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Abstract— This paper presents the first Keystroke Biometrics 
Ongoing Competition (KBOC) organized to establish a reproducible 
baseline in person authentication using keystroke biometrics. The 
competition has been developed using the BEAT platform and 
includes one of the largest keystroke databases publicly available 
based on a fixed text scenario. The database includes genuine and 
attacker keystroke sequences from 300 users acquired in 4 different 
sessions distributed in a four month time span. The sequences 
correspond to the user's name and surname and therefore each 
user comprises an individual and personal sequence. As baseline 
for KBOC we report the results of 31 different algorithms evaluated 
according to accuracy and robustness. The systems have achieved 
EERs as low as 5.32% and high robustness to multisession 
variability with accuracy degradation lower than 1% for probes 
separated by months. The entire database is publicly available at 
the competition website.  
 

Index Terms—Keystroke, biometrics, authentication, web-
biometrics, behavioral recognition, competition, BEAT 

I. INTRODUCTION 
IOMETRIC technologies are usually divided into 
physiological (e.g. fingerprint, face, iris) and behavioral 
(e.g. signature, gait, keystroke) according to the nature of 

the biometric characteristic used. Behavioral biometrics have 
boosted the interest of researchers and industry because of 
their ease of use, transparency and large number of potential 
applications [1]. Biometric applications have been investigated 
over the past decades, attracting both academics and 
practitioners. Biometric recognition systems validate the 
subject identity by comparing the subject template (pre-stored 
in a database) with a captured biometric sample [2]. Keystroke 
biometrics refers to technologies developed for automatic user 
authentication/identification based on the classification of 
their typing patterns. These technologies present several 
challenges associated to modeling and matching dynamic 
sequences with high intra-class variability (e.g. samples from 
the same user show large differences) and variable 
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performance (e.g. human behavior is strongly user-dependent 
and varies significantly between subjects [3]).  

From the industry’s point of view, keystroke technologies 
offer authentication systems capable of improving the security 
and trustworthiness of web services (e.g. banking, mail), 
digital contents (e.g. databases) or new devices (e.g. 
smartphones, tablets). The online authentication is a real need 
and platforms such as Coursera use keystroke dynamics to 
certify the completion of its courses1. The number of 
companies offering keystroke authentication services is large, 
namely: KeyTrac (www.keytrac.net), Behaviosec 
(www.behaviosec.com), AuthenWare (www.authenware.com), 
bioChec (www.biochec.com), ID-Control (www.idcontrol.com), 
BioValidation (www.biovalidation.com), among other.1  

Given the wide range of potential practical applications 
mentioned above, a heterogeneous community of researchers 
from different fields has produced in the last decade a very 
large number of works studying different aspects of keystroke 
recognition. Those contributions have been compiled in 
several surveys [1-6] that analyze the technology in terms of 
performance, databases, privacy and security. The techniques 
are usually divided into: 
• Fixed text: the text used to model the typing behavior of 

the user and the text used to authenticate is the same. This 
scenario usually considers small text sequences as those 
employed in password authentication services. 

• Free text: the text used to model the typing behavior and 
the text used to authenticate do not necessarily match. This 
scenario is usually related with long text sequences and 
continuous authentication services.  

As a behavioral biometric trait, the performance of 
keystroke biometrics systems is strongly dependent on the 
application (e.g. fixed or free text) and databases (e.g. 
different users show very different performances). Public 
benchmarks have been proposed, offering the opportunity to 
compare different systems using the same datasets [7-15]. 
Table 1 summarizes some of the most popular keystroke 
dynamics public datasets based on fixed text sequences. Even 
though these benchmarks represent valuable resources, they 
suffer from two important limitations: (i) The databases 
available rarely surpass one hundred users. These limited 
databases decrease the statistical significance of the results 
and make difficult to establish clear differences between 
algorithms and methods. (ii) Some of the most popular 
databases assume that all users share the same password (e.g. 
“.tie5Roanl” and “greyc laboratory” for CMU [9] and GREYC 
[10] respectively). In real applications, the assumption of 
different passwords for each user is a more likely scenario. In 
addition, previous studies suggest that the complexity of the 

 
1 https://goo.gl/n8BWGR 
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password has a large impact on the performance [18]. A 
performance analysis based on a unique password limits the 
applicability of the results. 

The aforementioned limitations in the performance 
assessment of keystroke recognition, can be addressed to a 
large extent through the organization of technological 
evaluations. These evaluations are usually presented as 
competitions in which systems provided by different groups 
can be compared according to common frameworks proposed 
by third parties. Biometric traits such as fingerprint [19], face 
[20], speaker [21] or iris [22] have a large tradition of 
competitions and evaluations with active participation of both 
the research community and the industry. To the best of our 
knowledge, there is only one previous keystroke recognition 
competition: “One-handed Keystroke Biometric Identification 
Competition” [23]. In that competition, keystroke technologies 
were evaluated in a free text scenario involving the response 
of 63 students to three online exams. The competition 
analyzed the performance of person authentication algorithms 
under challenging conditions, in which users were forced to 
type using only one hand instead of the more natural two-
handed typing. 

Traditional biometric competitions are only operative 
during a short window of time and this way they only give a 
static snapshot of the state-of-the-art in a specific research 
area. One problem with this approach is that it is difficult to 
encourage researchers to invest their resources and time to 
participate in these competitions. Without the participation of 
the main players, the snapshot may be incomplete. In contrast, 
ongoing competitions provide a dynamic view constantly 
updated by the community. The FVC-onGoing competition 
[19] is a successful example with more than 900 participants 
and more than 4000 algorithms evaluated since 2009 for 
fingerprint technologies. On the other hand, the absence of 
platforms to facilitate reproducibility among the keystroke 
research community has motivated a widespread variety of 
experimental protocols and evaluation methodologies [5]. 

As an attempt to move a step forward from the general 
contexts of keystroke recognition and of biometric 
competitions described above, the current paper presents the 
Keystroke Biometrics Ongoing Competition (KBOC). KBOC 
is the first fixed text keystroke competition (in opposition to 
the free text evaluation described in [23]) that presents two 
key characteristics that go beyond the usual practice in the 
field of biometric evaluation campaigns, namely: KBOC is 

ongoing and reproducible. This way KBOC tries to address 
some of the shortcomings currently present in keystroking 
biometrics, advancing over previous experiences by:  
• Proposing the first ongoing competition on keystroke 

biometrics. The competition is carried out over a fully 
reproducible framework based on the BEAT platform2 
[24]. The term reproducible, as it is employed in this work, 
is defined as a computational experiment that can be 
repeated using the same data and tools. The main aim of 
the competition is to provide a new benchmark that 
guarantees a fair comparison between keystroke 
recognition algorithms using the same experimental 
framework.  

• Reporting a large performance evaluation of keystroke 
dynamics technologies including 31 keystroke recognition 
systems from 4 different research laboratories. The 
evaluation is performed on the basis of performance and 
robustness of the different approaches.  

• Disclosing a public database involving 7600 keystroke 
sequences from 300 users, simulating a realistic scenario 
in which each user types his own sequence (given name 
and family name) and impostor attacks (users who try to 
spoof the identity of others). 

The rest of the paper is organized as follows. Section 2 
introduces the ongoing evaluation tool developed for KBOC. 
Section 3 describes the database and evaluation protocols. 
Section 4 sketches the best systems submitted so far by 
participants to KBOC (this initial stage of the competition will 
be referred to as KBOC Baseline). Section 5 reports the 
experiments and results of KBOC baseline. Section 6 
summarizes the conclusions. 

II. KBOC INFRASTRUCTURE 
KBOC exploits the potential of the BEAT platform, which 
was created under the FP7 EU BEAT project to promote 
reproducible research in biometrics [24]. The BEAT platform 
is a European computing e-infrastructure for Open Science 
that proposes a solution for open access, scientific information 
sharing and re-use of data and source code while protecting 
privacy and confidentiality. The platform is a web-application 
allowing experimentation and testing in pattern recognition.  

 
2 https://www.beat-eu.org/platform/  

Table 1. Survey of some of the most popular publicly available databases for fixed text keystroke dynamics recognition.   

Year Database #users #samples* #sessions** Properties 
2009 Killourhy et al. [9] 51 50 8 Same password for all users: “.tie5Roanl”  
2009 Griot et al. [10] 133 12 5 Same password for all users: “greyc laboratory” 
2010 Allen et al. [11]  104 3-15 1 Three password for all users 
2011 Li et al. [12] 117 4-16 1 Different password per user 
2013 Idrus et al. [13] 110 20 1 Five passphrases for all users 
2014 Roth et al. [14] 51 4 1 Same paragraph for all users 
2014 Vural et al. [15] 39 20 1 Three password for all users 
2015 Antal et al. [16] 42 30 2 Same password for all users: “.tie5Roanl” 
2015 Morales et al. [17] 63 60 2 Different password per user 
2016 KBOC  300 28 4 Different password per user 

*Per session; **Per user 
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KBOC provides the data and modules necessary to run the 
evaluation and the BEAT platform ensures that the system is 
correctly executed, also producing the results. Different 
algorithms and systems can be easily compared. The platform 
also provides an attestation mechanism that guarantees that a 
certain result has been produced using the BEAT platform, 
based on some database, protocol and algorithms. This 
attestation mechanism produces a link that can be included in 
a report (e.g., scientific papers, technical documents or 
certifications) so that readers can go to the platform and check 
the authenticity of the results, even being able to replicate the 
experiments. There is no limit regarding the number of 
systems to evaluate, and the results are automatically provided 
to the participants on the platform (i.e., the performance of the 
systems is available in real time). KBOC, as part of the BEAT 
platform, is a web application divided into: 
• Toolchain: determines the data flow of the experiments. 

The toolchain is defined by a block diagram (see Figure 1) 
including datasets and algorithms. The blocks of KBOC 
toolchain are: (i) Database: participants cannot access 
directly the data but they can use it in the experiments. The 
dataset blocks (templates and probes) define the 
experimental protocol and they cannot be modified by the 
users. The platform automatically provides the training 
samples (labeled data) and test samples (unlabeled data) to 
the Participant Block. (ii) Participant Block: includes the 
algorithm to compare keystroke sequences. Participants 
can modify the code of this block including their keystroke 
recognition algorithms. The inputs are the samples of the 
database (training and test samples), and the output are the 
similarity scores. (iii) Analyzer: this block is the output of 
the platform. Its tasks include analyzing the scores 
produced by the participant block and reporting 
performance according to some standard metrics. 
Participants can use the analyzer but cannot access its 
code. This way it is guaranteed that all algorithms are 
evaluated according to the same parameters. 

• Dataformats: describe the information transmitted between 
blocks of the toolchain. They specify the format of inputs 
and outputs of the algorithms and databases. KBOC 

includes a specific dataformat (called kboc16_keystroke3) 
to define the timestamp sequences associated to each 
sample. The data format includes both the timestamp and 
the key pressed. 

• Leaderboard: represents the experimental results.  KBOC 
is an ongoing competition, therefore the results will be 
automatically updated with new submissions4. 

It should be noted that participating in the ongoing 
evaluation and using of the platform do not imply the 
publication of the code. Confidentiality is a priority and is 
granted in all cases. The organizers have no access to the 
private code evaluated by the platform but only to the results 
obtained. Reproducibility is granted by allowing execution 
permission without code access, thereby preserving 
confidentiality. Participants retain all access rights to their 
code. They can keep it private, share it with other specific 
users, or make it public so that other platform users can 
benefit and reuse it. These access rights can be different for 
different parts of the code (e.g., the participant can decide to 
make public a specific segmentation module but not the 
matcher). 

KBOC is now active and several baseline experiments are 
available at the BEAT platform5. For further 

 
3 https://goo.gl/lwyBVb 
4 https://goo.gl/EQeUBj  
5 https://goo.gl/VsKgVM  

Figure 1. Toolchain of KBOC developed on BEAT (https://goo.gl/8DJQN7). 
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operational/logistic information on how to participate in the 
competition please visit the official competition website6. 

III. DATASET AND EVALUATION PROTOCOLS 
The dataset proposed for the competition is part of the 
BiosecurID multimodal database [25] and consists of 
keystroke sequences from 300 subjects acquired in four 
different sessions distributed in a four month time span. Thus, 
three different levels of temporal variability are taken into 
account: (i) within the same session (the samples are not 
acquired consecutively), (ii) within weeks (between two 

 
6 https://sites.google.com/site/btas16kboc/ 

consecutive sessions), and (iii) within months (between non-
consecutive sessions). 

Each session comprises 4 case-insensitive repetitions of the 
subject’s name and surname (2 in the middle of the session 
and two at the end) typed in a natural and continuous manner. 
Note that passwords based on name and surname are very 
familiar sequences that are typed almost on a daily basis. This 
allows us to reduce the intra-class variability and to increase 
the inter-class variability. Therefore, the discriminative power 
of these sequences is larger than other random free text 
scenarios.  

The BiosecurID multimodal database was captured in a 
university environment, being the vast majority of acquired 
subjects proficient in the use of computers and keyboards. No 
mistakes are permitted (i.e., pressing the backspace), if the 
subject gets it wrong, he/she is asked to start the sequence 
again. The names of three other subjects in the database are 
also captured as forgeries, again with no mistakes permitted 
when typing the sequence. However, during the acquisition we 
observed that around 4% of samples (equally distributed 
among genuine and impostors) present inconsistencies that 
produce different lengths in the sequences. The use of shift 
keys can vary the number of keys pressed even if the final 
result does not change. For example the sequences 
Shift+Shift+a=A and the sequences Shift+a=A have different 
lengths but same text as output. We consider these samples as 
matching and therefore they are part of the database employed 
for the competition. The time (in milliseconds) elapsed 
between key events (press and release) is provided as the 
keystroke dynamics sequence. Imitations are carried out in a 
cyclical way, i.e., all the subjects imitate the previous subjects, 
and the first one imitates the last subjects.  

The sequences provided to the participants include the time 
intervals between consecutive key events (press and release) 
and the ANSI code associated to the key pressed. Figure 2 
shows the timestamps and three of the most popular features 
used in keystroke dynamics: Hold Time (𝑡!! − 𝑡!

!), Press-Press 
Latency (𝑡!!!

! − 𝑡!
!) and Release-Press Latency (𝑡!!!

! − 𝑡!!). 
The main statistics of the dataset proposed for the competition 
are summarized in Table 2 and probability distributions of 
some key features are showed in Figure 3. The statistics show 
that most sequences have length ranging from 13 to 38 
characters (see Figure 3 left). Regarding two of the most 
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Table 2. Summary of the main statistics of the database proposed 
for the competition. 

Characteristics # 
Number of users (Testing Set) 300 
Age distribution 
    18–25 
    25–35 
    35–45 
    >45 

 
42% 
22% 
16% 
20% 

Handedness 
    Righthanded 
    Lefthanded 

 
93% 
7% 

Number of users (Development Set) 10 
Number of sessions 4 
Samples per session* 
    Genuine* 
    Impostor* 

4-7 
2-4 
2-3 

Training samples per user 4 
Genuine comparisons per user* 8-12 
Impostor comparisons per user* 8-12 
Total genuine comparisons 3028 
Total impostor comparisons 2972 
Clock resolution ~40msec 
Average separation between sessions 1 month 
Average length of the key sequence 25.55 
* In order to increase the difficulty, the number of genuine and 
impostor samples per user varies depending on the user. 
Participants do not know this number. 
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popular characteristics on keystroke dynamics, the values of 
Hold Time (difference between timestamps of press and 
release events of the same key) are distributed around 3 values 
(as can be seen in Figure 3 center), while Press-Press Latency 
(difference between timetimestamps of press and press events 
of consecutive keys) are distributed around more than 8 values 
(see Figure 3 right). As it can be seen in Figure 3, the clock 
resolution is approximately 40 msec. The clock resolution 
defines precision of the timestamps (i.e. the maximum 
difference between the real timestamp and the measured 
timestamps is ±40 msec). The use of external reference clocks 
can be used to increase the resolution of keystroke latencies 
[26] and improve the performance of recognition systems. 

The experimental protocol is based on the following steps, 
for each user: (i) Participants have 4 training samples (genuine 
samples from the 1st session) as enrollment data. (ii) 20 test 
samples (genuine and impostor samples randomly selected 
from remaining samples not used for training) are used to 
evaluate the performance of the systems. The number of 
genuine and impostor samples per user varies between 8 and 
12 (but the sum is equal to 20 for all of them). This variable 
number of genuine and impostor samples helps to avoid 
algorithms that exploit cohort information. (iii) Each test 
sample is labeled with its corresponding user model and 
performance is evaluated according to the verification task 
(1:1 comparisons). 

There are two modes of participation: ongoing and offline. 
Dataset and evaluation protocols of both modes of 
participation are exactly the same. The only difference 
between both modes is that for the offline competition was 
organized as part of the The IEEE Eighth International 
Conference on Biometrics: Theory, Applications, and Systems 
(BTAS 2016) and therefore a deadline was set for the 
submission of algorithms. The performance of the offline 
evaluation (detailed in section 5) will be used as baseline for 
the ongoing competition. The complete dataset is available at 
KBOC website7. 

IV. KBOC BASELINE: SYSTEMS 

In order to start up KBOC, a traditional offline competition 
was first proposed to serve as KBOC Baseline [27]. The 
training set and test set (described in section 3) were available 
for all the participants. The keystroke recognition algorithms 
were executed at the participant premises according to the 
competition protocol. The scores (comparisons between user 

 
7 https://sites.google.com/site/btas16kboc/home 

models and genuine/impostors samples) obtained by the 
participants were sent to the KBOC organization. To avoid 
overfitting, the number of submissions was limited to 15 
different systems that were evaluated after the submission 
deadline. 

There was a total of 12 institutions from 7 different 
countries registered for the competition (5 from USA, 2 from 
India and 1 from Norway, Argelia, The Netherlands, Brazil 
and China). Four of the registered institutions finally 
submitted their systems for a total of 31 evaluated systems.  

The systems evaluated include the most popular machine 
learning algorithms (Neural Networks, Support Vector 
Machines, Decision Trees) as well as basic distances 
(Euclidean, Manhattan, Mahalanobis) popular in keystroke 
dynamics literature. Different strategies were proposed to 
normalize features and scores. The best system of each of the 
three non-anonymous participants is briefly below. Table 3 
summarizes the most important characteristics of the best 
system submitted by each participant. 

A. U.S. Army Research Laboratory (ARL) 

The main characteristics of the best system (number 6 of 15) 
submitted by ARL team is summarized as: (i) The features 
used are Hold Time and Press-Press Latency. (ii)  ARL team 
proposes an element-wise semantic alignment (see [28] for 
details) between the target sequence (minimum length 
sequence in the training data) and the query sequence. A 
modified Dynamic Time Warping (DTW) algorithm is used to 
match multiple minimum length sequences (misaligned 
samples). (iii) The features (Hold Time and Press-Press 
Latency) are normalized according to the following equation:  

𝑓!
! = max 0,min 1,

𝑓!
! − 𝑓
𝑓 − 𝑓

 (1) 

where 𝑓  and 𝑓  are the lower and upper bounds respectively 
defines as 𝑓 = 𝜇 − 𝜎 and 𝑓 = 𝜇 + 𝜎. The mean 𝜇 and 
standard deviation 𝜎 are calculated from all the training 
samples. (iv) The distance between a query sequence and the 
training set is calculated using the Manhattan distance as:  

𝑑 = 𝑓!
! − 𝑔!

!
!

!!!

 (2) 

were 𝐠! is the mean training vector. (v) Finally, the distances 
from query samples to each claimed identity are then 
normalized similarly to Eq. (1) to within ±2𝜎 of the mean, 
with distances outside that range clipped to 0,1 . In that case, 

Table 3. Summary of the characteristics of the best approaches submitted by the participants. 

Participant Preproc. Features Feature norm. Matcher Score norm. 

P1- Indian Institute of Technology Kharagpur no Hold+RP no Combined no 

P2 - Universidade Federal de Sergipe yes Hold+PP yes Manhattan no 

P3 - Anonymous participant no RP no Kendall’s tau  no 

P4 - U.S. Army Research Laboratory yes Hold+PP yes Manhattan yes 
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the lower and upper bounds are calculate as 𝑑! = 𝜇 ! − 2𝜎! 
and 𝑑! = 𝜇 ! + 2𝜎! with 𝜇 ! and  𝜎! the mean and standard 
deviation of the user 𝑗. 

The code of all 15 systems submitted by ARL team to 
KBOC are available at8. See [28] for a detailed description of 
all systems. 

B. Universidade Federal de Sergipe (UFS) 

The main characteristics of the best system (number 7 of 10) 
submitted by UFS team is summarized as: (i) The features 
used are Hold Time and Press-Press Latency. (ii) UFS team 
does not propose any alignment procedure but includes a 
shuffling procedure [29] to mitigate it. In case of inconsistent 
length sequences, the minimum one is compared to each sub 
segment of the longer one and the minimum distance is kept. 
(iii) As in [18], Press-Press Latency (PP) and Hold Time (H) 
intervals are normalized with parameters 𝜇!! = −1.61, 
𝜎!! = 0.64, 𝜇! = −2.46 and 𝜎! = 0.33 respectively, through 
a non-linear mapping: 

𝑓!
! = 1 + exp −

1.7(log! 𝑓!
! − 𝜇)

𝜎

!!

 (3) 

where 𝑓!
! stands for a time interval 𝑖 (in seconds) of user 𝑗.  

(iv) The distance between a query sequence and the training 
set is calculated using a modified Manhattan distance as: 

𝑑 =
1
4𝑀

𝑓!,!
! − 𝑔!,!

!
!

!!!

+
3

4(𝑀 − 1)
𝑓!,!
! − 𝑔!,!

!
!!!

!!!

 (4) 

were 𝐟!
!, 𝐟!

! are the normalized Hold Time and Press-Press 
Latency features respectively and 𝐠!

! , 𝐠!
! are the gallery 

features. (v) Finally, the UFS team proposes a strategy to 
update the training set every time a query sample obtain a 
score lower than 0.14. 

C. Indian Institute of Technology Kharagpur (IITK) 

The main characteristics of the best system (number 5 of 5) 
submitted by IITK team is summarized as: (i) The features 
used are Hold Time and Release-Press Latency. (ii) The 
distance between a query sequence and the training set is 
calculated using two distance metrics based on mean and 
median. The distance measures were computed as: 

𝚫!
!,! = 𝑔!

!,! − 𝑓!
! ,        𝑘 = 1,… 4 and 𝑖 ∈ [1,…  ,𝑀] (5) 

𝛌!
! = min!∈ !,…,! 𝛿!

!,! ,            𝑖 ∈ [1,…  ,𝑀] (6) 

where 𝛿!
!,! is an element of matrix 𝚫!

!,! and the final distance 
was obtained as: 

𝑑 = mean 𝛌 +median(𝛌) (7) 

V. KBOC BASELINE: EXPERIMENTS 
The participants were allowed to submit up to 15 different 

systems before the deadline. The test samples remained 
sequestered (i.e., participants did not know whether they were 
genuine or impostors samples). In addition, a small 

 
8https://github.com/vmonaco/kboc 

development set (10 users with labeled samples) and baseline 
algorithms were provided to the participants following the 
instruction given in the competition website and upon the 
signing of an agreement in order to access these personal data.  
As previously mentioned, the algorithms were compared after 
the deadline, thus being the performance of all systems 
reported after the submission period ended, according to the 
following indicators: 
• Global Equal Error Rate (EERG): unique EER calculated 

using all genuine and impostor scores and only one 
decision threshold for all users. EER refers to the value 
where False Match Rate (FMR, percentage of impostors 
users classified as genuine) and False Non-Match Rate 
(FNMR, percentage of genuine users classified as 
impostors) are equal. 

• User-dependent Equal Error Rate (EERU): the EER is 
calculated independently for each of the 300 subjects (300 
different decision thresholds). EERU is the average 
individual EER from all subjects. This EER is common in 
the keystroke dynamics literature [4],[9],[10].  

• Detection-Error Tradeoff (DET) curve: a plot of FMR and 
FNMR that reports system performance at any possible 
operating point (decision threshold). 

A. Performance Evaluation 

It should be highlighted that participants have developed their 
systems on the basis of a development set with only 10 users, 
which were then evaluated on 300 sequestered users. Table 4 
presents the results achieved across all their submissions 
(training with first session and testing with remaining three). 
The results show clear differences between the systems 
proposed by the participants, whose corresponding EER 
ranged between 5.32% and 17.90% for the Global EER 
(EERG) and 4.72% and 13.66% for the user-dependent EER 
(EERU). The large difference between EERG and EERU of 
those systems without score normalization (P1, P2 and P3) 
suggests the importance of this step, especially when a unique 
threshold (EERG) is employed [3][30]. To highlight the impact 
of the normalization on the performances, system 5 of P4 was 
evaluated (after the competition and once the results were 
published) without the score normalization. The EERG 
achieved by this system drops from 5.32% to 20.17% when no 
score normalization is employed. 

Figure 4 left shows the DET curves for all submissions. The 
curves show how the submissions made by the participants 
tend to cluster into different performance ranges. Regarding 
the differences between the systems (see Table 3) it is 
noticeable the unanimity of features and matchers. The 
combination of Hold Time and Press-Press Latency and the 
classifier based on Manhattan distance were used by the two 
best participants (P2 and P4). The largest differences between 
participants lie in the pre-processing (sequence alignment and 
feature normalization) and post-processing techniques (score 
normalization) applied. The score normalization applied by P4 
allows to reduce the gap between the global EER (EERG) and 
the user-dependent EER (EERU) that results on improved 
performances. Further sections will analyze the results 
depending on different factors. 
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B. Robustness Against Time-Lapse 

As a behavioral trait, the robustness of keystroke biometrics to 
increasing time between enrollment and testing is an important 
factor to consider [31]. The database employed allows to 
analyze the performance for different intervals between 
enrollment and testing: few weeks (session 1 vs session 2) and 
few months (session 1 vs session 4). Table 5 includes the 
performance (EERG) obtained using the genuine samples from 
the second or fourth session for testing and the samples from 

the first session for training. The results show a significant 
robustness of all systems to this time-lapse (slightly over 2 
months), presenting a small performance drop always under 
10%. Even systems with moderate performance show high 
stability of the genuine scores for the different sessions. These 
results can be seen at Figure 4 center and Figure 5, where it is 
possible to observe that genuine scores from different sessions 
show almost identical distributions. Note that, as specified in 
section 3, the keystroke sequences used in this work are very 
familiar sequences, namely: name and surname. These results 
suggest that keystroke dynamics based on such information 
remain consistent even for acquisitions separated by months.    

C. Robustness Against Key Sequence Misalignment 

As it was described in section 3, around 4% of the samples in 
the database have different number of keys pressed (mainly 
because of the use of the shift keys). These sequences may 
produce misalignments during the comparison of training and 
test samples. Table 6 and Figure 4 right show the 
performances obtained by the best systems for the aligned 
samples (sequences with exactly the same keys) and the 
misaligned samples (samples with different length and 
therefore different keys). In general, there is a significant drop 
of performance between both sets that can be more than 300%. 
The strategy based on DTW alignment adopted by the U.S. 
Army Research Laboratory shows the best performance in 
both types of samples. How to deal with these misaligned 
samples is still an open challenge to be explored by the 
research community [32].  

Table 4. Final results (all systems) in KBOC baseline: EERG (user-
independent-threshold) / EERU (user-dependent threshold). Training 
with first session and testing with the 3 remaining sessions. P1 to P4 
as in Table 3. Rows indicate different systems submitted by the 
same participant (best participant codes P1 to P4 are available in 
Table 3). 

# P1 P2 P3 P4 

1 19.33/11.49 12.90/9.61 17.90/14.36 7.82/7.32 

2 16.82/12.33 11.85/7.70 

 
 
 
 
 
 
 

6.46/6.03 

3 16.52/12.01 12.12/9.28 7.32/6.67 

4 16.47/12.11 13.48/10.38 7.35/6.37 

5 15.73/11.26 12.25/8.99 8.02/7.66 

6 

 
 
 
 
 

13.92/10.42 5.32/4.62 

7 11.82/8.81 7.95/7.27 

8 13.03/9.90 8.08/7.87 

9 13.03/9.52 5.68/5.46 

10 14.66/11.66 5.91/5.36 

11 

 
 

10.35/6.67 

12 10.89/6.37 

13 11.20/7.66 

14 11.23/7.87 

15 6.26/5.65 
 

Table 5. EERG for the best system of each participant according to 
the session used for testing. Training with first session and testing 
with second and fourth sessions. The last row indicates the drop of 
performance between sessions. 

Session P1 P2 P3 P4 

Second 15.28% 11.60% 17.01% 5.09% 

Fourth 16.13% 11.96% 18.21% 5.10% 

Difference ↑5% ↑3% ↑7% ↑<1% 
 

                 
Figure 4. Left: DET curves obtained from all submissions (training with first and testing with the remaining 3 sessions) and the 
combination of the best system of P2 with the best system of P4 (P4 and P2 are the respectively the two best participants). Center: results of 
the best systems with different time span between enrolment (first session) and testing: testing with second (dashed) and fourth session 
(solid). Right: results of the best systems with aligned samples (solid) and misaligned samples (dashed). 
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D. User-dependent Performance 

The performance of keystroke dynamics is strongly user-
dependent [33]. As an example, Figure 6 shows the histogram 
(in terms of probability distribution) of the EER of the best 
system evaluated in the competition (system 6 by P4) obtained 
independently for each of the 300 users. The results show a 
large margin between performances of different users with 
substantial percentage of users with differences of EER up to 
20%. How to improve the performance of the worst users is an 
open challenge in keystroke dynamics. One possibility is to 
explore the complementarity between algorithms. Figure 7 
shows the EER of the users with worst performance using the 
best system submitted by P4 and the performance obtained for 
the same users using the systems submitted by P1 and P2. The 
systems submitted by P1 and P2 show a worse overall 
performance (see Table 3) than those submitted by P4. 
However, the results shown in Figure 7 suggest there is a 
potential complementarity between systems, as P1 and P2 tend 
to give better results than P4 for these problematic users. 

In order to evaluate the complementarity between the 
different systems we have combined them at score level by a 
weighted sum [34]. The results (Figure 4 left) suggest certain 
level of complementarity and the combination of the best 
systems from P2 and P4 shows the best performance of all 
systems. 

VI. CONCLUSIONS 

This paper presented the Keystroke Biometric Ongoing 
Competition (KBOC) and the results of an associated offline 
competition used as KBOC baseline. The evaluation, 
developed on the BEAT platform, comprises one of the largest 

fixed text keystroke databases available. The main 
characteristics of KBOC can be summarized as: (i) Large 
evaluation database with 300 users and 7200 keystroke 
sequences including different passwords for each user. (ii) 
Multisession database with 4 different sessions across 4 
months. Enrollment using samples from the first session and 
testing with the 3 remaining sessions. (iii) Baseline for a total 
of 31 keystroke dynamics systems considering both global 
EER (EERG) and user-dependent EER (EERU). (iv) Ongoing 
tool implementing reproducible research now publicly 
available based on the BEAT platform. 

 
Figure 5.  Genuine score distribution according to the different sessions used for testing: P1 system 5 (Left), P2 system 7 (Center) and P4 
system 6 (Right). 

Table 6. EERG for the best system of each participant according to 
the nature of the samples used for testing. The last row indicates 
the drop of performance between aligned and misaligned samples. 

Samples P1 P2 P3 P4 

Aligned 14.75% 11.60% 17.11% 5.21% 

Misaligned 48.63% 18.21% 48.68% 9.20% 

Difference ↑329% ↑157% ↑284% ↑176% 
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The experiments reported as KBOC Baseline comparing 31 
systems from 4 participants have permitted us to obtain the 
following new insights to the problem of biometric person 
recognition based on keystroke dynamics. In first place, it is 
possible to obtain competitive performances with EER under 
6% even in challenging conditions with a small development 
set of 10 users and test set with 300 users. Secondly, the 
alignment of sequences with different lengths and the score 
normalization have showed large potential to improve the 
systems accuracy. Thirdly, the robustness to a time lapse of 
two months is remarkable even for those systems with the 
poorest results. Finally, the performance of keystroke 
dynamics is highly user-dependent. How to adapt algorithms 
to the different user behaviors, including synthetic samples 
[35], remains an open research field.  

These observations motivate us to conduct further research 
in: (i) Score normalization techniques to improve the 
performance of systems based on unique classification 
thresholds. (ii) Exploit and explore user-dependencies in order 
to adapt the algorithms to the variable behavior of users. (iii) 
New research on alignment strategies to reduce the severe 
drop of accuracy due to typos.   
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