
Reducing jitter in embedded systems employing a

time-triggered software architecture and dynamic

voltage scaling

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Teera Phatrapornnant

B.Eng., M.Eng. (Bangkok)

Department o f Engineering

University o f Leicester

Leicester, United Kingdom

May 2007

UMI Number: U227747

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete manuscript
and there are missing pages, th ese will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U227747
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reducing jitter in embedded systems employing a
time-triggered software architecture and dynamic

voltage scaling

Teera Phatrapornnant

Abstract

This thesis is concerned with the development of single-processor embedded systems
in which there are requirements for both low CPU energy consumption and low levels
of task jitter. The focus of the work is on ways in which dynamic voltage scaling
(DVS) techniques can be incorporated in simple time-triggered scheduling algorithms
in order to meet these constraints.

Following a review o f previous work in this area, a presentation is made which
illustrates the impact o f a naive application of DVS in a system incorporating a time-
triggered co-operative (TTC) scheduler. Novel algorithms (TTC-jDVS, TTC-jDVS2)
are then introduced which more successfully integrate TTC and DVS techniques.
These algorithms involve: (i) changes to system timer settings when the frequency is
altered; (ii) use o f a form of “sandwich delay” to reduce the impact of changes to the
scheduler overhead which arise as a result o f frequency changes, and (iii) execution of
jitter-sensitive tasks at a fixed operating frequency.

The impact o f these algorithms on both jitter and energy consumption is illustrated
empirically on a representative hardware platform, using both “dummy” task sets and
a more realistic case study.

In designs for which low jitter is an important consideration, at least a limited degree
of task pre-emption may be required. A simple time-triggered hybrid (TTH) sched
uler can be used to achieve such behaviour. A novel TTH scheduling algorithm
(TTH-jDVS) is presented and evaluated, again through use o f dummy task sets and a
case study.

The third piece o f experimental work presented in this thesis illustrates that - in
situations where minimal jitter is required - hardware support is required. To illus
trate the potential of such an approach a final case study is employed.

The thesis concludes by making suggestions for further work in this important area.

I dedicate this thesis to my parents

Samarn & Duangporn Phatrapornnant

Acknowledgements

First of all, I would like to thank my supervisor Dr. Michael J. Pont who has guided

and encouraged me over the last four years. I have enjoyed working with him and am

very grateful for all his wonderful support. Without him, this thesis would not have

been possible.

I would like to express my gratitude to National Electronics and Computer Tech

nology Center (NECTEC), particularly to Dr. Pansak Siriruchatapong and Dr. Kwan

Sitathani, for their support and for awarding me the Royal Thai Government Scholar

ship.

Thanks to my colleagues in the Embedded Systems Laboratory for supporting me,

especially Zemian Hughes who taught me to use the PH-processor. Also, many thanks

to the Thai students with whom I shared many wonderful and enjoyable times.

Finally, I would like to specially thank my parents, sister, brother, and friends in

Thailand for unflagging support from the beginning and throughout the final stages of

thesis-writing.

Contents

LIST OF FIG URES... IV

LIST OF TABLES..VII

LIST OF LISTING S.. VIII

LIST OF PUBILCATIO NS... IX

LIST OF ABBREVIATIONS... X

LIST OF SYM BOLS..XII

CHAPTER 1 INTRO DUCTIO N.. 1

1.1 W h a t is a n e m b e d d e d sy st e m ? ... 1

1.2 T he g r o w in g c o n c e r n o f po w er c o n su m pt io n in p r o c e s s o r s .. 3

1.3 T he im pac t o f jitter o n e m b e d d e d s y s t e m s ...6

1.4 A im s of the t h e s is .. 7

1.5 Re se a r c h c o n t r ib u t io n s .. 7

1.6 T h esis O r g a n is a t io n ..8

1.7 Co n c l u s io n s ..9

CHAPTER 2 ENERGY-EFFICIENT EMBEDDED SY ST E M S...10

2.1 In t r o d u c t io n ... 10

2 .2 Po w er d issip a t io n in C M O S c ir c u it s ...11

2.3 A ppr o a c h es to m in im ise po w er in C M O S p r o c e s s o r s .. 14

2 .4 A lg o rith m s fo r r e d u c in g e n er g y c o n su m pt io n in p r o c e s s o r s .. 17

2 .5 Sy s t e m -L ev el Po w e r Re d u c t io n ... 26

2 .6 Ex t e n d in g th e se r v ic e life of m o bile e m b e d d e d s y s t e m s ... 29

2 .7 M etric for e n e r g y e f f ic ie n c y .. 32

2 .8 Co n c l u s io n s ... 34

CHAPTER 3 LOW -JITTER SCHEDULING ALGORITHM S...35

3.1 In t r o d u c t io n ...35

3.2 So u r c e s of jit t e r ... 36

3.3 Jitter in sc h e d u l in g s y s t e m s ...41

3.4 LOW-JITTER SCHEDULING ALGORITHMS...45

3.5 Co n c l u s io n s ... 53

CHAPTER 4 IM PLEM ENTATION OF DVS IN A TTC SC H ED U LER .. 54

4.1 T h e h a r d w a r e p l a t f o r m .. 54

4 .2 A TTC SCHEDULER... 57

4.3 A ppl y in g D V S in a TTC sc h e d u l e r ..60

4 .4 D V S A l g o r it h m s ... 61

4.5 A sse ssin g a n d c o m pa r in g th e D V S a l g o r it h m s ..68

4 .6 T he im pa c t o f D V S o n sy st e m t im in g .. 76

4 .7 T he k n o c k -o n im pa c t o f f r e q u e n c y s c a l in g ..80

4.8 C o n c l u s io n s ... 82

C H A P T E R 5 D E S IG N A N D E V A L U A T IO N O F A R E D U C E D -J IT T E R T T C /D V S

S C H E D U L E R ..83

5.1 M in im isin g jitter c a u s e d b y D V S .. 83

5.2 T he TTC -jD V S a l g o r it h m ... 84

5.3 Im ple m en t in g th e T T C -jD V S sc h e d u l e r ...88

5.4 E v a l u a t in g the TTC -jD V S a l g o r it h m ...88

5.5 Im pa c t of jitter o n sa m p l e d d a t a s y s t e m s ..95

5.6 W ireless ECG: A c a se s t u d y .. 96

5.7 D i s c u s s io n ... 101

5.8 Co n c l u s io n ..104

C H A P T E R 6 W O R K IN G W IT H A H Y B R ID S C H E D U L E R .. 105

6.1 FROM TTC TO T T H ..105

6.2 A T TH Sc h e d u l e r ..106

6.3 D et er m in in g s p e e d -se t t in g s in TTH d e s i g n s ... 107

6 .4 Im ple m en t in g D V S in T TH s y s t e m s .. 109

6.5 T he T T H -jD V S a l g o r it h m ... 117

6 .6 E v a l u a t in g th e T T H -jD V S a l g o r it h m .. 119

6.7 C a se s t u d y : En c r y p t e d w ireless ECG m o n it o r in g ... 124

6.8 D is c u s s io n ... 127

6 .9 Co n c l u s io n s ... 127

C H A P T E R 7 F U R T H E R R E D U C T IO N S O F J IT T E R IN T T C /D V S S C H E D U L E R129

7.1 T he n e e d fo r a d d it io n a l h a r d w a r e ..129

7.2 Pr e v io u s w o rk o n h a r d w a r e su ppo r t fo r D V S ... 130

7.3 In c l u d in g a n in d e p e n d e n t tim er in a TTC -JD VS2 d e s i g n .. 130

7.4 A sse ssin g the m o d ifie d a l g o r it h m s ..132

7.5 Co n c l u s io n s ... 137

C H A P T E R 8 D IS C U S S IO N A N D C O N C L U S IO N S ..138

8.1 In t r o d u c t io n ...138

8.2 K n o c k -o n im pa c t of D V S im p l e m e n t a t io n ... 139

8.3 M inim ising jitter in D V S s y s t e m s ...139

8.4 L im it a t io n s o f th e w o r k ..141

8.5 Po ten tia l a p pl ic a t io n s of th e w o r k .. 142

8.6 Fu t u r e w o r k ..142

8.7 Co n c l u s io n s ... 144

APPENDIX A JITTER M ODEL ...A -l

APPENDIX B REAL-TIM E SCHEDULING ARCHITECTURES... B -l

APPENDIX C THE TTC-JDVS2 ALGORITHM.. C -l

APPENDIX D INCORPORATING AN INDEPENDENT TIM ER IN AN FPGA-BASED SOC

DESIGN...D -l

REFERENCES...E -l

L ist o f f ig u r e s

F igure 1.1: A m o bile 12-l e a d dig ital ECG. T his im ag e h a s b e e n u s e d w ith a u t h o r isa t io n from

D el M a r Re y n o l d s (D e l m a r -R e y n o l d s , 2 0 0 2) ... 2

F ig u re 1.2: M ic r o pr o c e sso r cu r r e n t a n d v o lt a g e t r e n d s in In t e l m ic r o pr o c e sso r s . T his

IMAGE HAS BEEN USED WITH AUTHORISATION FROM INTEL TECHNOLOGY JOURNAL (“POWER

D el iv er y fo r H ig h -P er fo r m a n c e M ic r o pr o c esso r s", V o l u m e 9, Issu e 4 , Pa g e 2 7 4 ,2 7 5) ..4

F igure 2.1: D e l a y , Po w e r v s V dd. (R e d r a w n from B u r d a n d B r o d e r s e n , 1 9 9 5)14

F igure 3.1: A sc h e m a t ic re pr e se n t a t io n of jitter . See t e x t fo r d e t a il s ..36

F igure 3.2: P r im a r y pa r a m e t e r s of a t a s k ... 41

F igure 3.3: T a s k pe r io d jitters (a d a p t e d from M a r ti, 2 0 0 2 , F igure 4 .1) .. 44

F ig u re 3.4: G e n e r a l s t r u c t u r e of TTC sc h e d u l e r : m in o r cy cle = 10, m a jo r c y c l e = 4 046

F igure 3.5: St r u c t u r e of TTC sc h e d u l e r : m in o r cy cle = 5, m a jo r cy c l e = 40 (a d a p t e d from

Lo c k e , 1992, F ig u re 1).. 47

F igure 3.6: St r u c t u r e of ra te m o n o t o n ic sc h e d u l in g (a d a p t e d fr o m Lo c k e , 1992, F igure 3).49

F ig u re 3.7: Il l u st r a t in g th e o per a tio n of a TTH sc h e d u l e r . S ee t e x t fo r d e t a il s 52

F ig u re 4 .1: Sch em a tic c ir c u it o f D V S po w er s u p p l y ..55

F igure 4.2: S etting th e C PU su ppl y v o lt a g e (LPC 2 1 0 6).. 56

F igure 4.3: TTC sc h e d u l in g d ia g r a m ... 58

F igure 4.4: Ex a m pl e il l u st r a t in g the po ssibil it y of t a sk st r e t c h in g ...60

F igure 4.5: Il l u st r a t in g a m o r e realistic D V S im p l e m e n t a t io n ...61

F igure 4.6: Co n sid e r in g in t r a -t a sk u t il isa t io n ..64

F igure 4.7: T he b o u n d a r y o f u t ilisa t io n b a s e d o n 60 M H z ... 64

F igure 4.8: A sc h e m a tic r e pr e se n t a t io n of the C ir c u l a r A r r a y a l g o r it h m66

F igure 4.9: Sc h e d u l in g o v e r h e a d of D V S al g o r it h m s e s t im a t io n ...69

F igure 4 .10: M a x im u m e x e c u t io n tim e of t a sk c o n sid e r e d a t m a x im u m fr e q u e n c y 60M H z70

F igure 4 .11: A v a il a b l e e x e c u t io n tim e of t a sk - CD a l g o r it h m ...71

F igure 4 .12: A v a il a b l e e x e c u t io n tim e of t a sk - LT a l g o r it h m ..72

F igure 4 .13: A v a il a b l e e x e c u t io n tim e of t a sk - C A a l g o r it h m ...72

F ig u re 4 .14: A v a il a b l e e x e c u t io n tim e of t a sk - CS a l g o r it h m - e x c l u d e d

VOLTAGE/FREQUENCY SCALING... 73

F igure 4 .15: A v a il a b l e e x e c u t io n tim e of t a sk - CS a l g o r it h m - p r a c t ic a l73

F igure 4 .16: Po w e r c o n su m p t io n o f CPU co re o n d ifferent sc h e d u l in g a l g o r it h m s75

F igure 4 .17: H isto g r a m o f tick jitter in T T C -D V S r u n w ith r a n d o m f r e q u e n c y77

F igure 4 .18: H isto g r a m of tick jitter in T T C .. 77

F igure 4 .19: H isto g r a m o f t a sk jitter in T T C -D V S r u n w ith r a n d o m f r e q u e n c y 78

F igure 4 .20: H isto g r a m of t a sk jitter in T T C ... 78

F ig u re 4 .21: T o ta l jitter o f t a sk in T T C -D V S a n d TTC s y s t e m s ..79

V

F ig u re 4 .22: T ick dr ift in D V S sy s t e m s . (P h a t r a p o r n n a n t a n d Po n t 2 0 0 6 , IEEE T r a n sa c t io n s

o n Co m p u t e r , V o l .55 (2), © 2006 IE E E)... 80

F igure 4 .23: Sa m pl in g jitter c a u s e d b y f r e q u e n c y sc a l in g . (P h a t r a p o r n n a n t a n d Po n t 2006 ,

IEEE T r a n s a c t io n s o n C o m p u t e r , V o l .55 (2), © 2006 IE E E).. 81

F igure 4 .24: Re l e a se jitter c a u s e d b y v a r ia t io n of sc h e d u l in g o v e r h e a d . (P h a t r a po r n n a n t

a n d Po n t 2 0 0 6 , IEEE T r a n sa c t io n s o n Co m p u t e r , V o l .55 (2), © 2 0 0 6 IE E E)............................. 81

F igure 5.1: V o l t a g e a n d f r e q u e n c y sc a l in g st e p s . (P h a t r a p o r n n a n t a n d P o n t 20 0 6 , IEEE

T r a n s a c t io n s o n C o m p u t e r , V o l .55 (2), © 20 0 6 IE E E)..85

F ig u re 5.2: M in im isin g r e l e a se jitter t h r o u g h u se of a “jitter g u a r d ia n ” . (P h a t r a po r n n a n t

a n d Po n t 2 0 0 6 , IEEE T r a n sa c t io n s o n Co m p u t e r , V o l .5 5 (2), © 20 0 6 IE E E)............................. 86

F ig u re 5.3: M in im isin g sa m p l in g jitter b y fix e d r u n n in g sp e e d . (P h a t r a p o r n n a n t a n d Po nt

20 0 6 , IEEE T r a n s a c t io n s o n Co m p u t e r , V o l .55 (2), © 2006 IE E E)... 87

F igure 5.4: T ick jitter in T T C -D V S. (P h a t r a p o r n n a n t a n d Po n t 2 0 0 6 , IEEE T r a n sa c t io n s o n

C o m p u t e r , V o l .55 (2), © 20 0 6 IE E E)... 90

F igure 5.5: T ick jitter in T T C -jD V S . (P h a t r a p o r n n a n t a n d Po n t 2 0 0 6 , IEEE T r a n sa c t io n s o n

C o m p u t e r , V o l .55 (2), © 2006 IE E E)... 90

F igure 5.6: H isto g r a m o f tic k jitter in T T C -D V S. (P h a t r a p o r n n a n t a n d Po n t 2006 , IEEE

T r a n s a c t io n s o n Co m p u t e r , V o l .55 (2), © 20 0 6 IE E E)... 91

F igure 5.7: H isto g r a m of t ic k jitter in T TC -jD V S . (Ph a t r a p o r n n a n t a n d Po n t 2 0 0 6 , IEEE

T r a n sa c t io n s o n C o m p u t e r , V o l .55(2), © 2006 IE E E)..91

F ig u re 5.8: M in im u m a n d m a x im u m jitter level o f RJT a t spe e d 10-60 M H z r u n b y TTC -jD V S,

T T C -D V S AND TTC . (PHATRAPORNNANT AND PONT 2 0 0 6 , IEEE TRANSACTIONS ON COMPUTER,

VOL.55(2), © 20 0 6 IE E E)... 92

F igure 5 .9 : CPU po w er c o n su m pt io n c o m pa r iso n of sc h e d u l in g a l g o r it h m s a t d ifferent

l o a d . (P h a t r a p o r n n a n t a n d Po n t 2006 , IEEE T r a n sa c t io n s o n Co m p u t e r , V o l .55(2), ©

20 0 6 IE E E)..94

F igure 5 .10: A sc h e m a tic r e pr e se n t a t io n of a sy st e m fo r ECG m o n it o r in g97

F igure 5 .11: H isto g r a m of pe r io d jitter for ECG s t u d y (TTC). (P h a t r a p o r n n a n t a n d Pont

20 0 6 , IEEE T r a n s a c t io n s o n Co m p u t e r , V o l .55 (2), © 2 0 0 6 IE E E)...98

F igure 5 .12: H isto g r a m of pe r io d jitter fo r ECG s t u d y (T T C -D V S). (P h a t r a p o r n n a n t a n d

Po n t 2 0 0 6 , IEEE T r a n s a c t io n s o n Co m p u t e r , V o l .55 (2), © 2 0 0 6 IE E E)....................................... 99

F ig u re 5 .13: H isto g r a m of pe r io d jitter fo r ECG s t u d y (T T C -jD V S). (P h a t r a p o r n n a n t a n d

P o n t 2 0 0 6 , IEEE T r a n s a c t io n s o n Co m p u t e r , V o l .55 (2), © 2 0 0 6 IE E E)....................................... 99

F igure 5.14: T he c o m p a r iso n of C PU co re po w er c o n su m pt io n of T TC , T T C -D V S a n d TTC-

jD V S . (P h a t r a p o r n n a n t a n d Po n t 2 0 0 6 , IEEE T r a n sa c t io n s o n Co m p u t e r , V o l .55(2), ©

2 0 0 6 IE E E)..100

F ig u re 6.1: TTH sc h e d u l in g d ia g r a m ... 106

F ig u re 6.2: E xa m ple il l u st r a t in g the u se t a sk str et c h in g in a T TH sc h e d u l e r108

F igure 6.3: Fu n c t io n c a l l tr ee fo r the TTH sc h e d u l e r (n o r m a l o pe r a t io n) 109

F igure 6.4: Rea list ic D V S im p l e m e n t a t io n .. 111

F ig u r e 6.5: L o a d c h a r a c t e r i s t i c s o f a P h ilip s LPC2106 p r o c e s s o r (ARM7TDMI c o r e) w ith 6

SPEED STEPS..113

F ig u r e 6.6: U t i l i s a t i o n o f t a s k s in o n e t a s k s l o t .. 114

F ig u r e 6.7: S l a c k t im e p r e s e n t e d a f t e r a p p ly in g r u n n in g sp e e d s o f a n e x a m p le : e p = 0 .1m s, e c

= 0 .3m s, Tslot = 2m s, a n d Rist = 1 m s.. 114

F ig u r e 6.8: CPU p o w e r c o n su m p tio n : (a) p r e d ic t e d b y u s in g p o w e r m o d e l , (b) m e a s u r e d o f a n

EXAMPLE: Ep = O.lMS, E c = 0.3MS, Tslot = 2MS, ANDR INT = IMS.. 115

F igure 6.9: Re d u c in g r e l e a se t a s k jitter b y jitter g u a r d ia n ... 118

F ig u re 6 .10: Re d u c in g sa m p l in g pe r io d jitter b y fix e d r u n n in g s p e e d ..119

F ig u r e 6.11: H is to g r a m o f t i c k j i t t e r in TTH-DVS... 121

F ig u r e 6.12: H is to g r a m o f t i c k j i t t e r in TTH-jD V S.. 121

F igure 6 .13: M in im u m a n d m a x im u m r e le a se jitter level of pr e -em ptive t a sk a t spe e d 10-60

MHz RUN BY TTH-JDVS, TTH-DVS AND TTH...122

F ig u re 6.14: Po w e r c o n su m p t io n c o m pa r iso n of sc h e d u l in g a l g o r it h m s a t d iffer e n t lo a d 124

F ig u r e 7.1: U s in g a COTS t i m e r ..131

F igure 7.2: M in im u m a n d m a x im u m jitter level (from RJTs) a t spe e d s 10-60 M H z, from TTC-

jDVS, TTC-JDVS2, TTC-JTDVS2 AND TTC (AT 60MHz) ALGORITHMS... 133

F igure 7.3: P o w er c o n s u m p t io n c o m pa r iso n of sc h e d u l in g a l g o r it h m s a t d iffer e n t l o a d .. 134

List of tables

T a b le 4 .1: T a sk se t pa r a m e t e r s fo r a s se ss in g po w er c o n s u m p t io n .. 74

T a b le 4.2: T ic k j i t t e r a n d t a s k j i t t e r in TTC-DVS a n d TTC s y s t e m s ..79

T a b le 5.1: C o m p a r in g t i c k j i t t e r r u n b y TTC-DVS, T T C -jD V S, a n d TTC a l g o r i t h m s 89

Ta b l e 5.2: T a sk se t p a r a m e t e r s ...92

T a b le 5.3: T a s k se t pa r a m e t e r s for a s se ss in g po w er c o n s u m p t io n .. 93

T a b le 5.4: ECG t a s k s e t p a r a m e t e r s ... 97

T a b le 6.1: Po w er c o n s u m p t io n pr e d ic t io n s , m e a su r e m e n t s a n d p r e d ic t io n e r r o r s 116

T a b le 6.2: C o m p a r in g t i c k j i t t e r r u n b y TTH-DVS, T T H -jD V S, a n d TTH a l g o r i t h m s 120

T a b le 6.3: Ta s k se t p a r a m e t e r s ...122

T a b l e 6.4: T a s k set pa r a m e t e r s fo r a s se ss in g po w er c o n s u m p t io n .. 123

T a b le 6.5: ECG t a s k s e t p a r a m e t e r s ...125

T a b le 6 .6: T ick a n d r e l e a se jitter m e a s u r e d ...126

T a b le 7.1: C o m p a r in g tic k j i t t e r f r o m t h e TTC, T T C -jD V S, TTC -JD V S2 a n d T T C -jtD V S 2

ALGORITHMS...133

List of listings

L is t in g 4.1 : A n o v e r v ie w o f p o s s ib le TTC s c h e d u l e r im p le m e n t a t io n ..58

L is t in g 4.2: P s e u d o c o d e o f t h e U p d a te f u n c t io n in t h e TTC d e s i g n ...59

L is t in g 4.3: T a s k D is p a t c h e r o f TTC a l g o r i t h m ...59

L istin g 4.4: C o m p u t e -D irect a l g o r it h m ...63

L is t in g 4.5: L o o k u p T a b le a l g o r i t h m ..65

L istin g 4.6: C ir c u l a r A r r a y a l g o r it h m ...67

L istin g 4.7: C ir c u l a r S kip a l g o r it h m ..68

L istin g 5.1: S et tin g th e e x e c u t io n spe ed of “r e d u c e d -jitter” t a sk s (RJT s) 87

L is t in g 5.2: D is p a t c h in g t a s k s in TTC-jD V S ..88

L is t in g 6.1: P s e u d o c o d e o f t h e U p d a te f u n c t io n in t h e TTH s c h e d u l e r ..107

L is t in g 7.1: P s e u d o c o d e o f F r e q u e n c y s c a l i n g f u n c t io n o f TTC-jtD V S 2 135

L is t in g 7.2: P s e u d o c o d e o f F r e q u e n c y s c a l i n g f u n c t io n o f TTC-JDVS2 w it h t i c k

COMPENSATION..136

List of publications

A number o f papers were published during the course o f the work described in this
thesis. These are listed below (in reverse chronological order). Please note that the
contents o f some o f these papers have been adapted fo r presentation in this thesis:
where applicable, a footnote at the beginning o f a chapter indicates that material
from one or more papers has been included.

Phatrapornnant, T. and Pont, M.J. (submitted a) “Reducing task jitter in resource-
constrained embedded systems in which limited pre-emption is required and DVS
is employed”, Journal o f Systems Architecture.

Phatrapornnant, T. and Pont, M.J. (submitted b) “Enhancements to an algorithm
which reduces jitter in embedded systems employing a time-triggered software
architecture and dynamic voltage scaling” Journal of Systems Architecture.

Pont, M.J., Kurian, S., Wang, H. and Phatrapornnant, T. (in press) “TTC Scheduler:
An ‘abstract’ pattern for use with resource-constrained embedded systems” Paper
to be presented at EuroPLoP 2007, Germany, July 2007.

Phatrapornnant, T. and Pont, M.J. (2006) “Reducing jitter in embedded systems
employing a time-triggered software architecture and dynamic voltage scaling”
IEEE Transactions on Computers (Special Issue on Design and Test o f Systems-
On-a-Chip), 55 (2), pp.l 13-124.

Phatrapornnant, T. and Pont, M.J. (2004a) “The application of dynamic voltage
scaling in embedded systems employing a TTCS software architecture: A case
study”, Proceedings o f the IEE / ACM Postgraduate Seminar on "System-On-
Chip Design, Test and Technology", Loughborough, UK, 15 September 2004.
Published by IEE. ISBN: 0 86341 460 5 (ISSN: 0537-9989), pp.3-8.

Phatrapornnant, T. and Pont, M.J. (2004b) “The application o f dynamic voltage
scaling in embedded systems employing a TTCS software architecture”. In:
Koelmans, A., Bystrov, A. and Pont, M.J. (Eds.) Proceedings o f the UK
Embedded Forum 2004 (Birmingham, UK, October 2004), pp. 127-143.
Published by University of Newcastle upon Tyne [ISBN: 0-7017-0180-3].

X

List of abbreviations

General terms

ABB Adaptive Reverse Body Biasing
ACPI Advanced Configuration and Power Interface
ADC Analogue-to-Digital Converter
ALU Arithmetic Logic Unit
ATM Asynchronous Transfer Mode
BEE Battery Energy Efficient
BER Bit Error Rate
CAN Computer Area Network
CMOS Complementary M etal-Oxide-Semiconductor
CPU Central Processing Unit
DAC Digital-to-Analogue Converter
DC Direct Current
DPM Dynamic Power Management
DTMDP Discrete-Time MarKov Decision Process
DVS Dynamic Voltage Scaling
ECG Electrocardiogram
EMI Electromagnetic Interference
ET Event-Triggered
FPGA Field Programmable Gate Array
IF Intermediate Frequency
ISR Interrupt Service Routine
ITU International Telecommunication Union
LF Loop Filter
MIPJ Millions Instructions Per Joule
MIPS Millions Instructions Per Second
MPEG Moving Picture Experts Group
MTCMOS Multi-Threshold CMOS
NMOS N-type M etal-Oxide-Semiconductor
PADWC Programmable Active Datapath Width Control
PCR Program Clock Reference
PD Phase Detector
PLL Phase-Locked Loop
PMOS P-type M etal-Oxide-Semiconductor
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase-Shift Keying
RJT Reduced-Jitter Task
SMDP Continuous-time Semi-Markov Decision Process
SoC System-on-Chip
SPI Serial-Peripheral-Interface
TT Time-Triggered
UART Universal Asynchronous Receiver/Transmitter
VCO Voltage-Controlled Oscillator
VLSI Very-Large-Scale Integration
WCET Worst-Case Execution Time

Scheduling algorithms

CA Circular Array
CD Compute-Direct
CS Circular Skip
EDF Earliest-Deadline-First
E-LEDF Extended Low-energy Earliest-Deadline-First
HRR Hierarchical Round Robin
Jitter-EDD Jitter-Earliest-Due-Date
LC-EDF Leakage Control EDF
LEDF Low-energy Earliest-Deadline-F irst
LEDES Low-Energy Device Scheduler
LT Lookup Table
MUSCLES Multi-State Constrained Low-Energy Scheduler
PACE Processor Acceleration to Conserve Energy
RCSP Rate-Controlled Static Priority
RM Rate Monotonic
TTC Time-Triggered Co-operative
TTC-DVS TTC with Dynamic Voltage Scaling
TTC-jDVS TTC with Dynamic Voltage Scaling (Reduced-jitter implementation)
TTH Time-Triggered Hybrid
TTH-DVS TTH with Dynamic Voltage Scaling
TTH-jDVS TTH with Dynamic Voltage Scaling (Reduced-jitter implementation)

List of symbols

a t Switching activity of each node
fi Measure o f velocity saturation
ms Millisecond
pS Microsecond

Node capacitance
Ceff Average switched capacitance per cycle
dt Deadline
e t Execution time
ec Duration o f the co-operative task
e p Duration o f the pre-emptive task
Eop Energy-per-operation
f Clock frequency
fmax Maximum clock frequency
fmin Minimum clock frequency
fc Clock frequency for the running co-operative task
fp Clock frequency for the running pre-emptive task
f Finishing time
h Source and drain body junction leakage current
Isubn Subthreshold leakage current
K Technology constant
Ld Logic depth of the path
MHz Megahertz
Mint Number o f interruption in the task slot
Msw Number o f voltage/frequency switching per interruption
P a g Dynamic power consumption
P d c Static power consumption
Pfreq Power function of CPU which running at clock frequency freq
P total Total power consumption o f the circuit
n Release time (arrival time)
Pint Interruption rate
Si Start time
schc Scheduling overhead to schedule co-operative tasks
schp Scheduling overhead to schedule pre-emptive tasks
Ti Period
Tslot Duration o f a given task slot
tinv Cycle time
tsw Voltage/frequency switching time
Up Utilisation o f pre-emptive tasks in the given task slot
UC Utilisation o f co-operative tasks in the given task slot
A V Voltage change
Vbs Body bias voltage
Vd d Supply voltage
Vt Thermal voltage
Vth Threshold voltage
WCETc Worst case execution time of the co-operative task
WCETp Worst case execution time of the pre-emptive task

Chapter 1

Introduction

In this introductory chapter, an overview o f the work undertaken in this thesis is

presented and the importance o f this area is discussed.

1.1 What is an embedded system?

A general-purpose computer system typically has a keyboard, mouse, disk, and

graphical display, and can be programmed for a wide variety o f purposes (for exam

ple, word processing, electronic mail, business accounting, scientific computing, and

database systems). The user of a such computer is able to add or remove application

software in the system and decide which application to launch or terminate (Valvano,

2000). By contrast, an embedded system will often use a microprocessor like the

Motorola 6805, Intel 8051, Microchip PIC16F77 or Intel SA-1100, with simple I/O

interface, such as switches, small keypads, LEDs and so on, to interact with the user.

Such an embedded system is often configured to perform a specifically dedicated

application and its software, which typically solves only a limited range o f problems,

is fixed into some form of ROM (Read Only Memory) that is not usually accessible to

the user (Ball, 1996; Valvano, 2000).

Chapter 1: Introduction 2

Figure 1.1: A mobile 12-lead digital ECG. This image has been used with authorisation from

Del Mar Reynolds (Delmar-Reynolds, 2002)

Embedded systems are encountered regularly in everyday life. One example is a sim

ple household appliance, such as a washing machine that uses a single microcontroller

containing the different washing programs to control various motors and pumps, and

even display the progress of washing operation (Heath, 1997; Agrawal and Bhatt,

2001). Other - rather more complex - systems also include embedded processors.

For example a modem car that may have over 100 microprocessors linked as a

network for controlling functions: engine through an electronic controller unit (ECU),

brakes with electronic anti-lock brakes, transmission with traction control and

electronically controlled gearboxes, safety with airbag systems, electric windows, and

even entertainment systems (Heath, 1997; Leen et al., 1999; Pop et a l, 2004).

Furthermore, embedded processors can be found in other application areas, such as

aircraft electronics, consumer electronics, aerospace, telecommunication, medical

systems, military applications, smart buildings and so on (Marwedel, 2003).

The era of microprocessor-embedded system began in 1971 when Intel launched the

world’s first commercial single-chip microprocessor, a 4-bit CPU Intel 4004 (Intel,

2006b). The Intel 4004 was originally developed for the electronic calculators to

replace many hundreds o f discrete ICs. By using a microprocessor, functions can be

changed by altering the program code, rather than analysing the system at gate level

and modifying the hardware (Heath, 1997). This enabled the construction of calcula

tors at a very low cost compared to the original systems.

In the past, an embedded system was normally based on a single-chip microcontroller

(self-contained system with a processor, memory and peripherals) which had limited-

Chapter 1: Introduction 3

resources: for example, an original 8051 has 4 kbytes of ROM and 128 bytes o f RAM

(Intel, 1994). Today, modem embedded systems may be implemented using a wider

range o f processor platforms. For example, a TV “set-top box” may now contain a

high-performance PowerPC processor with 32 MB o f memory and 16 MB of Flash

memory, that runs a multitasking operating system which simultaneously runs

multiple applications, such as a video controller and a digital VCR (Hollabaugh,

2002). The advances in technology that increase hardware performance and the lower

cost o f that hardware have changed the form of embedded systems. In addition, a

wide range o f embedded applications are now implemented on system-on-chip (SoC),

multiple devices (e.g. processors, memory, analog and mixed-signal circuitry for I/O)

integrated into a single chip, in order to reduce costs (Jerraya and Wolf, 2005).

The success o f embedded systems does not depend only on the hardware but also on

software. The designers o f software for embedded processors are often particularly

concerned about system timing. For example, in an aircraft autopilot system, there is

a need to process input and generate output on a time scale measured in milliseconds,

and a slightly delay in making changes to the rudder setting (for example) may cause

the plane to oscillate very unpleasantly or have more severe problems (Pont, 2001).

1.2 The growing concern of power consumption in processors

There is increasing interest in the development o f mobile devices based on embedded

processors. Examples include mobile phones, PDAs and MP3 players. Worldwide

sales of mobile phones alone were close to 520 million units in 2003 (Gartner, 2004).

The demand for such mobile devices is not only for growing numbers o f devices, but

also for an increased range of features on existing devices. For example, mobile

phones are - in many cases - also operating as personal digital assistants (PDAs) and /

or providing links to email, chat services and general WWW access. Entertainment

applications are now also an important feature of advanced mobile phones: the user

can download and play MP3 music, watch video clips, or play games.

Growth in mobile embedded processors is by no means restricted to mobile phones.

Even in medical applications, mobility is preferred in many cases. For example,

Chapter 1: Introduction 4

modem mobile-ECG equipment (see Figure 1.1) is required to continuously record

heartbeat signals of the patient for up to 7 days, in order to allow non-symptomatic

events to be captured over extended monitoring periods. A week of such “full disclo

sure” ECG data enables early diagnosis of patients with infrequent arrhythmias,

including the probability of apnoea, before they become an everyday occurrence

(Delmar-Reynolds, 2002).

With the latest 65 nm process technologies, processors now run at clock frequencies

greater than 3 GHz. Having a billion transistors will shortly become possible (Bai et

al., 2004). Such high speed processors can match the performance demands of

modem applications. However, power and thermal management become significant

issues. The 1.6 GHz Intel Itanium 2 (Intel, 2006a), the high performing processor for

server system that has 410 million transistors, dissipates 130 watts from its small die.

In Figure 1.2 the current and voltage graphs illustrate the power trends in micro

processors.

1000

100
<
c
13o

0.1
1975 1980 1985 1990 1995 2000 2005

Year

u.

: - O Feature Size
j ■ ♦ ’Voltage

0.01
1986 1990 1994 1996 2002 2006

Figure 1.2: Microprocessor current and voltage trends in Intel microprocessors. This image

has been used with authorisation from Intel Technology Journal (“Power Delivery for

High-Performance Microprocessors", Volume 9, Issue 4, Page 274, 275)

With any such mobile device, power consumption becomes a crucial factor. While

the power demand is growing from high computation (e.g. multimedia-features in

mobile phones) and / or long-term use (e.g. mobile ECG recording), the size of bat

teries is becoming smaller, due to demands for smaller devices.

Chapter 1: Introduction 5

If he or she aims is to extend the service life o f mobile systems, the designer has two

(non-exclusive) options. The first is to find ways of increasing the storage capacity of

batteries. The second is to reduce the energy consumption in the embedded

application. Both areas present significant challenges.

The focus in this thesis will be on reduction in system energy consumption. Such

energy reductions can be attempted at various levels. At the application level, energy

consumption can be minimised by providing alternative functions that do a similar job

but require less energy. For example, the user can be provided with the option of

lower-quality pictures and audio quality on a multi-media player. One level below

this, at a system level, designers can investigate both hardware and software design

approaches dedicated to the specific-application. One level lower still (at a behav

ioural-level), designers can select the proper algorithm, energy or speed optimised, to

the right job. At the physical level (the lowest level is), energy-saving options are

limited to VLSI floorplanning and place-and-route techniques, and it has been argued

that opportunities for energy saving at higher levels are 10 to 100 times greater

(Mazzoni, 2003).

O f particular concern in this thesis will be the use o f Dynamic Voltage Scaling (DVS)

to reduce energy consumption. DVS is a well-known and efficient technique which

can be used to balancing performance and energy consumption in embedded pro

cessors (Weiser et al., 1994; Pering et al., 1998a; Lee and Sakurai, 2000; Lorch and

Smith, 2001; Pillai and Shin, 2001; Pouwelse et al., 2001a; Zhang and Chanson,

2003). DVS achieves a reduction in energy consumption by lowering the supply

voltage o f the CPU when the full performance is not required. Technically, in a

Complementary Metal Oxide Semiconductor (CMOS) circuit, if supply voltage is

lowered, the delay in the circuit will increase (Burd and Brodersen, 1995). In the

other word, the maximum frequency of the circuit decreases. This means that the

throughput or performance of the circuit also decreases. When using DVS, the

functions that do not require full speed will be run at a lower clock speed (and also a

lower voltage) in order to save energy, while the functions which need to be

completed more quickly will be run at a higher speed. With proper processor clock

speeds which are selected to ensure that they (just) complete their workloads in line

Chapter 1: Introduction 6

with the system requirements: DVS techniques can then save energy without

degrading performance.

1.3 The impact of jitter on embedded systems

As previously noted (Section 1.1), energy consumption is not the only concern in

embedded systems. In particular, embedded applications involving data sampling or

data output (e.g. medical systems, general data-acquisition systems, numerous control

systems) require precise control o f timing (Buttazzo, 2004). In other words, if the

system is delayed or does not respond to the event within their time constraints, it may

cause system to fail or malfunction (Bennett, 1994). This delay can arise from many

factors, such as process-computational time or communication between nodes.

One key timing factor which can have a serious impact on system behaviour is

“jitter”. In general, jitter may be defined as the deviation from the ideal timing of an

event (Wavecrest, 2001; Ou et al., 2004).

Jitter can have serious implications, not least in applications involving control or data

acquisition. Cottet and David (1999) show that - during data acquisition tasks - jitter

rates o f 10% or more can introduce errors which are so significant that any subsequent

interpretation o f the sampled signal may be rendered meaningless. Similarly Jerri

(1997) discusses the serious impact of jitter on applications such as spectrum analysis

and filtering. Also, in control systems, jitter can greatly degrade the performance by

varying the sampling period (Tomgren, 1998; Marti et al., 2001b).

Jitter can arise from many factors, including oscillator hardware (Schossmaier and

Weiss, 1999), electromagnetic interference in a printed-circuit board (Bogatin and

Garat, 2004), or slightly different calculation times for a control algorithm (Kopetz,

1997).

In embedded systems employing real-time schedulers, jitter can arise from the

scheduler implementation. In general, a real-time scheduler is used to manage the

time allocation for a set o f tasks which are to be executed on a processor (or proces

sors). In such a scheduler, jitter can - for example - arise when a task is blocked

Chapter 1: Introduction 7

while awaiting access to a shared resource (Audsley et al., 1993a) or when a lower-

priority task is interrupted by a higher-priority task.1

As noted previously, a key concern in this thesis will be with the use o f DVS in

embedded systems. Use of DVS requires variations in the CPU clock frequency.

Clearly - unless care is taken - it would be reasonable to expect that levels of jitter

would be likely to increase in embedded systems in which DVS is employed. The

focus of the thesis will be on the impact o f DVS on jitter in the starting times of

periodic tasks.

1.4 Aims of the thesis

This research project was established with goal o f developing and evaluating DVS-

based scheduling algorithms which would serve to reduce CPU energy consumption

without adding significantly to jitter levels.

The specific aims o f the research project described in this thesis were as follows:

• To explore the knock-on impact o f the application of DVS in single-processor

embedded systems employing real-time scheduling architectures.

• To develop algorithms for reducing jitter in such embedded systems.

• To evaluate the above algorithms.

1.5 Research contributions

This thesis is concerned with the development o f single-processor embedded systems

in which there are requirements for both low CPU energy consumption and low levels

o f task jitter.

The project described in this thesis made the following contributions to this research

area:

First, novel algorithms (TTC-jDVS, TTC-jDVS2) for reducing jitter in time-triggered,

co-operatively scheduled embedded systems were developed. These algorithms

i Links between scheduler designs and jitter will be considered in more detail in Chapter 3.

Chapter 1: Introduction 8

involve: (i) changes to system timer settings when the frequency is altered; (ii) use of

a form o f “sandwich delay” to reduce the impact of changes to the scheduler overhead

which arise as a result o f frequency changes, and (iii) execution o f jitter-sensitive

tasks at a fixed operating frequency.

Second, a novel algorithm (TTH-jDVS) for reducing jitter in time-triggered “hybrid”

scheduling architectures was developed. This algorithm includes a novel approach to

determine processor speed setting by using power model in situations where task pre

emption takes place.

Third, it was demonstrated that - in situations where minimal jitter is required -

hardware support is required. A design for suitable hardware was developed, along

with an appropriate scheduling algorithm (TTC-jtDVS2).

1.6 Thesis Organisation

The remainder o f this thesis is organised as follows:

Chapter 2 reviews background and previous works of energy-efficient embedded

system designs. The power dissipation in CMOS circuits and approaches to minimise

power consumption are described. The techniques for reducing energy consumption

at processor and system level are reviewed, including the techniques for extending

battery life. The energy metrics for indicating energy efficiency are briefly described.

Chapter 3 reviews about jitter and its impact on embedded applications and others

related. Specifically, the time-varying effect resulting from scheduling algorithms

and task jitter are discussed. The examples o f low-jitter scheduling algorithms are

presented.

Chapter 4 describes DVS implementation and its impact. The study is initiated by

applying DVS in a time-triggered co-operative (TTC) scheduler. The possible

approaches to implement DVS are explored. A number o f DVS algorithms are

described and evaluated for comparing their performances. The problems which arise

from the DVS employing into a TTC scheduler are explored and described.

Chapter 1: Introduction 9

Chapter 5 describes approaches to minimise jitter caused by dynamic voltage scaling

in the TTC-DVS algorithm. A new algorithm TTC-jDVS is demonstrated and then

evaluated using an artificial task set and in a realistic case study.

Chapter 6 presents the alternative solutions where the TTC-jDVS design is not

appropriate. This study explores ways to implement DVS in TTH design in order to

minimise both energy consumption and jitter level. Experiments are then carried out

to evaluate TTH-jDVS algorithm using both an artificial task set and in a realistic case

study.

Chapter 7 presents the further reduction jitter techniques. The study demonstrates an

approach of using hardware timer incorporated with TTC-jDVS algorithm to further

reduce jitter.

Chapter 8 presents conclusions of the thesis and its contributions.

The appendices present: an overview o f the jitter model (Appendix A); the advantages

and disadvantages o f various common real-time scheduling architectures (Appendix

B); the TTC-jDVS2 algorithm (Appendix C); and techniques for incorporating an

independent timer in an FPGA-based SoC design (Appendix D).

1.7 Conclusions

This introductory chapter has presented an overview o f embedded systems and

emphasised that the energy consumption o f such systems has become an important

issue for designers. It has also been noted that use of Dynamic Voltage Scaling

(DVS) to reduce energy consumption in processors is likely (as a side effect) to

increase levels o f “jitter” and - thereby - degrade the performance o f some systems.

Techniques to allow use o f DVS in low-jitter systems will form the focus of the

remainder o f this document.

Chapter 2

Energy-efficient embedded systems

In the introductory chapter, it was argued that the issue o f power dissipation is o f

growing importance in the design o f advanced processors fo r use in mobile embedded

systems. This chapter reviews previous work in the area o f energy-efficient embedded

systems. The focus is on minimising energy consumption in processors, including

approaches that may help to extend the service life o f mobile devices.

2.1 Introduction

When considering research in energy-efficient embedded systems, it can be helpful to

split the work into two categories: that o f power consumers and that o f power sources

(Martin, 1999).

• When considering power consumers, the top level of the hierarchy is low-power

software: this involves use of low-power algorithms and / or re-compiling code to

use low power instructions (Ishihara and Yasuura, 1998a; Lorch and Smith, 1998;

Pering and Brodersen, 1998; Lee and Sakurai, 2000; Simunic et al., 2000; Sinha

and Chandrakasan, 2001; Mouw et al., 2002; Swaminathan and Chakrabarty,

2003; Lin and Hsueh, 2006). The bottom level o f the consumer hierarchy

involves the development o f novel circuit structure or devices that are specifically

designed to reduce power consumption (Chandrakasan et al., 1992; Burd and

Brodersen, 1995; Assaderaghi et al., 1997; Dancy and Chandrakasan, 1997; ARM,

2003).

Chapter 2: Energy-efficient embedded systems 11

• When considering power sources, the top level o f the hierarchy involves battery

modelling, in order to predict discharge times (Hageman, 1993; Doyle, 1995;

Chiasserini and Rao, 1999b; Martin and Siewiorek, 1999a; Panigrahi et al., 2001).

The bottom level o f this area involves work in electrochemistry which is aimed at

increasing battery life (Fuller et al., 1994; Doyle, 1995).

In this review chapter, the focus is on techniques for reducing power consumption in

processors, including total system power management and battery life extension tech

niques.

2.2 Power dissipation in CMOS circuits

Power consumption in CMOS circuits is mainly categorised into two types: dynamic

power consumption (which arises due to switching activity in a circuit) and static

power consumption (which is present even when no switching activity is performed).

Total power consumption of the circuit can be described by Equation 2.1.

Ptotal = Pac + Pdc (2.1)

where

Ptotal is total power consumption of the circuit,

P a c is dynamic power consumption and

P DC is static power consumption.

The detail o f dynamic and static power consumption are described in the following

sub-sections.

2.2.1 Dynamic power consumption

The dynamic power in a CMOS circuit arises from the charging and discharging o f

circuit node capacitances which can be found on the output of every logic gate (Burd

and Brodersen, 1995; Martin et al., 2002; Nguyen et al., 2003; Jha, 2006).

Chapter 2: Energy-efficient embedded systems 12

Whenever logic switches in the circuit, node capacitance C l incurs a voltage change

AV from the supply voltage at potential Vd d . Power consumption o f that node is

Cl.A V. Vd d . Therefore, the total dynamic power is summation over all N nodes in the

circuit, as shown in Equation 2.2 (see, for example: Burd and Brodersen, 1995; Martin

et al., 2002).

P a c = V d d - fcik • « /• C u . A V t (2 .2)
M

where a is switching activity o f each node which is a fraction o f the clock frequency

fclk.

The voltage o f most nodes in CMOS circuits swings from ground to Vdd , thus, the AV

is approximately Vdd, whereas, the product o f the node capacitance Cl and the activity

weighting factor a can be expressed as an average switched capacitance per cycle,

Ceff, over all the N nodes. The dynamic power equation can be simplified as shown in

Equation 2.3.

P a c ~ V2d d . fc ik ■ Cejj (2.3)

The dynamic power depends on how frequently the gate is switched. If there is no

switching activity in the circuit, the dynamic power is zero.

2.2.2 Static power consumption

Static power in the CMOS circuit mainly arises from the subthreshold leakage and the

reverse bias junction currents. The static power consumption, P d c , is given by Equa

tion 2.4 (see, for example: Jejurikar et al., 2004)

P d c ~ Vd d • fubn + I Pfol • Ij (2.4)

where

Lubn is the subthreshold leakage current,

Ij is the source and drain body junction leakage current,

Vbs is the body bias voltage.

Chapter 2: Energy-efficient embedded systems 13

The threshold voltage V th as a function of supply voltage Vd d and the body bias

voltage Vbs is given below.

Vth = Vm - K j . Vdd- K 2 . Vbs (2.5)

where K j , K2 and Vthi are technology constants.

The subthreshold current Isubn can be described by Equation 2.6, (see, for example:

Martin et al., 2002).

isubn I " -] ' .
-VDD "

\ - e Vt
U J

~iV A + Voff)

nVT
(2 .6)

where W and L are device geometries, Is, n and V0jj are empirically determined

constants for a given process, and Vj is the thermal voltage.

-V n

In general, V0fj is small and 1 - e Vr is nearly 1 for all VDD. By approximating and

substituting Equation 2.5 into Equation 2.6, Isubn is simplified as shown in Equa

tion 2.7.

Isubn = K3 e K*v™eK̂ (2.7)

where K3 , K4 and K3 are constant fitting parameters.

Thus, the static power as a function of supply voltage Vdd and the body bias voltage

Vbs can be represented as shown in Equation 2.8.

P d c ~ VDD. K 3 e K'v° ° e K^ + \Vbs\ . Ij (2 .8)

Chapter 2: Energy-efficient embedded systems 14

2.3 Approaches to minimise power in CMOS processors

Models o f dynamic and static power in CMOS circuits have been described in the

previous section. In this section, approaches to reduce power consumption in CMOS

processors will be explored, based on the CMOS circuit’s power model.

2.3.1 Reducing supply voltage

Reducing supply voltage is a very effective method for reducing dynamic power con

sumption. As shown in Equation 2.3, if the supply voltage V dd is lowered, the

dynamic power consumption o f CMOS circuit drops in line with the voltage squared.

However, this power reduction must be traded with changes in delay.

14.0

Delay
Pow er12.0

>, 10.0
JSa)
S 8.0
<D(/)

6.0(0
E
oz 4.0

2.0

0.0
1.0 2.0 3.0 4.0 5.0 6.0

40

30

20

10

Zo
—I

3a
wo
Cl

"0O
$<D

</>C/>
■o'0)
o'3

V dd (in V th)

Figure 2.1: Delay, Pow er vs V DD. (R edraw n from Burd and Brodersen, 1995)

The circuit delay, tim, is a function of both the power supply and threshold voltage of

the internal resistors (Equation 2.9 - see, for example: Martin et al., 2002).

Lj K *
d 6 (2.9)

<yM-v,h)ls

where

Ld is the logic depth o f the path

Chapter 2: Energy-efficient embedded systems 15

K t is a constant for a given process technology

/? is a measure o f velocity saturation, l< f i< 2

If the supply voltage is reduced, the delay increases dramatically as the supply voltage

approaches threshold voltage (Burd and Brodersen, 1995). In CMOS processors, the

increase in circuit delays means that the maximum clock frequency is decreased: in

other words, the throughput of the processor will be reduced when the supply voltage

is reduced.

The dynamic voltage scaling (DVS) technique was proposed as a means o f lowering

the supply voltage o f a processor when the maximum clock frequency is not required.

This technique can be implemented using software to determine and scale the supply

voltage to match load requirements. Overall, DVS has proved to be an effective way

to balance power and performance for CMOS processors. Further information about

DVS techniques will be presented in later sections.

2.3.2 Reducing switching activity

Reducing switching activity in order to reduce dynamic power consumption can be

achieved using two approaches. The first is to reduce the number o f unnecessary

gates from charging and discharging. The second is slowing down the charge and

discharge rate o f the gates. These approaches reduce amount o f current drawn into the

gates in CMOS processor.

Minimising the number o f switching gates in the circuit can be achieved by gating the

clock o f unused parts. This clock-gating technique (Abdollahi and Pedram, 2006) has

been applied in a novel processor, PowerPro architecture (Programmable Power

Management Architecture) which supports dynamic adjustments o f the active

datapath width (Ishihara and Yasuura, 1998b). The processor obtains a PADWC

(Programmable Active Datapath Width Control) function which provides the instruc

tions that specify operation and control the variable datapath width.

The technique was applied in the registers, ALU, data-bus, off-chip driver and data

memory. For example, two pieces o f data which are assumed to be 32-bit and 7-bit in

size are passed into the register. After the first cycle that loads the 32-bit data, only 7

Chapter 2: Energy-efficient embedded systems 16

bits o f the second data element are allowed to transit while the rest o f the bits are

disabled by stopping the clock supplied to them. Thus, these 25 bits are unchanging

while the transition o f the 7-bit data is dependent on the previous 32-bit data value.

Stopping the clock supply to unused bits o f the datapath register can decrease power

consumption significantly. However, the bit-width o f the data-path is different for

each operation. Thus, more sophisticated techniques to manage the power for

datapath circuits are usually required (Ishihara and Yasuura, 1998b).

By contrast, decreasing the clock frequency only slows the switching activity, it does

not reduce the number o f switching events required to complete a task. While this

approach reduces dynamic power consumption (see Equation 2.3) it is not an energy-

efficient method (Chandrakasan et al., 1992; Burd and Brodersen, 1995). More

specifically, a task which is executed at a lower clock frequency (with constant supply

voltage) will consume the same amount of energy (over the period required to

complete a given task) than the same task executed at a higher frequency.

2.3.3 Reducing capacitance

A third approach for addressing power-consumption concerns involves reducing the

capacitance o f the circuit. Basically, the capacitance can be expressed as two parts

(Burd and Brodersen, 1995). The first part is the device width which is composed of

the subsequent gates’ input capacitance and part o f the diffusion capacitance on the

gate output (Burd and Brodersen, 1995; Kumar, 2006). This can be controlled by the

designer. The second part arises from the diffusion capacitance: this is dependent on

technology only, and the capacitance o f the wire interconnecting these gates, which

may be optimised by efficient layout (Burd and Brodersen, 1995; Huang et al., 2005).

This approach optimizes both power and delay in CMOS circuits.

2.3.4 Reducing leakage current

As shown in Equation 2.8, turning off the supply voltage can reduce the leakage

power dissipation in VLSI circuit. This approach can be implemented by using sleep

transistors (one PMOS and one NMOS) in series with the transistors of each logic

block, to make a virtual power supply and ground: this provides a “power gate” for

reducing power in idle mode (Abdollahi and Pedram, 2006). This method can be

applied for a large area or a group of logic gates by using one sleep transistor. Multi

Chapter 2: Energy-efficient embedded systems 17

threshold CMOS (MTCMOS) is used for different modes (Kao and Chandrakasan,

2000). Transistors with a low-threshold voltage are used to implement the logic,

while those with high-threshold voltage are implemented as sleep transistors.

In active mode, power gating cannot save power. Leakage power in active mode may

be saved by using slower transistors which have a high threshold. Typically, leakage

current can be reduced if the supply voltage is lowered. However, this approach

degrades performance because of increases in gate delay (as discussed in Section

2.3.1).

Partitioning techniques enable parts of a device to be associated with a particular

clock domain (Butts and Sohi, 2000). This allows functional units which do not

require a high clock speed to be implemented separately, to save leakage power. Dual

threshold / supply voltage is a technique presented to minimise both dynamic and

static power (Srivastava and Sylvester, 2004).

The other factors for reducing leakage power are dependent on empirical parameters

o f technology and design.

2.4 Algorithms for reducing energy consumption in processors

Having considered techniques for power reduction at the VLSI level, the discussions

in this section will centre on software-based techniques which have been proposed to

achieve energy savings. More specifically, this section will describe dynamic voltage

scaling (DVS) techniques - used to reduce dynamic power consumption - and also

adaptive body bias (ABB) techniques, which are used to reduce static power con

sumption.

2.4.1 Dynamic voltage scaling

The key idea o f dynamic voltage scaling to achieve energy saving in processors is to
2 3exploit the idle and slack times by running tasks for longer periods, at lower

voltages (Weiser et al., 1994; Schmitz et al., 2004; Zhu and Mueller, 2004; Ge et al.,

2 A period during which the processor does not execute any task (Buttazzo, 2004).
3 The period for which a task can be delayed after activation and still complete by its deadline

(Liu, 2000; Buttazzo, 2004).

Chapter 2: Energy-efficient embedded systems 18

2005). In general, the processor will have more performance than an application

requires (indeed, designing the application to ensure this would seem to be common

sense). Accordingly, by exploiting the slack, the processor can run slower in order

that tasks - just - complete in time to satisfy their deadline requirements. As the

clock frequency is reduced, the supply voltage can also be lowered, offering the

potential for a significant energy reduction. In practice, appropriate (and sometimes

complex) algorithms are required in order to determine the required clock frequency.

Dynamic voltage scaling was initially implemented as a set o f algorithms for reducing

the CPU energy consumption on desktop computer (Weiser et a l , 1994). The Weiser

algorithms involve dividing the workload into intervals o f various lengths: each

interval may then be run at a different speed. The algorithms proposed by Weiser

(OPT, FUTURE and PAST) aimed to lengthen the runtime o f each scheduled

segment, in order to minimise the task idle times, while retaining reasonable

interactive response times. Basically, the processor clock is stopped during the idle

time. However, without voltage reduction, it is not the most efficient way to save

energy (see further information in Section 2.7.1). From Weiser et al. work, PAST

was the only practical algorithm because it did not require future information: it used

information of the previous interval to set the speed of the next interval. Govil et al.

(1995) proposed an extension to this approach which involved making load prediction

and speed-setting policies independently. The Govil algorithms (FLAT,

LO N G SH O R T, AGED AVERAGES, CYCLE, PAT-TERN and PEAK), have been

compared with the PAST. FLAT, which was the simplest policy and tried to keep the

CPU’s utilisation as flat as possible, proved to be the most effective. Lorch and Smith

(2001) subsequently presented PACE (Processor Acceleration to Conserve Energy),

an algorithm intended to reduce energy consumption in DVS algorithms without

affecting their performance. PACE was not a complete DVS algorithm by itself but

was a method for estimating the workload based on a probability distribution. On the

basis o f simulation results (Lorch and Smith, 2001), it was claimed that PACE

reduced CPU energy consumption o f the previous algorithms, such as PAST, FLAT,

LONG SHORT, by up to 49.5% (with an average o f 20.6%).

Chapter 2: Energy-efficient embedded systems 19

After being applied on desktop computers, the dynamic voltage scaling technique was

adapted for use in real-time systems (Pering and Brodersen, 1998). The fundamental

parameters o f real-time scheduling, such as start time, computation time and deadline,

are used for scheduling tasks and determining running speed o f CPU. The scheduler

algorithm sets the CPU speed by determining computational resource in order to

complete real-time tasks by their deadlines.

For real-time systems, the worst-case execution time (WCET) is normally used to

determine the running speed o f tasks in conventional voltage-scheduling methods

(Ishihara and Yasuura, 1998a). Since tasks do not always execute at their WCET,

Shin and Choi (1999) proposed a method to save energy when the task’s execution

time was less than the predicted WCET. The run-time voltage hopping method (Lee

and Sakurai, 2000) proposed workload-variation slack time which partitions a task

into several pieces (called timeslots) to dynamically vary the voltage inside a task.

This scheme tries to fully exploit slack time and it was claimed that it could improve

energy saving more effectively than techniques which varied the supply voltage on a

task-by-task basis.

Some researchers have raised questions about the real-time nature o f DVS algorithms.

For example, Pillai and Shin (2001) suggest that previous DVS algorithms (Weiser et

al., 1994; Govil et al., 1995; Pering et al., 1998a) do not address real-time constraints

because they aim to tackle the energy problem first. They go on to propose what they

call real-time DVS (RT-DVS) algorithms which involve an adapted real-time sched

uler and task management service which is intended to minimise energy consumption

while retaining real-time deadline guarantees. The algorithms they propose include

Statically-scaled RM (Rate Monotonic), Statically-scaled EDF (Earliest Deadline

First), Cycle-conserving RM, Cycle-conserving EDF and Look-ahead EDF4. In Pillai

and Shin study, Look-ahead EDF was claimed to be the best o f those algorithms for

saving energy. The Cycle-conserving policy can dynamically recompute voltage

setting to run tasks but it is based on WCETs. The Look-ahead policy improves

energy saving by lowering the frequency to stretch task for as long as possible, on the

These are based on rate monotonic (RM) - (Liu and Layland, 1973; Locke, 1992) - and
earliest-deadline-first (EDF) - (Liu, 2000; Buttazzo, 2005) - algorithms

Chapter 2: Energy-efficient embedded systems 2 0

assumption that most tasks complete earlier than their WCETs. O f course, this may

require running tasks at high frequencies later in order to complete all o f the delayed

tasks in time. In a similar vein, Swaminathan and Chakrabarty (Swaminathan and

Chakrabarty, 2001) proposed the online scheduling algorithms, low-energy earliest-

deadline-first (LEDF) and extended low-energy earliest-deadline-first (E-LEDF).

These algorithms were designed for periodic non-preemptable task sets. E-LEDF was

a modified (and more practical) version o f LEDF.

In general, DVS algorithms can be broadly classified into “offline” and “online”

approaches which depend on when the voltage settings are determined (Swaminathan

and Chakrabarty, 2001; Bini et al., 2005; Cai et al., 2006). Offline (also called

“statics” or “pre-runtime”) approaches calculate all voltage (and frequency) settings at

compile time: the voltage schedule will not be changed at runtime. The offline

voltage scheduling algorithms compute voltage setting based on priori task

parameters, such as periods and WCET, to guarantee satisfaction o f time constraints.

In real applications, actual execution times of tasks during operation are usually

smaller than their WCETs but the offline algorithms cannot change scheduled

voltages to exploit the runtime slack. However, the advantage o f offline voltage

schedules is that they avoid (voltage calculation) overheads during run time.

Therefore, complicated techniques can be employed in order to increase the accuracy

o f the voltage schedule.

While the offline voltage scheduling techniques are usually based on WCET, Shin et

al. (2001) analyse execution time variations among different execution paths of

program code in order to explore actual execution times. It was found that, to

improve energy savings, the average-case execution path (ACEP), rather than the

worst-case execution path (WCEP), could be used to schedule the voltage o f tasks by

inserting voltage scaling point at branch or loop nodes inside a task. Incorporated

with the intra-task voltage scheduling techniques, such as (Shin and Choi, 1999; Lee

and Sakurai, 2000) which allowed to run each partition of a task with different

voltages, meant that a task could fully exploit all slack time. Also, in order to

improve a WCET-oriented schedule, Gruian (2001) used stochastic data (based on the

probability distribution o f the execution pattern) to build multiple voltage schedules,

Chapter 2: Energy-efficient embedded systems 2 1

in order to minimise the average case energy consumption. In particular, the voltage

schedules at task level are correlated with the task execution length probability

distribution. This offline decision (Gruian, 2001) was employed with an online

scheduling policy in order to achieve further energy reductions.

In distributed systems, the voltage scheduling is further complicated by the presence

of dependent tasks where the co-design flow (allocation, mapping, and scheduling)

influences the ability to exploit DVS (Luo and Jha, 2000; Bambha et al., 2001;

Schmitz et al., 2004). High-load search techniques (based on a genetic algorithm)

were applied for exploring voltage-schedule solutions (Bambha et al., 2001; Schmitz

et al., 2004) in order to maximise slack-time exploitation among multi-processing

nodes and - thereby - optimise both the system (timing) schedule and the degree of

DVS utilisation.

By contrast to these (predominately) offline techniques, online DVS approaches (e.g.

(Zhu and Mueller, 2004; Zhuo and Chakrabarti, 2005; Cai et al., 2006)) compute

voltage settings during runtime to take advantage o f early completion o f tasks (i.e.

slack time) in order to increase energy savings. Such online techniques clearly have

the potential to achieve higher energy savings. However, the runtime overhead of

online DVS algorithms must clearly be taken into account too.

Generally, online DVS algorithms are integrated into real-time task scheduling

schemes. These schemes may be based on dynamic task priorities, e.g. EDF: see

(Swaminathan and Chakrabarty, 2001; Kim et al., 2002)), or fixed task priorities, e.g.

RM: see (Kim et al., 2003; Wei et al., 2006). Zhu and Mueller (2004) applied an

adaptive technique from control theory (PID-controlled feedback) to dynamically

exploit slack time in the presence o f varying workloads. This closed-loop DVS

algorithm incorporated the PID controller into an online EDF scheduler.

Although general offline and online DVS techniques, e.g. (Gruian, 2001; Shin et a l ,

2001; Swaminathan and Chakrabarty, 2001; Kim et al., 2002; Zhu and Mueller, 2004;

Wei et al., 2006), are effective in reducing energy consumption, they are not

necessarily efficient when it comes to extending battery life because they do not

Chapter 2: Energy-efficient embedded systems 2 2

consider non-linear battery characteristics (Cai et al., 2006). Zhuo and Chakrabarti

(2005) therefore proposed a battery-aware dynamic task scheduling algorithm,

“dynamic average rate EDF” (darEDF), that combines the concepts of a slack

forwarding algorithm (Shin and Choi, 1999) - which tries to make the power profile

decrease with time, to improve battery efficiency - and a slack look-ahead algorithm

(Shin et a l , 2000), which tries to increase system idle time, to increase opportunities

for battery recovery. The darEDF algorithm updated the task density (WCET/period)

whenever the run queue was changed: it tried to exploit the slack time as much as

possible, in order to lower the battery-load current and also set the voltage for the

tasks in a queue, in order to decrease power profile. Cai et al. (2006) have also

introduced an online DVS algorithm for multiprocessor systems that takes into

account heterogeneous tasks which draw different current from battery and require

different WCETs, whilst maintaining low online complexity.

In practice, DVS overheads (both voltage calculation and voltage transition) are

significant in term of execution time and power consumption. Previous studies, e.g.

(Swaminathan and Chakrabarty, 2001; Andrei et al., 2005), have reported that the

overheads are large even if low-complexity online algorithms are used, and that such

algorithms have a significant impact on energy consumption. For example, the online

PID-feedback DVS algorithm (Zhu and Mueller, 2005) can improve energy saving, by

employing dynamic slack. The specific improvement obtained is about 20-30%,

compared to the static algorithm. However, the overhead o f the dynamic algorithm is

around 1600% higher than the static algorithm. Zhu and Mueller (2005) suggest that

the trade-off between overhead and performance always needs to be examined

carefully. Aware o f the overhead / performance trade-off, Zhu et al. (2003) proposed

a scheme to incorporate time overhead and energy overhead in an algorithm which

took into account the voltage/frequency adjustment. The algorithm takes into account

the DVS calculation overheads when determining whether the system timing

constraints can be met. As a consequence, it may decide not to run at a lower voltage

(if the energy overhead is larger than the energy saved by the voltage change).

The distinction between “online” and “offline” approaches need not be absolute and -

to reduce the complexity o f online DVS algorithms - some parts of the voltage

Chapter 2: Energy-efficient embedded systems 23

calculations have been carried out during the offline phase. For example, Andrei et

al. (2005) proposed quasi-static voltage scaling algorithm that it is able to exploit the

dynamic slack and also keeps the online overhead very low. To reduce the online

overheads, the necessary voltage calculations are computed offline and stored in

lookup tables within memory. Simulation results suggest that the quasi-static

approach (Andrei et al., 2005) is the best (in terms o f energy saving and voltage

calculation overhead) among various algorithms (greedy heuristic (Aydin et al., 2001)

and linear time heuristic (Gruian, 2002)). The overhead o f the quasi-static algorithm

is less than that o f the greedy heuristic, which has the smallest overhead among

comparable algorithms, about 34 times lower overhead when executed on an SA-1100

processor. Furthermore, Andrei et al. (2007) also reduce (voltage transition) overhead

by reordering the voltage mode (a set o f supply and body bias voltages) within a task,

in order to eliminate voltage-mode switch between tasks. For example, if the voltage

modes o f the last partition of the current task and the first partition o f the next task can

be reordered to be the same, the voltage transition between tasks can then be removed

while the numbers o f intra-voltage transition in each task are the same.

It is also important to appreciate that the use o f DVS may have an impact on system

reliability (Hazucha and Svensson, 2000; Shivakumar et al., 2002; Ernst et al., 2004;

Zhu, 2006). When the supply voltage is reduced, the systems are more easily affected

by lower energy particles (i.e. gamma rays which arrive from space and alpha

particles which are created when atomic impurities decay (Seifert et al., 2001; Austin

et al., 2004)) which can lead to increased numbers o f transient faults (Zhu, 2006). In

safety-related applications, the use of DVS potentially impacts on levels of tolerance

to transient faults (Ejlali et al., 2006). In general, time-redundancy technique (i.e.

rollback-recovery) also exploits slack time to improve transient-fault tolerance by

performing recovery executions whenever a faulty run occurs: the number o f recovery

executions which can be carried out depends on the available slack time. Since DVS

techniques aim to eliminate slack time, there is the clear potential for conflict between

time-redundancy techniques and DVS. As a potential solution to such conflicts, Ejlali

et a l propose information redundancy hardware that is used to correct faults during

execution (i.e. without requiring a re-execution) in order to increase exploitable slack

time for lowering voltage. Simulation results (Ejlali et al., 2006) suggest that, as the

Chapter 2: Energy-efficient embedded systems 24

transient faults (single event upsets) rate increases, the proposed system has greater

potential (in term o f energy saving) when comparing to the conventional rollback

recovery system. Overall, it is clear that voltage scaling technique should be carefully

evaluated before they are applied in mission-critical embedded applications (e.g.

military and aerospace) or systems deployed in vulnerable environments (e.g. satellite

systems).

Use o f DVS also has an impact on system timing. In the study (Mochocki et al.,

2005), Mochocki et al. considered meeting the completion jitter constraints of a set of

independent periodic tasks scheduled by fixed-priority (RM) scheduling. They report

that DVS has large potential to increase jitter when used aggressively. On the other

hand, if DVS is used carefully, it is possible to meet jitter requirements. The Jitter

Aware DVS (JADVS) (Mochocki et al., 2005) algorithm is proposed for scheduling

tasks to meet jitter constraints. The goal of the algorithm will be achieved if a valid

“island” (the interval between release and deadline o f a job but excluding all pre

emption and execution time) solution set can be identified for a task. The simulation

results showed that, at utilisation o f 0.3, JADVS can schedule 90% and 95% of task

sets (20 tasks) to meet 10% of absolute and inter-completion jitters respectively, while

the RM algorithm cannot schedule any tasks at the same situation. However, at

utilisation o f 0.5 and 0.6, all 20 tasks scheduled by JADVS suffer more than 10%

absolute and inter-completion jitters respectively. At tighter jitter constraints (2%), no

scheduled task can satisfy the requirements at utilisation o f 0.4. In this study

(Mochocki et a l , 2005), the transition overhead and discrete voltage levels are not

taken into account.

Another impact o f DVS on timing can be found in video decoding applications. In

the study (Lee et al., 2005), it was found that DVS caused video frame deadline

misses (due to inaccuracy in decoding-time prediction) which then led the video

quality degraded. Lee et al. (2005) focused on technique for predicting the decoding

time o f high variability video frames, in order to maximise energy saving under

discrete voltage/frequency setting conditions. The Frame-Data Computation Aware

(FDCA) (Lee et al., 2005) technique achieved the deadline misses within 10-20% of

the playback interval (which has a trivial impact on video quality) that were better

Chapter 2: Energy-efficient embedded systems 25

than the GOP (Son et al., 2001) method but in the same range as the Direct (Pouwelse

et al., 2001c) and Dynamic (Nurvitadhi et al., 2003) algorithms. Although the FDCA

consumed more energy than the Dynamic, it was claimed that it supported real-time

video applications, not only for stored video (as is the case with the other algorithms).

2.4.2 Adaptive body biasing

In the past, power dissipation in CMOS processors has been dominated by dynamic

power (Marculescu et al., 1994). However, as VLSI technology continues to scale,

leakage power becomes of greater concern (Chandrakasan et al., 2000). Jha (2006)

shows that the ratio between leakage and dynamic power are about 22% and 78% of

total power consumption in 0.07um CMOS technology but, in 0.035um technology,

the leakage power becomes 67% of total power consumption. The dominance of

leakage power is more apparent when applying voltage scaling (which results in

significant reductions in dynamic power consumption while leaving leakage power

unchanged).

As the supply voltage for modem high-performance processors is reduced, the

threshold voltage is also proportionately reduced, in order to decrease delays and -

hence - maximise the clock frequency. The reduction in threshold voltage results in a

large increase in subthreshold leakage current which in turn leads to a larger standby

current (Butts and Sohi, 2000; Jejurikar et al., 2004). By contrast, the leakage current

can be reduced significantly by increasing the threshold voltage, but the device will

have a lower maximum operating frequency.

The threshold voltage may also be adjusted by applying a voltage to the body node of

a gate to reverse bias the source body junction (Butts and Sohi, 2000). Such ’’adaptive

reverse body biasing” (ABB) has been proposed as a way o f minimising leakage

current in standby mode (Keshavarzi et al., 2001). Recent studies (Martin et al.,

2002; Wu et al., 2004) have involved both scaling the threshold voltage and

(simultaneously) applying DVS. Leakage Control EDF (LC-EDF) scheduling algo

rithms (Lee et al., 2003) have also been proposed as a means of reducing the leakage

power in real-time systems while Jejurikar et al. (2004) have proposed a procrastina

tion scheduling scheme which attempts to maximise the duration o f the idle interval in

order to minimise both dynamic and static power consumption.

Chapter 2: Energy-efficient embedded systems 26

2.5 System-Level Power Reduction

Power consumption does not arise solely from a processor: other parts o f the system

hardware must also be considered. In small systems, such as PDAs, the processor is

the most energy-hungry component o f the system (Viredaz and Wallach, 2003). In

larger systems, such as portable computers, the average power consumption in

processors is typically only 14% of all components used and video and backlighting

take more than one-third o f the system power (Lorch and Smith, 1998).

In this section, power management policies for dealing with system components are

reviewed.

2.5.1 System-level Power Management

Dynamic power management (DPM) (Lu et al., 1999; Lu et al., 2000; Simunic et a l ,

2000; Simunic et al., 2001; Cheng and Goddard, 2005; Zhang and Chakrabarty, 2006)

has proved to be one o f the most successful techniques for minimising power

requirements at the system level. This technique reduces energy consumption by

selectively turning off system components when they are idle. DMP operates by

observing request patterns for component activation and predicting the length of

“idle” periods. It may turn off components as soon as it is idle (an “aggressive”

approach). However, turning on and off a component has associated time and energy

overheads. Incorrect predictions may therefore have an impact on energy

consumption and performance: constructing a complex system which supports DMP

is a difficult procedure. To support DPM in complex systems the Advanced

Configuration and Power Interface (ACPI) initiative was established to standardize

interfaces between power-manageable hardware components and the power manager

(Paleologo et al., 1998).

Lorch and Smith (1997) have proposed techniques for improving the (naive) power-

management strategy in the MacOS. This original approach simply turned off the

processor whenever no activity had occurred in the last 2 seconds and no I/O activity

had occurred in the last 15 seconds. The greediness technique (Lorch and Smith,

1997) identified and blocked processes doing unnecessary work in order to avoid

wasting energy and degrading performance. Lorch and Smith also proposed software

Chapter 2: Energy-efficient embedded systems 27

strategies which were classified into three categories: transition, load change, and

adaptation, for managing energy of hardware components in portable computers

(Lorch and Smith, 1998).

Paleologo et a l (1998) represented a power-managed system (devices and workloads)

by means o f a stochastic model based on discrete-time Markov decision process

(DTMDP). Using his approach, policy optimisation can be transformed into a linear

programming problem and proven by a mathematical framework. Following this

work, the continuous-time semi-Markov decision process (SMDP) model was

developed: this allows event-based policy implementation instead of discrete time

(Simunic et a l , 1999). It was claimed that event-driven power managements were

more energy efficient than clock-driven approaches because the decisions were made

only in response to the changes of the system without creating additional activity on

each clock cycle when the system is idle.

Lu et a l (2000) built a framework to evaluate power management algorithms and

explore their impact on user perceptions about system performance. The results they

obtained suggested that (with a total wait period kept fixed), users preferred to wait

for many short consecutive activities than a single long activity. In this case, the

system with multiple short activities was felt to be more responsive.

Approach for reducing I/O device energy consumption is not limited to shutdown-

based scheme. As digital circuits can gain benefit from DVS technique, in wireless

communications, dynamic modulation scaling (DMS) (Schurgers et a l , 2001; Yu et

a l, 2004; Yang et a l, 2005; Yuan et a l, 2005), was introduced to minimise energy

consumption of radio devices as part of power management technique (Schurgers et

a l, 2001; Schurgers et a l , 2003). Similar to DVS, DMS is a scaling technique which

changes its modulation on the fly using for balancing between energy and packet

throughput. The advanced energy reduction method must be incorporated in packet

scheduling schemes in order to manage energy consumption of the wireless

communication subsystem.

Chapter 2: Energy-efficient embedded systems 28

2.5.2 DPM and Real-Time Systems

Dynamic power management via I/O device scheduling for real-time systems was

initially proposed by Swaminathan and Chakrabarty (2003). A device scheduler for

hard real-time systems - called a low-energy device scheduler (LEDES) - was intro

duced to reduce the energy consumption o f I/O devices. Its predictive scheme was

based on an adaptive learning tree and the aim was to shut down devices by predicting

the length o f the next idle period, based on past observation o f requests. A more

practical I/O device scheduler - multi-state constrained low-energy scheduler

(MUSCLES) - was also presented to reduce energy consumption for hard real-time

systems (Swaminathan and Chakrabarty, 2003). Both approaches guarantee that real

time constraints are not violated.

However, Cheng and Goddard (2005) reported that the algorithms for minimising I/O

device energy consumption for real-time systems in (Swaminathan and Chakrabarty,

2003; Swaminathan and Chakrabarty, 2005) did not consider the energy consumption

o f processors in order to maximise the overall system energy saving. They then

proposed an online system-wide energy-efficient scheduling algorithm, System-wide

Energy-Aware EDF (SYS-EDF) (Cheng and Goddard, 2005), which regarded the sum

of I/O device and processor energy consumption, supporting periodic task sets with

non-preemptive shared resources. The simulation results showed that the SYS-EDF

improved system energy saving up to 37% when comparing with algorithm using I/O

device power management or processor voltage scaling solely, and up to 10% when

comparing with algorithm that integrated both techniques regardless system-wide

energy-efficiency.

Dynamic power management is also explored for integrating in fault tolerance real

time embedded systems (Melhem et al., 2004; Zhang and Chakrabarty, 2006; Zhu,

2006). Beyond energy-saving issue, power management is also significant in order to

assist in reducing transient faults caused by high die temperature or lower processor

voltages that are likely to lead to lower noise margins (Zhu et al., 2004; Zhang and

Chakrabarty, 2006). Concerning both energy and reliability issues, studies in

(Melhem et al., 2004; Zhang and Chakrabarty, 2006; Zhu, 2006) adopted

checkpointing and rollback recovery (a fault detection and recovery techniques (Ziv

Chapter 2: Energy-efficient embedded systems 29

and Bruck, 1997; Kwak et al., 2001)) and then combined with DVS to reduce energy

consumption and improve the run time reliability o f the system.

2.6 Extending the service life of mobile embedded systems

The battery becomes a crucial factor when designing mobile devices. Due to the

shrinking size o f modem handheld devices, designers have to consider the develop

ment o f smaller and lighter batteries. Such batteries are the main factors which limit

the energy source and service life o f mobile systems. Previous studies on batteries

have had the intention of improving understanding and - thereby - predicting their

behaviour (Martin, 1999; Martin and Siewiorek, 1999a; Rakhmatov et al., 2002;

Rakhmatov and Vrudhula, 2003; Lahiri et al., 2004), including steering their

discharge (Luo and Jha, 2001; Benini et al., 2002; Choi et al., 2006).

This section reviews the factors which affect battery performance and then considers

the results from previous studies which have been aimed at reducing battery discharge

rates in order to maximise the service life o f mobile embedded systems.

2.6.1 Factors affecting battery performance

Beyond environmental factors, such as low temperature which shorten the battery

service life by reducing chemical activity and increasing internal resistance of battery

(Linden and Reddy, 1995; Martin, 1999; Rakhmatov and Vrudhula, 2003; Lahiri et

al., 2004), other factors affecting performance o f batteries are de-scribed below.

High (continuous) discharge rate can quickly shorten the service life o f a battery

(Linden and Reddy, 1995; Martin, 1999). If large current is drawn from a battery,

electro-chemical reactions occur only at the outer surface o f the cathode and,

consequently, the active cathode sites remain un-utilised: this decreases the total

capacity o f the battery (Lahiri et al., 2002) In general, the capacity of a battery, C,

decreases with increasing discharge current but this relationship is not linear. For

instance, a battery rated at 5 Ah at the C/5 rate (1 A) will operate for 5 hours. If the

battery is discharged at a lower rate, for example the C/10 rate (or 0.5 A), its service

life is more than 10 hours and it delivers more than 5Ah o f capacity. On the other

Chapter 2: Energy-efficient embedded systems 30

hand, when discharged at C rate (or 5 A), the battery will run for less than 1 hour and

deliver less than 5Ah o f capacity.

Pulse discharge is one o f factors affecting battery lifetime (Linden and Reddy, 1995;

Martin, 1999; Rakhmatov and Vrudhula, 2003; Lahiri et al., 2004). A high pulse

discharge can dramatically drop the battery voltage within a short period: this may

then mean that a battery-powered system may suffer a sudden power shortage (which

may, for example, cause a system reset). Accordingly, Rakhmatov and Vrudhula

(2003) reported that, under various load profiles being tested, the load profile

consisting o f lower peak current could have longer lifetime.

In addition, different types of battery have different responses to pulse discharges

which may have an impact on battery lifetime (Linden and Reddy, 1995). For

example, with a zinc-carbon battery, the output voltage drops sharply initially and

then recovers. By contrast, the response o f a zinc/alkaline/manganese dioxide battery

is characterised by the voltage initially falling and then either remaining at this lower

level or dropping slowly.

Intermittent discharge can extend battery lifetime (Chiasserini and Rao, 1999a;

Martin, 1999; Rakhmatov and Vrudhula, 2003). When a battery stands idle after a

discharge, a chemical reaction takes place that raises the battery voltage: this is called

a “recovery effect” (Linden and Reddy, 1995; Chiasserini and Rao, 1999a; Chiasserini

and Rao, 1999b; Panigrahi et al., 2001; Lahiri et al., 2002). After a (high) discharge,

a battery should be relaxed (idle or lower discharge) to gain benefit from recovery

effect, in order to maximise battery capacity. Rao and Vrudhula (2005) showed that

the recovery time for a battery increased if the duration o f load discharge was longer:

in other words, the more the battery had been discharged, the more rest time was

required. Appropriate rest periods can extend the battery lifetime but the voltage

recovery rate o f the battery depends on many factors, such as the particular battery

system and constructional features, length of recovery period and discharge rate

(Linden and Reddy, 1995).

Chapter 2: Energy-efficient embedded systems 31

The shape o f the battery discharge curve, which depends on the electrochemical

system and constructional features of batteries, can affect the service life of mobile

systems (Linden and Reddy, 1995). For example, suppose Battery A gives a flat

output voltage and then sharply drops while Battery B ’s output voltage gradually

drops throughout its service life. In applications where the device is restricted to (say)

-15% of battery voltage level, at time X, Battery A (with the flat discharge curve) may

still have an output voltage above the restricted voltage while Battery B may have

dropped below this threshold. Battery A then has longer service life. By contrast, if

the device can tolerate a wider voltage spread, the output voltage from Battery B may

exceed the threshold for longer.

2.6.2 Controlling battery discharge

In order to extend system life, various studies have been aimed at understanding

battery characteristics and employing this knowledge to control the discharge. Martin

and Siewiorek (1999a) studied the non-ideal properties o f batteries with intermittent

discharge arrangements. Their results showed that the intermittent discharge can

increase battery lifetime when compared with continuous discharge. They also

suggested that, with the same average power load, the system which discharges with a

low power peak can have a longer service life than that with high power peak. By

being aware o f discharge profile shape, Luo and Jha (2001) proposed a battery-aware

static scheduling scheme which employed voltage scaling in order to flatten the

discharge power profile as well as reduce the average discharge power consumption.

The battery-aware scheduling algorithm increased battery lifetime by up to 76% over

fixed-voltage scheduling algorithm and by up to 56% over a general voltage-scaling

scheduling algorithm.

To gain benefit from the recovery effect, the BEE (Battery Energy Efficient) network

routing protocol has also been developed to balance the battery consumption among

all nodes (Chiasserini and Rao, 2000). The scheme tried to route the data packet

through the nodes which have a high battery capacity and allow the other nodes to rest

for recovery. Similarly, in the work of Rakhmatov and Vrudhula (2003) the battery-

aware scheduling was used to insert an idle period or lower-voltage task after the

high-load task was executed. As an alternative, Choi et al. (2006) divided battery

runtime into three regions, (i) the recovery effect, (ii) the rate capacity and (iii) the

Chapter 2: Energy-efficient embedded systems 32

alarm. They then used these periods to apply different policies for discharging a

battery. A DVS algorithm that makes use of recovery effect can be applied in the first

region (the battery residual remains steady constant). In the rate capacity region (the

battery residual decreases at a constant rate), a DVS algorithm (with quality of service

(QoS) guaranteed) is applied to control the discharge in small-amount. In the alarm

region (the battery residual drops dramatically), the QoS requirement is possibly

ignored and the battery-lifetime maximisation algorithm could be applied. The results

(Choi et al., 2006) showed that the policy significantly improved battery lifetime with

a trivial QoS degradation.

2.7 Metric for energy efficiency

In order to maximise energy efficiency, an energy metric can be used to identify the

optimal trade-off point. In this section, energy efficiency metrics for processor and

mobile embedded systems are explored.

2.7.1 The processor’s energy metric

Millions o f instructions per joule (MIPJ) was first introduced by Weiser (1994) to

index energy performance of CPUs. It is different from MIPS (millions instructions

per second) which is a metric for performance o f CPUs. The aim with MIPJ is to

specify how many instructions are executed for a given amount o f energy (MIPS/W).

For example, a 200-MIPS Alpha chip consumes 40.0 watts, so it has a rating of 5

MIPJ. The Motolora 68349 consumes 300 mW and is rated at 6 MIPS: this translates

as 20 MIPJ. Indexing by MIPJ, the low performance Motorola 68349 has an energy

efficiency greater than a high-speed Alpha chip.

Similar to MIPJ, energy-per-operation is a metric for indexing energy efficiency of

processors (Pering and Brodersen, 1998; Pering et al., 1998b; Min et al., 2002; Mouw

et al., 2002). For CMOS designs, the energy-per-operation (Eop) is energy / clock

frequency (Equation 2.10).

Eop OL CeffV 2DD (2.10)

where Ce/f is effective switching capacitance and Vdd is the supply voltage.

Chapter 2: Energy-efficient embedded systems 33

From the Equation 2.10, illustrates (again) that changing a processor’s clock fre

quency (alone) is not an effective technique for minimising energy. Reducing the

clock frequency reduces the power consumed by processor but it does not reduce the

energy required to perform a given task. The MIPJ rating has also been used to

demonstrate that energy performance was unchanged if frequency scaling (alone) is

employed (Mouw et a l , 2002).

2.7.2 Computation per discharge

Energy-per-operation measures are suitable to comparing energy efficiency for

general use(Pering and Brodersen, 1998; Pering et al., 1998b; Min et al., 2002; Mouw

et al., 2002). For systems powered by a battery, a different energy efficiency metric

has been proposed: called “computation per discharge” (Martin and Siewiorek,

1999b), this relates performance to the discharge rate o f the battery. The computation

per discharge measure is calculated as shown in Equation 2.11.

„ . —.. , Capacity (SystemPower(f)) _ .
Computations per Discharge = — -------------------------------- . Performance(f) (2.11)

SystemPowerff)

The computation per discharge is concerned with (i) battery capacity as a function of

system power; (ii) system power as a function o f CPU clock frequency; and

(iii) application performance as a function of CPU clock frequency (J). To extend

battery life, the major factors which are considered in order to maximise computation

per discharge are described below.

The first concern is the system’s power and CPU clock frequency. Generally, systems

which run at a lower CPU clock speed can gain a longer battery discharge. However,

the slowest CPU frequency setting, in case o f variable-voltage CPU, may not

minimize the total power o f the system (Martin, 1999; Cheng and Goddard, 2005;

Aydin et al., 2006) (because the rest o f system is still supplied with a fixed voltage

and a slow running speed may increase the energy per operation).

The next concern is battery capacity. If battery capacity is assumed to be constant,

maximizing computations per discharge is the same way as minimizing the energy per

Chapter 2: Energy-efficient embedded systems 34

operation. In practice, the battery capacity is not constant but it is a function of

system power which (in turn) depends on CPU speed setting (Martin, 1999). When

power consumption rates are high, the battery capacity drops dramatically (Linden

and Reddy, 1995; Chiasserini and Rao, 1999b; Benini et al.t 2000; Lahiri et a i , 2004).

The final factor to be considered is application performance. This too is a function of

CPU speed; however the performance may not linearly increase as CPU frequency

increases because other components will also be involved in the system operation

(Martin and Siewiorek, 1999b; Pouwelse et al., 2001b; Hsu and Kremer, 2002). If an

application becomes limited by “external” factors such as memory bandwidth,

increasing the CPU frequency may have little impact on performance but will increase

power consumption. Therefore, setting CPU speed for battery-powered designs must

consider the whole system (Martin and Siewiorek, 1999b).

2.8 Conclusions

In this chapter, previous work on energy-efficient techniques for use with embedded

systems (especially those involving CMOS processors), has been reviewed. In this

review, DVS has been highlighted as a successful technique which has been employed

in procedures which have been intended to reduce both dynamic and static power con

sumption. In practical designs, DVS will usually be incorporated in a real-time

scheduler implementation, in order that the system can schedule tasks and (simultane

ously) set appropriate voltage and clock frequency for such tasks. In Chapter 3, the

literature review therefore continues with a focus on scheduling algorithms.

Chapter 3

Low-jitter scheduling algorithms

In Chapter 2, key techniques used to develop energy-efficient embedded systems were

reviewed. The present chapter continues the literature review, with a focus on jitter

and its impact on embedded systems.

3.1 Introduction

Jitter can be viewed as the deviation from the ideal timing o f an event (Wavecrest,

2001; Ou et al., 2004), as shown in Figure 3.1. In the IEEE dictionary, jitter is

defined as “time-related, abrupt, spurious variations in duration o f any specified,

related interval” (Gannett et al., 1972) while an Oxford dictionary o f computing

defines jitter as the “variation in the arrival time of a supposedly synchronous signal”.

It goes on to say that “Jitter may be caused by the fact that the original source of the

signals has variations from its ideal periodic time, or by variations in the transit time

from the signal source to the point at which the arrival times are actually observed,

caused either by variations in the pathlength or in the speed at which the signal

travels. In practice it is likely that all three effects contribute, and jitter is nearly

always present.” (Daintith, 2004). Jitter is a term used to refer to timing variations

that occur rapidly while other timing variations that occur more slowly are called

wander (Mills, 1995; Agilent, 2002; Avoim, 2002; Tektronix, 2002). The Interna

tional Telecommunication Union (ITU) has defined the threshold between wander and

jitter as follows: if the phase variation of a signal (which is an oscillating movement

Chapter 3: Low-jitter scheduling algorithms 36

with an amplitude and a frequency) is more than 10 Hz, it is known as jitter, and when

the phase variation is less than 10 Hz, it is called wander (Agilent, 2002; Tektronix,

2002).

ideal
timing
event

Jitter

Figure 3.1: A schematic representation of jitter. S ee text for details.

In the past - when systems have relatively low signalling rates - jitter might have less

impact on timing (because the errors induced by jitter were small compared with the

time interval that they corrupted). However, the timing margins associated with

modem high-speed signals means that strict jitter control throughout the system

design is required (Tektronix, 2002). In modem processors, the demand for greater

computation has forced the processor to the radio frequency (gigahertz) range and

system performance is limited by parallel-bus data transfers: alternative architectures

are therefore being explored (e.g. Infiniband, 3GIO, SONET, SATA). To achieve

reliable operation for high-speed systems (such as video-in-demand and other

information-hungry applications which run on Gigabit Ethernet networks), substantial

understanding o f timing jitter characteristics is required (Ong et al., 2004).

3.2 Sources of jitter

Jitter can arise from many sources. In digital wireless communication systems, jitter

can be found in form o f phase noise o f local oscillator (Hajimiri and Lee, 1998), a

device used to generate a signal which is beat against the signal of interest to mix it to

a different frequency (e.g. Hartley, Colpitts and Wien Bridge oscillators). In practice,

noise may come from the power supply lines or interference from other nearby signals

(Schilling and Belove, 1985). This phase noise, in the guise o f clock jitter, may have

a direct impact on timing margins and, consequently, limit system performance

(Hajimiri and Lee, 1998). Timing jitter caused by noise can also be found in phase-

locked loops (PLLs). Technically, a PLL is a circuit, primarily consisting o f phase

Chapter 3: Low-jitter scheduling algorithms 37

detector (PD), loop filter (LF) and voltage-controlled oscillator (VCO), that synchro

nizes (or locks) both frequency and phase o f output signal (generated by an oscillator)

with an input signal, by means of a feedback control system (Tektronix, 2004). As a

result o f increasing speed in digital systems, PLLs are commonly required to generate

low-jitter on-chip clocks but device and supply/substrate noise affect the PLLs opera

tion which may itself result in jitter (Sidiropoulos and Horowitz, 1997; Mansuri and

Yang, 2002). In order to design low-jitter PLLs, for example, the work in (Chuang

and Liu, 2006) proposed a compensation circuit to reduce the jitter caused by the

leakage currents in a PLL. Another proposed solution involves implementing a low-

pass filter at the DC control voltage input terminal o f the VCO to suppress noise

component contained in the power supply (Agilent, 2000).

In high-speed-digital systems, jitter can arise from crosstalk, caused by electromag

netic interference (EMI) along a circuit or a cable pair. The data signal sent from one

chip to another must propagate within one clock cycle. As the operating clock

frequency o f the system increases, the margin of the interchip propagation delay

becomes smaller because the clock period is shorter. With careless design of a

printed-circuit boards, crosstalk-induce jitter can occur when the simultaneous signal

on two adjacent “aggressor” lines surround and interfere with the victim line. In some

circumstances, this can delay the arrival time o f the signal at the receiver and may

cause system failure (Bogatin and Garat, 2004). Another example affected by EMI is

a high-speed optical transmitter, which converts data from electrical to optical form at

speeds o f 10 Gbps. EMI can cause excessive clock jitter that then leads to data errors.

Enclosing the transmitter oscillator in a metal shield can reduce clock jitter on a high

speed optical transmitter (Oen and Schultz, 2006).

Jitter has an impact in the application of both analogue-to-digital converters (ADCs)

and digital-to-analogue converters (DACs). In digital audio systems, sampling clock

jitter degrades the performance, in term of the sound quality, in the ADCs and DACs

themselves. The jitter distorts the signal waveform from the original shape (phase

distortion rather than amplitude distortion). This small timing error has more impact,

especially, when signal is slewing, rising or falling (Fourre, 1993; Story, 1998). The

error caused from jitter at the output of a DAC results in unpleasant artefacts added to

Chapter 3: Low-jitter scheduling algorithms 38

the music (e.g. jitter with a frequency o f 1 kHz affecting a DAC reproducing 7 kHz

sine wave will also generate spurious output tone at 6 kHz and 8 kHz. If the jitter

frequency is 2 kHz, the artefacts will be present at 5 kHz and 9 kHz). When playing

music, constantly changing spectral content (which may be jitter at several

frequencies), produces a highly complex spectrum which will be mixed into the music

(Atkinson, 1990; Fourre, 1993). Moreover, if the jitter is random (a random spectral

distribution rather than discrete frequency components), white noise (a random signal

with a flat power spectral density) will be added to the DAC’s output signal

(Atkinson, 1990; Fourre, 1993; Story, 1998).

On 1-bit converters (which form the core of sigma-delta or noise-shaping converters:

(Aziz et al., 1996; Maxim-Dallas, 2003)), the impact of jitter is different to that

observed with conventional (multi-bit) converters. Technically, 1-bit converters

sample signal at a rate significantly higher than the Nyquist frequency, a process

called oversampling (Macadie, 2004). This means that 1-bit converters are more

sensitive to the sampling-clock jitter than conventional converters. To show how

much more sensitive, in case of random jitter with a 200 ps RMS amplitude applied to

the clock o f both converters, the jitter leads to white noise at the 1-bit and the

conventional DAC’s output with an approximate amplitude o f -75dB and -95dB in the

audio range respectively (Fourre, 1993). However, 1-bit converters are popular used

in such hi-fi digital audio systems (Aziz et al., 1996; Macadie, 2004) because the

oversampling in 1-bit converters reduces the quantization noise power in the signal

band by spreading a fixed quantization noise power over a bandwidth much larger

than the signal band (Jarman, 1995; Maxim-Dallas, 2003): in other words, the noise is

pushed to frequencies that the human cannot hear.

In digital radio systems, ADCs are also employed to digitize the down-converted IF

(Intermediate Frequency) signal in digital down-conversion receivers. Sampling

jitter, mostly caused by sampling clock instability rather than the ADC’s aperture

jitter5, results in phase error and has more impact when the input signal frequency

The short interval required for sample-and-hold, connecting switch to charge input signal in
capacitor and disconnecting quickly the hold capacitor from the input buffer amplifier, action is
called a pertu re tim e (or sam p lin g apertu re). Aperture jitter is the sample-to-sample-variation
timing o f the ADC's input switch (Kester, 2005).

Chapter 3: Low-jitter scheduling algorithms 39

increases. Accordingly, the jitter degrades performance o f digital demodulation (bit

error rate (BER) increasing or IF input frequency limited) such as Quadrature Phase-

shift Keying (QPSK), Quadrature amplitude modulation (16QAM) (Kim et al., 2005).

As use o f the internet continues to grow, the demands for distributed multi-media

applications (e.g. audio telephony, video conferencing and video-on-demand) over the

network is also rising. However, most packet-switching networks, such as the

Internet, do not provide guaranteed performance services and delay and jitter in a

packet can degrade the application performance (Clark et al., 1992). Various packet

scheduling policies have been proposed in order to guarantee services in packet-

switching networks, including delay and jitter control, for example, Jitter-Earliest-

Due-Date (Jitter-EDD), Stop-and-Go, Hierarchical Round Robin (HRR), Rate-

Controlled Static Priority (RCSP) (Zhang, 1995). Even in the ATM6 broadband

network, jitter present in the MPEG-27 stream, in a form o f cell delay variation, has a

significant impact on the video quality as seen at the receiver. Cell delay variation is

unpleasant since it introduces synchronization problems between source and the

decoder. When using a PLL to recover the clock from the program clock reference

(PCR) timestamps transmitted within the stream, it is easy to have jitter impact on the

quality o f the reconstructed clock. A common practice is to employ a dejittering

buffer at the receiver that absorbs the jitter introduced by the network. An advantage

of implementing the dejittering buffer is that the network is transparent to the decoder

phase-locked loop, however, this method requires a priori amount o f the maximum

delay variation to prevent overflowing/underflowing the buffer (Tryfonas and Varma,

1999).

Jitter is a common problem in real-time implementations o f control systems. In

computer control systems, the main processes (sampling, control computation, and

actuation) o f a control loop can experience delay in their operation that causes

degradation in control performance and may lead to instability (Marti et al., 2001a;

Asynchronous Transfer Mode (ATM) is a standard for broadband networks that allows a wide
range o f traffic types (e.g. from real-time video to best-effort data) to be multiplexed in a single
physical connection-oriented network (Tryfonas and Varma, 1999).
MPEG-2 is compression standards for Audio and Video, agreed upon by MPEG (Moving
Picture Experts Group), and typically used to encode audio and video for broadcast signals,
including direct broadcast satellite and Cable TV (Bilas e t a l., 1997).

Chapter 3: Low-jitter scheduling algorithms 40

Cervin et al., 2004; Kao and Lincoln, 2004). Such causes o f delay, in single proces

sor, mainly arise from scheduling policy. For example, dynamic scheduling which is

flexible and gives efficient resource utilisation may lead to unpredictable time delays

(Cervin et al., 2003). Specifically, the scheduling itself requires amount o f time to

execute some operations (e.g. context switching, interrupt handling) which may lead

to a control process or task delay (Lin and Herkert, 1996), or the scheduling policy

which manages a task queue for execution may let a high priority task execute first

and then causes another task is blocked and delayed (Audsley et al., 1993a). In addi

tion, because the three main processes (i.e. sampling, control computation, and

actuation) in a control loop perform sequentially and introduce various forms of jitter,

these jitters are characterised as: sampling jitter, sampling-actuation delays, and

sampling jitter and sampling-actuation delay (Marti et al., 2001a).

In distributed real-time systems that consist o f various nodes and a communication

network connecting the various systems, jitter problem can arise from, such as, delay

in network caused by a route consisting o f several hops (Baruah et al., 1999), network

protocol (e.g. Ethernet, Computer Area Network (CAN)) (Tindell and Bums, 1994),

and the variations in message transmission times (Nolte et al., 2002). In a CAN bus,

bit-stuffing mechanism will insert an additional bit of opposite polarity when five

consecutive bits are transmitted on the bus with the same polarity (e.g. 11111 or

00000). This is done in order to provide edges to allow receivers to re-synchronise

internal timing. However, this then causes one problem of the variation in frame

length. The work in (Nolte et al., 2002) aims to reduce the number o f stuff-bits by

transforming the message data using an XOR operation on the data together with a

bit-mask and avoiding the occurrences o f stuff-bits in the CAN header. Whereas, the

work in (Barreiros et al., 2000; Coutinho et al., 2000) apply ability o f genetic

algorithms which is a search technique to manage the schedule of message

transmission in order to minimise jitter. However, the technique requires a relatively

high computational overhead.

Typically, jitter can be divided into two categorises which are random jitter and

deterministic jitter. The deterministic jitter is further divided into three categories:

periodic jitter, data-dependent jitter, and bounded uncorrelated jitter (Wavecrest,

Chapter 3: Low-jitter scheduling algorithms 41

2001) (Ou et al., 2004). The detailed characteristics of these jitter types are described

in Appendix A.

3.3 Jitter in scheduling systems

As noted in Chapter 1, a real-time scheduler plays an important role in embedded

systems in order to manage and control system activities. Selecting an appropriate

scheduling algorithm for the application is important. An inappropriate choice can

lead to unwanted behaviour (e.g. jitter) that may cause system performance to be

degraded. The advantages and disadvantages of various common scheduling archi

tectures for real-time systems are presented and discussed in Appendix B.

An embedded system performs various activities which are usually identified as tasks.

Ideally, real-time scheduler should schedule and execute these tasks precisely. How

ever, in practice, the activity execution is not ideally accurate even using such real

time scheduling systems because of the use o f imperfect scheduler implementations,

improper scheduling algorithm selection, design and implementation decisions,

constraints in application requirements and so on (Audsley et a l , 1993a; Marti, 2002).

These factors may result in task jitter with a corresponding impact on system per

formance (Marti et al., 2001b; Proctor and Shackleford, 2001; Cervin et al., 2003).

3.3.1 Task jitter (Overview)

In real-time scheduling systems, task execution may deviate from the expected time as

a result o f scheduling mechanism or other reasons: this then causes task jitter.

 1 ^ t
r s , f, d,

Figure 3.2: Primary param eters of a task

In general, timing parameters o f a task can be described as follows.

• Release time (also known as arrival time) is the instant of time at which a task

becomes ready for execution, denoted by r„.

• Start time is the instant of time at which a task starts its process, denoted by Sj.

Chapter 3: Low-jitter scheduling algorithms 42

• Execution time is the amount o f time for which the processor executes a task

from the beginning to the completion (without interruption), it is denoted by e,.

• Finishing time is the instant of time at which a task completes its process, it is

denoted by / .

• Deadline is the instant o f time by which the task should be completed, it is

denoted by dt.

In this section, the definition of task jitter is characterised as release jitter, execution

jitter and finishing jitter. An overview of each o f these forms o f jitter is presented in

the sections which follow.

3.3.2 Task jitter - Release jitter

Release jitter is the deviation of the actual start time of tasks. Theoretically, every

task should be executed immediately at the time at which it is released, called the

release time, but the actual start time o f task can be delayed which mainly arises from

task scheduling method, or blocking (Audsley et al., 1993a; Liu, 2000). For example,

if task A is released at time X while there is another task executing, this results in task

A has to be delayed and executed at time X+At. In practice, it is difficult to define the

start time o f each task because there are many reasons to vary the start time in real

situation. It can only be defined the range o f delay time respected to the release time

(i.e. the earliest start time and the latest start time). This range o f the release time is

called as release-time jitter or release jitter. The release jitters can be divided as

absolute release jitter and relative release jitter , as shown in Equation 3.1 and

Equation 3.2 respectively (Buttazzo, 2004). The absolute release jitter describes the

maximum deviation o f the start time among all task instances and the relative release

jitter describes the maximum deviation of the start time of two consecutive instances.

Absolute release jitter = max (s^k - ritk) - min (shk - riik) (3 .1)
k k

Relative release jitter = max | (siik - riik) - (siik.i - riik.j) | (3.2)
k

3.3.3 Task jitter - Execution jitter

Execution jitter is the deviation o f the execution interval o f tasks. The actual amount

of time taken by a task to complete its process may vary for many reasons. For

Chapter 3: Low-jitter scheduling algorithms 43

example, program code o f a task may contain conditional branches, and these

conditional branches may take different amounts of time to complete (Liu, 2000).

The branches taking during the execution time depend on the input data and,

moreover, the amount o f execution time may vary if the performance enhancing

features, such as cache memory and pipeline, are employed - even there are no

condition branches in the process (Eisenbeis and Windheiser, 1993; Li and Malik,

1995). In a real application, the actual amount o f time to transmit each compressed

video frame o f a MPEG always varies because the numbers o f data in each frame are

different. Although the actual execution time of the task is unknown, the execution

time of the task can be determined as a range of the minimum execution time and the

maximum execution time (Liu, 2000). The range o f execution time is called as execu

tion jitter , and also categorised as absolute execution jitter and relative execution

jitter, see Equation 3.3 and Equation 3.4 (Buttazzo, 2004).

Absolute execution jitter = max (fiik - si>k) - min (fiik- s iik) (3.3)
k k

Relative execution jitter = max | (fiik - si>k) - (fi>k.j - siik.j) | (3.4)
k

3.3.4 Task jitter - Finishing jitter

Finishing jitter is the deviation of the finishing time o f tasks. The finishing time can

be varied by inherent timing such as release jitter or execution jitter. Moreover, the

finishing time can be interrupted by the execution o f other high priority task or can be

blocked when trying to access shared resources, shared data memory, transmission

links, or other I/Os (Audsley et al., 1993a; Tindell and Bums, 1994). For these rea

sons, they cause finishing jitter o f tasks in the real-time systems. The finishing times

can be predicted the occurrence within the range o f the earliest finishing time and the

latest finish time. The finishing jitters are also divided as absolute finishing jitter and

relative finishing jitter, see Equation 3.5 and Equation 3.6 (Buttazzo, 2004).

Absolute finishing jitter = max {fi>k - ri>k) - min (fiik - riik) (3.5)

Relative finishing jitter = max | (fiik - riik) - (£*_/ - ritk.{)
k

(3.6)

Chapter 3: Low-jitter scheduling algorithms 44

3.3.5 Jitter in a periodic tasks (Overview)

In many real-time applications, most activities are periodic. Periodic activities nor

mally arise from sensory signal acquisition, data encoding / decoding, data display,

system monitoring, or DC motor controlling (Pont, 2001). Such activities require

tasks to be executed periodically at rates dictated by the application requirements.

1 T, i 7 T, i

------------ (1) ---- ^ < -
(2)

,
- 1- -

i
j

,
— ►

S i,k -2 1i,k -2 ^ i ,k - 2 S i,k-1 ^i,k-1 ^ i.k -1 S i,k ^ i.k ^ i.k

Figure 3.3: Task period jitters (adapted from Marti, 2002 , Figure 4 .1).

3.3.6 Jitter in a periodic tasks - Task period jitter

Ideally, tasks in a periodic task set are expected to be executed repeatedly at their own

periods. Figure 3.3 illustrates a periodic task is assigned to run every Tt period. The

(k-2) th task instance starts executing later than the (k-l)th task instance starts when

comparing with their release times. This results in the time interval (1) is shorter than

Ti whereas the time interval (2) is greater than 71,. The inconsistent interval o f the

start times causes task period jitters and this also affect to finishing time which can

cause worse finishing jitter.

3.3.7 Jitter in a periodic tasks - Sampling and sampling-actuation jitter

In computer control applications, jitter, caused by the variation o f task execution, can

impose to the timing o f closed-loop control activities (Marti et al., 2001b). Typically,

a closed-loop control consists o f the three main activities (i.e. sampling, control com

putation and actuation) and they are implemented in a task (or possibly in multiple

tasks). The sampling takes place at the beginning o f each closed-loop task while the

actuation takes place at the end o f each closed-loop task, and the closed-loop task run

periodically. As closed-loop control tasks are run by a real-time scheduler, time in

tervals between consecutive sampling are not constant due to inconsistency of start

times: this causes sampling jitter. Moreover, the elapsed time between the start and

finishing time o f task can also be varied by scheduling algorithm. This results in a

variable time interval between sampling and actuation which results in sampling-

Chapter 3: Low-jitter scheduling algorithms 45

actuation jitter. The level o f these jitters which can impact on a control system is

dependent on scheduling algorithm and design (Marti, 2002).

3.4 Low-jitter scheduling algorithms

In this section, key scheduling algorithms which have the potential to provide low

levels o f jitter are illustrated and reviewed.

3.4.1 Time-triggered scheduling

In real-time scheduling systems, the triggering mechanisms can be divided into two

different approaches: event-triggered and time-triggered (Kopetz, 1991; Bennett,

1994; Pont, 2001). The focus throughout this thesis will be on time-triggered archi

tectures and periodic task sets. Time-triggered and event-triggered architectures are

compared in this section.

In a time-triggered (TT) schedule, all tasks are activated at specific time instants

which are known before the system starts execution. To implement such behaviour in

a single-processor design, a hardware timer will usually be used to generate periodic

interrupts (Bennett, 1994). In distributed (multi-processor) systems, all nodes are

synchronised by means o f some form of global clock (Kopetz, 1997; Pont, 2001). In

a (pure) event-triggered (ET) system, all tasks are activated in response to significant

external incidents (e.g. the depressing o f a push button by a user, the activation of a

limit switch, or the arrival of a new message at a node): such events can occur at any

time (Kopetz, 1997). In practice, an event-related signal might be obtained from a

sensor for detecting environmental activities and presented to the system in the form

of an interrupt request.

Both ET and TT approaches have strengths and weaknesses (and many systems will

employ both ET and TT tasks). The main advantage o f (pure) TT scheduling is the

deterministic temporal behaviour of the system that results: this makes it easier to

validate, test and certify the system (Liu, 2000; Marti, 2002). TT architectures require

careful planning during the design phase: without this, predictable behaviour will not

be achieved. In general, ET systems are more responsive and flexible (Kopetz, 1991).

Chapter 3: Low-jitter scheduling algorithms 46

However, ET can fail under heavy load conditions and also require more overhead for

responding to unpredictable loads (Marti, 2002).

3.4.2 The Time-Triggered Co-operative Scheduler (Cyclic executive)

A time-triggered co-operative (TTC) scheduler - also known as a cyclic executive or a

time-line scheduler - is the simplest form of practical TT architecture. A TTC is a

real-time scheduler that divides the application into a set o f tasks which are assumed

to be non-preemptible (Locke, 1992). The TTC scheduler schedules these tasks by

activating them at a time instant according to their predefined sequence. In many

TTC designs, the sequence of task activations is computed at the design phase and

then stored as fixed schedule, usually in some form of table. These tasks are

repeatedly executed in this fixed sequence throughout the period o f system operation

(Bate, 1998; Liu, 2000; Buttazzo, 2004).

The operation o f a TTC scheduler is often viewed in terms o f a “major cycle” and a

“minor cycle” (Baker and Shaw, 1989; Locke, 1992; Bums et al., 1995). The major

cycle is the amount o f time which elapses before the sequence o f tasks is repeated.

When scheduling individual tasks, the major cycle may be partitioned into small

segments known as minor cycles (or frames) (Liu, 2000).

Period

Major Cycle
Minor
Cycle

0 10 20 30 40 50

Figure 3.4: G eneral structure of TTC scheduler: minor cycle = 1 0 , m ajor cycle = 40

The length o f the major cycle can be determined by using the least common multiple

o f the period o f each periodic task (Locke, 1992; Buttazzo, 2004). For example, in

Figure 3.4, the periods o f the tasks are 10, 20, and 40 ms. The least common multiple

of these periods is 40, therefore the length of the major cycle in which all tasks will be

executed periodically is 40 ms. The minor cycle of the task set can be set equal to or

less than the greatest common divisor value o f all task periods. Figure 3.4 illustrates

Chapter 3: Low-jitter scheduling algorithms 47

that the tasks are scheduled on the minor cycle which has been set as 10 ms. In

practice, the minor cycle is implemented by using a periodic timer interrupt or by

some other periodic external hardware interrupt in order to synchronise the system

with its external environment (Locke, 1992; Pont, 2001).

In order to verify task schedulability, the worst-case execution times o f all task must

be known (Buttazzo, 2005). If the total execution time of each minor cycle is less

than or equal to the minor cycle, a schedule feasibility is guaranteed. In normal

situations, the tasks are run and completed by the next minor cycle - as seen in Figure

3.4, there is usually “slack time” between the end o f task(s) and the start o f the next

minor cycle. In case that there is a failing task running in system and it cannot be

completed within its minor cycle, this failing task can cause a domino effect on the

other tasks which this situation can break the entire schedule (Buttazzo, 2004). To

detect the task overrun or a processor overload, it can be determined by observing that

the interrupt has occurred when the system is not run as background process or in idle

state. This means that if the system is executing a task when timer indicates that the

end of the minor cycle has been reached, the scheduler can detect that a task has

overrun (Bate, 1998; Hughes and Pont, 2004).

Major Cycle

Cycle

L
T* I T, ■

Period

T, = 10

t2 = 20■ = 40

10 15 20 25 30 35 40 45 50

Figure 3.5: Structure of T T C scheduler: minor cycle = 5, major cycle = 40 (adapted from

Locke, 1992, Figure 1).

Alternatively, when run with an offset or phase (Locke, 1992; Audsley et al., 1993b),

it is possible to have minor cycle which is less than the greatest common divisor,

5 ms, as shown in Figure 3.5, if the worst-case execution times are less than the minor

cycle. This can result in very low (both release and output) jitter in the execution of

each task’s activation in this scenario. All tasks executes at start times that are trig-

Chapter 3: Low-jitter scheduling algorithms 48

gered by a timer interrupt, therefore, these tasks will suffer from less jitter in their

start times (when compared to the previous example: for example, see Figure 3.4, in

which task T2 and T3 may suffer jitter from the variation o f the execution time of task

Ti). However, the design that has faster minor cycle, as illustrated in Figure 3.5, will

have a higher scheduling overhead due to the more frequent interrupts (Locke, 1992).

There are several advantages o f a TTC scheduler. The major attractiveness is its

simplicity (Liu, 2000; Pont, 2001). By programming a timer to interrupt at the same

rate as minor cycle, this timer interrupt can be used as a trigger to call each task

sequentially in order to synchronize with the task timing. There is no need to be

concerned about the integrity of shared data structures or shared resources during the

development o f systems based on such a scheduler (Locke, 1992). The runtime

overhead o f a TTC scheduler is also very low because there are no unexpected context

switches as can be found in pre-emptive schedulers (Locke, 1992; Buttazzo, 2004).

The TTC scheduler also presents very low jitter because all tasks run regularly

according to their queues in a deterministic manner (Locke, 1992; Bate, 1998). Thus,

there is no unexpected interruption or blocking to make large variations affecting on

task schedule.

However, fragility is the main drawback o f TTC scheduler (Locke, 1992; Bate, 1998).

If there are any changes to the system during development, such as changes in its

requirements or due to software errors, or when maintaining the system, such as

adding new functions, it may result in significant changes to the schedule and / or to

existing task implementations. Making such changes manually can be time consum

ing. Note, however, that recent tools for “automatic code generation” may help to

reduce the work involved in developing and maintaining such systems: see, for

example, (Mwelwa et al., 2006; Kurian and Pont, in press).

Another problem with TTC scheduler is when the system has a task that its execution

time is long compared to the period of the highest rate periodic task (Locke, 1992).

Because pre-emption is not allowed in TTC scheduler, the solution is to break the

long task into multiple short parts that do not exceed minor cycle arbitrated by a high

rate task (Pont, 2001). Two alternatives are to use a rate monotonic scheduler (as

Chapter 3: Low-jitter scheduling algorithms 49

discussed in Section 3.4.3), or to use a “hybrid” scheduler (as discussion in Section

3.4.4).

3.4.3 Rate monotonic

Where a TTC scheduler is not found to be suitable for use in particular low-cost

embedded systems, fixed-priority scheduling has been proposed as the most attractive

alternative (Audsley et al., 1993b; Bate, 1998).

Rate monotonic (RM) is a well-known fixed-priority scheduling algorithm that was

introduced by (Liu and Layland, 1973) in 1973. Technically, rate monotonic is a

dynamic pre-emptive algorithm which is based on a fixed-priority assignment

(Kopetz, 1997). In particular, the priorities assigned to periodic tasks accord to their

occurrence rate or, in other words, priorities are inversely proportional to their period,

and they do not change through out o f the operation (because their periods are

constant). The RM algorithm was proved by (Liu and Layland, 1973) to be optimal

amongst all fixed-priority algorithms: that is, Liu and Layland demonstrated that - if

it is possible to schedule a task set using a fixed-priority algorithm and meet all o f its

timing constraints - then a rate-monotonic algorithm can achieve this. Theoretically,

every task can meet its deadline if the total utilization is equal or less than 69% and

under these assumptions: all tasks are periodic and independent o f each other, dead

line of every task is equal to its period and the worst-case execution time o f all tasks is

known, and context switching time can be ignore (Liu and Layland, 1973; Locke,

1992; Bate, 1998; Buttazzo, 2004). Thus, it may be an attractive option in systems

where a fully predictable hard real-time is required.
Period

T, = 10

= 20

= 40

10 20 30 40 50

Figure 3.6: Structure of rate monotonic scheduling (adapted from Locke, 1992, Figure 3).

Chapter 3: Low-jitter scheduling algorithms 50

To illustrate this process, Figure 3.6 shows the set o f periodic tasks is scheduled by

the RM algorithm. Task 7/ is executed periodically at the fastest rate, every 10 ms,

and is determined to be the highest priority in this scheduling policy, while task T2

and T3, which are run every 20 and 40 ms respectively, have lower priority levels

according to their rates. A task scheduled by the RM algorithm can be pre-empted by

a higher priority task. As illustrated in Figure 3.6, task T3 - which is running - is pre

empted by task Ti is at time 10: it carries on after the completion o f task Tj.

Generally, the deadline of a task in RM scheduling is defined as the period. By

comparison, the completion times of tasks in a TTC scheduler are usually limited to a

frame or minor cycle: this can be said to make the TTC scheduler more “rigid” in

design.

It has been claimed that the main advantage o f rate monotonic scheduling is flexibility

during design or maintenance phases, and that such flexibility can reduce the total life

cost of the system (Locke, 1992; Bate, 1998). The schedulability o f the system can be

determined based on the total CPU utilization of the task set: as a result - when new

functionalities are added to the system - it is only necessary to recalculate the new

utilization values. In addition, unlike a TTC design, there is no need to break up long

individual tasks in order to meet the length limitations of the minor cycle. The need

to employ harmonic frequency relationships among periodic tasks is also avoided.

Finally, the scheduling behaviour can be predicted and analysed using a task model

proposed by Liu and Layland (1973).

However, the scheduling overheads of rate monotonic schedulers tend to be larger

than those o f TTC schedulers because of the additional complexity associated with the

context switches when saving and restoring task state (Locke, 1992). This is a con

cern in embedded systems with limited resources. Indeed, it has been demonstrated

that another popular pre-emptive scheduler (EDF) has a lower runtime overhead than

RM approaches (Buttazzo, 2005). Even though EDF always needs to update task

deadlines this increased load may be offset by a reduction in the number of pre

emptions that occur under EDF (with a consequent reduction in context-switching

time). Overall, Buttazzo (2005) suggests that the real advantage of rate monotonic is

its simpler implementation.

Chapter 3: Low-jitter scheduling algorithms 51

Of greater concern in this thesis is that RM scheduling seems likely to have more jitter

than TTC scheduling, because the pre-emption from higher priority tasks may

interrupt or block the lower priority tasks. These interferences may delay the release

time o f tasks, or interrupt running tasks and then prolong the output of a process

residing at the end o f a task: this may which result in jitter (Buttazzo, 2004). For

example, in Figure 3.6, the output jitter can take place when task 7j is pre-empted by

task Tj.

Overall, in the type o f “low jitter” application with which this thesis is concerned, use

o f an RM algorithm presents two main challenges.

The first challenge is that the RM algorithm is based on the assumption that task

deadlines are equal to periods: this means that use o f RM guarantees only that a given

task will complete its execution before it is due to run again. For short tasks, this

means that jitter rates may be in the region o f 90% (of the sample period), and the

schedule will still be “correct”. As noted previously, even jitter levels of 10% can

render sampled data meaningless. Note that use o f high task priorities will tend to

reduce jitter levels: however - even if the tasks are wholly independent - the only safe

assumption is that the highest-priority task will be guaranteed to demonstrate very low

jitter levels (Locke, 1992).

The second challenge is that tasks are unlikely to be independent and that more than

one task may require access to a mutually-exclusive resource (e.g. serial port, ADC

and etc.). Where such critical sections are accessed through semaphores, even the

highest-priority task may be blocked by a lower priority task - a process known as

priority inversion - and then experience jitter or delay (Buttazzo, 2005). The priority

inversion problem can be “solved” by using concurrency control protocols (e.g.

Priority Inheritance Protocol or Priority Ceiling Protocol, developed by Sha et al.

(1990)) to access shared resources: however, such techniques were developed to

address problems of deadlock and their impact on jitter is not always easy to predict.

Chapter 3: Low-jitter scheduling algorithms 52

3.4.4 The “hybrid” scheduler

A simplified pre-emptive scheduler with characteristics that lie between those of TTC

and rate-monotonic designs has also been described in previous studies (Pont, 2001;

Maaita and Pont, 2005). This time-triggered hybrid (TTH) scheduler is a code

derived algorithm: that is, it originated from an observation that - by invoking a task

from the interrupt service routine in a TTC implementation - a scheduler supporting

limited degrees o f pre-emption can be created (Pont, 2001).

Use of a TTH scheduler allows the system designer to create a static (fixed-priority)

schedule made up o f (i) a collection of tasks which operate co-operatively and (ii) a

single - short - pre-emptive task. In many designs, the pre-emptive task will be used

for periodic data acquisition, typically through an analogue-to-digital converter or

similar device: such requirements are common in, for example, a wide range of

control systems (Buttazzo, 2005).

The operation o f the TTH scheduler is illustrated schematically in Figure 3.7. This

figure shows the situation where a short pre-emptive task is executed every millisec

ond, while a co-operative task (with a duration greater than 1 ms) is “simultaneously”

executed every 3 milliseconds.

t = 0

i i

i P r e -e m p tiv e
ta sk

t (m s)

C o -o p e r a t iv e
t a s k s

t = 0 t (m s)

Figure 3.7: Illustrating the operation of a TTH scheduler. S ee text for details

In many cases, a TTH (Pont, 2001) implementation will be used to implement an RM

(or similar) schedule. It should be reiterated that only a single pre-emptive task is

supported in this architecture. As a consequence, in terms o f a theoretical analysis,

this type of scheduler is o f limited interest. However, TTH algorithm implementation

is simpler than rate monotonic and its context switch is very low - as supported only

one pre-emption. For a jitter issue, the pre-emptive task can be expected to have low

Chapter 3: Low-jitter scheduling algorithms 53

jitter as the highest priority task of rate monotonic whereas execution time of the pre

emptive task directly impacts on jitter of co-operative tasks.

Thus, in a low-cost embedded system, TTH is a very attractive proposition because it

allows us to create a scheduler with minimal resource requirements which is precisely

matched to the needs of many applications that are interesting in developing.

3.5 Conclusions

This chapter has presented a review of some of the key sources o f jitter in embedded

systems. In keeping with the requirements introduced at the start o f this thesis, the

aim is to explore software architectures with minimal resource requirements, low task

jitter and low energy consumption. The particular focus will be on systems

employing TTC and TTH schedulers.

In Chapter 4, in order to reduce energy consumption, the implementation of a com

bined TTC / DVS technique is explored. The study considers both the impact on

system timing and on energy consumption.

Chapter 4

Implementation of DVS in a TTC scheduler

As discussed in Chapter 2, Dynamic Voltage Scaling (DVS), has been developed as a

means o f balancing performance and energy consumption in scheduled systems. As

discussed in Chapter 3, TT architectures (and in particular TTC schedulers) can

result in systems with very low levels o f jitter. The aim o f the work in this chapter is

to consider the impact (on both jitter and energy consumption) o f integrating DVS

and TTC techniques in a single scheduler. The basic TTC-DVS scheduler

implementation developed and assessed in this chapter will then form the basis fo r
o

studies described in subsequent chapters o f this thesis. .

4.1 The hardware platform

The hardware platform used in the studies presented in this chapter is described in this

section.

4.1.1 Choice of processor

In order to apply DVS, the processor must provide separate power supply pins for the

CPU core and I/O9. Generally, DVS can be applied with a wide range o f existing

Part o f this chapter has previously been published in different forms in Phatrapornnant, T. and
Pont, M.J.(2004b) and Phatrapornnant, T. and Pont, M.J. (2006).
If CPU power and I/O are not separated in this way, then any changes to the CPU voltage will
also have an impact on the I/O circuitry. The consequences o f changes to the I/O voltage are
very hard to predict (and may involve changes to the state o f I/O pins due to the application of
DVS). Clearly, such consequences must be avoided.

Chapter 4: Implementation of DVS in a TTC scheduler 55

microcontrollers and microprocessors. For example, Intel StrongARM SAllxO, ST-

Microelectronics STR71x, Philips LPC 2000 series, which are based on ARM archi

tecture. Other processors which support DVS (and which are based on different

architectures) include the Transmeta Crusoe, Intel XScale, UltraSPARC-Ill, and x-86

architecture, such as AMD: K6-2, K6-3, Duron, Athlon, Intel: Pentium III, Pentium 4,

Pentium M.

The studies reported in this chapter (and throughout this thesis) used a Philips LPC-

2106 processor. The LPC2106 is 32-bit microcontroller with an ARM7-core which

can run - under control of an on-chip PLL - at frequencies from 10 MHz to 60 MHz

(Philips, 2003). It is a low-cost device (well under $10.00 per unit) which is felt to be

a good example o f a modem resource-constrained processor which is suitable for use

in a wide range o f embedded systems.

4.1.2 A variable voltage power supply

A dynamic voltage scaling technique often employs a DC-DC converter and fre

quency synthesizer to control the supply voltage and clock frequency.

L1 Dynamic
— Voltage

 / 1.023V-1.375V

Figure 4.1: Schem atic circuit of D VS power supply

To vary core voltage of processor, it is required power supply which can adjust output

voltage dynamically. In this study, a digital to analog converter, DAC, receives input

commands to select the requested core voltage from a processor via serial-peripheral-

interface, SPI (see Figure 4.1). The DAC output voltage modifies reference voltage of

the DC-DC for producing the required dynamic voltage. Operational amplifiers (op-

amp) and resister network are employed to set the initial reference voltage o f DC-DC

converter when the system is turn on which there is no control signals from a proces-

_w
(0cO)
c/>

co
o

DC-DC
Input Voltage

3.3VDAC R3

R2

R4

SCLK
SDI
CS

Vout

Vin

Vref

PGND

OUT

LX

Chapter 4: Implementation of DVS in a TTC scheduler 56

sor. After a processor starting and running, the output voltage will be controlled via

SPI as normal.

4.1.3 Voltage and frequency steps

The main factor which determines how many DVS voltage / frequency steps can be

employed in a DVS implementation is hardware support on the target processor, such

as the range o f operating frequencies or the programmable frequency synthesizer.

After defining the frequency steps, the minimum voltage levels o f each frequency step

that allow a processor run in the right manner must then be determined. If there are a

large number o f possible frequency steps - for example the SA-1110 allows its PLL

to synthesize frequency 12 steps which are in range 59 - 221 MHz (Intel, 2001) - it

may be necessary to group some frequency steps so that they employ the same voltage

level. Overall, having a large number of steps may provide an opportunity to save

more power. However, increased numbers of steps will also increase memory re

quirements for the DVS algorithm.

-♦-M in Operating Voltage * 10% Safety Margin

>
0)o>(0
o
>>*
Q.Q.
3(O

0.9 -

0.8
10 50 6020 30 40

Clock frequency (MHz)

Figure 4.2: Setting the C PU supply voltage (LP C 2 106)

In the studies described in this thesis, the CPU speed was divided into 6 steps. An

external crystal oscillator of 10 MHz was linked to a PLL multiplier (lx to 6x) to

generate 10, 20, 30, 40, 50 and 60 MHz system clocks. The supply voltage also had 6

levels corresponding to the 6 speed steps: in other words, there are 6 frequency/

Chapter 4: Implementation of DVS in a TTC scheduler 57

voltage pairs. The required voltage level at each speed was determined empirically,

by measuring the lowest voltage at which processor still worked properly and then

adding a 10% safety margin (Figure 4.2).

4.1.4 System integration

For the purposes o f these studies, the LPC2106 was mounted on an Ashling LPC2000

evaluation board (Ashling, 2003). The board provided separate 1.8V (CPU core) and

3.3V (I/O) supply jumpers, making it easy to implement a variable-voltage CPU sup

ply. An external digital to analogue converter (DAC) was controlled by the processor

via an SPI interface. This DAC was used to vary the reference voltage on a DC-DC

converter, thereby producing the required CPU voltage.

4.2 A TTC scheduler

In order to study the potential impact of DVS on jitter, a TTC scheduler (as discussed

in Section 3.4.2) was employed. However, the TTC scheduler is only an algorithm: in

practice, there are many possible ways to implement such a scheduler.

A simple TTC scheduler implementation can be created by using interrupt service

routine (ISR) linked to the overflow of hardware timer. The timer can be set to

generate an interrupt at the same or higher rate than that o f the task that runs at the

highest frequency. When the timer expires (overflows) and an interrupt occurs, tasks

will be activated from the ISR directly. This method can be easily used to implement

a simple TTC scheduler (e.g. see Pont, 2001). Such a scheduler will have little or no

release jitter (Kurian and Pont, in press). However, in use, such a scheduler requires a

significant amount o f hand coding to control the task timing and the code o f scheduler

also becomes combined with the code of the application (Kurian and Pont, in press).

4.2.1 Scheduler structure

In this study, the TTC scheduler was based on that described in (Pont, 2001). This is

a more complete scheduler implementation. The structure o f the scheduler is illus

trated in Listing 4.1).

Chapter 4: Implementation of DVS in a TTC scheduler 58

begin MAIN:
I n i t i a l i s e t h e S c h e d u l e r and Timer ;
I n i t i a l i s e a l l t a s k s ;
for 1 t o N t a s k s

ADD_TASK (Task, D e la y , P e r io d) ;
end for
SCHEDULER_START () ;
while (1)

DISPATCH_TASKS () ;
end while

end MAIN

Listing 4.1: An overview of possible T T C scheduler im plem entation

TTC scheduler contains Update and Dispatcher functions which are employed to

manage task execution. The Update function (see Listing 4.2) is the scheduler ISR

which is invoked by the overflow of timer (the “tick interrupt”). This function is very

short and intends to use for updating a flag to notify the Dispatcher when it is due to

determine tasks to run. The Update function does not execute any tasks directly, as

run for supervision the system, but the tasks that are due to run are invoked through

the Dispatcher function. The split between the Update and Dispatcher operation is

aimed to maximize the reliability of the scheduler in the presence o f task which is

longer than a tick interval (Pont, 2001). If the Update invokes the tasks directly while

the long task is being executed, the ISR interrupts are effectively ignored.

Furthermore, the TTC scheduler also supports dynamic schedule that can add or

remove tasks from the schedule at any time during the program execution (Kurian and

Pont, in press). The diagram of the TTC scheduler operation is illustrated in Figure

4.3.

I I I Update ISR
I I I I (Supervisory mode)

1 1 1 1 .." i i Ii 1 I D ispatcher
| J (User mode)

1 ! i i i j ! ! i i

T 1 1 L II T 3
i i.t.j T, | Task

Time

Figure 4.3: TTC scheduling diagram

Chapter 4: Implementation of DVS in a TTC scheduler 59

begin UPDATE ISR:

T ick _ C o u n t ++ ;
r e s e t t im e r _ in te r r u p t_ F L A G ;

end UPDATE

Listing 4.2: Pseudo code of the Update function in the T T C design

4.2.2 TTC Dispatcher

In general, the Dispatcher is a function which gives control o f the CPU to process task

switching. At run time, the Dispatcher is invoked after a clock tick (scheduling tick)

occurs. It will test all tasks from its list to find which tasks are due to run. The Dis

patcher functions then releases these tasks in order. The task priority is normally

solved by Dispatcher by selecting the highest priority task to execute first.

begin DISPATCH_TASKS:

while T ic k _ C o u n t > 0
for l o o p a l l t a s k s i n t a s k s a r r a y

if — D e la y == 0 then
r e l e a s e Task ;
if i t i s p e r i o d i c t a s k then

r e l o a d D e la y = P e r io d ;
else

d e l e t e Task from a r r a y ;
end if

end if
end for
T ic k _ C o u n t - - ;

end while
s l e e p ;

end DISPATCH TASKS

Listing 4.3: Task Dispatcher of T TC algorithm

In the TTC scheduler, the task priority is fixed and the task at the top o f the list is

automatically defined as highest priority because it will be released first if it is due to

run. In most real-time schedulers, latency of dispatch process which takes form the

time o f a previous task stop to the time of another task start is quite short. In the TTC

scheduler, the detail o f Dispatcher function is shown in Listing 4.3.

To implement DVS, voltage and frequency scaling must be performed before tasks

are dispatched. In this study, the focus was on the Dispatcher function in order to

incorporate a DVS algorithm in the scheduler.

Chapter 4: Implementation of DVS in a TTC scheduler 60

4.3 Applying DVS in a TTC scheduler

The key to applying DVS in a TTC application is the presence o f slack time. Under

DVS, tasks - which normally run at the same, fixed, CPU speed - will be stretched to

fill the available slack time (see Figure 4.4). Therefore, the speed-setting policy is

determined by the available slack time for each task.

Speed

Task A V Slack Time Task B

Time
Deadline of Task A

SpeedA \ *

Tas
!<

\\
......... Task B

Time

Figure 4.4: Example illustrating the possibility of task stretching

In theory, the available execution time for a task is simply the interval between its

release time and the time of the release of the next task (e.g. see Figure 4.4).

However, the overhead of the scheduling algorithm itself must also be considered in

practical systems (Figure 4.5). The scheduling overhead which added the DVS

processes is comparatively large when comparing to those of the conventional

scheduler. For example, in the present study schedulers with a 1 ms “tick” interval

were employed and - on the hardware platform used - the scheduler overhead

exceeded 15% o f the tick interval. This overhead consists o f two key components:

speed finding (including task scheduling) and frequency/voltage scaling processes.

The speed finding (also called voltage setting calculation (Andrei et a l , 2005; Cai et

a l, 2006)) is a process which is used for calculating the appropriate CPU clock

frequency to complete tasks within their timing constraints (i.e. deadlines). In

general, speed finding is incorporated as part o f a scheduler in online DVS schedulers

while, in offline DVS schedulers, it can be done at compile time (Andrei et a l , 2005;

Zhuo and Chakrabarti, 2005; Cai et al., 2006). Whereas, the frequency/voltage

scaling process (or frequency/voltage transition) is used for altering CPU clock

frequency and also CPU core’s supply voltage (according to the frequency/voltage

pairs) before a task released. In practice, the time taken o f the frequency/voltage

scaling process mainly depends on hardware setup.

Chapter 4: Implementation of DVS in a TTC scheduler 61

Typically, the timing behaviour o f output voltage from a power supply depends on the

values that use for the output and input capacitors, coils and feedback resistor network

(Chew, 2002). For example, M A X I820, pulse-width-modulated DC-DC buck

regulator, gives the output voltage settles in less than 30 ps for a full-scale change in

voltage, 0.4V to 3.4V (Maxim, 2005) while the voltage settling time from other power

supply can be longer, 100-200 ps (Dhar et al., 2002). Generally, it is particularly

interested in the rise time of output voltage when the required output voltage is

increased according to run at higher speed. If the system runs at high speed with lower

voltage than its voltage specified, it may halt or experience unusual behaviour. How

ever, in this study, the overhead also consists of other processes, such as frequency

scaling, controlling DAC to adjust output voltage of a DC-DC converter, that totally

take about 160-190 ps. That make overhead of DVS scheduling significantly large

when comparing to that of conventional scheduling.

To keep a number o f voltage switches at minimal, the scheduling and DVS processes

are run at the same speed of previous task. In Figure 4.5, After Task A finish, the

operating frequency is still the same as previous but changed when releasing a new

task, Task B.

Speed

Speed

■
■

L

Task A <-----------Slack Time -------►
\ /

Over
head Task B

------- ►
Time

Deadline of Task A
\

I____________ i _ Task Br task A Overhead —►
Time

Figure 4.5: Illustrating a more realistic D VS im plem entation

4.4 DVS Algorithms

The overhead o f the DVS scheduling system will be larger than that of conventional

scheduling system. In this section, the purpose o f study is to explore the impact of

overhead when applying DVS and explore way to minimise this overhead.

Chapter 4: Implementation of DVS in a TTC scheduler 62

There are many possible ways o f implementing DVS and a number of possible

designs were explored. Four of these designs are described in this section, and com

pared experimentally in Section 4.5.

The four designs were named as follows (for ease of reference):

• The Compute-Direct (CD) algorithm

• The Lookup Table (LT) algorithm

• The Circular Array (CA) algorithm, and,

• The Circular Skip (CS) algorithm

Each o f these algorithms is described in turning this section.

4.4.1 The Compute-Direct (CD) algorithm

The first DVS algorithm considered in this study is the most straightforward, and will

be referred to here as “Compute Direct” (CD).

The CD algorithm employed to calculate the DVS settings is run from the Dispatcher

function (see (Pont, 2001)). At every clock tick, the characteristics o f the task due for

release (if any) are examined, to find the deadline. The CD algorithm will then aim to

determine if the task can meet its deadline if executed at the lowest speed setting: if it

can, the speed is set to this value and the task is released. If the deadline cannot be

met at this speed, the next increment is tried. This process is repeated, as necessary,

until the maximum speed setting is reached. Note that it is assumed that all tasks will

meet their deadlines at the maximum speed setting.

Please note that the slack time is not constant in practical systems. It is dependent on

the scheduling overhead which will vary to each speed setting. Thus, speed finding

cannot be directly calculated.

A pseudo-code representation of this algorithm is shown in Listing 4.4

Chapter 4: Implementation of DVS in a TTC scheduler 63

begin DISPATCH_TASKS:

while T ick _ C o u n t > 0
N u m b e r_ o f_ ta s k _ r u n = 0 ;
for l o o p a l l t a s k s i n t a s k s a r r a y

if — D e la y == 0 then
N u m b e r _ o f_ ta sk _ r u n ++ ;

end if
s e a r c h D e a d l i n e ;

end for
switch (N u m ber_of_ task_run)

case 0 : CPU_Speed = MIN_SPEED ;
s c a l e f r e q u e n c y and v o l t a g e ;
break

case >0 : CPU_Speed = MIN_SPEED ;
while ! ((T ask _du rat ion (C PU _S peed) < D e a d l i n e

and CPU_Speed < MAX_SPEED)
CPU_Speed ++ ;

end while
break

end switch
for l o o p a l l t a s k s i n t a s k s a r r a y

if — D e la y == 0 then
s c a l e f r e q u e n c y and v o l t a g e ;
r e l e a s e Task ;
if i t i s a p e r i o d i c t a s k then

r e l o a d D e la y = P e r io d ;
else

d e l e t e T ask from a r r a y ;
end if

end if
end for
T ick _ C o un t — ;

end while
s l e e p ;

end DISPATCH TASKS

Listing 4.4: Com pute-Direct algorithm

4.4.2 The Lookup Table (LT) algorithm

The CD algorithm is conceptually simple but computationally expensive. To reduce

the CPU load, a lookup table can be employed.

Using such a table, the task scheduling and frequency / voltage scaling execution time

will be measured, calculated and stored. Note that the required calculations depend

not only on the task to be executed, but also the context o f this execution (for

example, whether Task A is immediately followed by the execution o f Task B).

To simplify the discussions here and later in the chapter, the task durations will be

represented in “utilisation units”. Each task slot is considered as 1U (Figure 4.6).

Chapter 4: Implementation of DVS in a TTC scheduler 64

If a task employs the whole time slot at full speed (60 MHz in the system), it takes

100% of the available utilisation: such a task cannot run at lower speed because its

utilisation will exceed 1U. Similarly, if a task takes 100% of the utilisation at 30

MHz, it has a load of 0.5U at 60 MHz.

4----------- 1U @ 3 x -----------*

T ask A

< 0.5U @ 6x

Task A

i i[

Task B T ask C
----------------------- ------- ►

Figure 4.6: Considering intra-task utilisation

Figure 4.7 shows the maximum utilisation at various speeds, based on the maximum

speed at 60 MHz. The available task slot at each speed can be found by deducting the

scheduler overhead from these values. The available task slot values will then be

stored in the lookup table. Listing 4.5 illustrates the LT algorithm.

60

0 0.2 0.4 0.6 0.8 1

U tilisa tion

Figure 4.7: The boundary of utilisation based on 60 M H z

Chapter 4: Implementation of DVS in a TTC scheduler 65

begin DISPATCH_TASKS:

while T ick _ C o u n t > 0
N u m b e r_ o f_ ta sk _ r u n = 0 ;
for l o o p a l l t a s k s i n t a s k s a r r a y

if — D e la y == 0 then
N u m b er_ o f_ ta sk _ ru n ++ ;

end if
s e a r c h D e a d l in e ;

end for
switch N u m b er_ o f_ ta sk _ ru n

case 0 : CPU_Speed = MIN_SPEED ;
s c a l e f r e q u e n c y and v o l t a g e ;
break

case >0 : T a s k _ U t i l = to ta l_ W C E T /D e a d l in e ;
d e t e c t Now_Speed ;
if T a s k _ U t i l £ T _ S l o t [N o w _ S p e e d] [l x]

CPU_Speed = l x ;
break

end if
if T _ S lo t [Now_Speed] [l x] < T a s k _ U t i l ^ T _ S l o t [Now_Speed] [2x]

CPU_Speed = 2x ;
break

end if
if T _ S lo t [Now_Speed] [2x] < T a s k _ U t i l ^ T _ S l o t [N o w _ S p e e d] [3x]

CPU_Speed = 3x ;
break

end if
if T _ S lo t [Now_Speed] [3x] < T a s k _ U t i l £ T _ S l o t [Now_Speed] [4x]

CPU_Speed = 4x ;
break

end if
if T _ S lo t [Now_Speed] [4x] < T a s k _ U t i l £ T _ S l o t [Now_Speed] [5x]

CPU_Speed = 5x ;
break

end if
if T a s k _ U t i l > T _ S lo t [N o w _ S p e e d] [6 x]

CPU_Speed = 6x ;
break

end if
break

end switch
for l o o p a l l t a s k s i n t a s k s a r r a y

if — D e la y == 0 then
s c a l e f r e q u e n c y and v o l t a g e ;
r e l e a s e Task ;
if i t i s a p e r i o d i c t a s k then

r e l o a d D e la y = P e r io d ;
else

d e l e t e Task from a r r a y ;
end if

end if
end for
T ick _ C o u n t - - ;

end while
s l e e p ;

end DISPATCH TASKS

Listing 4.5: Lookup Table algorithm

Chapter 4: Implementation of DVS in a TTC scheduler 66

4.4.3 The Circular Array (CA) algorithm

Both the CD and LT algorithms execute every time a task is dispatched. In the

Circular Array algorithm, the scheduling overhead is reduced by moving the core of

the speed-finding procedure to a system initialisation function, which is run only

once.

For example, suppose there are three periodic tasks, A(0,5), B(2, 10), C(5,15). Here

the tasks are represented as name{delay, period): task A, B and C start at 0, 2 and 10

ms (respectively) and repeat every 5, 10 and 15 ms (respectively). The cycle period is

determined by finding the greatest common factor from the task periods. In the

example, the cycle value is 30.

If these periodic tasks are assigned a running speed, they will be run at the same speed

every cycle. Consequently, the speed of the task in each tick can be determined once

and applied in every cycle. To implement this algorithm, a circular array, which has a

size equal to the number of task slots in one cycle, can be used to store the required

CPU speed. When the system is initialised, the speed- finding procedure will be run

for a full cycle (without dispatching tasks) in order to calculate and store the required

speed values. A scheme to synchronise the circular array pointer with task slot will

then be run before the scheduler starts. The Circular Array algorithm is shown in

Listing 4.6

t - L h
1x 1x 6x

▲1k h

6x 1x 4x 1x 1x 6x 1x 4x

Figure 4.8: A schematic representation of the Circular Array algorithm

Chapter 4: Implementation of DVS in a TTC scheduler 67

begin DISPATCH_TASKS:

while T ic k _ C o u n t > 0
if C i r c u l a r _ A r r a y _ P o i n t e r > MAJOR_CYCLE then

r e s e t C i r c u la r _ A r r a y _ P o i n t e r ;
for l o o p a l l t a s k s i n t a s k s a r r a y

if — D e la y == 0 then
l o a d T ask_Speed from c i r c u l a r a r r a y ;
s c a l e f r e q u e n c y and v o l t a g e ;
r e l e a s e Task ;
if i t i s a p e r i o d i c t a s k then

r e l o a d D e la y = P e r io d ;
else

d e l e t e Task from a r r a y ;
end if

end if
end for
T ic k _ C o u n t - - ;

end while
s l e e p ;

end DISPATCH TASKS

Listing 4.6: Circular Array algorithm

4.4.4 The Circular Skip (CS) algorithm

To minimise power consumption, it is possible to run all tasks at the minimum speed

and never change the speed setting. This is rarely practical, but - with appropriate

task scheduling - it can often reduce the number o f speed changes required, thereby

reducing the power consumption.

This idea is exploited in what it is called here the “Circular Skip” (CS) algorithm (see

Listing 4.7). CS is applied after speeds have been calculated and stored in the circular

array (using the CA algorithm). Using CS, it examines the array and look for

instances where no speed changes are required between the execution o f two tasks

which are scheduled to run consecutively: when such a situation is found, the super

fluous speed-change step is removed. This change itself reduces power consumption.

In addition, when the speed change is removed, this frees up CPU time and - as a

consequence - it may be possible to run some tasks at a lower speed than was possible

using the CA algorithm. In this way CS adds to the reduction in power consumption.

Chapter 4: Implementation of DVS in a TTC scheduler 68

begin DISPATCH_TASKS:

static P r e v io u s _ S p e e d = 0 ;
while T ic k _ C o u n t > 0

if C i r c u l a r _ A r r a y _ P o i n t e r > MAJOR_CYCLE then
r e s e t C i r c u la r _ A r r a y _ P o i n t e r ;
for l o o p a l l t a s k s i n t a s k s a r r a y

if — D e la y == 0 then
l o a d T ask_Speed from c i r c u l a r a r r a y ;
if P r e v io u s _ S p e e d != T ask _Sp eed then

s c a l e f r e q u e n c y and v o l t a g e ;
s a v e t h e C u rr en t_ S p ee d t o P r e v io u s _ S p e e d ;

end if
r e l e a s e Task ;
if i t i s a p e r i o d i c t a s k then

r e l o a d D e la y = P e r io d ;
else

d e l e t e Task from a r r a y ;
end if

end if
end for
T ick _ C o u n t - - ;

end while
s l e e p ;

end DISPATCH TASKS

Listing 4.7: Circular Skip algorithm

4.5 Assessing and comparing the DVS algorithms

The experiments carried out to assess and compare the DVS algorithms described in

Section 4.4 are described here.

4.5.1 Overhead analysis

Figure 4.9 illustrates the scheduling overhead for each o f the DVS algorithms. To

draw this figure, the voltage and frequency scaling time o f all speed-setting and DVS

algorithms were measured at 60MHz (based on 5 tasks execution) and then the

scheduling overhead at all speeds was predicted. The resulting figures permit the

calculation o f the available execution time.

From Figure 4.9, the CD overhead is around 257.8 ps (162 ps for voltage/frequency

scaling, and 97 ps for speed-finding and task scheduling) when run with the task set at

60 MHz. This figure increases when lower speeds are applied: it is 769.8 ps at 10

MHz. It is obvious that the range between minimum and maximum values is also

high: this is due to the speed-finding calculation, which has a duration dependent on

the number of calculations required. Compared to voltage/frequency scaling, the

Chapter 4: Implementation of DVS in a TTC scheduler 69

times taken for this process at each speeds are not significantly different (approxi

mately 160 to 190 ps).

■ Voltage/Frequency Scaling ■ Speed Finding & Task Scheduling

Figure 4.9: Scheduling overhead of DVS algorithms estimation

The available CPU time for tasks can be increased by reducing the time taken for

speed-setting calculations, as the results from the LT and the CA algorithms show.

The LT algorithm reduces calculation-time by using lookup table while the CA

algorithm removes speed-finding part from runtime overhead. In case of the CA

algorithm, it can reduce the overhead drastically. However, it is lack of capability to

perform online speed calculations - all speeds must be pre-defined before the

schedule starts. In the case of the CS algorithm, if voltage and frequency scaling can

be avoided, the overheads are close to those of the original TTC scheduling algorithm.

From these scheduling overhead values, the available task utilisations of the various

DVS algorithms can be calculated (Figure 4.11 - Figure 4.14)

Chapter 4: Implementation of DVS in a TTC scheduler 70

Figure 4.10: Maximum execution time of task considered at maximum frequency 60M H z

Figure 4.10 shows the ideal maximum utilisations of all frequencies running when

they are considered comparatively at the maximum frequency 60 MHz. The maxi

mum utilisation is equal 1.0 U when running at 60 MHz but it is about 0.16 U com

paring with that of 60 MHz if the system runs at 10 MHz.

In, Figure 4.11 - Figure 4.15, the graphs are intended to show the practical utilisation

of task which are available at each frequency switch, after deducting overheads. As in

the experimental setup in Section 4.1.3, there are 36 cases of possible frequency

switch. These graphs present the available execution times which are calculated

under 1 ms task period scenario. For example, in Figure 4.11, the available utilisation

of the CD algorithm is available for executing a task only about 0.12 U - 0.04 U when

frequency switching from 60 -1 0 MHz speed to 10MHz speed respectively. Available

execution time will increase if tasks are executed at higher frequency.

The available execution times are improved by the LT algorithm (Figure 4.12) and

more increased with the CA algorithm (Figure 4.13). In the CS algorithm, it reduces

Chapter 4: Implementation of DVS in a TTC scheduler 71

unnecessary voltage/frequency scaling process for minimising overhead. Figure 4.14

shows that the available execution time of the CS algorithm will have if the

voltage/frequency switches can be avoidable10. However, in this study, the

voltage/frequency scaling process is required if the consecutive frequencies are

different. The practical available execution time of the CS algorithm is illustrated as

in Figure 4.15. It can be seen that the overheads of the CS algorithm are improved,

compared to the CA algorithm, if the voltage/frequency scaling is avoided. Note that,

in the case that the task period is longer than 1 ms, the ratio o f the overhead to the

available execution timer will be smaller than presented here.

Figure 4.11: Available execution time of task - CD algorithm

In practice, the overhead can be reduced by performing frequency scaling only if these running
frequencies are in their voltage range. Generally, voltage scaling process mainly dominates the
overhead when comparing to frequency scaling process.

AygjJghJe execut|0n

asK LT algorithm

*o.

Chapter 4: Implementation o f DVS in a TTC scheduler

Figure 4 .14; Available
execution time of task - CS algorithm -

scaling excluded voltage/fre

Figure 4.15: Available
execution lime of lask-CS a lg o rith m - practical

Chapter 4: Implementation of DVS in a TTC scheduler 74

4.5.2 More general performance comparisons

The results presented in Section 4.5.1 describe the overhead o f the various algorithms.

A more direct comparison of the power consumption resulting from these various

techniques is provided in this section.

4.5.2.1 The task set

For this study, all schedulers are set to have a 1 ms clock tick. 5 dummy tasks that had

a total utilisation from 0.1U to 0.9U were then created. All tasks had a 5 ms period.

Each dummy task was implemented using a simple loop, adapted as required to give

the required duration. For example:

Dummy Task:
for loop

{
a = a + 1;
}

Note that, in time-triggered co-operative scheduling systems, all task durations should

be less than the scheduler tick interval. In this case, the duration of all tasks was less

than 1 ms. The parameters of the tasks in this set are shown in Table 4.1.

Table 4.1: Task set parameters for assessing power consumption

Task Period

(ms)

Offset

(ms)

Execution time (ps)

0.1U 0.2U 0.3U 0.4U 0.5U 0.6U 0.7U 0.8U 0.9U

A 5 0 100 100 100 200 300 500 700 800 900

B 5 1 100 200 300 500 600 600 700 800 900

C 5 2 100 400 600 600 700 700 700 800 900

D 5 3 100 200 300 500 600 600 700 800 900

E 5 4 100 100 200 200 300 600 700 800 900

4.5.2.2 Power consumption results

To perform this empirical comparison, task sets (with task durations from 0.1 U to

0.9 U) were set up and executed using the original TTC, CD, LT, CA and CS algo

rithms. The average power consumption o f CPU core in each case was measured and

is shown in Figure 4.16.

Chapter 4: Implementation of DVS in a TTC scheduler 75

-t—TTC - a-C D LT -^-C A -* -C S

0.03

0.025

^ 0.02

D- 0.015
O)

0.01

0.005

0
0.6 0.70.2 0.3 0.4 0.5 0.8 0.90 0.1 1

Task Utilisation

Figure 4 .16: Power consumption of CPU core on different scheduling algorithms

Because it runs at a fixed 60 MHz frequency (when executing tasks) and in “idle”

mode at other times, the TTC power consumption shown in this figure is almost

linearly related to the workload. Overall, the power consumption o f the TTC sched

uling overhead is low: approximately 8.8 mW at 60 MHz.

At low levels o f task utilisation all o f the DVS algorithms succeed in reducing the

system power consumption, when compared to the original TTC algorithm.

From the results, CD is the most power-hungry of the DVS algorithms considered

here, while the LT, CA and CS are the second, the third and the fourth, respectively.

At every workload, the CD consumes more power than the rest o f variable-speed

approaches. Its power is close to the TTC at 0.6 U and greater than TTC at 0.7 U.

CS is the most power-efficient of these DVS algorithms. It has the lowest power con

sumption at all levels o f utilisation, except at 0.3 U. In this case, the CS slightly takes

power more than the CA because the task set that was run had large gap between their

durations (100, 300, 600, 300 and 100 ps). In this particular configuration, the CS

could not optimise the speed. With this exception, CS saves power, until it reaches a

utilisation level of 0.9 U: here, CS, which runs all tasks at full speed, consumes more

power than the TTC (because of the algorithm overhead).

Chapter 4: Implementation of DVS in a TTC scheduler 76

Note that straight-dot lines represent power consumption o f loads at each operating

frequency. The dummy loads were set up by running in the loop, without any sched

uler, at different duration and then were measured. The results were averaged and

plotted as in Figure 4.16.

4.6 The impact of DVS on system timing

In order to assess the impact of DVS on system’s timing, a set of representative

empirical studies was conducted. Among all those DVS algorithms, the algorithm

selected for assessing in the studies was CS (Circular Skip) algorithm which was

found (in the experiment presented here) to be most effective, in term of power-saving

and to have the lowest overhead. From this point, the CS algorithm will be referred to

as the “TTC-DVS” algorithm. The studies are described in this section.

4.6.1 General accessing the impact of DVS on jitter

To explore the impact of variable speed on tick and task, two tasks (Task A and

Task B) were set up and run with TTC-DVS and a “standard” TTC scheduler (Pont,

2001). Task A was run every 2 ms while Task B was run at the same period but with

1 ms offset. In every case, the tick interval was set at 1 ms. To study the influence of

the DVS, Task A and TaskB were run with a random speed (10 to 60 MHz) while

TTC run at a fixed speed of 60 MHz. The actual tick intervals were measured to

assess tick jitter while the measuring interval between start times o f Task A was for

evaluating task jitter. Please note that the tick measurement in this study was probed

at the beginning o f scheduler ISR. The measurements were made using a National

Instrumentation data acquisition card “NIPCI-6035E” (NI, 2000), used in conjunction

with Lab VIEW 6.1 (NI, 2001). The results are shown in Figure 4.17 - Figure 4.21.

N
um

be
r

of
Sa

m
pl

es

N
um

be
r

of
Sa

m
pl

es

Chapter 4: Implementation of DVS in a TTC scheduler 77

10000

1000

100

10

1
-3.00E-04 -2.00E-04 -1.00E-04 0.00E+00 1.00E-04 2.00E-04 3.00E-04

Jitter (sec)

Figure 4 .17: Histogram of tick jitter in T T C -D V S run with random frequency

10000

1000

100

1 -I-------------- ,-------------- ,--------------------- I------- I--------------
-3.00E-04 -2.00E-04 -1.00E-04 0.00E+00 1.00E-04 2.00E-04 3.00E-04

Jitter (sec)

Figure 4.18: Histogram of tick jitter in T T C

N
um

be
r

of
Sa

m
pl

es

N
um

be
r

of
Sa

m
pl

es

Chapter 4: Implementation of DVS in a TTC scheduler 78

10000

1000

100

-3.00E-04 -2.00E-04 -1.00E-04 0.00E+00 1.00E-04 2.00E-04 3.00E-04
Jitter (sec)

Figure 4 .19: Histogram of task jitter in T T C -D V S run with random frequency

10000

1000

100

1
-3.00E-04 -2.00E-04 -1.00E-04 0.00E+00

Jitter (sec)
1.00E-04 2.00E-04 3.00E-04

Figure 4.20: Histogram of task jitter in T T C

Chapter 4: Implementation of DVS in a TTC scheduler 79

5.00E-04

4.00E-04

7)a>
w, 3.00E-04
i_0) ts
« 2.00E-04
O I-

1 .00E-04

0.00E+00

TTC -D V S (tick) TTC (tick) TTC -D V S (task) T TC (task)

Figure 4.21: Total jitter of task in T T C -D V S and T T C system s

Tab le 4.2: Tick jitter and task jitter in T T C -D V S and T T C system s

Tick jitter (us) Task jitter (iis)
Max Min Total Max Min Total

TTC 0.00 0.00 0.00 0.10 0.00 0.10
TTC-DVS 13.90 -13.20 27.10 248.80 -242.40 491.20

Figure 4.17 and Figure 4.18 illustrate the occurrence of tick jitter taken from 10,000

consecutive samples from TTC-DVS and TTC algorithms respectively. No measur

able tick jitter was obtained for the TTC algorithm. For the TTC-DVS algorithm, the

measured jitter is illustrated in Figure 4.17. The detailed results from this comparison

are provided in Table 4.2.

Figure 4.19 and Figure 4.20 illustrate histogram of task jitter taken from 10,000 con

secutive samples from TTC-DVS and TTC algorithms. They show a significant

impact of TTC-DVS on task jitter, more than 10% compared with its period. Figure

4.21 and Table 4.2 compare the impact of TTC-DVS on both tick and task with that of

TTC.

The experimental results show that the TTC algorithm, which normally has low-jitter

characteristic, suffers from significant increases in jitter when DVS is employed in

Chapter 4: Implementation of DVS in a TTC scheduler 80

this naive manner. These findings are consistent with the jitter results reported by

Mochocki et al. (2005) in which it was reported that all tasks scheduled by the RM

algorithm suffered from jitter greater than 10%, even at a utilisation of 0.3 (see

Section 2.4.1 for further details).

4.7 The knock-on impact of frequency scaling

Because the system operates with a variable clock frequency, jitter can occur in TTC-

DVS systems. The resulting jitter can be divided into 3 categories:

• Tick jitter

• Sampling jitter

• Release jitter

Each of these categories is considered as the following.

4.7.1 Tick jitter, drift

In the TTC designs considered in this thesis, a clock tick is generated by a hardware

timer that is linked to an interrupt service routine (Pont, 2001). This mechanism relies

on the presence o f a timer that runs constantly and accurately: in a DVS system, fre

quency switching is likely to disrupt such timing. For example, in many processors, it

takes a variable amount o f time for the phase-locked loop (PLL) to lock after the

clock frequency is changed, and the timer operation is disrupted when the value of the

prescaler register is adapted to match the new frequency (see Figure 4.22).

E x p e c t e d E x p e c te d E x p e c t e d
T ic k P e r i o d -------------------- *-<--------------------- T ick P e r i o d -------------------------- T ic k P e r io d

T im er
C o u n ter

T im er
C o u n te r

T im er _
.C ou nter

Figure 4.22: Tick drift in D VS systems. (Phatrapornnant and Pont 2006 , IE E E Transactions

on Computer, Vol.55(2), © 2006 IE E E)

Chapter 4: Implementation of DVS in a TTC scheduler 81

4.7.2 Sampling jitter, Task duration variation

A direct consequence of DVS is that the task duration is increased if the processor

speed is lowered and decreased if the processor speed is raised. This can have major

side effects. For example, Figure 4.23 illustrates the impact o f frequency changes on

a system involving data sampling within a task.

S p eed

Sam pling Point

S am p lin g S a m p lin g
P e r io d

S am p lin g
P erio dP erio d

T ask

Figure 4.23: Sampling jitter caused by frequency scaling. (Phatrapornnant and Pont 2006,

IE E E Transactions on Computer, V o l.55(2), © 2 0 0 6 IE E E)

As previously noted, Cottet and David (Cottet and David, 1999) show that - during

data acquisition tasks - jitter rates of 10% or more can introduce significant errors.

4.7.3 Release jitter, Scheduling overhead variation

The overhead o f a conventional (that is, non-DVS) scheduler arises mainly from

context switching. In systems employing DVS, it also needs to consider frequency /

voltage scaling procedures and - possibly - speed-finding procedures. These proce

dures make the scheduling overhead of DVS systems comparatively large. Often of

greater concern is the fact that these procedures may have a highly variable duration:

for example, Figure 4.24 illustrates how a TTC-DVS system can suffer release jitter

as a result o f variations in the scheduler overhead.

S p e e d

1

T a sk
P e r io d

T a s k
P e r io d

T a sk
T a sk

T a s k
P e r io d

T a sk ^

Figure 4.24: R elease jitter caused by variation of scheduling overhead. (Phatrapornnant and

Pont 2006, IE E E Transactions on Com puter, V o l.55(2), © 2 0 0 6 IEEE)

Chapter 4: Implementation of DVS in a TTC scheduler 82

4.8 Conclusions

In this chapter, practical approaches to applying DVS in a TTC scheduler have been

demonstrated. Both hardware and software have been set up to support dynamically

varying CPU core’s supply voltage. A number of DVS algorithms (CD, LT, CA and

CS), which are applied in a TTC scheduling design have been explored. These DVS

algorithms have been analysed and evaluated in terms of system overhead and power-

saving performance comparing among of them and the original TTC design. From the

experimental results, it has been found that the CS (referred as TTC-DVS) algorithm

performs the best performance among those algorithms.

The impact o f realistic DVS implementation, which involves the variation of DVS

overhead and voltage/frequency scaling process, in TTC applications, has been

illustrated. In particular, it has been demonstrated that use o f DVS can cause a TTC

scheduling system to suffer large jitter. Techniques for minimising jitter in DVS

applications will be explored in Chapter 5.

Chapter 5

Design and evaluation of a reduced-jitter

TTC/DVS scheduler

It was demonstrated in Chapter 4 that DVS can be very simply and effectively applied

in embedded systems employing a time-triggered’ co-operative (TTC) scheduler

However, the results obtained showed that - while use o f DVS reduced CPU energy

consumption - this approach also increased levels o f task jitter. The work described

in this chapter considers ways o f minimising the jitter levels in single-processor

embedded systems employing a TTC scheduler and DVS.11

5.1 Minimising jitter caused by DVS

DVS has been used effectively for reducing dynamic power consumption by lowering

CPU frequency and voltage. As noted previously, these frequency changes can cause

the systems employing DVS suffer to jitter. As described in Section 4.7, jitter which

may occur in TTC applications can be categorised as: (i) tick jitter, (ii) sampling jitter,

and (iii) release jitter.

In order to develop TTC/DVS scheduler for applications which require low levels of

task jitter, it is assumed that it may not be necessary to run all tasks with low jitter,

11 Part o f this chapter has previously published in Phatrapornnant, T. and Pont, M.J. (2004a) and
Phatrapornnant, T. and Pont, M.J. (2006).

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 84

depending on the application. Tasks that are required to run “jitter free” are defined

as “reduced-jitter tasks” (RJTs).

The jitter reduction approaches applied to RJTs are as follows.

First, the jitter arising from variations in the scheduler overheads can be alleviated by

inserting a delay (called a “jitter guardian”) before the RJTs are activated. This

results that the release jitters are minimised.

Second, in realistic implementations, the scheduling “tick” can suffer jitter when a

timer is re-programmed to match the new frequency. By re-programming the timer,

the tick jitter can be reduced.

Third, setting the operating frequency of the RJTs to be constant can avoid jitter

caused by task execution-time variation.

The studies in this chapter illustrate ways to implement the jitter reduction techniques

in TTC/DVS scheduler - particularly concerned with the impact o f DVS on tick jitter,

and with the knock-on effects of DVS-induced variations in scheduler overhead and

task duration.

5.2 The TTC-jDVS algorithm

The development o f the algorithm in this chapter is aimed at limited-resource

embedded applications which require low-jitter and low-energy, e.g. signal sampling

applications.

Various techniques for implementing DVS in TTC systems were proposed and

explored in Chapter 4. O f these algorithms, a version called “Circular Skip” - which

will be referred to here as “TTC-DVS” - was found to be the most effective and

lowest overhead. TTC-DVS will form the basis o f a low-jitter TTC-DVS algorithm

described in this chapter.

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 85

The new algorithm - referred to here as TTC-jDVS - employs a three-step technique

for jitter reduction. The three steps are described in this section.

5.2.1 Adding tick compensation

As noted in Section 4.7.1, the hardware timer in typical processors can give rise to

tick drift when DVS is employed. A compensation process is needed to minimise the

tick jitter which results from this.

As part o f the TTC-jDVS algorithm, a tick-compensation process illustrated sche

matically in Figure 5.1 is proposed.

Disconnect PLL Delay Connect PLL

Old Speed —

Voltage Tim er
Scaling LockingAdjustments

10 MHz Running New Speed

Figure 5.1: V o ltage and frequency scaling steps. (Phatrapornnant and Pont 2006, IEEE

Transactions on Computer, Vol.55(2), © 2 0 0 6 IE E E)

The compensation is carried out within a "sandwich delay", which has a duration set

to match the (combined) worst-case execution time o f the three stages (voltage

scaling; timer adjustments; PLL locking). Note that the PLL is locked after the

voltage scaling and timer adjustments are carried out: these calculations are therefore

carried out at a known (base) frequency.

The timer-adjustment process loads new timer values whenever the frequency is

changed. Each frequency-switch pair requires different compensation values: in the

study described in this thesis, these values were obtained (largely by trial and error)
1 “7and stored in a lookup table .

For reference: In the empirical study described later in this study, the timer (TMR0) reload
value was 10,000. In this case, the range o f compensation values required was from -112 to
+186 (that is, the reload values varied from 9888 to 10112).

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 86

To obtain the compensation values, CPU clock frequency was forced to switch

between two frequencies at every tick. The tick was probed (using a data-acquisition

card “NI PCI-6035E” (NI, 2000) in conjunction with LabVIEW 6.1 (NI, 2001)) to

measure jitter. To compensate for the time disruption caused by the frequency

changes, the timer / counter was adjusted by adding or subtracting a small number of

units and the tick interval was then measured again. This “trial and error” process

continued until the jitter was reduced below the required level. The compensation

values of this frequency-switch pair were then noted. To obtain the compensation

values o f other frequency-switching pairs, the procedures described above was

repeated. Note that these compensation values were specifically dependent on

program code for the tick-compensation procedure.

5.2.2 Adding a jitter guardian

It is assumed that it may not be necessary to run all tasks with low jitter. “Reduced-

jitter tasks” (RJTs) is therefore defined as those that must be scheduled to run “jitter

free”. In this study, an RJT flag was added in the scheduling algorithm to identify

such tasks.

Having identified RJTs, the next step is to reduce the variation in scheduler overhead

prior to the release o f such tasks. To do this a “jitter guardian” is used, again based on

a sandwich delay. This is inserted before the RJT release (see Figure 5.2). The

duration o f the required delay is based on the maximum scheduler overhead

(including frequency and voltage scaling) for the particular set o f tasks in the circular

array (this is discussed further in Section 4.4). Note that - inevitably - the jitter

guardian will reduce the available execution time for tasks, and will therefore reduce

the power-saving performance of the DVS system.

J itte r
G uard ian

S p e e d

T ask
P er iod

O ver
h e a d

R e d u ce d -
jitter
T ask

T a sk
P er io d

Figure 5.2: Minimising release jitter through use of a “jitter guardian”. (Phatrapornnant and

Pont 2006, IE E E Transactions on Com puter, V o l.55(2), © 20 0 6 IEEE)

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 87

5.2.3 Fixing the running speed of RJTs

The final stage of the TTC-jDVS algorithm involves determining the required

execution speed o f the RJTs. To deal with the problems caused by variations in the

task duration (see Section 4.7.2), each RJT is run at the same speed every time it is

released (see Listing 5.1). To determine the required running speed, the circular array

is first examined to find the maximum speed at which each RJT executes: this speed is

then applied every time this RJT is released. The array is then examined again, to

find the lowest speed at which a task in the slot before the RJT is executed. Using the

information about the speed change before the RJT is executed allows the required

length of the jitter guardian (delay) to be calculated.

Reduced-
jitter
Task

O ver
head T a sk

Fixed running speed

S a m p lin g
P er io d

S a m p lin g
P er iod

S a m p lin g
P e r io d

Speed

Figure 5.3: Minimising sampling jitter by fixed running speed. (Phatrapornnant and Pont

2006, IEE E Transactions on Computer, V o l.55(2), © 2 0 0 6 IE E E)

begin SET_RJT_SPEED:

for a l l s l o t s i n C i r c u l a r a r r a y
for a l l t a s k s i n t a s k s a r r a y

if RJT i n c l u d e d i n t a s k s due t o run then
f i n d t h e L ow est_ S p eed o f s l o t b e f o r e RJT s l o t ;
f i n d t h e F a s t e s t _ S p e e d o f RJT s l o t s ;

end if
end for

end for
for a l l s l o t s i n C i r c u l a r a r r a y

for a l l t a s k s i n t a s k s a r r a y
if RJT i n c l u d e d i n t a s k s due t o run then

a s s i g n t h e F a s t e s t _ S p e e d t o c u r r e n t s l o t ;
end if

end for
end for
c a l c u l a t e J i t t e r _ G u a r d ia n _ D e la y (L o w e s t _ S p e e d) ;

end SET RJT SPEED

Listing 5.1: Setting the execution speed of “reduced-jitter” tasks (RJTs)

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 88

5.3 Implementing the TTC-jDVS scheduler

This section demonstrates the way to implement the jitter reduction algorithm in the

TTC scheduler.

begin DISPATCH_TASKS:

if C i r c u l a r _ A r r a y _ P o i n t e r > MAJOR_CYCLE then
r e s e t C i r c u la r _ A r r a y _ P o i n t e r ;

end if
while T ick _ C o u n t > 0

for a l l t a s k s i n t a s k s a r r a y
if — D e la y == 0 then

l o a d Task_Speed from c i r c u l a r a r r a y ;
if P r e v io u s _ S p e e d != T ask _Sp eed then

s c a l e f r e q u e n c y and v o l t a g e (and p e r fo r m t i c k c o m p e n s a t i o n) ;
end if
if t a s k i s an RJT then

i n s e r t J i t t e r G uardian ;
end if
r e l e a s e Task;
if t a s k i s p e r i o d i c then

r e l o a d D e la y = P e r io d ;
else

d e l e t e Task from a r r a y ;
end if

end if
end for
T ick _ C o u n t — ;

end while
s l e e p ;

end DISPATCH TASKS

Listing 5.2: Dispatching tasks in T T C -jD V S

Listing 5.2 shows a pseudo-code representation of the dispatcher function with jitter-

compensation incorporated. In the code, the jitter guardian is inserted before the

release of RJTs.

5.4 Evaluating the TTC-jDVS algorithm

To evaluate the TTC-jDVS algorithm, a set of representative empirical studies were

conducted. The studies are described in this section.

5.4.1 Assessing the impact of TTC-jDVS on jitter

To explore the impact o f the jitter compensation algorithm, a series of tests using the

platform described in the previous section were conducted. The empirical studies

reported in this chapter were conducted using the hardware platform described in

Section 4.1.

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 89

5.4.1.1 Tick jitter

In order to measure tick jitter, a task using a random clock speed (from 10 to 60 MHz)

using TTC-DVS and TTC-jDVS was run. This task was also run with a “standard”

TTC scheduler (Pont, 2001) at a fixed speed o f 60 MHz. In each case the required

tick interval was set at 1 ms, and the actual tick intervals were measured. Please note

that the tick measurement in this study was probed at the beginning o f scheduler ISR.

The measurements were made using a National Instrumentation data acquisition card

“NI PCI-6035E” (NI, 2000), used in conjunction with LabVIEW 6.1 (NI, 2001).

No measurable jitter was obtained for the TTC algorithm. For the TTC-DVS algo

rithm, the measured jitter is illustrated in Figure 5.4: the corresponding test run using

the TTC-jDVS algorithm (Figure 5.5) shows a significant reduction. Figure 5.6 and

Figure 5.7 illustrate the occurrence of tick jitter taken from 10,000 consecutive

samples. Table 5.1 provides detailed results from this comparison.

Table 5.1: Comparing tick jitter run by T TC -D V S , T T C -jD V S , and T T C algorithms

Jitter (us)

Max Min Total

TTC 0.0 0.0 0.0

TTC-DVS 13.9 -13.2 27.1

TTC-jDVS 0.2 -0.6 0.8

Jit
ter

 (
se

c)

Z!
Jit

ter
 (

se
c)

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 90

1.50E-05

1.00E-05

5.00E-06

0.00E+00

-5.00E-06

-1.00E-05

-1.50E-05

5.4: Tick jitter in TTC-DVS. (Phatrapornnant and Pont 2006, IEEE Transactions on

Computer, Vol.55(2), © 2006 IEEE)

1.50E-05

1.00E-05

5.00E-06

0.00E+00

-5.00E-06

-1.00E-05

-1.50E-05

-v>w tyr*Mr*~r*rM~vrr'T* *r
I 101 201 301 401 501 601 701 801 901

Samples

Samples

Figure 5.5: Tick jitter in TTC-jDVS. (Phatrapornnant and Pont 2006, IEEE Transactions on

Computer, Vol.55(2), © 2006 IEEE)

N
um

be
r

of
Sa

m
pl

es

N
um

be
r

of
Sa

m
pl

es

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 91

10000

1000

100

-I -I--------------------- ,--------------LLL-L, ----- 111 l l l l M HU III , III-------------,---------------------

-3.00E-05 -2.00E-05 -1.00E-05 0.00E+00 1.00E-05 2.00E-05 3.00E-05
Jitter (sec)

:igure 5.6: Histogram of tick jitter in T TC -D V S . (Phatrapornnant and Pont 2006, IEEE

Transactions on Computer, V o l.55(2), © 2 0 0 6 IE E E)

10000

1000

100

1 J-------------- .-------------- ,--------------------- ,------- 1--------------
-3.00E-05 -2.00E-05 -1.00E-05 0.00E+00 1.00E-05 2.00E-05 3.00E-05

Jitter (sec)

Figure 5.7: Histogram of tick jitter in TTC -jD V S . (Phatrapornnant and Pont 2006, IEEE

Transactions on Computer, V o l.55(2), © 20 0 6 IE E E)

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 92

5.4.1.2 Task jitter

To explore the impact of variable speed on task release jitter, two tasks were set up

(see Table 5.2). Task A was an RJT and Task B was a normal task. Task A was run

every 2 ms while Task B was run at the same period but with 1 ms offset. To study

the influence o f the speed of the preceding task on the RJT, Task B was run with a

random speed (10 to 60 MHz) while the running speed of Task A was fixed for each

experiment (again in the range 10 to 60 MHz).

The interval between start times o f the RJT were measured: the results are shown in

Figure 5.8.

Table 5.2: Task set param eters

Task Period (ms) Offset (ms) RJT

A 2 0 Y

B 2 1 N

-©-TTC-jDVS (max)
o TTC (max)

— TTC-DVS (max)

■©-TTC-jDVS (min)
o TTC (min)
* -TTC-DVS (min)

3.00E-06

2.00E-06
oa>v>

1.00E-06I-a>£
CO>p'poI-I-

0.00E+00

-1.00E-06
oI-I-

-2.00E-06

-3.00E-06

3.00E-04

2.00E-04

1.00E-04 ®
(f t

0.00E+00

-1.00E-04

-2.00E-04

-3.00E-04

a>C
CO>□IoI-

Clock frequency (MHz)

Figure 5.8: Minimum and maximum jitter level of RJT at speed 10 -60 M H z run by TTC -jD VS ,

T T C -D V S and T TC . (Phatrapornnant and Pont 2006 , IE E E Transactions on Computer,

Vol.55(2), © 2006 IEEE)

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 93

Figure 5.8 shows that, in this study, average release jitters from TTC-DVS are in the

region of +/-230 ps, while those of TTC-jDVS are in the region o f +/-1 ps. Overall,

TTC-jDVS reduced the level of release jitter by a factor o f approximately 200 when

compared with TTC-DVS.

5.4.2 Assessing the impact of TTC-jDVS on CPU power consumption

In order to begin to assess the power-saving ability o f the TTC-jDVS algorithm, three

schedulers with 1 ms tick intervals (TTC, TTC-DVS, TTC-jDVS) were again used, as

in the study described in Section 5.4.1.

To compare the power consumption, 5 dummy tasks (Task A to Task E) which

utilised between 10% and 90% of the available CPU activity (when run at the highest

speed) in the tick interval (represented as 0.1 U to 0.9 U in Table 5.3) were created.

Each dummy task was implemented using a simple loop, adapted to give the required

duration.

Note that, in a TTC design, a designer will usually wish to ensure that the WCET of

each task is less than the scheduler tick interval: in this case, the duration o f all tasks

was less than 1 ms. Note also that Task A was (when scheduled using TTC-jDVS)

viewed as an RJT. This task was run every 2 ms in (all systems). The remaining

tasks (not RJTs) were run every 8 ms with different offsets.

The execution times and other parameters of this task set are shown in Table 5.3.

Table 5.3: Task set parameters for assessing power consumption

Task Period

(ms)

Offset

(ms)

RJT Execution time (ps)

0.1U 0.2U 0.3U 0.4U 0.5U 0.6U 0.7U 0.8U 0.9U

A 2 0 1 100 200 300 400 500 600 700 800 900

B 8 1 0 100 100 200 200 400 300 700 800 900

C 8 3 0 100 200 300 600 600 600 600 900 900

D 8 5 0 100 400 400 200 700 800 700 900 900

E 8 7 0 100 100 300 600 300 700 800 800 900

To perform this empirical comparison, the task sets in Table 5.3 were executed using

TTC, TTC-DVS and TTC-jDVS algorithms. The average power consumption of the

CPU core was measured in each case and is shown in Figure 5.9.

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 94

—+—TTC -Ar-TTC-DVS -s-TTC-jDVS

0.035

0.03

0.025 -

O) 0.015

0.005

0.3 0.4 0.5 0.6 0.70 0.1 0.2 0.8 0.9 1

T ask U tilisation

Figure 5.9 : C PU power consumption comparison of scheduling algorithm s at different load.

(Phatrapornnant and Pont 2006, IEEE Transactions on Com puter, V o l.55 (2), © 2006 IEEE)

In Figure 5.9, it is clear that the TTC power consumption is almost linearly related to

the workload. Also from this figure it can be seen that TTC-DVS is the most power-

efficient of the algorithms in this study, followed by TTC-jDVS. At less than 0.6 U,

all DVS algorithms consume less power than the TTC algorithm. The TTC-DVS

algorithm consumes less power than TTC up to 0.8 U, while TTC-jDVS consumes

less power than TTC up to 0.7 U.

The TTC-jDVS algorithm is more complicated than the TTC-DVS algorithm. The

TTC-jDVS algorithm includes a tick-compensation process which is performed

whenever the frequency changes. Furthermore, the TTC-jDVS algorithm has to

expend some slack time in order to offset the activation o f the RJTs and run the RJTs

with fixed frequency. These jitter-reduction mechanisms introduced in the TTC-

jDVS algorithm inevitably degrade the power-saving performance o f the original

DVS algorithm. In practice, as can be seen from the power consumption results, the

TTC-jDVS algorithm consumes more power than the TTC-DVS algorithm over most

of the workload range (up to a utilisation of 0.7). If the application has high workload

(i.e. utilisation greater than 0.7) the TTC algorithm should be considered (in place of

TTC-jDVS) because of its simplicity and low-jitter characteristics.

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 95

5.5 Impact of jitter on sampled data systems

As discussed in Section 3.2, jitter has direct impact in data sampling applications by

degrading an accuracy of the use of ADCs. The sampling jitter (caused by clock

jitter, delay in task scheduling and so on) can impose the error on the sampled data.

The error o f signal in ADC can be determined by:

Verror sls\V fClt6 . tjitier (5.1)

Assume that a sine wave signal to be sampled is:

v(t) = A sin(2/rft) (5.2)

The maximum slew rate of a sine wave is at the zero crossing, t = 0, and the slew rate

is defined by the first derivative of the signal function (Brannon and Barlow, 2006):

d
— v{t) = A 2 n f cos(2kft) (5.3)
dt

The maximum amplitude (Aps) of the sampled signal using an N-bit ADC can be

represented by:

A fS - 2N Q (5.4)

Where Q is quantum or the minimum voltage step (LSB, least significant bit)

(ATMEL, 2003). To ensure conversion accuracy, the Verr0r should be less than Ql2.

From Equation (5.1), it can infer that the sampling jitter tjitter, determined at time

t = 0, must satisfy this condition:

1 1
ljl"‘r < 2 n ' 2k f

(5.5)

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 96

For example, suppose there is a 500 Hz tone to be sampled using an 8-bit ADC with

1kHz sample rate. Maximum allowable jitter will be:

- y ------ = 1.24 ps
2 2x500^-

If the system cannot meet this jitter requirement, the data obtained will be degraded:

in other words, it is not worth using an ADC with this resolution.

5.6 Wireless ECG: A case study

The studies described in earlier parts o f this chapter are based on artificial task sets.

To explore the potential application of the TTC-jDVS algorithm, a more realistic case

study was carried out: this required both accurate data sampling (that is, low jitter)

and energy efficiency. The case study was based on a wireless system for monitoring

electrocardiograms (ECGs).

Briefly, an ECG is an electrical recording that is used for investigating heart disease

(Hampton, 1998). In a hospital environment, ECGs normally have 12 leads (standard

leads, augmented limb leads and precordial leads) and are sampled at 250 Hz (mini

mum requirement). In this study, the wireless ECG design was intended to allow the

recording of the three standard leads (Lead I, Lead II, and Lead III) at 500 Hz: this

type o f recording is often considered to be sufficient for an initial diagnosis. In this

study, the electrical signal from the heart was quantised by a 12-bit ADC and all 3

channels o f data were passed to a “HandyCore” (HandyWave, 2004) Bluetooth

module for transmission (“live”) to a PC’s serial port. The data were then plotted on

the PC screen.

The interface to the Bluetooth module employs an “RS-232” protocol, which can

support baud rates from 2,400 - 115,200 baud. On the PC, LabView 6.1 (NI, 2001)

was used to create a program for displaying the ECG traces. The program again

received ECG data via a PC’s serial port at 115,200 baud.

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 97

In p u ts

ECG

Subject

B lu e to o th
M o d u le

Figure 5.10: A schematic representation of a system for ECG monitoring.

Note that no ECG recordings were made in the study described here. Instead, to allow

an accurate measurement of jitter, a National Instruments “NI PCI-6035E” (NI, 2000)

and LabVIEW 6.1 (NI, 2001) were used to generate 100 Hz sinusoidal signals which

were subsequently processed using a passive low-pass filter (500 Hz cut-off). The

signals were then sampled by the ECG unit, and passed (via the Bluetooth link) to a

PC where they were subsequently analysed.

From the requirements of the design in the case study, the maximum level of jitter

which will not degrade any accuracy of ADC is 0.15 ps (considering at 250 Hz input

frequency: see Equation 5.5).

5.6.1 The task set

All the ECG tasks were periodic, and had the characteristics shown in Table 5.4. The

worst-case execution time was measured using an oscilloscope when the system ran at

full speed (60 MHz).

Table 5.4: ECG task set parameters

Task Period (ms) Offset (ms) WCET(ps) RJT Utilisation

Signal Acquisition 2 0 70 Y 0.035

Transmission 2 1 400 N 0.2

Switch Read 100 0 20 N 0.0002

Link Check 200 0 20 N 0.0001

Status Display 400 0 30 N 0.000075

The system’s clock tick interval was 1 ms. The Signal Acquisition task was defined as

an RJT and ran every 2 ms to meet the requirement of a 500 Hz sampling rate. The

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 98

Data Transmission task ran at the same period but with a 1 ms offset (to avoid task

collisions). The remaining three tasks were executed in the “slack time” after the

execution o f the Signal Acquisition task.

The overall utilisation when the system running was 0.236 U. The utilisation during

the “Offset 0” slot (see Table 5.4) varied from 0.035U to 0.036U, while the utilisation

in the “Offset 1 ” slot was constant at 0.2U.

5.6.2 Comparing jitter levels

For assessing jitter in this case study, the ECG application was run with the three

scheduling algorithms measured the intervals between the start times of the signal-

acquisition task, again using the PCI-6035E data acquisition card. Measurements

were taken from 10,000 consecutive samples: the results are shown in the form of

histograms in Figure 5.11 to Figure 5.13.

-10000

<00)
a
Ere(O

0)A
E
3z

1000

100

10

1 -I------------------------,----------------------- ,------------------------------------ ,------------ ,------------------------

-3.00E-05 -2.00E-05 -1.00E-05 0.00E+00 1.00E-05 2.00E-05 3.00E-05

Jitter (sec)

Figure 5.11: Histogram of period jitter for ECG study (T T C). (Phatrapornnant and Pont 2006,

IEEE Transactions on Computer, V o l.55(2), © 2 0 0 6 IE E E)

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 99

10000

1000
(A©
Q.
Ea(0
*5 100
k0)
SI
E
3z

10

1
-3.00E-05 -2.00E-05 -1.00E-05 O.OOE+OO 1.00E-05

Jitter (sec)
2.00E-05 3.00E-05

Figure 5.12: Histogram of period jitter for ECG study (T T C -D V S). (Phatrapornnant and Pont

2006, IEEE Transactions on Computer, V o l.55(2), © 2 0 0 6 IE E E)

10000

<n0)
a
Era(/>

vSi
E3

1000

100

10

1 -I------------------------,----------------------- 1--------------------- LM--------------------- ,------------------------ ,------------------------
-3.00E-05 -2.00E-05 -1.00E-05 0.00E+00 1.00E-05 2.00E-05 3.00E-05

Jitter (sec)

Figure 5.13: Histogram of period jitter for ECG study (T T C -jD V S). (Phatrapornnant and Pont

2006, IE E E Transactions on Computer, V o l.55(2), © 2 0 0 6 IE E E)

From Figure 5.11 it is clear that jitter measured from the TTC algorithm is approxi

mately +/-0.1 ps. The jitter level in the system using TTC-DVS (Figure 5.12) is

approximately -7.6 ps to +9.6 ps, while the level for the system using TTC-jDVS

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 100

(Figure 5.13) is from approximately -0.7 ps to +0.8 ps. Overall, these results are

consistent with the findings from the artificial task set (in Section 5.4).

The jitter level that can have an impact on data accuracy in the ECG system can be

calculated using Equation 5.5 and information about the ECG setup given in Section

5.6. With a 250 Hz sampling rate and a 12-bit ADC, the maximum allowable jitter

will be 0.155 ps. In other words, if jitter levels of the sampling task are less than

0.155 ps, they will not have an impact on data accuracy. From the results, the TTC

algorithm had a total jitter of approximately 0.2 ps: this means that there may be an

impact on the least significant bit (LSB) in the sampled data. When employing the

TTC-DVS algorithm, the data loss reaches a level of 7 LSBs, while with the TTC-

jDVS algorithm can recover 3 bits (up to 4 LSBs are lost).

Note that modified algorithms for TTC-jDVS (TTC-jDVS2 and TTC-jtDVS2) which

can improve levels of jitter are presented in Appendix C and Chapter 7.

5.6.3 Comparing CPU power consumption

To compare the power consumption of the CPU core in this study, a National

Instruments PCI-6035E data acquisition card was used to measure the current and

voltage characteristics of the core.

0.018

0.016

g 0.014
<D
£ 0.012 o

CL

2 0.01 o o
2 0.008
O
g, 0.006ro
| 0.004

0.002

0
TTC TTC-DVS TTC-jDVS

Figure 5.14: The comparison of CPU core power consumption of TTC , TTC -D VS and

TTC-jDVS. (Phatrapornnant and Pont 2006, IEEE Transactions on Computer,

Vol.55(2), © 2006 IEEE)

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 101

The average CPU power consumption was found to be 5.498 mW, 8.165 mW and

15.861 mW for the TTC-DVS, TTC-jDVS and TTC algorithms respectively (see

Figure 5.14).

5.7 Discussion

In this section, the results presented in this chapter are compared with those obtained

by other researchers. Ways in which TTC-jDVS might be applied on a wider range of

hardware platforms is also discussed.

5.7.1 Other work on jitter and DVS

There have been only a small number o f studies which have considered jitter and

DVS. As discussed in Section 2.4.1, Lee et al. (2005), Son et al. (2001), Pouwelse et

al. (2001c) and Nurvitadhi et al. (2003) have studied the impact o f DVS on a video

decoding application, focusing on decoding-time prediction. The only previous study

to have considered the impact of DVS on real-time scheduling is by Mochocki et al.

(2005).

Mochocki et al. (2005) introduced JADVS (RM-based) algorithm to schedule tasks in

order to meet jitter constraints. Unlike the studies presented in this thesis, the main

aim o f the Mochocki algorithm was to minimise jitter in the finishing times of tasks.

Otherwise, based on RM scheduling, it cannot be guaranteed that a particular task

scheduled by the JADVS algorithm will meet the jitter constraints unless all tasks meet

the jitter constraints (even if high priority is assigned to a task which is intended to

have with low levels of jitter). This is because JADVS applies jitter constraints to all

tasks in the set. This may not be necessary for many applications and - if the jitter

requirement is low - it is difficult or impossible to schedule tasks to meet the

requirement. For example, in a signal-acquisition application, there may be only a

single sampling task that is required to run “jitter-free”, in order to preserve data

accuracy from an ADC.

Furthermore, in JADVS scheduling, the execution jitter (and also sampling jitter) can

be large because: (i) tasks are allowed to run with various frequencies and (ii) task

pre-emption can occur. In addition, Mochocki et al. (2005) did not study the impact

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 102

of DVS on system overheads (task scheduling, frequency/voltage calculation and

transition times): as has been demonstrated in this thesis, these factors can have a

significant impact on both task timing and energy-savings.

5.7.2 Power consumption results

Although TTC-jDVS has demonstrated good levels o f jitter reduction (when with

TTC-DVS) such reductions are of little value if the savings in CPU power consump

tion obtained in TTC-DVS are lost when the jitter-reduction algorithm is incorpo

rated.

Looking at the power consumption results presented in this chapter (Section 5.6.3), it

can be expected that applications scheduled using TTC-jDVS will consume more

power than those scheduled using TTC-DVS, because o f the impact of the jitter

guardian and the fact that the RJTs run at a higher speed. However, when compared

with the TTC algorithm, TTC-jDVS still saves power at both low and medium

workloads. For high workloads, where there is no available slack time, TTC-jDVS

runs at the highest speed (like TTC) but consumes more power, due to the more

complex scheduling algorithm. Overall - in the case study - when compared with the

TTC power consumption, TTC-jDVS showed a reduction o f approximately 48%.

It is difficult to make a detailed comparison between these results and those from

other DVS studies (because the algorithms and application areas vary considerably).

However, the available results do suggest that - even with the additional scheduler

load required to reduce jitter - the results obtained here are in line with those from

other DVS studies. For example, in (Lorch and Smith, 2001), using simulations based

on real workloads, basic DVS schemes have been shown to reduce the CPU energy

consumption of by - on average - around 54%, with a more advanced algorithm

(PACE) further reducing CPU energy consumption by an additional 20%. Other

researchers have demonstrated enrgy savings - using advanced DVS schemes (such as

feedback-based EDF scheduling) - of up to 64% when compared with simple DVS

schemes (Zhang and Chanson, 2003). Similarly, Pering showed his algorithms reduce

system energy by about 46% while maintaining the peak performance demanded by

general purpose systems (Pering et al., 1998a).

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 103

Please note that none of the alternative algorithms mentioned has been designed to

reduce jitter levels. Please also note that Mochocki et al. (2005) do not report on

power consumption in their study.

5.7.3 Working with other hardware platforms

The empirical results presented in this chapter have been demonstrated only on a

single platform. However, this is based on a popular (ARM) core, with the conse

quence that TTC-jDVS can be directly applied in a wide range o f existing microcon

trollers and microprocessors (e.g. Intel StrongARM SA llxO , STMicroelectronics

STR71x, Philips LPC 2000 series) without difficulty. On other platforms with sup

port for frequency scaling these techniques can be readily adapted: such platforms

include x86-architecture processors (e.g. AMD : K6-2, K6-3, Duron, Athlon, Intel:

Pentium III, Pentium 4, Pentium M), Transmeta Crusoe, Intel XScale, UltraSPARC-

Ill.

More generally, an external frequency scaling device (such as that described in

(Lattice, 2005)) allow the techniques described in this study to be applied with an

even wider range of “off the shelf’ processors.

To overcome the limitation of software, it is possible to improve performance of the

TTC-jDVS algorithm by implementing hardware. For example, conventional

microcontroller designs tend to have the inputs to the timers and the CPU clock linked

together, meaning that the timer reload values (for the scheduler ISR) must be

adjusted when the clock frequency is changed: as it was discussed in Section 4.7.1

this is the main cause of tick jitter problems. The details o f hardware development to

improve the algorithm performance are illustrated in Chapter 7.

For more advanced improvement, it can have the option o f moving the TTC-jDVS

algorithm into SoC designs. For example, it can have dedicated timer units to

facilitate jitter sensitive tasks or any dedicated hardware to reduce complexity of

hardware. As recent studies have shown, DVS algorithms may be readily applied in

such designs (Burd et al., 2000; Schmitz and Al-Hashimi, 2000; Lee et a l , 2002;

Flautner et al., 2003). Direct application of the TTC-jDVS algorithm in SoC designs

is therefore a straightforward proposition.

Chapter 5: Design and evaluation of a reduced-jitter TTC/DVS scheduler 104

5.8 Conclusion

In this chapter, the impact that the use of DVS has on the levels o f both clock and task

jitter in TTC applications has been considered. A modified DVS algorithm (TTC-

jDVS) which can be used where low jitter is an important design consideration has

been described. The effectiveness of the modified algorithm has been demonstrated

on both a data set made up of artificial tasks, and in a more realistic case study. The

results obtained here have been compared with those from other studies and ways in

which TTC-jDVS can be applied using a range of SoC and “off the shelf’ embedded

platforms have been considered.

Overall, it can be concluded that use of DVS is a practical way o f reducing CPU

energy consumption even in embedded systems with severe resource constraints and

for which low levels of jitter are an important design consideration.

Chapter 6

Working with a hybrid scheduler

In Chapter 5, the TTC-jDVS, algorithm fo r reducing jitter in TTC systems employing

DVS, was demonstrated. In this chapter, alternative solutions fo r situations in which

a TTC-jDVS design is not appropriate are presented. Specifically, the studies in this

chapter explore ways to implement DVS in a TT “hybrid” design13.

6.1 From TTC to TTH

Chapter 5 explored ways in which DVS could be incorporated in a very simple “time

triggered co-operative” (TTC) scheduling algorithm in order to reduce power con

sumption and also maintain the low-jitter characteristics. The resulting TTC-jDVS

algorithm was shown to achieve a 48% power reduction (compared to an equivalent

system based on TTC) in a representative case study.

Of course, a TTC solution is not always appropriate. As Allworth has noted: “ [The]

main drawback with this [co-operative] approach is that while the current process is

running, the system is not responsive to changes in the environment. Therefore,

system processes must be extremely brief if the real-time response [of the] system is

not to be impaired.” (Allworth, 1981). It can be expressed this concern slightly more

formally by noting that if a system is being designed which must execute one or more

tasks of (worst-case) execution time e and also respond within an interval t to external

Part of this chapter also in Phatrapornnant, T. and Pont, M.J. (submitted a).

Chapter 6: Working with a hybrid scheduler 106

events then, in situations where t < e, a pure co-operative scheduler will not generally

be suitable.

For example, for signal-processing applications, the execution of processing tasks

(e.g. Fast Fourier Transform, data encryption) normally takes longer than the

sampling interval of the signal acquisition task. A TTC design cannot match this

combination of sampling and processing requirements, unless developers manually

partition the signal processing task to match the sample rate for the signal acquisition

task. Such a partitioning process may be difficult to produce and maintain.

In such cases, the TTH design (introduced in Section 3.4.4) provides an alternative.

In the TTH design, limited pre-emption is allowed and it is possible to have different

operating frequencies for the pre-empting and co-operative tasks.

From the point of view of a DVS algorithm, it is clear that slack time (alone) may not

be the best source of information when determining appropriate voltage / frequency

pairs for use with a TTH scheduler. As an alternative, a “power model” is proposed

in this chapter for jointly calculating the appropriate frequency/voltage pairs for

running tasks in the TTH scheduler.

This chapter explores and evaluates an alternative low-energy, low-jitter scheduler for

embedded systems where the TTC design is not appropriate.

6.2 A TTH Scheduler

U pdate ISR
(Supervisory mode)

D ispatcher
(User mode)

Time

Figure 6.1: TTH scheduling diagram

Chapter 6: Working with a hybrid scheduler 107

As discussed in Section 3.4.4, the TTH scheduler is a modification o f the TTC sched

uler. In the TTC scheduler, the Update is used to update a flag only but, in the TTH

design, it allows to execute a single short task to pre-empt another co-operative tasks,

(see illustrated in Figure 6.1). Thus, the TTH scheduler supports any number of co

operatively scheduled tasks as usual, and also supports a single pre-emptive task - it

breaks the nature of purely co-operative scheduler. For the important rule o f the TTH

design, the task dispatched by the Update must be the highest frequency and very

short (e.g. less than 50 percents of tick interval - preferably much less), otherwise

overall system performance will be impaired (Pont, 2001). Analogous to the rate

monotonic algorithm, the pre-emptive task is viewed as the highest priority task. The

advantage of the TTH scheduler is that it greatly simplifies the system architecture

compared to a fully pre-emptive solution. In particular, it does not need to implement

a context switch mechanism.

The Update function of the TTH scheduler is shown in Listing 6.1. The part of the

pre-emptive task schedule is added into the TTC’s Update. After the tick interrupt

taking place, the Update will check the due to run of the pre-emptive task. If it is due,

the pre-emptive task is executed within the ISR while the mechanism to execute co

operative tasks is the same as running in the TTC scheduler.

begin UPDATE ISR:

T ick _ C o un t ++ ;
if — D e la y .p re em p _ T a sk == 0 then

r e l e a s e preem p_Task ;
if i t i s p e r i o d i c t a s k then

r e l o a d D e la y .p reem p _ T a sk = P e r io d .p r e e m p _ T a sk ;
end if

end if
r e s e t t im er _ in te r r u p t_ F L A G ;

end UPDATE

Listing 6.1: Pseudo code of the Update function in the T TH scheduler

6.3 Determining speed-settings in TTH designs

In a TTH schedule, it is more difficult to determine the available slack time because

task pre-emption can take place and it must be taken into account the number o f pre-

Chapter 6: Working with a hybrid scheduler 108

emptive task calls that occur during the execution of a given “co-operative” task

(Figure 6.2).

Deadline
i k of Task CaSpeed

P r e - e m p t i v e
t a s k

Speed
Slack
Time

1 S l o t

Figure 6.2: Example illustrating the use task stretching in a TTH scheduler

Having determined the available slack time, it is then needed to determine the clock

frequency for both co-operative and pre-emptive tasks. Because the clock speed of

the pre-emptive task will have an impact on the co-operative task, and vice versa, it

must be determined the two speeds simultaneously. This is challenging because it is

possible to have two or more combinations of speed settings which will allow the

tasks to complete within the available slack time and these combinations may not

consume the same amount of energy.

For example, consider two possible design options for a hypothetical system. In the

first, the pre-emptive task is run at the lowest frequency (to save power) with the

result that the co-operative task must run at full clock speed in order that it meets its

deadline. In the second design option, both tasks are run at a medium speed (and

again meet the deadlines). Even in such a general example, it is difficult to say which

of these options will result in lower energy consumption. In addition - in a real

system - there will be further constraints: for example, there will be a limited number

of possible frequency settings.

To deal with these issues, a solution based on what it is referred to here as a “power

model” of the system is proposed. The details of the power model are presented in the

following section.

Chapter 6: Working with a hybrid scheduler 109

6.4 Implementing DVS in TTH systems

In this section, it considers the challenges involved in incorporating DVS in systems

with a TTH software architecture. A power model is introduced and the way to

implement it into the design is described.

6.4.1 TTH scheduler used in these studies

There are many possible ways of implementing a TTH scheduler. One implementa

tion (for an 8051 microcontroller) is described in full elsewhere (Pont, 2001): this

code was adapted for an ARM processor for use in the present study. A brief

overview of the ARM implementation will be provided in this section.14

During normal operation of systems using this TTH scheduler implementation, the

first function to be run (after the startup code) is main (). Function main () then calls

Dispatch () which in turn launches the co-operative task(s) currently scheduled to

execute: it will be assumed in this discussion that a task c_Task() may be called.

Once any co-operative tasks have completed their execution, Dispatch () calls

sleep (), placing the processor into a suitable “idle” mode. A timer-based interrupt

occurs every millisecond (in typical implementations) which either wakes the

processor up from the idle state or pre-empts a long co-operative task. In either case,

the ISR update () is invoked, by means of an “IRQ wrapper” function, update ()

then directly calls the pre-emptive task (here it will be assumed this is P Tasko).

Once the pre-emptive task is complete, Update () increments a tick counter. The

function calls then “unwind” back to main (), and Dispatch () is called again. The

cycle thereby continues. This process is summarised in Figure 6.3.

C_Task()

D>spatch()M ain() P_Task()

Figure 6.3: Function call tree for the T TH scheduler (norm al operation)

The hardware testbed employed in these studies is described in Section 4.1.

Chapter 6: Working with a hybrid scheduler 110

Please note that, in most designs, it would be aimed - under normal conditions - to

have the pre-emptive task occupy no more than approximately 10% of the tick

interval.

6.4.2 Applying DVS in TTH designs

If it is assumed that Figure 6.2 provides a model of the system operation, then the

schedulability o f the task set can be determined by means o f Equation 6.1. In this

case, if the total duration of tasks is less than Tsiot, the task set can be scheduled.

Tsh, > WCETc - f.- + (ai)
f c fp

» in l = V 2- (6 - 2)
int

where

Tsiot is duration of a given task slot in the schedule15.

WCETc are worst case execution time o f co-operative task(s).

WCETp are worst case execution time o f pre-emptive task(s).

nint is the number of interruption in the task slot.

Rint is an interruption rate.

fc is the clock frequency for running the co-operative task, f min < fc < fmax•

fp is the clock frequency for running pre-emptive task, f min < fp < fmax.

fmax is the maximum clock frequency o f the system.

fmin is the minimum clock frequency of the system.

However, in a more realistic DVS implementation (see Figure 6.4), it is necessary to

take into account the system overheads, such as the voltage/frequency switching time

and task scheduling overhead.

In this context a “slot” begins with the tick that releases a given co-operative task and ends with
the tick that releases the next co-operative task. For example, in Figure 6.4 the slot is o f length
3 tick intervals.

Chapter 6: Working with a hybrid scheduler 111

Voltage/ Scheduling
Speed

Speed

a switch * i p
Deadline ^{

P
Pre-emptive

task

i Slack J
Time

i
Co-operative

C b tasks
-------------- ^

1 Slot

Figure 6.4: Realistic DVS implementation

Based on this more realistic model of the system operation, Equation 6.3 can be

derived.

_ . (WCETc +(schr .n-t)) .fmax (WCETP + schP).n-t . f xTsht > total tm + ---------e t c ,nt / / J max + --\-------------P------- P / mt J max ^

fc fp

where:

totaljsw is total voltage/frequency switching time in the slot that has value

between 0 and 2 t ^ .nint.

tw is voltage/frequency switching time.

schc is scheduling overhead to schedule co-operative tasks.

schp is scheduling overhead to schedule pre-emptive tasks.

The switching time total can be zero when all tasks are run at the same frequency

or can be t ^ when the frequencies in a slot are the same but those between slots are

different. The maximum value of t o t a l is 2 tsw .nmt.

It is important that it is taken into account the practical realities o f the DVS process.

On the type o f small processor with which it is concerned in this thesis (typically

ARM7TDMI architecture), voltage/frequency switching, t will typically take

around 100-200 ps. This amounts to around 20% of a typical (1 ms) tick interval.

Clearly, for reasons of system performance (as well as jitter reduction) it is needed to

keep the number o f voltage / frequency switches to a minimum.

Chapter 6: Working with a hybrid scheduler 112

6.4.3 Creating and assessing a power model

In order to identify the optimal running speeds for both the pre-emptive and co

operative tasks, a “power model” was created, based on data from an empirical study.

To do this, a target CPU was instrumented. Tasks were executed that required from

0% to (almost) 100% of the tick intervals, using the range o f possible operating

frequencies that the target CPU allowed. The power consumption was measured for

the different options and then plotted: note that, as it would be expected, the results

are consistent with Equation 2.3. In this study, the voltage levels o f each speed from

10 to 60 Mhz are 1.023, 1.034, 1.067, 1.144, 1.254 and 1.375 volts respectively, while

the effective load capacitance was found to be approximately 0.18 nF.

Please note that such a model assumes that the characteristics o f different tasks in the

system will always be the same. This is a simplification, since it is known from

previous studies that each processor instruction consumes different power: for

example Load and Store instructions are more power intensive than other instructions

(Sinha and Chandrakasan, 2001). However, most realistic tasks consist of various

combinations o f instructions and it is assumed here that - over the execution period of

a given task - the average power consumption will be similar.

Given this assumption, Figure 6.5 shows the load characteristics from one CPU core

(LPC2106) which has six speed steps (from 10 MHz to 60 MHz). The load lines are

represented in term of utilisation (% of tick interval, 1 ms in this case) when run at

maximum speed (60 MHz in this example). Therefore, if a task is run at 10 MHz with

full load, it takes around 166 ps at 60 MHz. The results in Figure 6.5 illustrate that

significant average power (or energy) can be saved when running at lower speed (and

also lower voltage). For example, running with full load at 30 MHz consumes the

same average power as running with no load at 60 MHz.

Chapter 6: Working with a hybrid scheduler 113

1 U - boundary

1
o
Q.
£
oo
3
a.o
Q>
0 5
2
CD
> <

0.03 -

0.025 -

0.02 -

0.015 -

0.01 -

0.005 -

0

M easured

P rojected

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E xecu tion tim e at 60 MHz (U)

Figure 6.5: Load characteristics of a Philips LPC2106 processor (A R M 7TD M I core) with 6

speed steps

Given such a model, the power consumption of tasks in one task slot can be predicted

by means of Equation 6.4.

Ptotal ~ Pfreq (U p) PJreq f a c) (6.4)

where:

up is utilisation of pre-emptive tasks in the given task slot.

uc is utilisation of co-operative tasks in the given task slot.

Pfi.eq is power function of CPU which running at clock frequency freq.

n

I-
up — (6.5)

Tsiot

rt

Is
UC = —!=! (6 .6)

Tsiot

The utilisation of pre-emptive and co-operative tasks is defined in Equation 6.5 and

Equation 6.6, where ep and ec are duration of pre-emptive and co-operative tasks

respectively and Tsiot is the length of the corresponding task slot (see Figure 6.6). For

example, if there is a (pre-emptive or co-operative) task which runs periodically every

10 ms and its execution time is 1 ms, its utilisation equals 0.1 when considered at

Chapter 6: Working with a hybrid scheduler 114

maximum frequency, 60 MHz. By looking up from the power model (Figure 6.5), the

average power consumption of CPU core operating at each frequency (and its voltage

pair) can be obtained as follows: P60MHz (0.1) = 10.68 mW, Psomhz (0.1) = 7.72 mW,

P40MHz (0.1) = 5.52 mW, P3omhz (0.1) = 4.04 mW, P20MHz (0.1) = 3.09 mW, and Pjomhz

(0.1) = 2.30 mW.

Figure 6.6: Utilisation of tasks in one task slot

In order to identify the appropriate execution speeds, it is necessary to know the

(worst case) execution times of all tasks, when run at full speed. The power model

can then be used to explore different speed options and determine (if the tasks can be

scheduled) what the resulting power consumption will be. Please note that the search

process is simplified by assuming that (at most) two speeds will be used in each task

slot, one for the pre-emptive task and one for any / all co-operative tasks. Please also

note that the scheduler overhead is not taken into account (at this stage).

0 .8-1

0.7-

0 .6 -

_ 0.5 3
0)
I 0.4
o
iS
w 0.3

M h

C - t a s k
s p e e d

(M H z)

0 .2 -

0 . 1 -

6010 20 30 40 50
P - t a s k s p e e d (M H z)

Figure 6.7: Slack time presented after applying running speeds of an example: eP = 0.1ms,

e c = 0.3ms, 7s/0f = 2ms, and Rint = 1ms

Chapter 6: Working with a hybrid scheduler 115

(a)

Figure 6.8: CPU power consumption: (a) predicted by using power model, (b) measured of

an example: eP = 0.1ms, ec = 0.3ms, Ts/ot = 2ms, and Rint = 1ms

6.4.4 Using the power model: example

The use of the power model is demonstrated in Figure 6.7 and Figure 6.8. For this

example, loads consist of pre-emptive, eP, and co-operative, ec, tasks which have

execution times of 0.1 ms and 0.3 ms respectively (when run at the maximum speed

of 60 MHz) while the task slot duration, Tsiot, is 2 ms. The interruption rate (Rint) is

1 ms.

First, the loads are calculated to determine the execution time at all speeds. Figure 6.7

illustrates the slack time in the task slot after applying the running speeds to the pre

emptive and co-operative tasks. Note that the slack time presented takes into account

the task only (it does not include the scheduler overheads). Please also note that cases

which have utilisation greater than 1 (and cannot be scheduled) are not presented in

the graphs.

Using the load characteristics in Figure 6.5, the power consumption can be calculated

by applying the load utilisation information from Equation 6.4. Figure 6.8(a) shows

power-consumption predictions (for the tasks only) for all load combinations in which

pre-emptive and co-operative tasks are run from 10 MHz to 60 MHz. Figure 6.8(b)

shows the corresponding power-consumption measurements. Please note that a

perfect match cannot be expected since the measured results include the power

0.022

10 20 30 40 50
P-task speed (MHz)

0.012

C-task
Speed

P-task speed (MHz)

Chapter 6: Working with a hybrid scheduler 116

consumption o f the scheduler while the predicted results concern the tasks only. For

reference, the power consumption obtained by prediction, measurements and

prediction errors are shown in Table 6.1. Overall, it can be seen that the predictions

show the same trends as the measured values (as required).

Table 6.1: Power consumption predictions, m easurem ents and prediction errors

C-speed
(MHz)

P-speed (MHz)
10 20 30 40 50 60

Po
w

er
Pr

ed
ic

te
d

(m
W

)

10 - - - - - -

20 - - - 9.228 11.432 14.396

30 - 7.782 8.741 10.212 12.416 15.380

40 - 9.336 10.295 11.766 13.970 16.934

50 - 11.676 12.635 14.106 16.310 19.274

60 - 14.787 15.746 17.217 19.422 22.386

Po
w

er
M

ea
su

re
d

(m
W

)

10 - - - - - -

20 - - - 8.658 10.416 12.461

30 - 6.623 8.272 9 .428 11.051 12.914

40 - 8.034 9 .596 10.774 12..043 13.880

50 - 9.904 11.803 12.759 14.410 15.396

60 - 12.446 14.829 15.969 16.822 18.962

Pr
ed

ic
tio

n
E

rr
or

s
(%

)

10 - - - - - -

20 - - - 6.57 9.75 15.52

30 - 17.50 5.67 8.32 12.35 19.10

40 - 16.21 7.28 9.21 16.00 22.00

50 - 17.89 7.05 10.56 13.19 25.19

60 - 18.81 6.18 7.82 15.45 18.06

It should be emphasised that stretching tasks in order to employ as much slack time as

possible does not always result in minimal power consumption. This is a conse

quence o f the more complex nature of the algorithm that results from the possibility of

pre-emption (and is in contrast to the results obtained with the simpler TTC-jDVS

algorthms and most other studies in this area (Ishihara and Yasuura, 1998a; Pering

and Brodersen, 1998; Shin and Choi, 1999; Lee and Sakurai, 2000; Kawaguchi et al.,

2001; Pillai and Shin, 2001; Swaminathan and Chakrabarty, 2001; Zhang and

Chanson, 2003)).

As an example of this phenomenon, note that, in Figure 6.7, Sample A (in which P-

task run at 20 MHz and C-task run at 30 MHz), and Sample B (in which P-task run at

40 MHz and C-task run at 20 MHz), have the same utilisation, but Sample A

Chapter 6: Working with a hybrid scheduler 117

consumes less power than Sample B. The tasks in Sample C (which are “stretched” to

a lesser extent than those in Sample B) consume less power than those in Sample B.

6.5 The TTH-jDVS algorithm

In this section, the power model (described in Section 6.4.3) is used to reduce power

consumption in systems scheduled using a TTH algorithm. The section begins by

outlining a simple TTH-DVS algorithm. This algorithm is then refined in order to

reduce the levels of task jitter: the resulting algorithm is referred to here as “TTH-

jDVS”.

6.5.1 TTH-DVS scheduling

In TTH scheduler implementation considered in this chapter, the pre-emptive task is

called from (or implemented by means of) an interrupt service routine (ISR) while co

operative tasks are called from a “Dispatcher” routine which runs in an endless w h ile

loop.

In the ISR, the CPU speed is changed before the pre-emptive task is released. Before

returning from the ISR, the speed is set to that o f the corresponding co-operative task.

To determine the speed of these tasks, the power model is used to find the running

speed of pre-emptive and co-operative tasks that gives the minimum power

consumption. The speed-finding process explores all combinations of speed setting

(on a task-slot by task-slot basis), until it completes the whole cycle. This process is

executed (without dispatching tasks) when the system is initialised. The required

speeds settings are stored in a “circular array” (see Section 4.4.3), which has a size

equal to the number of tick intervals in one complete periodic task cycle. In this case,

the speeds o f pre-emptive and co-operative tasks are set individually. A scheme to

synchronise the circular array pointer with the task slot will then be run before the

scheduler starts. It is emphasised again that each task slot may be longer than the tick

interval.

Chapter 6: Working with a hybrid scheduler 118

6.5.2 Reducing jitter levels in the TTH-DVS algorithm

In the TTH-jDVS algorithm, a three-step technique is incorporated in TTH-DVS in

order to minimise the jitter caused by DVS. The three steps are described in this

section.

6.5.2.1 Assumption

It is assumed that it may not be necessary to run all tasks with low jitter. Specifically,

in the TTH-jDVS algorithm, the intention is to minimise the jitter associated only

with the pre-emptive task: co-operative tasks are run as normal. This is consistent

with the fact that, in a TTH design, the pre-emptive task will generally be used for

time-sensitive operations (notably data sampling).

6.5.2.2 Tick compensation

Tick compensation is a process which is used to minimise the (tick) jitter which can

result from alterations to the timer registers in a scheduled system when DVS is

employed. The tick drift is minimised by re-adjusting the timer registers when the

CPU operating frequency is changed. The process is described in detail in Section

5.2.1.

Please note that in TTH designs, it is possible to have more than one frequency switch

in each tick interval, if the speeds o f pre-emptive and co-operative tasks are different.

6.5.2.3 Jitter guardian

A “jitter guardian” is a mechanism used to reduce release jitter which can result in

scheduled systems when DVS is employed.

In TTH-based schedulers, the jitter guardian is inserted in order to reduce the

variation in the scheduler overhead prior to the release o f the (jitter-sensitive) pre

emptive task. Normal (co-operative) tasks are dispatched without any delay. Figure

6.9 illustrates how the jitter guardian protects the DVS system suffered from release

jitter as a result o f variations in the scheduler overhead.
. V oltage/frequency
sw itch & Scheduling

re le a s e ta s k
p e r io d

Fixed _
r e le a s e ta s k

p e r io d

___________ F ixed _
Jitter re le a s e ta s k

Guardian p e rio d

Figure 6.9: Reducing release task jitter by jitter guardian

Chapter 6: Working with a hybrid scheduler 119

6.5.2.4 Determining the running speed of the pre-emptive task

Suppose that it has a (pre-emptive) task which has a release time that is completely

free of jitter. Further suppose that, in the middle of this task, it performs a data-

sampling action. Unless the task runs at the same speed every time it is executed,

there will be jitter in the sampling action. To avoid such problems, the task must

always be run at the same speed.

In the TTH-jDVS algorithm (see Figure 6.10) the pre-emptive task’s speed is set first.

Possible speeds for the co-operative tasks are then explored and the power

consumption is calculated throughout the whole cycle. This process is repeated, as

necessary, starting from different pre-emptive speeds. The combination of speeds

which consumes the least power will be selected. This speed-finding process is

carried out when the system is initialised and the values are stored in a circular array.

V oltage/frequency
switch & Scheduling

sa m e sp e e d
FixedF ixed________ F ixed ____________ (j ^ F ixed __________________ F ix ed J j

s a m p lin g sa m p lin g ^ s a m p l i n g | j
__________ p e r io d _______________ ^ ■ r —r ____ p e r io d _________________________ .p e rio d ______________

1- BV iTTnH hr
Figure 6.10: Reducing sampling period jitter by fixed running speed

6.5.3 Pulling it all together: TTH-jDVS scheduling

The TTH-jDVS algorithm incorporates all o f the features discussed in this section. In

addition, in the TTH-jDVS ISR, the jitter guardian is inserted before the pre-emptive

task is released. In this chapter, the jitter guardian delay, which is pre-calculated in

the initialisation phase, is set by a timer and the system then enters “idle” mode.

When the timer matches the delay value, the system is awakened up by the interrupt

and runs the pre-emptive task. This process helps to minimise both power consump

tion and jitter.

6.6 Evaluating the TTH-jDVS algorithm

To evaluate the TTH-jDVS algorithm, a series o f representative empirical studies was

conducted. The studies are described in this section. Please note that the hardware

platform employed in these studies is detailed in Section 4.1.

Chapter 6: Working with a hybrid scheduler 120

6.6.1 Assessing the impact of TTH-jDVS on jitter

To explore the impact of the jitter compensation algorithm, a series o f tests using an

implementation of TTH-jDVS adapted from the TTH scheduler described in the

previous section was conducted.

6.6.1.1 Tick jitter

In order to measure tick jitter, two tasks (one co-operative, one pre-emptive) were run

at various random speeds (10 to 60 MHz). The tick interval was set to 1 ms. There

were two frequency switches within each tick interval. The tasks were scheduled

using TTH-DVS and TTH-jDVS. For comparison, the tasks were also scheduled

using a TTH scheduler (Pont, 2001), in this case at a fixed speed of 60 MHz. The

jitter measurements were based, in each case, on 10,000 consecutive samples. Please

note that the tick measurement in this study was probed at the interrupt signal

generated by a timer.

For the TTH-DVS algorithm, as illustrated in Figure 6.11, the jitter the range was +/-

3 ps (see Table 6.2). The corresponding test run using the TTH-jDVS algorithm

(Figure 6.12) gave a jitter range of +/- 0.3 ps. No measurable jitter was found for the

TTH algorithm in these tests.

Table 6.2: Comparing tick jitter run by T T H -D V S , T T H -jD V S , and T T H algorithms

Jitter (ps)
Max Min Total

TTH 0.0 0.0 0.0
TTH-DVS 2.9 -3.0 5.9
TTH-jDVS 0.3 -0.3 0.6

Chapter 6: Working with a hybrid scheduler 121

10000

1000

100

1.00E-05 0.00E+00 1.00E-05
Jitter (sec)

-2.00E-05 2.00E-05

Figure 6.11: Histogram of tick jitter in T TH -D V S

10000

1000

(00 Si
Era(/>
■s 100

1
E
3
Z

2.00E-05-2.00E-05 1.00E-05-1.00E-05 0.00E+00

Jitter (sec)

Figure 6.12: Histogram of tick jitter in TTH -jD V S

6.6.1.2 Release jitter

To explore the impact of variable speed on task release jitter, two tasks were again set

up (see Table 6.3). In this case Task P was a pre-emptive task and Task C was a co

operative task. Task P was run every 1 ms while Task C was run every 10 ms.

Chapter 6: Working with a hybrid scheduler 1 2 2

To study the influence of the speed of the preceding task on the pre-emptive task,

TaskC was run with a random speed (10 to 60 MHz) while the running speed of

TaskP was fixed for each experiment (again in the range 10 to 60 MHz). The

intervals between start times of the pre-emptive task were measured: the results are

shown in Figure 6.13.

Table 6.3: Task set parameters

Task WCET (ms) Period (ms) Phase

P 0.025 1 0

C 1 10 0

TTH-jDVS (max) —*— TTH-jDVS (min)
o TTH (max) o TTH (min)
x TTH-DVS (max) x TTH-DVS (min)

3.00E-06

2.00E-06

1.00E-06

> 0.00E+00
Q "P
I

E -1.00E-06
i"
t

-2.00E-06

-3.00E-06

m 20

3.00E-04

2.00E-04

1.00E-04 o (/)

0.00E+00
S
</)>Q

-1.00E-04

-2.00E-04

-3.00E-04
C lock fr e q u e n c y (MHz)

Figure 6.13: Minimum and maximum release jitter level of pre-emptive task at speed 10-60

M Hz run by TTH-jDVS, TTH -D V S and TTH

Figure 6.13 shows that, in this study, average release jitter from TTH-DVS was in the

region of +/- 200 ps, while that of TTH-jDVS was in the region of +/-0.6 ps and that

of TTH was in the region of +/-0.1 ps. Overall, the use of TTH-jDVS reduced the

level of release jitter by a factor of approximately 500 when compared with TTH-

DVS.

Chapter 6: Working with a hybrid scheduler 123

6.6.2 Assessing the impact of TTH-jDVS on CPU power consumption

In order to begin to assess the power-saving ability of the TTH-jDVS algorithm, three

schedulers with 1 ms tick intervals (TTH, TTH-DVS, TTH-jDVS) were again used, as

in the study described in Section 6.6.1.

To compare the power consumption, 4 dummy tasks (one pre-emptive and three co

operative) which utilised between 10% and 90% of the available CPU time (when run

at the highest speed) in the tick interval (represented as 0.1 U to 0.9 U in Table 6.4)

were created. Each dummy task was implemented using a simple loop, adapted to

give the required duration. The 1 ms period of the pre-emptive task was set to test the

scenario in which the scheduling overhead is high. In this case, with two voltage/

frequency switches per tick interval, the overhead is around 0.36 ms (36%) of the

CPU time. The execution times and other parameters o f this task set are shown in

Table 6.4.

Table 6.4: Task set parameters for assessing power consumption

Task Period

(ms)

Phase Execution time (fis)

0.1 U 0.2 U 0.3 U 0.4 U 0.5 U 0.6 U 0.7 U 0.8 U 0.9 U

P 1 0 25 25 25 25 25 25 25 25 25

Ca 4 0 100 300 400 700 900 1000 1400 1800 1900

Cb 4 2 100 200 400 500 600 700 500 500 800

Cc 4 3 100 200 300 300 400 600 800 800 800

To perform this empirical comparison, the task sets in Table 5.3 were executed using

TTH, TTH-DVS and TTH-jDVS algorithms. The average power consumption of the

CPU core was measured in each case and is shown in Figure 6.14.

Chapter 6: Working with a hybrid scheduler 124

— t— TTH TTH-DVS —•— TTH-jDVS

0.035

0.03

0.025

g> 0.015

0.01

0.005 -
/s'

0.1 0.2 0.3 0.50 0.4 0.6 0.7 0.8 0.9 1

Task Utilisation

Figure 6.14: Power consumption comparison of scheduling algorithms at different load

From Figure 6.14, it is clear that the TTH power consumption is almost linearly re

lated to the workload. It can also be seen that TTH-DVS is the most power-efficient

of the algorithms in this study, followed (closely) by TTH-jDVS. The TTH-DVS

algorithm consumes less power than TTH up to 0.8 U because, at 0.7 U and 0.8 U,

Task Cb, which has 500 ps duration, could be run at lower speed while the rest were

run at the maximum speed. TTH-jDVS consumes less power than TTH up to 0.6 U

while, at 0.7 U - 0.9 U, consumes slightly more power than TTH. At 0.6 U, TTH-

jDVS can consume less power than TTH-DVS because the former algorithm calcu

lates the power consumption over the whole task cycle.

6.7 Case study: Encrypted wireless ECG monitoring

To illustrate the discussions in this chapter, the TTH-jDVS algorithm is applied in a

real-world case study. The problem is discussed in Section 6.7.1, and the task set

used is described in Section 6.7.2. The results are compared and discussed in Section

6.7.3.

6.7.1 Problem description

The case study involves a wireless electrocardiogram (ECG) system and is based on

the design described in Section 5.6.

Chapter 6: Working with a hybrid scheduler 125

In the system considered here, three standard leads (Lead I, Lead II, and Lead III)

were recorded at 1 kHz. The 3-channel electrical signals were sampled using a (12-

bit) ADC. After sampling, the samples were encrypted (16 samples at a time) using a

“blowfish” algorithm (see (Schneier, 1993; Kocher, 1997)). A synchronising byte

was then added and the data were passed to a “Bluetooth” module for transmission to

a notebook PC, for analysis by a clinician.

In the version o f this system discussed here, the following tasks were employed:

• Sample the data continuously at a rate o f 1 kHz. Sampling takes less than 0.1 ms.

• When it has 16 samples (that is, every 16 ms), encrypt the data, a process which

takes a total of 1.5 ms while the data transmission process which sends 97 bytes

of encrypted data with a synchronising byte takes 8.5 ms.

The execution time of both data-processing tasks is greater than the sampling period.

It is assumed that the tasks cannot be divided. Thus, a TTC design is not appropriate.

6.7.2 The task set

The wireless ECG unit developed for this study executed 6 tasks. All the ECG tasks

were periodic, and had the characteristics shown in Table 6.5. The worst-case

execution time was measured using an oscilloscope when the system ran at full speed

(60 MHz).

Table 6.5: ECG task set param eters

Task Period (ms) Phase WCET(ps) Pre-emptive

Signal Acquisition 1 0 30 Y

Encryption 16 0 1200 N

Transmission 16 3 8500 N

Switch Read 80 0 20 N

Link Check 160 0 20 N

Status Display 400 0 30 N

6.7.3 Results

In this case study, the ECG application was run in order to assess the tick and task

jitter. The runs involved one of three scheduling algorithms (TTH, TTH-DVS or

TTH-jDVS). In each case, the intervals between the start times o f the tick (interrupt)

Chapter 6: Working with a hybrid scheduler 126

and start times of the signal-acquisition task were measured. The results are shown in

Table 6.6.

The TTH results show that there is no measurable tick jitter in this system. However,

there is task jitter (in the range of +/- 0.4 ps). This task jitter occurs because the time

taken to respond to an interrupt depends which instruction is currently being

executed16. With the TTH-DVS algorithm, the voltage/frequency switch causes tick

jitter o f around +/- 2.8 ps, while the task jitter is in the range +/- 188 ps. With the

TTH-jDVS algorithm, the tick jitter was in the range o f +/- 0.1 ps while task jitter

was in the region of - 0.1 ps. Overall, the results from the TTH-jDVS algorithm were

significantly better than those obtained for the TTH-DVS algorithm in this study.

From the jitter levels shown in Table 6.6, the 12-bit ADC used with the TTH

algorithm will function as a 9-bit ADC (because the three least significant bits will be

lost). The TTH-DVS algorithm will suffer more: here, with jitter levels of 318.2 ps,

up to 11 bits (out of 12) will be lost. By contrast, with the TTH-jDVS algorithm, a

full 12 bits o f data resolution will be obtained.

Table 6.6: Tick and release jitter m easured

Tick-jitter Release-jitter Power
(sec) (sec) consumption

max min max min (watt)
TTH 0.00e-06 0.00e-06 0.40e-06 -0.40e-06 0.0242
TTH-DVS 2.40e-06 -2.80e-06 188.60e-06 -129.60e-06 0.0205
TTH-jDVS 0.10e-06 -0.10e-06 0.00e-06 -0.10e-06 0.0167

The power-consumption figures from this study are also shown in Table 6.6. It is

clear that the TTH algorithm results in the highest average (CPU) power requirements

(around 24 mW). The TTH-DVS algorithm results, in this case, a power consumption

of around 20 mW while the TTH-jDVS algorithm results in a power consumption of

around 17 mW. Overall, in this study, use o f TTH-jDVS reduces the power

consumption by around 30% when compared with the use o f the original TTH

algorithm.

This is behaviour that it would be expected to see in a simple TTH implementation. Techniques
for reducing such jitter are discussed elsewhere (Maaita and Pont, 2005).

Chapter 6: Working with a hybrid scheduler 127

6.8 Discussion

The use of power model in this study is limited for the specific processor model

“Philips LPC2106”. To work with another processor model, it is required to

reconstruct it own power model. The power model can be obtained by measuring

power consumption from the real system. Firstly, the idle power values of CPU core

operating at each frequency/voltage pair are needed to know - by measuring when

CPU is idle. Also, the dynamic power can be obtained by measuring the CPU core

power consumption at full load of each frequency/voltage pair. Thus, the load lines

(from 0 to 1 utilisation) of each frequency/voltage pair can then be drawn. Alterna

tively, the load line can be generated if the effective capacitance is known - by

measuring only one dynamic power value (at full load) and then using dynamic power

equation (Equation 2.3) to find the effective capacitance o f processor, C ej j . With the

idle power o f each frequency/voltage pair and the effective capacitance, the load lines

can be drawn by using the equation.

In the case that the power model cannot be generated (or creation o f such a model

proves to be too difficult), lowering the CPU frequency/voltage to exploit slack time

as much as possible is still an effective way for saving energy (even though it may not

be the optimal approach).

Moreover, using the power model for determining the running frequency/voltage pairs

is costly (in terms of time). It may be possible to adapt this technique for online DVS

scheduling but the time overhead is an issue that would need to be considered.

6.9 Conclusions

As discussed in the beginning of this chapter, a TTC scheduler is not always suitable

and - in a range of designs (including a wide range o f control and condition-

monitoring applications) a TTH scheduler is more appropriate. The use o f a TTH

scheduler allows the system designer to create a static schedule made up of (i) a

collection o f tasks which operate co-operatively and (ii) a single - short - pre-emptive

task. In programming terms, the difference between a TTC and TTH design is very

small: however, the possibility of pre-emption leads to substantial changes in system

Chapter 6: Working with a hybrid scheduler 128

behaviour, and makes it significantly more difficult to incorporate a DVS algorithm in

low-jitter systems.

The solution - the TTH-jDVS algorithm, presented here - is a novel voltage schedul

ing based on a “power model”, constructed in advance (from empirical measure

ments) and giving data which is used, before the system begins executing, to deter

mine an appropriate task schedule. The effectiveness of this algorithm using both an

artificial task set and in a more realistic case study has been demonstrated. Overall, in

the case study, the TTH-jDVS algorithm was found to reduce power consumption to a

level of about 70% of that seen for the “raw” TTH algorithm, while keep levels of

task jitter at minimal levels.

Chapter 7

Further reductions of jitter in TTC/DVS

scheduler

In Chapter 5 and Chapter 6, the DVS algorithms which minimised both energy

consumption and jitter level were presented. However, using these algorithms, jitter

could not be completely eliminated. In this chapter, techniques intended to further

reduce jitter are explored: these techniques are based on the use o f an independent
17(hardware) timer unit. .

7.1 The need for additional hardware

As has been seen in previous chapters, the designer faces some significant challenges,

if precise control o f system timing is an important consideration. This is because - in

modem, general-purpose processors - the CPU core and “peripherals” (such as a

timer, UART, analog-to-digital converter, CAN module, etc) are tightly integrated
1 £onto a single chip, in order to maximize performance and minimize cost . In almost

all cases, the CPU core and peripherals share a common clock source which is

expected to remain largely fixed as the device operates. In the event o f high-

Part of this chapter also in Phatrapornnant, T. and Pont, M.J. (submitted b).
This problem is not restricted to a small number o f obscure processors. Advanced modern
processors/microcontrollers (such as those in the STMicroelectronics STR71x and Philips LPC
2xxx families) provide an on-chip timer linked to the processor clock.

Chapter 7: Further reductions of jitter in TTC/DVS scheduler 130

frequency changes to this clock source (as occurs when DVS19-based techniques are

employed) it becomes very difficult to maintain fixed timing in peripheral

components (such as timers), with the consequence that some level of jitter in task

timing is unavoidable. In previous chapters, they demonstrate that, while careful

software design can greatly reduce the impact of DVS on system task timing, it cannot

eliminate such effects completely.

This chapter describes how use of an independent timer unit can eliminate jitter in

TTC-DVS designs.

7.2 Previous work on hardware support for DVS

In support o f DVS-based techniques, various “hardware” solutions have previously

been developed. These include special power supplies and clock generators (see, for

example, ispPAC (Lattice, 2003) and ispClock (Lattice, 2004)). Similarly, Adaptive

Voltage Scaling (AVS) approaches use a 2-wire communication interface between the

ARM processor and the energy management unit (the PowerWise Interface (Hartman

and Dhar, 2004)), to adjust the power supply voltage according the load requirements.

Such approaches can provide effective support for DVS and related techniques:

however - unlike the simple solution proposed here - they do not tackle the underly

ing timing problems.

7.3 Including an independent timer in a TTC-jDVS2 design

Although the TTC-jDVS and TTC-jDVS2 algorithms (see Appendix C) have good

levels of performance, it is clear that software alone cannot completely eliminate jitter

in an embedded system in which the timer clock frequency is varied.

One solution is to employ an independent timer (with its own fixed-frequency clock

source) to drive the system scheduler. Such a solution can be easily implemented

using standard microprocessors or microcontrollers, or in system-on-chip designs.

Dynamic Frequency Scaling involves changing the operating frequency o f a processor only
(supply voltage o f CPU core is fixed).

Chapter 7: Further reductions of jitter in TTC/DVS scheduler 131

For example, consider a standard “8254”, 16-bit programmable interval timer /

counter (Intersil, 2005). An 8254 contains three fully-independent counters which

have six operation modes. For use with in conjunction with what it will be called the

“TTC-jtDVS2” algorithm, the 8254 is used to generate clock tick (scheduling tick)

and jitter guardian signals (“Clock_Tick” and “JGuard” respectively). The process is

illustrated in Figure 7.1.

74164 8254
DO[0-7]

SCLK CtrlQ-Ctrl^

W R

Tick EN

10 MHz

D[0-7]
A[0-1]
W R

CLKO OUTO
GATEO

CLK1 OUT1
GATE1

JGuard EN

Clock_Tick

N JGuard

Figure 7.1: Using a C O T S tim er

To generate the clock tick, Counter 0 of the 8254 is programmed in Mode 2 (Rate

Generator) which is typically used to generate real-time clock interrupts. An output

will initially be high. When the initial count has decremented to 1, the output goes low

(for one clock pulse) and then goes high again. The initial count is then reloaded, and

(in Mode 2), this process is repeated indefinitely. The Counter is enabled if GATE is

high and disabled if it is low.

To generate the jitter guardian signal, Counter 1 o f the 8254 is programmed to run in

Mode 5 (Hardware Triggered Strobe). An output signal is initially high. Counting is

triggered by a rising of GATE1 which is connected to “Clock_Tick” in order to create

a delay related to the clock tick (see Figure 7.1). When the delay count has expired,

the output o f the Counter 1 goes low for one clock pulse and then goes high again.

The output is OR-ed with “JGuard_EN” which is used to control the “JGuard” (see

Figure 7.1). “Clock_Tick” and “JGuard” are connected to external interrupts of the

system processor.

Chapter 7: Further reductions of jitter in TTC/DVS scheduler 132

In the present study, the data were sent serially from the system processor via an SPI

bus and then converted by means of an 8-bit serial-in, parallel-out shift register

(74164). Other controlling signals were generated using GPIO pins on the system

processor. The frequency of the oscillator that feeds to the timer / counter was 10

MHz.

Please note that the behaviour of the 8254 can also be reproduced very easily in an

SoC design (see Appendix D).

7.4 Assessing the modified algorithms

In this section, it presents the results obtained from an assessment o f the TTC-jDVS2

and TTC-jtDVS2 algorithms in this section. The hardware platform used in this

section is identical to that described in Section 4.1.

7.4.1 Impact on jitter

The impact of the modified algorithms on jitter behaviour was first explored.

7.4.1.1 Tick jitter

In order to measure tick jitter, a task was run using a random clock speed (from 10 to

60 MHz) using TTC-jDVS, TTC-jDVS2 and TTC-jtDVS2. This task was also run

with a TTC at a fixed speed of 60 MHz. In each case the required tick interval was

set at 1 ms, and the actual tick intervals were measured. Please note that the tick

measurement in this study was probed at the interrupt signal generated by a timer.

The measurements were made using identical equipments that described in Section

5.4.1.1.

Table 7.1 provides detailed results from this comparison, based on an analysis of

10,000 samples in each case. Please note that the tick compensation schemes of TTC-

jDVS and TTC-jDVS2 are identical, and that the tick-compensation values used in

this study were recalculated for use with the modified algorithms. Please also note

that no measurable jitter was obtained for TTC-jtDVS2 and TTC.

Chapter 7: Further reductions of jitter in TTC/DVS scheduler 133

Table 7.1: Comparing tick jitter from the TTC , TTC -jD VS , T T C -jD V S 2 and TTC -jtD VS 2

algorithms

Jitter (ils)
Max Min Total

TTC 0.0 0.0 0.0
TTC-jDVS 0.2 -0.2 0.4
TTC-jDVS2 0.2 -0.2 0.4
TTC-jtDVS2 0.0 0.0 0.0

7.4.1.2 Task jitter

To explore the impact of variable speed on task release jitter, the experimental setup

carried out in this section is identical to that described in Section 5.4.1.2

The interval between start times of the RJT were measured: the results in Figure 7.2

show that TTC-jtDVS2 (which uses the independent timer) has zero release jitter,

except when running at 10 MHz, at which point the jitter was in region of 0.1 ps. By

contrast, the TTC-jDVS2 algorithm has jitter in the range o f +/- 0.4 ps over the speed

range.

Both TTC-jtDVS2 and TTC-jDVS2 have lower release jitter than TTC-jDVS.

5.00E-06
4.00E-06
3.00E-06
2.00E-06

“o' 1.00E-06
®
(Ar 0.00E+00
cT -1.00E-06

-2.00E-06
-3.00E-06 -\

-4.00E-06
-5.00E-06

o • • TTC-jDVS (max)
TTC-IDVS2 (max)
TTC-jtDVS2 (max)

o -- TTC-jDVS (min)
- e - T T C - DVS2 (min)

TTC- tDVS2 (min)

o.

’ o..
----------j —'' .■■■-.. ft... — g...... ... — -------------Ht--------8-----10 ----- 8---20

.❖..
— 1----- 8--------......30-.... 40 50

Clock frequency (MHz)

Figure 7.2: Minimum and maximum jitter level (from RJTs) at speeds 10-60 MHz, from TTC -

jD V S , TTC -jD V S 2, TTC -jtD VS 2 and T T C (at 6 0 M H z) algorithms

Chapter 7: Further reductions of jitter in TTC/DVS scheduler 134

7.4.2 Assessing the impact of the independent timer on CPU power consumption

To compare the power consumption, 5 dummy tasks (Task A to Task E) were created

which utilised between 10% and 90% of the available CPU activity (when run at the

highest speed) in the tick interval. Each dummy task was implemented using a simple

loop, adapted to give the required duration. In order to begin to assess the power-

saving ability o f these algorithms, schedulers with 1 ms tick intervals were used again

(TTC, TTC-jDVS, TTC-jDVS2 and TTC-jtDVS2).

Note that, in any TTC design, a designer will usually wish to ensure that the WCET of

each task is less than the scheduler tick interval: in this case, the duration of all tasks

was less than 1 ms. Note also that Task A was viewed as an RJT (where appropriate).

This task was run every 2 ms in (all systems). The remaining tasks (not RJTs) were

run every 8 ms with different offsets.

To perform this empirical comparison, the task sets were executed using TTC, TTC-

jDVS, TTC-jDVS2 and TTC-jtDVS2 algorithms. The average power consumption of

the CPU core was measured in each case and is shown in Figure 7.3.

—+— TTC - - A - ■ TTC-jDVS TTC-jDVS2 —e— TTC-jtDVS2

fc.4>*0
Q- 0 .8 a>O)
IS
<D
S 0.6
T30)
W

1 0.4

Oz
0.2

0.8 0.9 10.70 0.60.1 0.2 0.3 0.4 0.5

T ask U tilisation

Figure 7.3: Power consumption comparison of scheduling algorithms at different load

Chapter 7: Further reductions of jitter in TTC/DVS scheduler 135

Using the modified jitter guardian in TTC-jDVS2 is seen to result in a slight reduction

in power consumption when compared with TTC-jDVS. A further power reduction is

achieved using TTC-jtDVS2 (where the tick-compensation process is not required).

Note that, at high loads, TTC-jDVS and TTC-jDVS2 can exceed the power consump

tion of the TTC algorithm. In these circumstances, the power consumption of TTC-

jtDVS2 is very close to that of the original TTC algorithm.

7.4.3 Impact on code complexity

The use of independent timer has an impact on the code size, especially in the

frequency-scaling procedure (which is run whenever the processor’s speed is

changed). In this case, when using TTC-jDVS2, the code size is 173 lines (excluding

comments). When employing TTC-jtDVS2, the code size is 27 lines (again excluding

comment lines). Please see Listing 7.1 and Listing 7.2 for details.

begin FREQ_SCALE (New_freq_MULTIPLIER) :

s e t PLLCFG_Register = New_freq_MULTIPLIER ;

d i s c o n n e c t PLL t o run w i t h raw f r e q u e n c y ;
u p d a te P L L _ r e g i s t e r s w i t h f e e d s e q u e n c e ;

r e s e t T im e r O _ P r e s c a le r = 0 ;
r e s e t T im e r O _ P r esca ler _ C o u n te r = 0 ;

s t a r t T im e r l_ C o u n te r ;

c a l l f u n c t i o n VOLTAGE_SCALE (New_freq_MULTIPLIER) ;

while ! (PLL_locked)
u p d a te P L L _ r e g i s t e r s w i t h f e e d s e q u e n c e ;

end while
while ! (T i m e r l_ I n t F l a g _ o f _ V o l t a g e D e l a y)

do n o t h in g ;
end while
r e s e t T i m e r l _ I n t F l a g _ o f _ V o l t a g e D e l a y = 0 ;

c o n n e c t PLL ;
u p d a te P L L _ r e g i s t e r s w i t h f e e d s e q u e n c e ;
s e t T im e r O _ P r e s c a le r = New_freq_MULTIPLIER ;

end FREQ_SCALE

Listing 7.1: Pseudo code of Frequency scaling function of TTC -jtD V S 2

Chapter 7: Further reductions of jitter in TTC/DVS scheduler 136

begin FREQ_SCALE_w_compensation (New_freq_MULTIPLIER):

S e t Current_freq_MULTIPLIER = P L L C FG _regis ter ;
s e t PLLCFG_Register = New_freq_MULTIPLIER ;

d i s c o n n e c t PLL t o run w i t h raw f r e q u e n c y ;
u p d a te P L L _ r e g i s t e r s w i t h f e e d s e q u e n c e ;

r e s e t T im e r O _ P r e s c a le r = 0 ;
r e s e t T im er O _ P r e s c a le r _ C o u n te r = 0 ;

s t a r t T im e r l_ C o u n te r ;

c a l l f u n c t i o n VOLTAGE_SCALE(New_freq_MULTIPLIER) ;

switch (Current_freq_MULTIPLIER)
case 6x: if New_freq_MULTIPLIER == 1

TimerO_Counter = T im erO _Counter + 6 x _ t o _ l x _ c o m p e n s a t i o n ;
break

end if
if New_freq_MULTIPLIER == 2

TimerO_Counter = Tim erO_Counter + 6 x _ t o _ 2 x _ c o m p e n s a t i o n ;
break

end if
if New_freq_MULTIPLIER == 3

TimerO^Counter = Tim erO_Counter + 6 x _ t o _ 3 x _ c o m p e n s a t i o n ;
break

end if
if New_freq_MULTIPLIER == 4

TimerO_Counter = T im erO _Counter + 6 x _ t o _ 4 x _ c o m p e n s a t i o n ;
break

end if
if New_freq_MULTIPLIER == 5

TimerO_Counter = Tim erO_Counter + 6 x _ t o _ 5 x _ c o m p e n s a t i o n ;
break

end if
break

case 5x:

break

case l x :

break
end switch
while ! (PLL_locked)

u p d a te P L L _ r e g i s t e r s w i t h f e e d s e q u e n c e ;
end while
while ! (T i m e r l_ I n t F l a g _ o f _ V o l t a g e D e l a y)

do n o t h in g ;
end while
r e s e t T i m e r l _ I n t F l a g _ o f _ V o l t a g e D e l a y = 0 ;

c o n n e c t PLL ;
u p d a te P L L _ r e g i s t e r s w i t h f e e d s e q u e n c e ;
s e t T im e r O _ P r e s c a le r = New_freq_MULTIPLIER ;

end FREQ_SCALE_w_compensation

Listing 7.2: Pseudo code of Frequency scaling function of T T C -jD V S 2 with tick compensation

Chapter 7: Further reductions of jitter in TTC/DVS scheduler 137

Overall, the total (executable) code sizes of TTC-jDVS2 and TTC-jtDVS2 are about

40,868 bytes and 39,923 bytes, respectively. That is, the use o f an independent timer

reduces the code size by approximately 1Kbyte.

7.5 Conclusions

This chapter has described the “TTC-jtDVS2” algorithm, which employs an

independent timer unit to reduce the jitter below measurable levels in most cases.

This hardware enhancement was also seen to further reduce both power consumption

and software complexity when compared with the algorithms presented in previous

chapters o f this thesis.

Chapter 8

Discussion and Conclusions

In this concluding chapter, the work presented in this thesis is summarised and

evaluated. Suggestions fo r future work are also made.

8.1 Introduction

The work described in this thesis is concerned with the development of energy

reduction techniques for use in low-cost embedded systems. More specifically, it is

focused on ways to implement DVS techniques in order to minimise CPU energy

consumption in embedded systems which employ a time-triggered software

architecture.

As has been noted throughout this document, DVS reduces CPU energy consumption

in a process which involves variations in the CPU clock frequency: these frequency

changes can lead to jitter. The work described in this thesis has developed and

assessed various techniques (involving software and hardware) for reducing the

impact of DVS on system jitter.

This chapter reviews some of the key contributions from the studies presented in this

documented and discusses the extent to which the initial aims o f the thesis were

achieved. In addition, a few suggestions for future work in this area are made.

Discussion and conclusions 139

8.2 Knock-on impact of DVS implementation

The fundamental aim of the work described in this document was to minimise jitter in

low-cost embedded systems which employed DVS. In order to study the impact of

DVS implementation, the work began by exploring ways in which DVS could be

applied in a TTC scheduler (which has a small overhead and low-jitter characteris

tics).

In practice, DVS processes require a comparatively large amount o f time for supply-

voltage switching and speed-finding calculations. These processes become part o f the

scheduler overhead and are one of the causes o f task jitter.

During the research, attempts were made to minimise this scheduler overhead. To this

end, a number of DVS algorithms (CD, LT, CA and CS) were developed and

evaluated. The results obtained suggest that the algorithm which has small overhead

can assist in power reduction: this is not only because a smaller algorithm itself

consumes less power as it is executed, it is also because there is more time left to run

the system tasks at lower speed settings. In the study, it was found that the CS

algorithm (subsequently referred to as “TTC-DVS”), algorithm was the most effective

at reducing power consumption.

8.3 Minimising jitter in DVS systems

The focus o f the work then shifted to jitter reduction. The work in this area is summa

rised in this section.

8.3.1 Causes of jitter

Three causes o f jitter in TTC / DVS designs were identified.

First, it is found that a scheduling tick generated by a hardware timer which is

connected together with CPU clock can be disrupted when it is adjusted to match with

clock frequency scaled. The results show that the scheduling tick in the DVS system

significantly suffers jitter.

Discussion and conclusions 140

Second, the overheads from DVS processes are varied when frequency and voltage

scaling is performed and this then causes release jitter. Even though the empirical

studies employed a low-jitter scheduler, the results show that the jitter levels are large

because the overheads are large.

Third, it is also found that the variation of operating clock frequencies changes

execution time of tasks and this then causes the operating point inside a task (e.g.

sampling points) to suffer jitter.

8.3.2 Software algorithms

In Chapter 4 and Chapter 6, the jitter impact o f DVS implementation in TTC and TTH

schedulers (respectively) was addressed using software algorithms.

In Chapter 5, a three-step jitter reduction scheme was developed to minimise jitter

levels in TTC applications employing DVS: this algorithm was called TTC-jDVS.

This involved: (i) tick compensation, (ii) jitter guardian insertion, and (iii) fixed speed

of jitter-sensitive task. The effectiveness of the TTC-jDVS was demonstrated both on

a data set made up o f artificial tasks, and in a more realistic case study. The results

show that the TTC-jDVS can significantly reduce jitter levels close to the TTC

algorithm and also save CPU power when it is compared to the original TTC

algorithm. Note that a slightly improved version o f the TTC-jDVS algorithm (“TTC-

jDVS2”) is also presented in this document (in Appendix C).

In Chapter 6, a TTH-jDVS algorithm was developed, for use with “hybrid” sched

ulers. This algorithm was based on a power model. The TTH-jDVS algorithm has

also been demonstrated on both an artificial task set and in a more realistic case study.

The results has been proved that it can reduce power consumption to a level of that

seen for the original TTH algorithm and also keep levels o f task jitter at minimal

levels.

8.3.3 Hardware support

The studies in Chapter 5 and Chapter 6 demonstrated that - while task jitter arising

from DVS can be significantly reduced by using software algorithm, it could not be

completely eliminated.

Discussion and conclusions 141

In Chapter 7, a hardware solution was introduced. This solution employed an

independent timer to drive the system scheduler: this avoided the need to re-program

the timer whenever the clock frequency was scaled. The resulting algorithm was

shown to further improve both jitter performance and power consumption.

Overall, the results suggest that using hardware support can improve jitter perform

ance of the scheduling algorithms. The use o f hardware also reduced software com

plexity which resulted in a further power reduction.

8.4 Limitations of the work

Although it has been demonstrated that the TTC-jDVS / TTC-jDVS2 and TTH-jDVS

algorithms were effective in reducing both jitter and power consumption, the work has

a few limitations.

First, because they are based on a time-triggered software architecture, the TTC-

jDVSx and TTH-jDVS algorithms support only periodic task basis. CPU speeds

stored in the Circular array, which aimed to reduce overhead o f DVS processes, were

pre-calculated for periodic tasks only, and the speed settings were fixed throughout

the system operation.

Another limitation o f the TTC-jDVSx and TTH-jDVS algorithms is that they have

been designed to support only one reduced-jitter task. In case o f the TTH-jDVS

algorithm, this limit is fundamental, and a consuequence of the scheduler architecture.

However, with the TTC-jDVSx algorithm, it would be possible to support multiple

reduced-jitter tasks by inserting another jitter guardian and fixing the running speed of

the additional reduced-jitter task.

It should also be noted that the TTC-jDVSx and TTH-jDVS are all based on a priori

knowledge: in particular, knowledge o f WCET is required in order to determine

appropriate CPU speeds. A consequence is that the algorithms cannot adapt to situa

tions in which tasks execute for times less than the WCET. One of some previous

works on run-time voltage hopping (Lee and Sakurai, 2000), describes ways in which

energy can be saved when the task’s execution time is less than the predicted WCET.

Discussion and conclusions 142

Note, however, that there is a risk that incorporating such “enhancements” to the

present algorithms would be counter productive because o f the increase system

overhead which would result from having additional voltage-switching operations.

Finally, it should be noted that the use o f DVS in TTC designs may have an impact on

failure-detection mechanisms. In TTC designs, task overruns (or processor overloads)

can be detected by observing that the system is executing a task - that is, it is not idle

- when the timer interrupt occurs (Bate, 1998; Hughes and Pont, 2004). After

applying DVS, it is possible that tasks that are executed with a lower speed can be

stretched out over their minor cycle. Thus, mechanisms for detecting task overruns in

TTC designs may need to be modified.

8.5 Potential applications of the work

As demonstrated and discussed previously, the impact o f DVS can greatly degrade the

accuracy of sampled data. The techniques proposed in this thesis have potential

applications in signal-sampling and signal-processing systems which require both

accuracy of data and also require long battery life. One of the most promising

examples is medical monitoring applications, including wearable computing. In these

applications, sampling rates o f signal acquisition are relatively low (from a few Hertz

to a few hundreds of Hertz), but reliability must be high (Raskovic et al., 2004).

Furthermore, such applications require high accuracy of data in order to support

subsequent processing and data analysis, e.g. detecting asphyxia by using heart rate

and heart rate variability (HRV) processed from ECG data (Boardman et al., 2002).

8.6 Future work

In penultimate section of this thesis, some suggestions for the further studies are

discussed.

8.6.1 Improvements to the TTC-jDVSx and TTH-jDVS algorithms

Although the TTC-jDVSx and TTH-jDVS algorithms described in this thesis have

been shown to be effective in minimizing jitter and power consumption in low-cost

embedded systems, there is still room for further improvements in both areas.

Discussion and conclusions 143

The current version o f the TTC-jDVSx and TTH-jDVS algorithms are based on the

assumption that all tasks consume the same amount o f energy. In fact, each task

consists of various instructions which relate to the system requirements. Previous

studies have shown that different instructions consume different power: e.g. in the

Intel StrongARM SA1100, Store typically consumes more power than Branch (Sinha

and Chandrakasan, 2001). Please note that power consumption o f chips also depends

on the process technology (Jan et al., 2005). As a consequence, it may be possible to

improve the performance of the algorithms by weighting the tasks according to their

relative power-consumption values.

Measurements o f power consumption for each task could be done at the compilation

stage and then used as a pre-defined parameter. However, this method may not obtain

the actual power consumption (for example, in situations where tasks have different

inputs). A more advanced algorithm could measure the power consumption of each

task online and feed the measured power back to the scheduler, in order to give

precise information for making decisions about speed settings.

In order to further improve jitter performance, hardware will be required. With the

simplicity of the TTC scheduler, a hardware translation can be created (e.g. see

(Hughes and Pont, 2005)). Using parallel processing in hardware can improve

performance. For example, in DVS-based systems, scheduling overhead arising from

software complexity has a significant impact on release jitter: however, an SoC design

with dedicated scheduler hardware - and with support for multiple jitter guardians -

should be able to release tasks at precise times, without interference from voltage

scaling. Furthermore, it would be possible to design the jitter-sensitive part to run

independently, in order to further reduce the complexity o f the software algorithm.

8.6.2 Maximising the use of DC-DC converter

The development o f advanced power-reduction techniques might be pointless if the

design of the power supply itself is not considered.

Generally, systems employing DVS techniques require DC-DC converters to vary

supply the voltage on the fly. In practice, the use o f a DC-DC converter must be

Discussion and conclusions 144

considered carefully, switching losses in such converters may not be significant at

full load but, with light loads and under standby conditions, the switching losses can

be a serious source of power loss (Arbetter et al., 1995; Erickson and Maksimovic,

1995). Systems employing DVS impose a wide range of loads and - unless care is

taken - power saved by DVS might be wasted on the DC-DC converter. It would

therefore be interesting to explore a DVS algorithm that took into account the DC-DC

converter characteristics when determining the CPU speed.

Another (potentially very simple) improvement could be lowered supply voltage

when the system is idle. Algorithms based on TTC and TTH schedulers will be set to

idle mode after all scheduled tasks have been executed. However, during the idle

mode, the voltage level will not generally be altered. It would be straightforward to

ensure that the supply voltage was set to the lowest level after entering the idle mode,

in order to reduce the leakage power (see Equation 2.8). Such techniques could be

compared with power gating (Abdollahi and Pedram, 2006), as discussed in Section

2.3.4.

8.7 Conclusions

The project described in this thesis has made three major contributions to this field.

First, it has developed and assessed novel DVS scheduling algorithms with low levels

of task jitter (TTC-jDVS, TTC-jDVS2). Second, it has developed and assessed a

novel algorithm (TTH-jDVS) as an alternative solution for use in situations where a

TTC scheduler is not appropriate. Third, it has developed and assessed hardware-

based techniques in order to further reduce jitter levels and energy consumption. This

thesis has also discussed in many more interesting issues and also provided the

necessary inspiration for further research in this important area.

The total switching power loss is equal to total energy lost during the turn-on and turn-off of
switching transistors, multiplied by the switching frequency (Erickson and Maksimovic, 1995).

APPENDICES

Appendix A

Jitter model

This appendix gives a fundamental background o f jitter which can be categorised in

various types.

A .l The jitter model

Typically, the total jitter can be divided into two categorises which are random jitter

and deterministic jitter. The deterministic jitter is further divided into three

categories: periodic jitter, data-dependent jitter, and bounded uncorrelated jitter. The

characteristics for these jitter types are described as the following (Wavecrest, 2001;

Ou et al., 2004).

Tota l jitter

Determ inistic jitter R and o m jitter

Periodic jitter D a ta -d ep en d en t B ounded uncorrelated
jitter jitter

Duty-cycle Intersym bol
distortion in terference

Figure A.1: Hierarchy of jitter

Appendix A A-2

A.1.1 Random jitter

Random jitter arises from device noise source which has no discemable pattern.

Thus, it cannot be predicted. Generally, device noise comes from short noise, related

to a transistor’s fluctuation in the current flow, thermal noise, caused by higher

temperature resulting in greater atom vibration, collision and then electron scattering,

and flicker noise, resulting from the random capture and emission o f carriers from

oxide interface traps that affects carrier density in a transistor (Hajimiri and Lee,

1998; Ou et al., 2004). Random jitter is commonly modelled by the Gaussian

distribution (bell curve) according to the distribution of thermal noise (Tektronix,

2002).

A.1.2 Deterministic jitter (Overview)

On the contrary to random jitter, deterministic jitter is repeatable and predictable

because the peak-to-peak value of this jitter is bounded and the bounds can usually be

observed or predicted based on a reasonably low number o f observations (Tektronix,

2002). It primary causes arise from the interference of other systems, such as electro

magnetic interference, crosstalk (Bogatin and Garat, 2004). On an oscilloscope,

random jitter gives a clean picture of a repetitive time-domain waveform (even

slightly distorted) but deterministic jitter is the difference in time between the actual

time and ideal time for each transition in the repetitive sequence (Johnson, 2002).

Depending on the noise sources, deterministic jitter is subcategorized as periodic

jitter, data-dependent jitter and bounded uncorrelated jitter. An overview of each of

these forms o f jitter is presented in the sections which follow.

A. 1.3 Deterministic jitter - Periodic jitter

Periodic jitter (or sinusoidal jitter) refers to variations o f signal edge position over

time. In general, it is caused by external noise sources (e.g. power supplies coupling,

a strong local RF carrier) into a system (Tektronix, 2002).

A.1.4 Deterministic jitter - Data-dependent jitter

Data-dependent jitter occurs by the previous transmitted data symbols. It depends on

the bit pattern transmitted on the link and does not describe the jitter induced by

crosstalk resulting from adjacent signal paths. The major causes o f problem come

Appendix A A-3

from other devices and systems (Wavecrest, 2001; Buckwalter et al., 2004; Ou et al.,

2004). Data-dependent jitter is divided into two subcategories as the follows:

Duty-cycle distortion: described a jitter amounting to a signal having asymmetrical

pulse widths o f rising and falling edges. The causes of the jitter come from the slew

rates for the rising edges and falling edges which are different, and the decision

threshold for a waveform which is inappropriate (Tektronix, 2002).

Intersymbol interference: depends on transmitted bit patterns (referred to the timing of

the edge of transmitted signal). It causes mainly depend on bandwidth limitation of

the transmission medium, the nonlinear phase response of transmission media, and

reflection from imperfect transmission line terminations (Ou et al., 2004).

A.1.5 Deterministic jitter - Bounded uncorrelated jitter

Bounded uncorrelated jitter is typically due to coupling from adjacent data-carrying

links or on-chip random logic switching. It is bounded because of the finite coupling

strength (Ou et al., 2004).

Appendix B

Real-time scheduling architectures

This appendix gives an overview o f real-time scheduling architectures which are

relevant to the work in this thesis .

B.l Introduction

Real-time systems are computer systems in which the correctness o f the system

behaviour depends not only on the correct results of the computations, but also on the

time at which these results are produced (Kopetz, 1997). A reaction that occurs too

late could be useless or even hazardous. A good example is the airbag deployment

system in automobiles which late deployment defeats the entire purpose of airbag

protection (Cooling, 2003). Furthermore, predictability is one o f the important

objective of a real time system (Stankovic and Ramamritham, 1990), i.e. the ability to

determine whether the system is capable of meeting all its timing requirements, such

as, message latency, protocol processing delays, and access to shared resources

involved in communication. If the critical time constraints that are designed cannot be

met when system is running, the consequences o f a failure can sometimes be

catastrophic (Pont, 2001). For example, a prototype o f a fly-by-wire fighter plane

responded to the pilot’s commands too slow (missed timing requirements), so it then

caused the plane crashed (Neumann, 1995)

Appendix B B-2

Today, real-time systems involves in various applications, such as chemical and

nuclear plant control, railway switching systems, automotive applications, flight con

trol systems, telecommunication systems, industrial automation, robotics, environ

mental acquisition and monitoring systems, multimedia systems, and so on (Buttazzo,

2004).

B.2 A basic concept of real-time system

Generally, embedded systems are widely associated with real-time applications which

are required responsiveness and predictable behaviour. The Oxford dictionary of

computing gives the definition of real-time systems as: “Any system in which the time

at which the output is produced is significant. This is usually because the input

corresponds to some movement in the physical world, and the output has to relate to

that same movement. The lag from input time to output time must be sufficiently

small for acceptable timeliness” (Daintith, 2004).

Real-time systems consist of tasks which are executed by a CPU in a sequential

manner and a task is a computation that is constructed from program codes (Marti,

2002). In fact, the application may have two or more tasks that are requested to

execute at the same time. The CPU time has to be shared the processing time for

executing the concurrent tasks in order to meet individual task’s timing constraints.

Thus, to execute such tasks according to predefined timing criterion, real-time system

requires a scheduling policy and scheduler to manage task execution orderly. The

detail of scheduling will be described later in Section B.3.

B.2.1 Timing constraints

In real-time systems, computational activities must be completed within stringent

timing constraints in order to achieve the desired behaviour. An important timing

constraint on a task is the deadline, which is the time that a task should complete its

execution without causing any damage to the system (Liu, 2000; Buttazzo, 2004).

Usually, tasks can be characterised according to their criticality, depending on the

consequence o f missed deadline, as hard real-time tasks and soft real-time tasks

(Bennett, 1994; Kopetz, 1997; Marti, 2002; Buttazzo, 2004). If a task misses a given

deadline that is critical for the system operation and may cause catastrophic

Appendix B B-3

consequences, it is considered to be hard. If a task misses the time constraints that are

required but it does not cause any serious damage, it is then considered to be soft.

B.2.2 Type of task

A task is a sequential program (e.g. in a control system, a task may consist of single or

multiple processes: signal acquisition at the beginning, position calculation in the

middle, and motor controlling at the end) that is activated for execution by the

occurrence of a particular event (Heath, 1997; Kopetz, 1997). Typically, a task is

commonly referred to a process or one part o f a process which is a more complex

computational activity (Buttazzo, 2004). Real-time tasks are also categorised by its

regularity of activation as the following:

• Periodic task

Periodic tasks are executing periodically with a specific time and all future release

times of a periodic task are known a prior. They are commonly found in activities

such as sensory acquisition or control loops, which require accurate rates to insure

system stability. Thus, periodic tasks often associate with hard deadlines that must be

met under all anticipated circumstances (Spuri et al., 1995; Pont, 2001).

• Aperiodic task

Aperiodic is call for tasks which have irregular activations or arrival times. Aperiodic

tasks are typically employed for random processing requirements, such as operator

requests or displaying activities. They are usually implemented for the less critical

activities that have soft deadlines or no deadline at all (Spuri and Buttazzo, 1996;

Nolte, 2003).

• Sporadic task

The activation times of sporadic tasks are not known a priori but a minimum interval

time between any two activation times of sporadic tasks are known. Typically, spo

radic tasks are associated with event-driven processing, such as a response to use

inputs or non-periodic device interrupts. Their activations occur repeatedly but the

time interval between consecutive occurrences is not constant as periodic tasks and

can vary arbitrarily large (Jeffay et al., 1991; Nolte, 2003).

Appendix B B-4

B.3 A real-time scheduler

In embedded systems, real-time schedulers are commonly employed to manage such

applications (Cooling, 2003). A scheduler is comparable to an operating system (OS)

in a desktop PC but it is a very simple operating environment for embedded applica

tions. Generally, the desktop PC does not require an OS but it is for flexibility to run

many thousands o f different applications. The desktop OSs provide the common code

(for printing, file storage, display, sound, and so on) that is required by application

programs (Pont, 2001). Specifically, OS support has a major impact on software

dependability, productivity and maintainability. Whereas embedded systems are

designed for specific applications, run on small and dedicated hardware and often

require real-time properties (e.g. responsiveness, reliability), real-time schedulers are

then the reasonable way (Cooling, 2003).

To execute tasks in order to meet timing constraints, a scheduling algorithm (a set of

rules) is used to determine a queue or schedule in which tasks will be executed

(Buttazzo, 2004). For example, if there is a high-priority task is requested to execute,

the scheduling algorithm will make decision, based on the policy that is prior set, to

interrupt the running task for executing the high-priority task first, or execute the

high-priority task after the running task completed. Otherwise, the scheduling

algorithm may make a decision by executing the task that will meet its deadline first

for guaranteeing that no task misses its deadline. Each scheduling algorithm has

advantages and disadvantages by itself. Designers have to select the appropriate

scheduling algorithm for their applications.

Among the grate variety of scheduling algorithms, they can be classified into these

main types which are described as the following.

B.3.1 Event-triggered versus Time-triggered

A trigger is a temporal control signal or an event to activate some tasks in a node (e.g.

data transmission or analogue-to-digital signal conversion) (Kopetz, 1997). In real

time scheduling systems, the triggering mechanisms can be divided into two different

approaches: event-triggered and time-triggered (Kopetz, 1991; Bennett, 1994; Pont,

2001).

Appendix B B-5

In the event-triggered system, all tasks are activated in response to significant external

incidents (e.g. the depressing of a push button by a user, the activation o f a limit

switch, or the arrival of a new message at a node) which can take place at any time

(Kopetz, 1997). In practice, an event-trigger signal can be obtain from the sensor for

detecting environmental activities and presents to the system in form of interrupt

signal. To deal with unpredictable input of dynamic environment, the event-triggered

systems require a dynamic scheduling strategy to activate the task in order to response

to the event. The main advantages of event-triggered systems are an immediate

response, flexibility, and suitability for sporadic data (Kopetz, 1997). However, the

event-triggered systems have more overhead which can have an opportunity to fail

under heavy load conditions (Marti, 2002).

In a time-triggered system, all tasks are activated at specific time instants which are

know a priori before the system starts execution. Generally, a hardware timer can be

used to set to expire periodically as a periodic clock interrupt (Bennett, 1994)while, in

a distributed real-time system, all time-triggered nodes may use clocks which are

synchronised to form a global notion of time (Kopetz, 1997; Pont, 2001). According

to schedule tasks at each time instant, scheduling overhead o f time-triggered systems

during run-time can be minimised. Furthermore, an advantage o f the time-triggered

systems is easy to validate, test, and certify because the times related to the tasks are

deterministic (Liu, 2000). However, the time-triggered systems are proper to

implement in static environments which all system activities must be known in the

design phase and require careful planning during the design phase (Kopetz, 1991).

B.3.2 Co-operative versus Pre-emptive scheduling

In real-time scheduling systems, there are two different scheduling strategies: co

operative scheduling and pre-emptive scheduling (Liu, 2000; Pont, 2001). They are

described as the following.

In co-operative (also known as non-preemptive) scheduling, tasks cooperate with each

other to relinquish control o f the CPU, in other words, a task which is currently

executing will not be interrupted until its process is completed (Pont, 2001). It is

simple and straightforward to implement because each task can be executed to

completion without interruption from another task. Thus, a co-operative scheduler

Appendix B B-6

requires little necessity to protect shared data and concern o f corruption by another

task. Moreover, another its advantage is that interrupt latency is typically low, as no

unexpected context switches, this, therefore, makes the scheduling overhead low

(Locke, 1992; Labrosse, 1998). However, it is recommended that co-operative

scheduling is suitable in a system where many short tasks are executed because a co

operative scheduler cannot switch to any task while the long task is being executed

and this then result in poor responsiveness. The shortest guaranteed responsiveness of

co-operative scheduling in single processor systems is the sum of the longest and the

shortest task execution time (Kopetz, 1997).

In pre-emptive scheduling, the highest priority task ready to run is always given

control of CPU time. When a higher priority is ready to run, the currently running task

is suspended (pre-empted) and the system must save its state (e.g. program counter

and register contents) for resuming the pre-empted task from that state. Then, higher

priority task is executed until its completion and the pre-empted task is resumed

(Labrosse, 1998; Liu, 2000). Accordingly, pre-emptive scheduler always requires high

memory allocation for temporarily saving a context switch (the content of the CPU

status register and program counter) every time of pre-emption. The system overhead

(context-switch time), including memory usage, will increase if there are many levels

of preemption taking place. Moreover, the pre-emptive scheduling require

complicated algorithm to avoid resource conflicts and blocking (Kopetz, 1997).

However, in term of responsiveness, a significant event can immediately react by

interrupt the running task to invoke the scheduler to make a new scheduling decision.

B.3.3 Static versus Dynamic scheduling

Among various types of real-time scheduling architecture, scheduling algorithms can

be categorized by determining when the scheduling decisions are taken. They are

divided into static and dynamic scheduling (Liu, 2000).

In static scheduling, all the task set parameters, such as execution times, deadlines,

periods and so on, have been known at the design stage. A task scheduling decisions

are computed at pre-runtime and the entire schedule is stored in the table for use at

runtime (Stankovic et a l, 1995; Kopetz, 1997; Nolte, 2003). If the operation mode of

the system is changed, the new schedule is needed to re-compute. The advantage of

Appendix B B-7

static scheduling is predictable because all activities in the system are deterministic.

Moreover, the runtime scheduling overhead is simple and low that is suitable for

limited resource systems. However, the static scheduling has drawback that all

activities have to be planned before startup. It then lacks of flexibility to adapt itself to

new environments (Liu, 2000). Off-line scheduling is often equated static scheduling

by misunderstanding. For analysis, off-line scheduling should always be done

regardless of whether the final runtime algorithm is static or dynamic in building any

real-time systems (Stankovic et a l, 1995).

In dynamic scheduling (or online scheduling), the scheduling decisions are made at

runtime. A dynamic scheduler computes each scheduling without knowledge of new

arrival tasks that may occur in the future - the parameters of each task become known

to the dynamic scheduler only when a task arrives at runtime (Stankovic et a l, 1995;

Kopetz, 1997). These schedulers are flexible and suitable for the systems which need

to interact with evolving environment or the future load is unpredictable (Liu, 2000).

Even dynamic schedulers are flexible and adaptive but they prone to have high

scheduling overhead because the complicated scheduling algorithm must be processed

at runtime. In addition, it is also difficult to predict system’s behaviors of dynamic

scheduling under diverse conditions of external environments.

B.3.4 Fixed-priority versus Dynamic-priority

An online scheduler is a priority-driven scheduler which schedules tasks according to

some priority-driven algorithm. It assigns priorities to tasks at each scheduling

decision time and places the tasks in a ready task queue in priority order (Liu, 2000).

Both fixed and dynamic priority algorithms are different from each other in how

priorities are assigned to tasks.

A fixed-priority algorithm assigns the same priority to all instances in each task. In

other words, the priority of each task is fixed relative to other tasks during the

application’s execution (Labrosse, 1998; Liu, 2000). A well-known fixed priority

algorithm is rate-monotonic (RM) algorithm(Liu and Layland, 1973; Bate, 1998). In

order to define task priority, RM algorithm assigns priorities to tasks based on their

periods. Then, the task which have shortest period will be assigned highest priority

(Buttazzo, 2005). For example, task A which run at higher rate than task B has higher

Appendix B B-8

priority than task B. Task A is always scheduled and executed immediately when it is

released and the priorities of tasks are not changed all time o f their execution.

In contrast, a dynamic-priority algorithm assigns different priorities to the individual

task instances in each task. For this reason, the priority of the task with respect to that

of the other tasks can change when the task instances are released (Liu, 2000). The

earliest-deadline-first (EDF) is a well-known dynamic algorithm. The EDF algorithm

dynamically assigns priorities to individual task instances according to their absolute

deadlines (Pedreiras and Almeida, 2002; Buttazzo, 2005). The highest priority will be

assigned to the task which will reach its deadline first. At each scheduling decision,

the scheduler has to calculate the time to the deadline of each task and reorder the

priorities o f tasks in a queue. Hence, in EDF, the priorities of tasks are kept changing

all the time.

Appendix C

The TTC-jDVS2 algorithm

This appendix describes a simple modification to the original TTC-jDVS algorithm

which results in an improvement in jitter behaviour and a reduction in energy con

sumption: the revised algorithm will be referred here as TTC-jDVS2.

C.l The TTC-jDVS2 scheduling algorithm

In this study, the aim was to improve the performance o f the TTC-jDVS algorithm

(described in Chapter 5) by modifying the “jitter guardian” function. In the TTC-

jDVS algorithm, the jitter guardian is a sandwich delay which is executed before the

reduced-jitter (RJ) tasks are released: this delay is generated by setting a hardware

timer to expire with a constant delay time. In the TTC-jDVS algorithm, it keeps

polling the timer flag during the delay period: when the flag is set, the RJ tasks will be

then released.

In the TTC-jDVS2 algorithm (see Listing C .l), the performance is slightly improved

by placing the CPU in idle mode during the jitter-guardian delay period. The CPU

will then be wakened when the timer expires, and the RJ task will be released. By

incorporating the idle-time mode change, it both saves power and reduce the level of

release jitter (see (Maaita and Pont, 2005) for further details o f the underlying

mechanism).

Appendix C C-2

begin DISPATCH_TASKS:

if C i r c u la r _ A r r a y _ P o i n t e r > MAJOR_CYCLE then
r e s e t C i r c u l a r _ A r r a y _ P o i n t e r ;

end if
while T ick _ C o un t > 0

for a l l t a s k s i n t a s k s a r r a y
if — D e la y == 0 then

l o a d T ask _Sp eed from c i r c u l a r a r r a y ;
if P r e v io u s _ S p e e d != T ask_Speed then

s c a l e f r e q u e n c y and v o l t a g e (and p e r fo rm t i c k c o m p e n sa t io n) ;
end if
if t a s k i s an RJT then

e n a b l e Timer ;
s l e e p ;
d i s a b l e Timer ;

end if
r e l e a s e Task;
if t a s k i s p e r i o d i c then

r e l o a d D e la y = P e r io d ;
else

d e l e t e Task from a r r a y ;
end if

end if
end for
T ick _ C o u n t - - ;

end while
s l e e p ;

end DISPATCH TASKS

Listing C.1: Dispatcher function in TTC -jD V S 2

Compared to the original Dispatcher function in the TTC-jDVS algorithm (see Listing

5.2), TTC-jDVS2 modifies the section that inserts the jitter guardian. The improve

ment to TTC-jDVS2 is obtained by employing idle mode instead o f a delay (see Table

C.l). With this method, the timer interrupt will wake the processor up when the timer

counter expires. The task is then executed.

Table C.1: The code of jitter guardian insertion

TTC-jDVS TTC-j DVS2
While (TIMER <= JGuard); enable TIMER;

SCH Go To Sleep();
disable TIMER;

Appendix C C-3

C.2 Assessing the modified algorithms

In this section, it presents the results obtained from an assessment o f the TTC-jDVS2

and original TTC-jDVS algorithms on both jitter and power consumption. The

hardware platform used in this section is identical to that described in Section 4.1.

C.2.1 Impact on jitter

The impact of the modified algorithms on jitter behaviour was first explored.

C.2.1.1 Tick jitter

In order to measure tick jitter, a task was run using a random clock speed (from 10 to

60 MHz) using TTC-jDVS and TTC-jDVS2. In each case the required tick interval

was set at 1 ms, and the actual tick intervals were measured. Please note that the tick

measurement in this study was probed at the interrupt signal generated by a timer.

The measurement setup used in this section is identical to that described in Section

5.4.1.1.

Table C.2 provides detailed results from this comparison, based on an analysis of

10,000 samples in each case. The tick compensation schemes o f TTC-jDVS and

TTC-jDVS2 are identical. Therefore, they both gave the same levels of tick jitter.

Please note that the tick-compensation values used in this study were recalculated for

use with the modified algorithms.

Table C.2: Comparing tick jitter from the T TC -jD V S and T T C -jD V S 2 algorithms

Jitter (us)
Max Min Total

TTC-jDVS 0.2 -0.2 0.4
TTC-jDVS2 0.2 -0.2 0.4

C.2.1.2 Task jitter

To explore the impact of variable speed on task release jitter, the experimental setup

carried out in this section is identical to that described in Section 5.4.1.2

The interval between start times of the RJT were measured: the results in Figure C.l

show that TTC-jDVS2 presents lower release jitter than TTC-jDVS. By contrast, the

Appendix C C-4

TTC-jDVS2 algorithm has jitter in the range of +/- 0.4 ps over the speed range while

the original TTC-jDVS typically has greater levels o f jitter - especially at 10 MHz, it

is close the range o f +/- 4 ps.

5.00E-06

4.00E-06

3.00E-06

2.00E-06

*5“ 1.00E-06 o> w
r 0.00E+00

£
T -1.00E-06

-2.00E-06

-3.00E-06

-4.00E-06

-5.00E-06

Figure C.1: Minimum and maximum jitter level (from RJTs) at speeds 10-60 M Hz, from T TC -

jD V S and TTC -jDVS2algorithm s

C.2.2 Assessing the impact of the independent timer on CPU power
consumption

To compare the power consumption, it is again used the experimental setup identical

to that described in Section 5.4.2 and rerun.

To perform this empirical comparison, the task sets were executed using TTC, TTC-

jDVS and TTC-jDVS2 algorithms. The average power consumption of the CPU core

was measured in each case and is shown in Figure C.2.

• - o - - TTC-jDVS (max) o TTC-jDVS (min)
- e - TTC-jDVS2 (max) —e— TTC-jDVS2 (min)

o.

G-
10

o'

C lock freq u en cy (MHz)

Appendix C C-5

-e—TTC-jDVS2 - - Q - - TTC-jDVS

0.035

0.03

0.025 -

Io0.
0.02

a>o>
2 0.015 -
v

< 0.01 -

0.005

0 0.1 0.3 0.40.2 0.60.5 0.7 0.8 0.9 1

Task Utilisation

Figure C.2: Pow er consumption comparison of T TC -jD V S and modified T TC -jD V S algorithms

at different load

Using the modified jitter guardian in TTC-jDVS2 is seen to result in a slight reduction

in power consumption when compared with TTC-jDVS.

C.3 Conclusions

This appendix has described modifications to the “TTC-jDVS” algorithm. The

modified “TTC-jDVS2” algorithm described here was seen to demonstrate small

improvements in both jitter performance and power consumption when compared to

TTC-jDVS.

Appendix D

Incorporating an independent timer in an

FPGA-based SoC design

This appendix describes how an independent timer can be incorporated in an SoC

design.

D.l The hardware platform

The test platform employed in this study was based on a PH Processor (Hughes et ah,

2005). Briefly, this processor is a MIPS-based, 32-bit design with 32 registers and a

5-stage pipeline which is based on an outline provided by Patterson and Hennessy

(Patterson and Hennessy, 2004). The processor also includes the system coprocessor

CPO, to support precise exceptions.

The implementation of the PH processor used in these studies was created using

VHDL with Xilinx ISE tools. The target was a Xilinx 200K gate (Spartan 3) FPGA

chip on a Digilent Spartan 3 development board (Digilent, 2004). The version of the

processor used in the present study had 216 KBits o f block RAM on the chip and 1

MB of SRAM on-board. The board also contained a serial port, LEDs, seven-

segment display, buttons and switches.

Appendix D D-2

PC UAJRT

Timer

Debug

PH Core

Figure D.1: Layout of the PH core and supporting systems

The design outline of the processor was set up on an FPGA as shown in Figure D .l.

Implemented in this way, the PH core contains its own instruction and data memories

and the device can be programmed and debugged through the serial UART, which

connects to a PC-based debugger. The BL (Buttons and Lights) block uses memory

mapped I/O to interface to the onboard LEDs and I/O pins. In the original PH

Processor, the timer is attached on the data bus where the necessary registers are

easily addressed through normal memory load and store instructions. The Core plus

the additional Timer, UART, Debugger Control Unit and BL controller utilizes about

72% of 200K Spartan chip. This includes the large distributed RAM register file

implementation, 2KB of instruction RAM and 8KB of data RAM, and has only tested

running at a safe 25 MHz.

D.2 The jDFS Timer

The jDFS Timer separates the clock input which drives the timer unit (which it is

assumed that will be used to drive the scheduler) from the input to the main CPU

clock. The timer clock is (it is further assumed) driven by a fixed-frequency source.

The structure o f the jDFS Timer block diagram is shown in Figure D.2.

Appendix D D-3

— ► t.intr
(Clock_Tick)

Counter
sch timer elk

16 15

+► m.intr
(JGuard)m m ir m jin rcpu_clk

addr<2:0> —
data<15:0>

Prescaler

Match

Reload

Figure D.2: The jD FS Tim er block diagram

As an example, the jDFS Timer unit used in this study is a based on a 16-bit timer

which operates in count-down mode. The input clock for the jDFS Timer is derived

from the peripheral clock “ sch_timer_clk” , divided by a (programmable) prescaler. To

initialize the jDFS Timer, it can be configured by input a count value into a Reload

register and this value will then be loaded into the Counter automatically. If the timer

is enabled, the Counter’s value is decreased (in response to the sch_timer_clk clock

signal) until the Counter underflows. Timer interrupt “ t.intr” signal is then generated

and the value in Reload register will be automatically reloaded into the Counter and

16th bit of Counter is cleared. This process will repeat until the timer is disabled (or

power is removed).

Optionally, the jDFS Timer may be used to perform other actions at specified timer

values, based on the use of a Match register. The specified time, which can provide

for precise event control, can be configured by loading the time value into the Match

register. When the Match register equals the timer’s Counter, the match output

interrupt “ m.intr” is generated. Use of this facility will be demonstrated in later

examples.

Appendix D D-4

D.3 The TTC-jDFS scheduling algorithm

The aim of this study is to explore the implementation o f the TTC-jDVS algorithm

with independent timer in an FPGA-based SoC design. Generally, applying DVS on a

commercial-off-the-shelf FPGA is not straight forward. As mention in the first

implementation of DVS for COTS FPGAs (Chow et al., 2005), the voltage controller

is responsible for ensuring the voltage supply to the FPGA is not lowered so much

that the FPGA ceases to operate properly, or it dose not meet the frequency

requirements o f the application. A Logic Delay Measurement Circuit (LDMC) has

then proposed by (Chow et al., 2005) to determine the critical delay time of the circuit

while lowering supply voltage. However, The FPGA (Xilinx, 2005) does not support

power supply partitioning between PH Core and peripheral devices in this

implementation. If the DVS is applied, scaled voltage will affect the whole design,

including the part intended to run with fixed voltage. Thus, in this study, it is mainly

focused on jitter impact on the use of an independent timer with the algorithm without

varying supply voltage.

Based on the TTC-jDVS algorithm (Phatrapomnant and Pont, 2006), the TTC-jDFS

algorithm is a modified version which removes the voltage scaling process. TTC-

jDFS still contains a timer-adjustment process to reduce tick jitter, jitter guardian

insertion for minimizing release jitter, and a process for assigning speed of “reduced-

jitter” tasks to reduce task duration variation. Without voltage scaling process, the

overhead o f TTC-jDFS is significantly small when comparing to TTC-jDVS.

D.4 Supporting frequency scaling on the PH processor

To explore the proposed technique, the additional hardware was added on PH proces

sor to support Dynamic Frequency Scaling (DFS).

Appendix D D-5

addr<1:0>
data<3:0>

5MHz
1QMHZ
15MHz20MHz
25MHz

locked
Primary_CLK elk

scalingelkbuf scl elk
cpu_clkMUXbase elk

clk/2

DCM elk
divider

Figure D.3: Frequency scaling added on PH processor

The 50 MHz clock signal generated by an on-board oscillator is passed to a clock

buffer to eliminate clock skew before it is supplied to a Digital Clock Manager

(DCM) (Xilinx, 2005). The DCM which contains a digital frequency synthesizer

component generates primary clock signal frequencies and then passes to a clock

divider to generate the required clock signal frequencies, for example 5, 10, 15, 20,

and 25 MHz in this study. The required clock outputs are multiplexed by a clk_scaling

component to support variable frequency clock. The output signal “ cpu_clk” is

switched to base_clk, raw-based frequency clock, while a scaling clock “ scl_clk” is

changing frequency. When the frequency of scaling clock has changed, the locked

signal will trigger the M U X to connect the scaling clock to the output. Please note:

there is no PLL multiplier using for generated clock frequency required. Frequencies

switch using multiplexer performs faster than using PLL multiplier in conventional

processors.

D.5 Incorporating the jDFS Tinier

The jDFS Timer described in Section D.2 is implemented together with the PH-

processor core in FPGA development board (Digilent, 2004). Data and address

signals of the jDFS Timer were directly connected to the data and address bus of the

system. The sch_timer_clk of the jDFS Timer was connected to the peripheral clock

bus which provided fixed frequency while cpu_clk o f jDFS Timer was connected to

scaling clock bus. Please note that a series of tests o f TTC-jtDVS2 were run with the

jDFS Timer described above while another algorithm used the original design timer

which drive with scaling CPU clock only.

Appendix D D-6

D.6 Assessing the impact of the jDFS Timer on jitter

To explore the impact of the jitter compensation algorithm comparing between a

conventional and jDFS Timer, a series of tests using the platform described in this

section above were conducted.

In these studies, system clocks o f 5, 10, 15, 20 and 25 MHz were generated by DCM

and used multiplexer to select the required clock frequency. However, to conduct the

experiments in this section, the dynamic frequency scaling (DFS) was only

performed, all supply voltages were fixed.

D.6.1 Tick jitter

In order to measure tick jitter, a task was run using a random clock speed (from 5 to

25 MHz) using TTC-DFS, TTC-jDFS with the conventional timer and TTC-jDFS

with a jDFS Timer (TTC-jtDFS). This task was also run with a “standard” TTC

architecture (Pont, 2001) at a fixed speed of 25 MHz. The measurements in this

section are identical to those in Section 7.4.1.1.

The tick jitter measurement results in this section are similar to the results in Section

7.4.1.1. No measurable jitter was obtained for the TTC and TTC-jtDFS. The

corresponding test run using the TTC-jtDFS shows a significant improvement

comparing with TTC-DFS and TTC-jDFS using the conventional timer. However, the

total tick drift range of TTC-DFS is 1 ps which is smaller than that of TTC-DVS, 4.9

ps. Figure D.5 and Figure D .6 illustrate the occurrence o f tick jitter taken from 10,000

consecutive samples and Table D.l provides detailed results from this comparison.

N
um

be
r

of
Sa

m
pl

es

N
um

be
r

of
Sa

m
pl

es

Appendix D D-7

10000

1000 -

100

-2.00E-05 -1.00E-05 0.00E+00 1.00E-05 2.00E-05

Jitter (sec)

Figure D.4: Tick jitter in TTC (PH-processor)

10000

1000

100

10

1
-2.00E-05 -1.00E-05 0.00E+00

Jitter (sec)
1.00E-05 2.00E-05

Figure D.5: Tick jitter in T TC -D F S (PH-processor)

N
um

be
r

of
Sa

m
pl

es

N
um

be
r

of
Sa

m
pl

es

Appendix D D-8

10000

1000

100 -

10

! - I - ,- , - - - - - - - - - - - - - - -
-2.00E-05 -1.00E-05 0.00E+00 1.00E-05 2.00E-05

Jitter (sec)

Figure D.6: Tick jitter in TTC -jD FS (PH-processor)

10000

1000

100

10

1.00E-05 0.00E+00 1.00E-05 2.00E-05

Jitter (sec)

1 -I---
-2.00E-05

Figure D.7: Tick jitter in TTC -jtD FS (PH-processor)

Appendix D D-9

Table D.1: Comparing tick jitter run by T TC -D F S , TTC -jD FS , TTC -jtD FS and T TC algorithms

Jitter (p.s)
Max Min Total

TTC 0.0 0.0 0.0
TTC-DFS 0.7 -0.3 1.0
TTC-jDFS 0.2 -0.2 0.4
TTC-jtDFS 0.0 0.0 0.0

D.6.2 Task jitter

To explore the impact of variable speed on task release jitter, the set up is identical to

7.3.1.2 but a random speed was changed to 5 - 25 MHz corresponding to the hardware

setup in this section.

o

5.00E-07

4.00E-07

3.00E-07

2.00E-07

1.00E-07

0.00E+00

-1.00E-07

-2.00E-07

-3.00E-07

-4.00E-07

-5.00E-07

O TTC (min)
*— TTC-jDFS (min)

TTC-jtDFS (min)
+ - TTC-DFS (min)

O TTC (max)
x TTC-jDFS (max)
o TTC-jtDFS (max)

- +- TTC-DFS (max)
1.50E-05

- 1.00E-05

5.00E-06

O.OOE+OO

-- -5.00E-06

-- -1.00E-05

-1.50E-05

Clock frequency (MHz)

Figure D.8: Minimum and maximum jitter level of RJT at speed 5 -25 M H z run by TTC , TTC -

DFS, TTC -jD FS and TTC -jtD FS

The results measured the interval between start times o f the RJT are shown in Figure

D.8 . They present the same trend as those shown in Section 7.4.1.2. There is no jitter

in both TTC-jtDFS and TTC while TTC-jDFS and TTC-DFS obtain jitter in range of

+/-0.4 ps and +/-14 ps respectively. The variation of release jitters in TTC-DFS is

considerably less than those in TTC-DVS because no voltage scaling process is

included in the TTC-DFS scheduling overhead.

TT
C-

DF
S

Jit
ter

 (
se

c)

Appendix D D-10

D.7 Assessing the impact of the jDFS Timer on CPU power
consumption

To assess the power-saving ability o f the algorithms, 4 schedulers with 1 ms tick

intervals (TTC, TTC-DFS, TTC-jDFS, TTC-jtDFS) were again used. The experi

mental setup in this section is identical to that in Section 7.4.2.

To measure power consumption, current and voltage supplied to the FPGA’s Vccint

voltage input (1.2 volts typical) were measured, which power the FPGA’s core logic

(Digilent, 2004). Figure D.9 presents power consumption comparison of the algo

rithms, TTC, TTC-DFS, TTC-jDFS and TTC-jtDFS.

+—TTC —A—TTC-DFS TTC-jDFS —e—TTC-jtDFS

0.045

0.04 -

0.035

it 0.025

> 0.015

0.01

0.005

0.2 0.3 0.6 0.7 0.9 10 0.1 0.4 0.5 0.8

Task Utilisation

Figure D.9: Power consumption comparison of scheduling algorithms at different load

From the results, TTC, TTC-DFS and TTC-jDFS closely consume power. The TTC-

DFS consume less power than TTC at all load while TTC-jDFS still does at load

range up to 0.5U. TTC-jtDFS consumes the least power among those algorithms.

However, the design of the jDFS Timer using in TTC-jtDFS differs from the typical

design using in those algorithms whereas other parts o f the design are identical.

Appendix D D -ll

D.8 Conclusions

This appendix has described a way to incorporate an independent timer in an SOC

design, in order to reduce jitter in scheduler designs which incorporate dynamic

frequency scaling. The results have shown that the jDFS Timer can reduce both tick

and task jitter to be zero. It is believed that the use o f independent timer with

dynamic frequency scaling can also be incorporated into any SOC design.

References

Abdollahi, A. and Pedram, M.(2006), "Power minimisation techniques at the RT-level
and below". In: Al-Hashimi, B. M. (Ed.) System-on-Chip: Next Generation
Electronics, Vol. 18, The IEE, London, pp. 387-414.

Agilent (2000), "Agilent 4352S VCO/PLL Signal Test System: Optimizing VCO/PLL
Evaluations and PLL Synthesizer Designs, Application Note", Agilent
Technologies.

Agilent (2002), "Understanding Jitter and Wander Measurements and Standards",
Agilent Technologies.

Agrawal, S. and Bhatt, P. (2001), "Real-time embedded software systems: An
introduction", Technology Review #2001-04, Tata Consultancy Services,
August 2001.

Allworth, S. T. (1981), "An Introduction to Real-Time Software Design”, Macmillan,
London.

Andrei, A., Schmitz, M. T., Eles, P., Peng, Z. and Al-Hashimi, B. M. (2005), "Quasi
static voltage scaling fo r energy minimization with time constraints",
Proceedings of the conference on Design, Automation and Test in Europe,
Vol. l ,p p . 514-519.

Andrei, A., Eles, P., Peng, Z., Schmitz, M. T. and Al-Hashimi, B. M. (2007), "Energy
Optimization o f Multiprocessor Systems on Chip By Voltage Selection", IEEE
Transactions on VLSI Systems.

Arbetter, B., Erickson, R. and Maksimovic, D. (1995), "DC-DC Converter Design fo r
Battery-Operated Systems", IEEE Power Electronics Specialists Conference,
pp. 103-109.

ARM (2003), "Intelligent Energy Manager", http://www.arm.com/pdfs/IEM%20Flyer
%200171-l.pdf.

Ashling (2003), "LPC2000 Evaluation and Development Kits datasheet", Ashling
Microsystems, http://www.ashling.com/pdf_datasheets/DS266-V7U-
EvKit2000.pdf.

Assaderaghi, F., Sinitsky, D., Parke, S. A., Bokor, J., Ko, P. K. and Hu, C. (1997),
"Dynamic threshold-voltage MOSFET (DTMOS) fo r ultra-low voltage VLSI",
IEEE Transactions on Electron Devices, Vol.44 (3), pp. 414-422.

Atkinson, J. (1990), "Reference: Jitter, Bits, & Sound Quality", Stereophile, Vol. 13
(12), December, 1990.

ATMEL (2003), "Guidelines to keep ADC resolution within specification: 8051
Microcontrollers application note”, ATMEL.

http://www.arm.com/pdfs/IEM%20Flyer
http://www.ashling.com/pdf_datasheets/DS266-V7U-

References E-2

Audsley, N., Bums, A., Richardson, M., Tindell, K. and Wellings, A. J. (1993a),
"Applying new scheduling theory to static priority pre-emptive scheduling",
Software Engineering Journal, Vol.8 (5), pp. 284-292.

Audsley, N., Tindell, K. and Bums, A. (1993b), "The end o f the line fo r static cyclic
scheduling?" Proceedings of the 5th Euromicro Workshop on Real-time
Systems, Finland, pp. 36-41.

Austin, T., Blaauw, D., Mudge, T. and Flautner, K. (2004), "Making typical silicon
matter with Razor", Computer, Vol. 37 (3), pp. 57-65.

Avoim (2002), "White Paper: Managing Jitter, Wander, and Latency", Avoim,
http://www.aviom.eom/LibraryDocs/WhitePapers/WP202_Jitter_3.0.pdf.

Aydin, H., Melhem, R., Mosse, D. and Mejia-Alvarez, P. (2001), "Dynamic and
Aggressive Scheduling Techniques fo r Power-Aware Real-Time Systems",
Proceedings of the 22nd IEEE Real-Time Systems Symposium, pp. 95-105.

Aydin, H., Devadas, V. and Zhu, D. (2006), "System-Level Energy Management fo r
Periodic Real-Time Tasks", Proceedings of the 27th IEEE International Real-
Time Systems Symposium, pp. 313-322.

Aziz, P. M., Sorensen, H. V. and Spiegel, J. V. d. (1996), "An overview o f sigma-delta
converters: How a 1-bit ADC achieves more than 16-bit resolution", IEEE
Signal Processing Magazine, Vol. 13 (1), September 1996, pp. 61-84.

Bai, P., Auth, C., Balakrishnan, S., Bost, M., Brain, R., Chikarmane, V., Heussner, R.,
Hussein, M., Hwang, J., Ingerly, D., James, R., Jeong, J., Kenyon, C., Lee, E.,
Lee, S.-H., Lindert, N., Liu, M., Ma, Z., Marieb, T., Murthy, A., Nagisetty, R.,
Natarajan, S., Neirynck, J., Ott, A., Parker, C., Sebastian, J., Shaheed, R.,
Sivakumar, S., Steigerwald, J., Tyagi, S., Weber, C., Woolery, B., Yeoh, A.,
Zhang, K. and Bohr, M. (2004), "A 65nm logic technology featuring 35nm
gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD
and 0.57 /spl mu/m/sup 2/ SRAM cell”, Electron Devices Meeting, 2004., pp.
657-660.

Baker, T. P. and Shaw, A. (1989), "The cyclic executive model and Ada", Real-Time
Systems, Vol.l (1), pp. 7-25.

Ball, S. R. (1996), "Embedded Microprocessor Systems: Real World Design",
Newnes, USA.

Bambha, N. K., Bhattacharyya, S. S., Teich, J. and Zitzler, E. (2001), "Hybrid
global/local search strategies fo r dynamic voltage scaling in embedded
multiprocessors", International Conference on Hardware Software Codesign,
Copenhagen, Denmark, pp. 243-248.

Barreiros, J., Costa, E., Fonseca, J. and Coutinho, F. (2000), "Jitter reduction in a
real-time message transmission system usinggenetic algorithms", Proceedings
of the 2000 Congress on Evolutionary Computation, CA, USA, Vol. 2, pp.
1095-1101.

http://www.aviom.eom/LibraryDocs/WhitePapers/WP202_Jitter_3.0.pdf

References E-3

Baruah, S., Buttazzo, G., Gorinsky, S. and Lipari, G. (1999), "Schedulingperiodic
task systems to minimize output jitter", International Conference on Real-Time
Computing Systems and Applications (RTCSA '99), Hong Kong, pp. 62-69.

Bate, I. J. (1998), "Scheduling and Timing Analysis fo r Safety Critical Real-Time
Systems", PhD thesis, Department of Computer Science, University of York.

Benini, L., Castelli, G., Macii, A., Macii, E. and Scarsi, R. (2000), "Battery-Driven
Dynamic Power Management o f Portable Systems", 13th International
Symposium on System Synthesis (ISSS'00), pp. 25-30.

Benini, L., Macii, A., Macii, E. and Poncino, M. (2002), "Discharge Current Steering
fo r Battery Lifetime Optimization", Proceedings o f the 2002 International
Symposium on Low Power Electronics and Design, pp. 118-123.

Bennett, S. (1994), "Real-time Computer Control: An introduction", 2nd ed, Prentice
Hall.

Bilas, A., Fritts, J. and Singh, J. P. (1997), "Real-Time Parallel MPEG-2 Decoding in
Software", Proceedings of the 11th International Parallel Processing
Symposium, pp. 197-203.

Bini, E., Buttazzo, G. and Lipari, G. (2005), "Speed Modulation in Energy-Aware
Real-Time Systems", Proceedings of the 17th Euromicro Conference on Real-
Time Systems (ECRTS'05), pp. 3-10.

Boardman, A., Schlindwein, F., Thakor, N., Kimura, T. and Geocadin, R. G. (2002),
"Detection o f asphyxia using heart rate variability", Medical and Biological
Engineering and Computing, Vol.40 (6), pp. 618-624.

Bogatin, E. and Garat, G. (2004), "Analysis o f board layout helps cure jitter
problems", EDN, 5 August 2004, pp. 77-80.

Brannon, B. and Barlow, A. (2006), "Aperture uncertainty and ADC system
performance: Application note (AN-501)”, Analog Devices.

Buckwalter, J., Analui, B. and Hajimiri, A. (2004), "Predicting data-dependentjitter",
IEEE Transactions on Circuits and Systems II: Express Briefs, Vol.51 (9), pp.
453-457.

Burd, T. D. and Brodersen, R. W. (1995), "Energy Efficient CMOS Microprocessor
Design", Proc. 28th Hawaii Int'l Conf. On System Sciences, Vol. 1, pp. 288-
297.

Burd, T. D., Pering, T. A., Stratakos, A. J. and Brodersen, R. W. (2000), "A Dynamic
Voltage Scaled Microprocessor System", IEEE J. Solid-State Circuits, Vol.35
(11), pp. 1571-1579.

Bums, A., Hayes, N. and Richardson, M. F. (1995), "Generating feasible cyclic
schedules", Control Engineering and Practice, Vol.3 (2), pp. 151-162.

References E-4

Buttazzo, G. C. (2004), "Hard Real-time Computing Systems: Predictable Scheduling
Algorithms and Applications", 2nd ed, Springer.

Buttazzo, G. C. (2005), "Rate monotonic vs. EDF: Judgement day", Real-Time
Systems, Vol.29 pp. 5-26.

Butts, J. A. and Sohi, G. S. (2000), "A static power model fo r Architects", The 33rd
Annual International Symposium on Microarchitecture (MICRO-33), pp. 191-
201 .

Cai, Y., Schmitz, M. T., Al-Hashimi, B. M. and Reddy, S. M. (2006), "Workload-
ahead-driven online energy minimization techniques fo r battery-powered
embedded systems with time-constraints", ACM Transactions on Design
Automation of Electronic Systems (TODAES), Vol. 12 (5), pp. 1084-4309.

Cervin, A., Henriksson, D., Lincoln, B., Eker, J. and Arzen, K.-E. (2003), "How does
control timing affect performance? Analysis and simulation o f timing using
Jitterbug and TrueTime", IEEE Control Systems Magazine, Vol.23 (3), pp.
16-30.

Cervin, A., Lincoln, B., Eker, J., Arzen, K.-E. and Buttazzo, G. (2004), "The Jitter
Margin and Its Application in the Design o f Real-Time Control Systems”, the
10th International Conference on Real-Time and Embedded Computing
Systems and Applications, Goteborg, Sweden.

Chandrakasan, A., Bowhill, W. J. and Fox, F. (2000), "Design o f High-Performance
Microprocessor Circuits", Wiley-IEEE Press.

Chandrakasan, A. P., Sheng, S. and Brodersen, R. W. (1992), "Low Power CMOS
Digital Design", IEEE journal of Solid-State Circuits, Vol.27 (4), pp. 473-484.

Cheng, H. and Goddard, S. (2005), "Integrated Device Scheduling and Processor
Voltage Scaling fo r System-wide Energy Conservation", 2nd International
Workshop on Power-Aware Real-Time Computing (PARC 05). pp. 24-29.

Chew, B. (2002), "Dynamic voltage scaling conserves portable pow er", EDN,
January 10, pp. 65-68.

Chiasserini, C. and Rao, R. (1999a), "A Traffic Control Scheme to Optimize the
Battery Pulsed Discharge", Proc. ofMilcom'99, Atlantic City, NJ.

Chiasserini, C. and Rao, R. (1999b), "A Model fo r Battery Pulsed Discharge with
Recovery Effect", WCNC'99, New Orleans, USA.

Chiasserini, C. F. and Rao, R. R. (2000), "Routingprotocols to maximizebattery
efficiency", Proceedings of IEEE Military Communications Conference
(MILCOM'OO), Los Angeles, CA, USA, pp. 496-500.

Choi, S., Cha, H. and Ha, R. (2006), "A selective DVS technique based on battery
residual", Microprocessors and Microsystems, Vol.30 (1), pp. 33-42.

References E-5

Chow, C. T., Tsui, L. S. M., Leong, P. H. W., Luk, W. and Wilton, S. J. E. (2005),
"Dynamic Voltage Scaling fo r Commercial FPGAs", Proceedings of the 2005
IEEE International Conference on Field-Programmable Technology,
Singapore, pp. 173-180.

Chuang, C.-N. and Liu, S.-I. (2006), "A 1 VPhase Locked Loop with Leakage
Compensation in 0.13 um CMOS Technology", IEICE Transactions on
Electronics, Vol.E89-C (3), pp. 295-299.

Clark, D. D., Shenker, S. and Zhang, L. (1992), "Supporting Real-Time Applications
in an Integrated Services Packet Network: Architecture and Mechanism ",
Proceedings o f the SIGCOMM '92, pp. 14-26.

Cooling, J. (2003), "Software Engineering fo r Real-time Systems", Addison-Wessley.

Cottet, F. and David, L. (1999), "A solution to the time jitter removal in deadline
based scheduling o f real-time applications", 5th IEEE Real-Time Technology
and Applications Symposium - WIP, Vancouver, Canada, pp. 33-38.

Coutinho, F., Barreiros, J., Fonseca, J. and Costa, E. (2000), "Jitter minimization with
genetic algorithms", IEEE International Workshop on Factory Communication
Systems, Porto, Portugal, pp. 267-273.

Daintith, J. (2004), "Oxford: A Dictionary o f Computing", 5th ed, Oxford University
Press.

Dancy, A. and Chandrakasan, A. P. (1997), "Ultra low power control circuits fo r
PW M converters", Proceedings of the IEEE Power Electronics Specialists
Conference, pp. 21-27.

Delmar-Reynolds (2002), "7-Day Continuous ECG Recording System ", Del Mar
Reynolds, http://www.delmarreynolds.com/innovation.php?country=8&
uid=34&page=l.

Dhar, S., Maksimovic, D. and Kranzen, B. (2002), "Closed-loop adaptive voltage
scaling controller fo r standard-cell ASICs", International Symposium on Low
Power Electronics and Design, California, pp. 103-107.

Digilent (2004), "Spartan 3 Board", Digilent., http://www.digilentinc.com/Data
/Products/S 3B OARD/S 3B O ARD-rm .pdf.

Doyle, M. (1995), "Design and simulation oflitium rechargeable batteries”, Ph.D.
dissertation, University o f California at Berkeley.

Eisenbeis, C. and Windheiser, D. (1993), "Optimal Software Pipelining In Presence
O f Resource Constraints", Proceedings o f the International Conference on
Parallel Architecture and Compiler Techniques, Obninsk, Russia.

http://www.delmarreynolds.com/innovation.php?country=8&
http://www.digilentinc.com/Data

References E-6

Ejlali, A., Al-Hashimi, B. M., Schmitz, M. T., Rosinger, P. and Miremadi, S. G.
(2006), "Combined time and information redundancy fo r SEU-tolerance in
energy-efficient real-time systems”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol. 14 (4), pp. 323-335.

Erickson, R. and Maksimovic, D. (1995), "High Efficiency DC-DC Converters for
Battery-Operated Systems with Energy Management ", Worldwide Wireless
Communications, Annual Reviews on Telecommunications.

Ernst, D., Das, S., Lee, S., Blaauw, D., Austin, T., Mudge, T., Kim, N. S. and
Flautner, K. (2004), "Razor: Circuit-Level Correction o f Timing Errors for
Low-Power Operation", IEEE Micro, Vol. 24 (6), pp. 10-20.

Flautner, K., Flynn, D. and Rives, M. (2003), "A Combined Hardware-Software
Approach fo r Low-Power SoCs: Applying Adaptive Voltage Scaling and
Intelligent Energy Management Software", System-on-Chip and ASIC Design
Conference (DesignCon 2003).

Fourre, R. (1993), "Reference: Jitter & the Digital Interface"', Stereophile, Vol. 16
(10), October, 1993.

Fuller, T. F., Doyle, M. and Newman, J. (1994), "Relaxation Phenomena in Lithium-
Ion-Insertion Cells", Journal of the Electrochemical Society, Vol. 141 (4), pp.
982-990.

Gannett, E. K., Day, E. C., Carter, H. J., Greer, S., Martynec, S., Cole, L., Jacob, A.,
Schneider, A. and Stephen, M. (1972), "IEEE Standard Dictionary o f
Electrical and Electronics Terms", John Wiley & Sons.

Gartner (2004), "Statistics: Worldwide sales o f Mobile Terminals to End Users, 2002-
2003 ", Gartner, http://www.dataquest.com/press_gartner/quickstats/phone
.html.

Ge, R., Feng, X. and Cameron, K. W. (2005), "Performance-constrained Distributed
DVS Scheduling fo r Scientific Applications on Power-aware Clusters",
Proceedings o f the 17th IEEE/ACM High Performance Computing,
Networking and Storage Conference (SC'05), Seattle, USA.

Govil, K., Chan, E. and Wasserman, H. (1995), "Comparing Algorithms fo r Dynamic
Speed-Setting o f a Low-Power CPU”, Proceeding of the first ACM
International Conference on Mobile Computing and Networking (MOBICOM
95), pp. 13-25.

Gruian, F. (2001), "Hard real-time scheduling fo r low-energy using stochastic data
and DVS processors", International Symposium on Low Power Electronics
and Design, California, pp. 46-51.

Gruian, F. (2002), "Energy-Centric Scheduling fo r Real-Time Systems", PhD thesis,
Department of Computer Science, Lund University.

http://www.dataquest.com/press_gartner/quickstats/phone

References E-7

Hageman, S. (1993), "Simple PSpice models let you simulate common battery types",
EDN, Vol. October 28, 1993, pp. 117-129.

Hajimiri, A. and Lee, T. H. (1998), "A pGeneral Theory o f Phase Noise in Electrical
Oscillators", IEEE Journal of Solid-State Circuits, Vol.33 (2), pp. 179-194.

Hampton, J. R. (1998), "The ECG made easy", 5th ed, Churchill Livingstone.

Hartman, M. and Dhar, S. (2004), "On-Chip Power Management Utilizing an
Embedded Hardware Controller and a Low-Power Serial Interface",
embedded world 2004 Conference.

Hazucha, P. and Svensson, C. (2000), "Impact o f CMOS technology scaling on the
atmospheric neutron soft error rate", IEEE Transactions on Nuclear Science,
Vol.47 (6), pp. 2586-2594.

Heath, S. (1997), "EmbeddedSystems Design", Newnes.

Hollabaugh, C. (2002), "Embedded Linux: Hardware, Software, and Interfacing",
Addison Wesley.

Hsu, C.-H. and Kremer, U. (2002), "Compiler-Directed Dynamic Voltage Scaling fo r
Memory-Bound Applications", Technical Report DCS-TR-498, Department of
Computer Science, Rutgers University, August 2002.

Huang, Z., Kurokawa, A., Inoue, Y. and Mao, a. J. (2005), "A Novel Model fo r
Computing the Effective Capacitance o f CMOS Gates with Interconnect
Loads", IEICE Transactions of Fundamentals of Electronics, Communication
and Computer Sciences, V0 I.E88-A (10), pp. 2562-2569.

Hughes, Z. H. and Pont, M. J. (2004), "Design and test o f a task guardian fo r use in
TTCS embedded systems", Proceedings o f the UK Embedded Forum 2004,
Birmingham, UK, pp. 16-25.

Hughes, Z. M. and Pont, M. J. (2005), "Time-triggered co-operative hardware
scheduler", patent application filed (UK), 9 September 2005.

Hughes, Z. M., Pont, M. J. and Ong, H. L. R. (2005), "A soft embedded core fo r use in
university research and teaching", Proceedings o f the 2nd UK Embedded
Forum, Birmingham, UK, pp. 224-245.

Intel (1994), "MCS51 Microcontroller Family User’s Manual", Intel Corporation.

Intel (2001), "Intel StrongARMSA-1110 Microprocessor: Developer's Manual”, Intel,
http://www.intel.com/design/strong/manuals/278240.htm.

Intel (2006a), "Intel Itanium 2 Processor", Intel, http://www.intel.com/products
/processor/itanium2/index.htm.

http://www.intel.com/design/strong/manuals/278240.htm
http://www.intel.com/products

References E-8

Intel (2006b), "The Intel 4004: A testimonial from Federico Faggin, its designer, on
the first microprocessor's thirtieth birthday." Intel, http://www.intel4004.
com/.

Intersil (2005), "82C54 CMOS Programmable Interval Timer", Intersil, http://www.
intersil.com/data/fn/fn2970.pdf.

Ishihara, T. and Yasuura, H. (1998a), "Voltage Scheduling Problem fo r Dynamically
Variable Voltage Processors", The International Symposium on Low Power
Electronics and Design, pp. 197-202.

Ishihara, T. and Yasuura, H. (1998b), "Programmable Power Management
Architecture fo r Power Reduction", IEICE Trans. Electronics, V0 I.E8 I-C (9).

Jan, C.-H., Bai, P., Choi, J., Curello, G., Jacobs, S., Jeong, J., Johnson, K., Jones, D.,
Klopcic, S., Lin, J., Lindert, N., Lio, A., Natarajan, S., Neirynck, J., Packan,
P., Park, J., Post, I., Patel, M., Ramey, S., Reese, P., Rockford, L., Roskowski,
A., Sacks, G., Turkot, B., Wang, Y., Wei, L., Yip, J., Young, I., Zhang, K.,
Zhang, Y., Bohr, M. and Holt, B. (2005), "A 65nm Ultra Low Power Logic
Platform Technology using Uni-axial Strained Cilicon Transistors", IEEE
International Electron Devices Meeting (IEDM).

Jarman, D. (1995), "A brief introduction to sigma delta conversion: Application
Note ", Intersil Corp.

Jeffay, K., Stanat, D. F. and Martel, C. U. (1991), "On Non-Preemptive Scheduling o f
Periodic and Sporadic Tasks", Proceedings of the 12 th IEEE Symposium on
Real-Time Systems, pp. 129-139.

Jejurikar, R., Pereira, C. and Gupta, R. (2004), "Leakage Aware Dynamic Voltage
Scaling fo r Real-Time Embedded Systems", Proceedings o f the 41st annual
conference on Design automation, pp. 275-280.

Jerraya, A. A. and Wolf, W. (2005), "Multiprocessor Systems-on-Chips", Elsevier,
USA.

Jerri, A. J. (1997), "The Shannon sampling theorem: its various extensions and
applications a tutorial review", Proc. o f the IEEE, Vol. 65, pp. 1565-1596.

Jha, N. K.(2006), "Lowpower system scheduling, synthesis and displays". In: Al-
Hashimi, B. M. (Ed.) System-on-Chip: Next Generation Electronics, Vol. 18,
The IEE, London, pp. 361-386.

Johnson, H. (2002), "Random and deterministic jitte r", EDN, 27 June 2002, pp. 24.

Kao, C.-Y. and Lincoln, B. (2004), "Simple stability criteria fo r systems with time-
varying delays", Automatica, Vol.40 (8), pp. 1429-1434.

Kao, J. T. and Chandrakasan, A. P. (2000), "Dual-Threshold Voltage Techniques for
Low-Power Digital Circuits”, IEEE Journal o f Solid-State Circuits, Vol.35 (7),
pp. 1009-1018.

http://www.intel4004
http://www

References E-9

Kawaguchi, H., Shin, Y. and Sakurai, T. (2001), "Experimental Evaluation o f
Cooperative Voltage Scaling (CVS): A Case Study", Proceedings of IEEE
Workshop on Power Management for Real-Time and Embedded Systems, pp.
17-23.

Keshavarzi, A., Ma, S., Narendra, S., Bloechel, B., Mistry, K., Ghani, T., Borkar, S.
and De, V. (2001), "Effectiveness o f reverse body bias fo r leakage control in
scaled dual Vt CMOS ICs", Proceedings of the 2001 international symposium
on Low power electronics and design, pp. 207-212.

Kester, W. (2005), "MT-007: Aperture Time, Aperture Jitter, Aperture Delay Time -
Removing the Confusion", Analog Devices, http://www.analog.com/en/content
/0,2886,760%255F788%255F91284,00.html.

Kim, M., Kiyono, A., Ichige, K. and Arau, H. (2005), "Experimental Study o f Jitter
Effect on Digital Downconversion Receiver with Undersampling Scheme",
IEICE Transactions on Infomation and Systems, V0 I.E88-D (7), pp. 1430-
1436.

Kim, W., Kim, J. and Min, S. L. (2002), "A Dynamic Voltage Scaling Algorithm fo r
Dynamic-Priority Hard Real-Time Systems Using Slack Time Analysis",
Proceedings of Design Automation and Test in Europe, pp. 788-794.

Kim, W., Kim, J. and Min, S. L. (2003), "Dynamic Voltage Scaling Algorithm fo r
Fixed-Priority Real-Time Systems Using Work-DemandAnalysis",
Proceedings of the 2003 international symposium on Low power electronics
and design, Seoul, Korea, pp. 396-401.

Kocher, P. (1997), "Blowfish source code", Kocher, P., http://www.schneier.com
/blowfish-download.html.

Kopetz, H. (1991), "Event-triggered versus time-triggered real-time systems."
Technical Report 8/91, Technical University o f Vienna, Austria,

Kopetz, H. (1997), "Real-Time Systems: Design Principles For Distributed Embedded
Applications", Kluwer Academic.

Kumar, V. (2006), "Design with (low) power while limiting leakage", EDA Design
Line, 18 June 2006.

Kurian, S. and Pont, M. J. (in press), "The maintenance and evolution o f resource-
constrained embedded systems created using design patterns", Journal of
Systems and Software.

Kwak, S. W., Choi, B. J. and Kim, B. K. (2001), "An optimal checkpointing-strategy
fo r real-time control systemsunder transient faults", IEEE Transactions on
Reliability, Vol.50 (3), pp. 293-301.

Labrosse, J. J. (1998), "MicroC/OS-11: The Real-Time Kernel", 2nd ed, CMP Books.

http://www.analog.com/en/content
http://www.schneier.com

References E-10

Lahiri, K., Raghunathan, A., Dey, S. and Panigrahi, D. (2002), "Battery-driven system
design: a new frontier in low power design", Proceedings o f ASP-DAC 2002.
7th Asia and South Pacific and the 15th International Conference on VLSI
Design, pp. 261-267.

Lahiri, K., Raghunathan, A. and Dey, S. (2004), "Efficient power profiling fo r battery-
driven embedded system design", IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol.23 (6), pp. 919-932.

Lattice (2003), "Controlling and Monitoring Power-One Bricks and SIPs with the
Lattice ispPAC-POWRl208", Lattice Semiconductor Corp., http://www.
power-one.com/technical/articles/Lattice_ispP AC.pdf.

Lattice (2004), "ispClock 5600 Family", Lattice Semiconductor Corp, http://www.
msc.de/e/produkte/ele_kom/lattice/files/ispclock5600.pdf.

Lattice (2005), "In-System Programmable Clock Generator", Lattice Semiconductor
Corporation, http://www.latticesemi.com/products/ispClock/index.cfm.

Lee, B., Nurvitadhi, E., Dixit, R., Yu, C. and Kim, M. (2005), "Dynamic voltage
scaling techniques fo r power efficient video decoding", Journal of Systems
Architecture, Vol.51 (10-11), pp. 633-652.

Lee, S. and Sakurai, T. (2000), "Run-time Voltage Hopping fo r Low-Power Real-Time
Systems", Proceedings of Design Automation Conference, pp. 806-809.

Lee, S., Yoo, S. and Choi, K. (2002), "An Intra-Task Dynamic Voltage Scaling
Method fo r SoC Design with Hierarchical FSM and Synchronous Dataflow
Model", International Symposium on Low Power Electronics and Design
(ISLPED 2002), pp. 84-87.

Lee, Y.-H., Reddy, K. P. and Krishna, C. M. (2003), "Scheduling Techniques for
Reducing Leakage Power in Hard Real-Time Systems", 15th Euromicro
Conference on Real-Time Systems (ECRTS'03), pp. 105-112.

Leen, G., Heffeman, D. and Dunne, A. (1999), "Digital networks in the automotive
vehicle”, Computing and Control, Vol. 10 pp. 257-266.

Li, Y.-T. S. and Malik, S. (1995), "Performance Analysis o f Embedded Software
Using Implicit Path Enumeration", Proceedings o f the 32nd ACM/IEEE
Design Automation Conference, pp. 456-461.

Lin, H.-H. and Hsueh, C.-W. (2006), "Applyingpinwheel scheduling and compiler
profiling fo r power-aware real-time scheduling”, Real-Time Systems, Vol.34
(1), pp. 37-51.

Lin, K.-J. and Herkert, A. (1996), "Jitter Control in Time-Triggered Systems",
Proceedings of the 29th Hawaii International Conference on System Sciences,
Maui, Hawaii, pp. 451-459.

http://www
http://www
http://www.latticesemi.com/products/ispClock/index.cfm

References E -ll

Linden, D. and Reddy, T. B. (1995), "Handbook o f batteries”, 3rd ed, McGraw-Hill,
New York.

Liu, C. L. and Layland, J. W. (1973), "Scheduling algorithms fo r multi-programming
in a hard real-time environment”, Journal o f the AVM 20, V ol.l pp. 40-61.

Liu, J. W. S. (2000), "Real-time systems", Prentice Hall.

Locke, C. D. (1992), "Software architecture fo r hard real-time applications: cyclic
executives vs. fixed priority executives", Real-Time Systems, Vol.4 pp. 37-52.

Lorch, J. R. and Smith, A. J. (1997), "Scheduling Techniques fo r Reducing Processor
Energy Use in MacOS”, Wireless Networks, Vol.3 (5), pp. 311-324.

Lorch, J. R. and Smith, A. J. (1998), "Software Strategies fo r Portable Computer
Energy Management", IEEE Personal Communications, June '98, pp. 60-73.

Lorch, J. R. and Smith, A. J. (2001), "Improving Dynamic Voltage Scaling Algorithms
with PACE", Proceedings of SIGMETRICS, pp. 50-61.

Lu, Y.-H., Simunic, T. and Micheli, G. D. (1999), "Software Controlled Power
Management”, Proceedings of the Seventh International Workshop on
Hardware Software Codesign, pp. 157-161.

Lu, Y.-H., Chung, E.-Y., Simuni, T., Benini, L. and Micheli, G. D. (2000),
"Quantitative Comparison o f Power Management Algorithms", the conference
on Design, automation and test in Europe, pp. 20-26.

Luo, J. and Jha, N. K. (2000), "Power-conscious jo int scheduling o f periodic task
graphs and aperiodic tasks in distributed real-time embedded systems ",
International Conference on Computer Aided Design, California, pp. 357-364.

Luo, J. and Jha, N. K. (2001), "Battery-driven static scheduling fo r real-time
distributed embedded systems", IEEE Design Automation Conference,
Bangalore, India, pp. 444-449.

Maaita, A. and Pont, M. J.(2005), "Using ‘plannedpre-emption ’ to reduce levels o f
task jitter in a time-triggered hybrid scheduler”. In: Koelmans, A., A. Bystrov,
M. J. Pont, R. Ong and A. Brown (Eds.), Proceedings of the 2nd UK
Embedded Forum (Birmingham, 2005), pp. 18-35.

Macadie, D. (2004), "Key design considerations fo r high quality audio ADC
performance", WolfsonMicroelectronics.

Mansuri, M. and Yang, C.-K. K. (2002), "Jitter optimization based on phase-locked
loop design parameters", IEEE Journal of Solid-State Circuits, Vol.37 (11),
p p .1375-1382.

Marculescu, R., Marculescu, D. and Pedram, M. (1994), "Switching Activity Analysis
Considering Spatiotemporal Correlations", IEEE/ACM International
Conference on Computer-Aided Design, pp. 294-299.

References E-12

Marti, P., Fuertes, J. M., Ramamritham, K. and Fohler, G. (2001a), "Jitter
Compensation fo r Real-Time Control Systems", 22nd IEEE Real-Time
Systems Symposium (RTSS'01), London, England, pp. 39-48.

Marti, P., Fuertes, J. M., Villa, R. and Fohler, G. (2001b), "On Real-Time Control
Tasks Schedulability", European Control Conference (ECC01), Porto,
Portugal, pp. 2227-2232.

Marti, P. (2002), "Analysis and design o f real-time control systems with varying
control timing constraints", PhD thesis, Automatic Control Department,
Technical University o f Catalonia.

Martin, S. M., Flautner, K., Mudge, T. and Blaauw, D. (2002), "Combined dynamic
voltage scaling and adaptive body biasing fo r lower power microprocessors
under dynamic workloads”, Proceeding of International. Conference on
Computer Aided Design, pp. 721-725.

Martin, T. L. (1999), "Balancing Batteries, Power, and Performance: System Issues
in CPU Speed-Setting fo r Mobile Computing”, A Ph.D. dissertation, Electrical
and Computer Engineering, Carnegie Mellon University, Pittsburgh,
Pennsylvania.

Martin, T. L. and Siewiorek, D. P. (1999a), "Non-ideal Battery Properties and Low
Power Operation in Wearable Computing", International Symposium on
Wearable Computers, pp. 101-106.

Martin, T. L. and Siewiorek, D. P. (1999b), "The Impact o f Battery Capacity and
Memory Bandwidth on CPU Speed-Setting: A Case Study", Proceedings of the
1999 International Symposium on Low Power Electronics and Design, pp.
200-205.

Marwedel, P. (2003), "EmbeddedSystem Design”, Kluwer Academic Publishers, The
Netherlands.

Maxim (2005), "WCDMA Cellular Phone 600mA Buck Regulators", Maxim, http://
pdfserv.maxim-ic.com/en/ds/MAXl 820-MAX1821X.pdf.

Maxim-Dallas (2003), "Demystifying Sigma-Delta ADCs: Application Note 1870",
Maxim-Dallas.

Mazzoni, L. (2003), "Power aware design fo r embedded systems", The IEE:
Electronics systems and software, Vol. 1 (5), Oct/Nov 2003, pp. 12-17.

Melhem, R., Mosse, D. and Elnozahy, E. (2004), "The interplay o f power
management and fault recovery in real-time systems", IEEE Transactionon
Computers, Vol.53 (2), pp. 217-231.

Mills, D. L. (1995), "Improved Algorithms fo r Synchronizing Computer Network
Clocks", IEEE/ACM Transactions on Networks, Vol.3 (3), pp. 245-254.

References E-13

Min, R., Bhardwaj, M., Cho, S., Ickes, N., Shih, E. and Sinha, A. (2002), "Energy-
centric enabling technologies fo r wireless sensor networks ", IEEE Wireless
Communications, Vol. 9 (4), August 2002, pp. 28-39.

Mochocki, B. C., Hu, X. S., Racu, R. and Ernst, R. (2005), "Dynamic Voltage Scaling
fo r the Schedulability o f Jitter-Constrained Real-Time Embedded Systems",
International Conference on Computer Aided Design 2005, San Jose, CA., pp.
445-448.

Mouw, J. A. K., Langendoen, K. and Pouwelse, J. (2002), "LARTLessons Learned:
cpufreq", Proceeding of the Ottawa Linux Symposium, Ottawa, Canada, pp.
376-382.

Mwelwa, C., Athaide, K., Meams, D., Pont, M. J. and Ward, D. (2006), "Rapid
software development fo r reliable embedded systems using a pattern-based
code generation tool", In: Society of Automotive Engineers (Ed.): In-vehicle
software and hardware systems, the Society of Automotive Engineers (SAE)
World Congress, Detroit, Michigan, USA.

Neumann, P. G. (1995), "Computer Related Risks", ACM Press.

Nguyen, D., Davare, A., Orshansky, M., Chinnery, D., Thompson, B. and Keutzer, K.
(2003), "Minimization o f dynamic and static power through jo in t assignment
o f threshold voltages and sizing optimization", Proceedings o f the 2003
international symposium on Low power electronics and design, Seoul, Korea,
pp. 158-163.

NI (2000), "NIPCI-6035E datasheet", National Instruments, http://www.ni.com/pdf
/products/us/4daqsc202-204_ETCx2_212_213 .pdf.

NI (2001), "LabView: User Manual", National Instruments, http://www.ni.com/pdf
/manuals/320999d.pdf.

Nolte, T., Hansson, H. and Norstrom, C. (2002), "Minimizing CAN response-time
jitter by message manipulation", IEEE Real Time Technology and
Applications Symposium 2002, pp. 197-206.

Nolte, T. (2003), "Reducing Pessimism and Increasing Flexibility in the Controller
Area Network", PhD thesis, Department of Computer Science and
Engineering, Malardalen University, Vasteras, SWEDEN.

Nurvitadhi, E., Lee, B., Yu, C. and Kim, M. (2003), "A Comparative Study o f
Dynamic Voltage Scaling Techniques fo r Low-Power Video Decoding",
International Conference on Embedded Systems and Applications.

Oen, J. and Schultz, C. (2006), "EMI shield fo r reducing clock jitter o f a transceiver",
United States Patent 7092639, Intel Corporation, August 15, 2006.

Ong, C.-K., Hong, D., Cheng, K.-T. T. and Wang, L.-C. (2004), "Jitter spectral
extraction fo r multi-gigahertz signal", Asia and South Pacific Design
Automation Conference (ASP-DAC '04), pp. 298-303.

http://www.ni.com/pdf
http://www.ni.com/pdf

References E-14

Ou, N., Farahmand, T., Kuo, A., Tabatabaei, S. and Ivanov, I. (2004), "Jitter Models
fo r the Design and Test o f Gbps-Speed Serial Interconnects”, IEEE Design
and Test of Computers, Vol.21 (4), pp. 302-313.

Paleologo, G. A., Benini, L., Bogliolo, A. and Micheli, G. D. (1998), "Policy
optimization fo r dynamic power management", Proceedings o f the 35th annual
conference on Design automation, San Francisco, CA, pp. 182-187.

Panigrahi, D., Chiasserini, C., Dey, S., Rao, R., Raghunathan, A. and Lahiri, K.
(2001), "Battery Life Estimation o f Mobile Embedded Systems”, The 14th
International Conference on VLSI Design, pp. 57-63.

Patterson, D. A. and Hennessy, J. L. (2004), "Computer Organization and Design:
The Hardware/Software Interface", 3rd ed, Elsevier / Morgan-Kaufmann.

Pedreiras, P. and Almeida, L. (2002), "EDF message scheduling on controller area
network", Computing & Control Engineering Journal, Vol. 13 (4), pp. 163-
170.

Pering, T. and Brodersen, R. (1998), "Energy Efficient Voltage Scheduling fo r Real-
Time Operating Systems", Proceedings of the 4th IEEE Real-Time Technology
and Applications Symposium RTAS'98.

Pering, T., Burd, T. and Brodersen, R. (1998a), "The Simulation and Evaluation o f
Dynamic Voltage Scaling Algorithms", Proceedings of the International
Symposium on Low Power Electronics and Design, pp. 76-81.

Pering, T., Burd, T. and Brodersen, R. (1998b), "Dynamic Voltage Scaling and the
Design o f a Low-Power Microprocessor Systems", the Power-Driven
Microarchitecture Workshop, Barcelona, Spain, June.

Phatrapomnant, T. and Pont, M. J. (2006), "Reducing jitter in embedded systems
employing a time-triggered software architecture and dynamic voltage
scaling", IEEE Transactions on Computers, Vol.55 (2), pp. 113-124.

Philips (2003), "LPC2104/2105/2106: Single-chip 32-bit microcontrollers", Philips
S emiconductors, http ://www. semiconductors .philips .com/acrobat/datasheets
/LPC2104_2105_2106-04.pdf.

Pillai, P. and Shin, K. G. (2001), "Real-Time Dynamic Voltage Scaling fo r Low-
Power Embedded Operating Systems", ACM Symposium on Operating
Systems Principles, pp. 89-102.

Pont, M. J. (2001), "Patterns fo r time-triggered embedded systems: Building reliable
applications with 8051 family o f microcontrollers", Addison-Wesley.

Pop, P., Eles, P. and Peng, Z. (2004), "Analysis and Synthesis o f Distributed Real-time
Embedded Systems", Kluwer Academic Publishers, Netherlands.

References E-15

Pouwelse, J., Langendoen, K. and Sips, H. (2001a), "Energy Priority Scheduling for
Variable Voltage Processors", International Symposium on Low Power
Electronics and Design, pp. 28-33.

Pouwelse, J., Langendoen, K. and Sips, H. (2001b), "Dynamic voltage scaling on a
low-power microprocessor”, Proceedings of the 7th annual international
conference on Mobile computing and networking, pp. 251-259.

Pouwelse, J., Langendoen, K. and Sips, H. (2001c), "Power-Aware Video Decoding",
Proceeding of 22nd Picture Coding Symposium, Seoul, Korea.

Proctor, F. M. and Shackleford, W. P. (2001), "Real-time Operating System Timing
Jitter and its Impact on Motor Control", proceedings o f the 2001 SPIE
Conference on Sensors and Controls for Intelligent Manufacturing II, Vol.
4563-02.

Rakhmatov, D., Vrudhula, S. and Wallach, D. A. (2002), "Battery Lifetime Prediction
fo r Energy-Aware Computing", Proceedings o f the 2002 International
Symposium on Low Power Electronics and Design, pp. 154-159.

Rakhmatov, D. and Vrudhula, S. (2003), "Energy management fo r battery-powered
embedded systems", ACM Transactions on Embedded Computing Systems,
Vol.2 (3), pp. 277-324.

Rao, R. and Vrudhula, S. (2005), "Battery optimization vs energy optimization: which
to choose and when?" Proceedings of the 2005 IEEE/ACM International
conference on Computer-aided design, pp. 439-445.

Raskovic, D., Martin, T. and Jovanov, E. (2004), "Medical Monitoring Applications
fo r Wearable Computing", The Computer Journal, Vol.47 (4), pp. 495-504.

Schilling, D. L. and Belove, C. (1985), "Electronic Circuits: Discrete and
Integrated", 2nd ed, McGraw-Hill, Singapore.

Schmitz, M. T. and Al-Hashimi, B. M. (2000), "Low Power Process Assignment fo r
Distributed Embedded Systems using Dynamic Voltage Scaling", Proceedings
of IEE Hardware-Software Co-Design, pp. 7/1-7/4.

Schmitz, M. T., Al-Hashimi, B. M. and Eles, P. (2004), "Iterative schedule
optimization fo r voltage scalable distributed embedded systems", ACM
Transactions on Embedded Computing Systems, Vol.3 (1), pp. 182-217.

Schneier, B. (1993), "Fast Software Encryption”, Cambridge Security Workshop
Proceedings, Springer-Verlag, pp. 191-204.

Schossmaier, K. and Weiss, B. (1999), "An Algorithm fo r Fault-Tolerant Clock
State&Rate Synchronization”, Proc. of the 18th IEEE Symp. on Reliable
Distributed Systems (SRDS '99), Lausanne, pp. 36-47.

References E-16

Schurgers, C., Aberthome, 0 . and Srivastava, M. B. (2001), "Modulation scaling for
Energy Aware Communication Systems", Proceedings of the 2001
international symposium on Low power electronics and design, California,
Vol. 96-99.

Schurgers, C., Raghunathan, V. and Srivastava, M. B. (2003), "Power management
fo r energy-aware communication systems", ACM Transactions on Embedded
Computing Systems (TECS), Vol.2 (3), pp. 431-447.

Seifert, N., Moyer, D., Leland, N. and Hokinson, R. (2001), "Historical trend in
alpha-particle induced soft error rates o f theAlpha microprocessor",
Proceedings of 39th Annual IEEE International Reliability Physics
Symposium, pp. 259-265.

Sha, L., Rajkumar, R. and Lehoczky, J. P. (1990), "Priority inheritance protocols: an
approach to real-timesynchronization”, IEEE Transactions on Computers,
Vol.39 (9), pp. 1175-1185.

Shin, D., Kim, J. and Lee, S. (2001), "Low-energy intra-task voltage scheduling using
static timing analysis", Proceedings of the 38th conference on Design
automation, Las Vegas, Nevada, pp. 438-443.

Shin, Y. and Choi, K. (1999), "Power Conscious Fixed Priority Scheduling fo r Hard
Real-Time Systems", Proceeding of Design Automation Conference, pp. 134-
139.

Shin, Y., Choi, K. and Sakurai, T. (2000), "Power optimization o f real-time embedded
systems on variable speed processors", Proceedings of the 2000 IEEE/ACM
international conference on Computer-aided design, pp. 365-368.

Shivakumar, P., Kistler, M., Keckler, S. W., Burger, D. and Alvisi, L. (2002),
"Modeling the Effect o f Technology Trends on the Soft Error Rate o f
Combinational Logic”, Proceedings of the 2002 International Conference on
Dependable Systems and Networks, pp. 389-398.

Sidiropoulos, S. and Horowitz, M. A. (1997), "A semidigital dual delay-locked loop",
IEEE Journal o f Solid-State Circuits, Vol.32 (11), pp. 1683-1692.

Simunic, T., Benini, L. and Micheli, G. D. (1999), "Event-Driven Power Management
o f Portable Systems", International Symposium on System Synthesis, pp. 18-
23.

Simunic, T., Benini, L., Glynn, P. and Micheli, G. D. (2000), "Dynamic Power
Management fo r Portable Systems", Proceedings of the sixth annual
international conference on Mobile computing and networking, pp. 11-19.

Simunic, T., Benini, L., Acquaviva, A., Glynn, P. and Micheli, G. D. (2001),
"Dynamic Voltage Scaling fo r Portable Systems", The seventh annual
international conference on Mobile computing and networking, pp. 251-259.

References E-17

Sinha, A. and Chandrakasan, A. P. (2001), "JouleTrack - A Web Based Tool fo r
Software Energy Profiling", the 38th Design Automation Conference, pp. 220-
225.

Son, D., Yu, C. and Kim, H.-N. (2001), "Dynamic Voltage Scaling on MPEG
Decoding", International Conference of Parallel and Distributed System
(ICPADS), pp. 633-640.

Spuri, M., Buttazzo, G. and Sensini, F. (1995), "Robust Aperiodic Scheduling under
Dynamic Priority Systems", 16 th IEEE Real-Time Systems Symposium, Pisa,
Italy, pp. 210-219.

Spuri, M. and Buttazzo, G. (1996), "Scheduling Aperiodic Tasks in Dynamic Priority
Systems", Journal of Real-Time Systems, Vol. 10 (2), pp. 179-210.

Srivastava, A. and Sylvester, D. (2004), "Minimizing total power by simultaneuos
Vdd/Vth assignment”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol.23 (5), pp. 665-677.

Stankovic, J. A. and Ramamritham, K. (1990), "What is predictability fo r real-time
systems?"Real-Time Systems, Vol.2 (4), pp. 247-254.

Stankovic, J. A., Spuri, M., Natale, M. D. and Buttazzo, G. (1995), "Implications o f
Classical Scheduling Results For Real-Time Systems", IEEE Computer,
Vol.28 (6), pp. 16-25.

Story, M. (1998), "Timing Errors and Jitter", dCS Ltd., http://www.dcsltd.co.uk
/technical_papers/j itter.pdf.

Swaminathan, V. and Chakrabarty, K. (2001), "Real-Time Task Scheduling fo r
Energy-Aware Embedded Systems", Journal of the Franklin Institute, Vol.338
(6), pp. 729-750.

Swaminathan, V. and Chakrabarty, K. (2003), "Energy-Conscious, Deterministic I/O
Device Scheduling in Hard Real-Time Systems", IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol.22 (7), pp.
847-858.

Swaminathan, V. and Chakrabarty, K. (2005), "Pruning-based, energy-optimal,
deterministic I/O device scheduling fo r hard real-time systems", ACM
Transactions on Embedded Computing Systems (TECS), Vol.4 (1), pp. 141-
167.

Tektronix (2002), "Understanding and Characterizing Timing Jitter", Tektronix Inc.

Tektronix (2004), "Characterize Phase-Locked Loop Systems Using Real Time
Oscilloscopes: Application N ote”, Tektronix Inc.

Tindell, K. and Bums, A. (1994), "Guaranteed Message Latencies For Distributed
Safety-Critical Hard Real-Time Control Networks ", Technical Report
YCS229, Dept, o f Computer Science, University o f York, June 1994.

http://www.dcsltd.co.uk

References E-18

Tomgren, M. (1998), "Fundamentals o f implementing real-time control applications
in distributed computer systems", Real-Time Systems, Vol. 14 pp. 219-250.

Tryfonas, C. and Varma, A. (1999), "MPEG-2 Transport over ATM Networks", IEEE
Communications Surveys, Vol. 2 (4), 4th Quarter 1999, pp. 24-33.

Valvano, J. W. (2000), "Embedded Microcomputer Systems: Real Time Interfacing",
Brooks/Cole, USA.

Viredaz, M. A. and Wallach, D. A. (2003), "Power Evaluation o f a Handheld
Computer", IEEE Micro, Vol.23 (1), pp. 66-74.

Wavecrest (2001), "Understanding Jitter: Getting Started", Wavecrest Corporation.

Wei, T., Mishra, P., Wu, K. and Liang, H. (2006), "Online Task-Scheduling fo r Fault-
Tolerant Low-Energy Real-Time Systems", IEEE/ACM International
Conference on Computer-Aided Design, 2006. ICCAD '06, pp. 522-527.

Weiser, M., Welch, B., Demers, A. and Shenker, S. (1994), "Scheduling fo r Reduced
CPU Energy", Proceeding of the First Symposium on Operating Systems
Design and Implementation, pp. 13-23.

Wu, D., Al-Hashimi, B. M. and Eles, P. (2004), "Dynamic and Leakage Power-
Composition Profile Driven Co-Synthesis fo r Energy and Cost Reduction ",
Proceedings of System-On-Chip Design, Test and Technology,
Loughborough, UK.

Xilinx (2005), "Spartan-3 FPGA Family: Complete Data Sheet", Xilinx, http://www.
xilinx.com/bvdocs/publications/ds099.pdf.

Yang, Z., Yuan, Y., He, J. and Chen, W. (2005), "Adaptive Modulation Scaling
Scheme fo r Wireless Sensor Networks", IEICE Transactions on
Communications, V0I.E88-B (3), pp. 882-889.

Yu, Y., Krishnamachari, B. and Prasanna, V. K. (2004), "Energy-Latency Tradeoffs
fo r Data Gathering in Wireless Sensor Networks", In Proceedings of IEEE
Infocom 2004, Los Angeles.

Yuan, Y., Yang, Z. and He, J. (2005), "An Adaptive Modulation Scaling Scheme fo r
Quality o f Services Ensurance in Wireless Sensor Networks", American
Journal of Applied Sciences, Vol.2 (3), pp. 734-738.

Zhang, F. and Chanson, S. T. (2003), "Processor Voltage Scheduling fo r Real-Time
Tasks With Non-Preemptible Sections", Proceedings o f IEEE Real-Time
Systems Symposium, Austin, Texas, pp. 235-245.

Zhang, H. (1995), "Service Disciplines For Guaranteed Performance Service in
Packet-Switching Networks", Proceedings o f the IEEE, Vol.83 (10), pp. 1374-
1396.

http://www

References E-19

Zhang, Y. and Chakrabarty, K. (2006), "A unified approach fo r fau lt tolerance and
dynamic power management in fixed-priority real-time embedded systems",
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol.25 (1), pp. 111-125.

Zhu, D., Melhem, R. and Childers, B. R. (2003), "Scheduling with dynamic
voltage/speed adjustment using slack reclamation in multiprocessor real-time
systems", IEEE Transactions on Parallel and Distributed Systems, Vol. 14 (7),
pp. 686-700.

Zhu, D., Melhem, R. and Mosse, D. (2004), "effects o f energy management on
reliability in real-time embedded systems", Proceedings o f the 2004
IEEE/ACM International conference on Computer-aided design, pp. 35-40.

Zhu, D. (2006), "Reliability-Aw are Dynamic Energy Management in Dependable
Embedded Real-Time Systems", Proceeding o f the IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS'06), San Jose,
pp. 397-407.

Zhu, Y. and Mueller, F. (2004), "Feedback EDF Scheduling Exploiting Dynamic
Voltage Scaling", IEEE Real-Time and Embedded Technology and
Applications Symposium 2004, pp. 84-93.

Zhu, Y. and Mueller, F. (2005), "Feedback EDF scheduling exploiting hardware-
assisted asynchronous dynamic voltage scaling", Proceedings o f the 2005
ACM SIGPLAN/SIGBED conference on Languages, compilers, and tools for
embedded systems, Vol. 40, pp. 203-212.

Zhuo, J. and Chakrabarti, C. (2005), "An efficient dynamic task scheduling algorithm
fo r battery powered DVS systems", Proceedings o f the 2005 conference on
Asia South Pacific design automation, Shanghai, China, pp. 846-849.

Ziv, A. and Bruck, J. (1997), "An On-Line Algorithm fo r Checkpoint Placement",
IEEE Transactions on Computers, Vol.46 (9), pp. 976-985.

