Yahia, N. Koudas, and D. Srivastava.
Adaptive Processing of Top-k Queries in XML. ICDE, 162–
173, 2005.

[10] F. Plasil and S. Visnovsky. Behavior Protocols for Software
Components. IEEE Trans. Softw. Eng., 28(11):1056–1076,
2002.

[11] S. M. Selkow. The Tree-to-tree Editing Problem. Informa-
tion Processing Letters, 184–186, 1977.

[12] I. Sanz, M. Mesiti, G. Guerrini, and R. Berlanga. ArHeX: An
Approximate Retrieval System for Highly Heterogeneous
XML Document Collections. Demo at EDBT, LNCS(3896),
1186–1189, 2006.

[13] M. Theobald, G. Weikum, and R. Schenkel. Top-k Query
Evaluation with Probabilistic Guarantees. VLDB, 648–659,
2004.

[14] Y. Wang, D. J. DeWitt, and J.-Y. Cai. X-Diff: An Effective
Change Detection Algorithm for XML Documents. ICDE,
519–531, 2004.

4

