Author Retrospective for
Optimizing for Parallelism and Data Locality

Kathryn S. McKinley
Microsoft Research
mckinley@microsoft.com

ABSTRACT

Today there is an urgent need for algorithms, programming lan-
guage systems and tools, and hardware that deliver on the potential
of parallelism due to the end of Dennard scaling. This work (from
my PhD dissertation, supervised by Ken Kennedy) was one of the
early papers to optimize for and experimentally explore the tension
between data locality and parallelism on shared memory machines.
A key result was that false sharing of cache lines between proces-
sors with local caches on separate chips was disastrous to the per-
formance and scaling of applications. This retrospective includes a
short personal tour through the history of parallel computing, a dis-
cussion of locality and parallelism modeling versus a polyhedral
formulation of optimizing dense matrix codes, and how this prob-
lem is still relevant to compilers today. I end with a short memorial
to my deceased co-author and advisor Ken Kennedy.

Original paper: http://doi.acm.org/10.1145/143369.143427

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Compilers; Optimization

Keywords

False Sharing; Loop Transformations; Parallelism; Locality

Parallel Computing: A Personal History

Parallel computing seemed to be entering its heyday in the late
1980s and early 1990s. AtRice in 1989, Ken Kennedy was awarded
an NSF Science and Technology Center for the Center for Re-
search on Parallel Computing (CRPC) as the Principal Investiga-
tor. The CRPC started with seven sites and eventually included
400 researchers, staff, and graduate students. Their technical ex-
pertise spanned parallel algorithms, compilers, runtimes, and hard-
ware. The CRPC vision that Ken, his collaborators, and students
shared was to invent parallel algorithms for critical problems in
science, coupled with programming language tools, such as com-
pilers, runtime systems, and programming environments, that made

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

ICS 25th Anniversary Volume. 2014

ACM 978-1-4503-2840-1/14/06.

http://dx.doi.org/10.1145/2591635.2591646.

them run fast. We were not trying to solve the dusty-deck prob-
lem of automatically converting sequential algorithms to parallel
ones. We understood that parallel and sequential algorithms for the
same problem require different solutions. However, tools would
do heavy lifting to map application parallelism to hardware paral-
lelism, such that the programmers would not have to reimplement
their algorithms for each new parallel architecture. A key aspect of
this problem is balancing parallelism, sharing between tasks, and
memory usage, which was the topic our paper addressed.

In this same period, a number of established companies and star-
tups, such as Sequent, had introduced parallel machines. The Se-
quent Symmetry was the machine on which we reported our results.
It was not yet clear that the research and development challenges
of parallel computing would make it too costly to win in the market
place in the short term. By the mid 1990s, this generation of paral-
lel computers together with some of the companies that built them
were pulled under by the economic tide and huge success of per-
sonal computers with a single processor. Clock scaling was deliv-
ering exponential performance improvements. Sequential software
was easier to build; the sequential programming interface was sta-
ble across generations of hardware and software; and hardware was
twice as fast every 18 months. Why invest in parallel computing?

In hindsight, abandoning sustained national funding, much re-
search, and advanced development on parallel computing was a
mistake. Today, leakage power and other manufacturing challenges
at small feature sizes have ended Dennard scaling and will soon end
Moore’s Law. Vendors have turned to parallelism as a strategy to
continue increasing computer capacity to meet computational de-
mands in science, government, and consumer markets. However,
researchers and companies are still struggling to deliver on the po-
tential of parallelism. For example, even though manufacturers can
fit 20 to 100 processors on a single chip, many commodity server,
client, and mobile chips have 1 to 12 CPUs with 2 to 24 hardware
contexts. Building, compiling for, programming, and porting soft-
ware between parallel systems is still hard.

Parallelism and Data Locality

Part of the reason programming and optimizing parallel machines,
even shared memory machines, is hard is due to real sharing and
false sharing of data between parallel tasks. In a typical shared
memory parallel machine, each CPU has some amount of private
cache memory and some shared main memory. In the 1990s, the
CPUs were on separate chips and today they are on the same chip,
but the basic memory hierarchy structure is similar.

Hardware caches exploit the observation that programs often ex-
hibit temporal locality — they reuse the same data — and spatial
locality — they access adjacent data elements — close together in
time. For example, a loop that sequentially iterates over a vector of

integers (allocated as a single vector) exhibits spatial locality with
a reuse distance of one iteration. Caches store the most recently
used items and cache lines typically contain between 32 B to 256 B
of data. The fewer accesses between reuse of data on the same
cache line, the more likely the cache will be to still hold the line.
Unfortunately, since the architecture only moves and tracks data at
a cache line granularity, false sharing occurs when two tasks on
different CPUs want to write independent data that resides on the
same cache line at the same time, they cannot. Only one cache can
write the line at a time, which requires invalidating and moving the
cache line, serializing execution.

Figure 1 in the paper shows the effect of false sharing on 18
processors of a Sequent shared-memory parallel machine executing
an addition of three 2D dense matrices and storing the result. For
the same amount of work, without false sharing, a speedup of 18
(best) is possible. With false sharing, speedup ranges between 6
and 9 (mem). That figure would have been better labeled “False
sharing more than halves speedup.”

The remainder of the paper presents an optimization algorithm
for dense matrices that seeks (1) to minimize the reuse distance for
cache lines for each parallel task, (2) to introduce parallelism at
the outermost loop possible, and (3) to eliminate false sharing by
strip mining, such that the outer loop is parallel and each parallel
iteration never shares a cache line with another parallel iteration.

The algorithm uses data dependence analysis to detect paral-
lelism and temporal reuse [4, 5, 12]. It precisely computes spatial
and temporal cache line reuse on inner loops and then generalizes to
the entire loop nest. It next determines the loop ordering that max-
imizes expected cache line reuse, and directly permutes the loops
to this order or the closest legal loop order. The next phase in-
troduces parallelism at the coarsest possible granularity (outermost
loop) without causing false sharing. It uses a combination of loop
permutation and strip mining. A machine specific cost model de-
termines if the parallel loop is of sufficient granularity to deliver
speedups. If the parallel loop also provides cache line reuse, the
algorithm strip mines the loop based on the line size and number of
processors, permuting the iterator loop to the outermost legal po-
sition and leaving the strips of consecutive iterations with reuse in
place to deliver cache locality. This transformation process ensures
that none of the outermost parallel loop iterations share cache lines,
eliminating false sharing.

Historical Positioning

Our work on optimizing compilers for parallel architectures at Rice
was greatly influenced by the research at UIUC, IBM, and Stan-
ford. David Kuck and his PhD students at UIUC introduced the
first analyses and optimizations in this area. For example, Uptal
Banerjee introduced the first practical dependence tests to detect
parallelism [4, 5] and Abu-Sufah introduced the first optimizations
for improving data locality [1]. Allen and Kennedy showed how
to use dependences to correctly permute loops and introduce paral-
lelism [3], and with Callahan, subsequently showed how to maxi-
mize the granularity of parallelism [2].

Irigoin and Triolet introduced the use of a polyhedral model of
dependences to increase parallelism [14] and the work of Wolf and
Lam extended this theory to introduce parallelism at all possible
levels [28]. Wolf and Lam also used this theory to produce all the
legal loop permutations and loop skews and then selected the one
that maximized cache reuse [27], however they did not consider
both locality and parallelism at once.

At the time, the polyhedral and unimodular models were re-
stricted to permuting, reversing, and skewing perfectly nested loops
operating on dense matrices. Optimizing one loop in isolation was

and is not sufficient for the best performance; data reorganization,
loop fusion, and loop distribution add substantial benefits [7, 10,
11, 16, 21, 22, 25]. Our model directly computed the best per-
mutations for locality and parallelism and we showed [7, 16, 20]
how to directly derive good loop fusion and distribution choices,
which the polyhedral model could not yet perform. Our approach
also had the advantage that the resulting code was human readable
and suitable for use in an interactive parallelization tool [17]. Sev-
eral comercial tools implemented our approach, including the DEC
Alpha compiler.

Today, the polyhedral approach combines fusion and distribution
with other loop optimizations [11, 22, 25] and is in wide use in
commercial and research compilers. These techniques use heuristic
search based on models, some similar to our model, to specialize
code for a variety of parallel architectures.

Loop nest optimization remains an active area of research [11,
22, 25], in part, because each generation of parallel hardware of-
fers new challenges and opportunities. Using the compiler to adapt
applications to a parallel machine achieves portability and high per-
formance, substantially reducing developer effort. Loop optimiza-
tions are critical to optimization in many modern settings, includ-
ing GPUs [18], high-level hardware synthesis [8, 19, 24], auto-
tuning [9, 23, 25], and library construction [13, 26].

None of the early work on locality or parallelism considered false
sharing and locality and parallelism interactions. Our paper high-
lighted the problems that false sharing caused, which subsequently
other researchers also sought to eliminate. For example, Jeremi-
assen and Eggers transformed data with padding [15] and Ding and
Kennedy performed array regrouping [10] to eliminate false shar-
ing and improve locality. Later my PhD student Emery Berger, oth-
ers, and I showed how the Hoard memory allocator avoided false
sharing to produce more scalable performance, compared to prior
C/C++ memory allocators [6]. The Hoard algorithm is now widely
used, for example, in Apple’s i0S.

Professor Ken Kennedy (1945 - 2007)

Ken loved his research and bringing people together on both a
small and large scale. He founded the Rice Computer Science
Department in 1985, CRPC, the Los Alamos Computer Science
Institute (LACSI), and co-chaired with Bill Joy, the President’s In-
formation Technology Advisory Committee (PITAC) from 1997 to
1999. This first PITAC committee initiated the NSF ITR program,
which funded the research of 1000s of faculty and graduate stu-
dents over a 10 year period. In his own research life, he could
not bear to cut back on people or research; he would instead raise
more money. He felt it was a personal failure if any student who
worked with him did not graduate and graduated over 40 PhD stu-
dents. Together with his students and colleagues, he invented pro-
gramming language technologies still in use today, such as regis-
ter allocation, strength reduction, prefetching, loop transformations
for scalar, vector, and parallel architectures (this paper is an ex-
ample), interprocedural analyses, interactive parallel programming
tools, FortranD, and telescoping languages.

In the last few years of his life as he struggled with pancreatic
cancer, he kept working because he loved his life, his students, and
his work. Ken laughed a lot and really loudly, especially at his own
jokes. I still miss him.

Acknowledgements I would like to thank again my graduate stu-
dent colleagues Chau-Wen Tseng, Preston Briggs, Cliff Click, Er-
van Darnell, and Nathaniel McIntosh for their contributions to this
work. I would also like to thank them as well as David Callahan,
Keith Cooper, Mark Hall, Mary Hall, Seema Hiranandani, Marina

Kalem, Amy Pullen, Linda Torczon, and Scotty Strahan (my hus-
band) for making graduate school a wonderful personal and intel-
lectual experience. I thank the anonymous reviewer for improv-
ing the first version and Steve Blackburn, Mary Hall, and Todd
Mytkowicz for discussions and comments on this version.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

[13]

W. A. Abu-Sufah. Improving the Performance of Virtual
Memory Computers, PhD Dissertation. PhD thesis, Dept. of
Computer Science, University of Illinois at
Urbana-Champaign, 1978.

J.R. Allen, D. Callahan, and K. Kennedy. Automatic
decomposition of scientific programs for parallel execution.
In ACM Symposium on the Principles of Programming
Languages (POPL), pages 63—76, Munich, Germany, Jan.
1987.

J. R. Allen and K. Kennedy. Automatic loop interchange. In
ACM Conference on Programming Language Design and
Implementation (PLDI), pages 75-90, Montreal, Canada,
June 1984.

U. K. Banerjee. Data depedence in ordinary programs,
Master’s Thesis. Technical Report 76-837, Dept. of
Computer Science, University of Illinois at
Urbana-Champaign, 1976.

U. K. Banerjee. Depedence Analysis for Supercomputing.
Kluwer Academic Publishers, Norwell, MA, 1988.

E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R.
Wilson. Hoard: A scalable memory allocator for
multithreaded applications. In ACM Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 117-128, Cambridge,
MA, Nov. 2000.

S. Carr, K. S. McKinley, and C. Tseng. Compiler
optimizations for improving data locality. In ACM
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
252-262, San Jose, CA, Oct. 1994.

J. Cong, P. Zhang, and Y. Zou. Optimizing memory
hierarchy allocation with loop transformations for high-level
synthesis. In Annual Design Automation Conference (DAC),
pages 1233-1238, 2012.

K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,

L. Oliker, D. Patterson, J. Shalf, and K. Yelick. Stencil
computation optimization and auto-tuning on state-of-the-art
multicore architectures. In ACM/IEEE Conference on
Supercomputing, pages 4:1-12, 2008.

C. Ding and K. Kennedy. Inter-array data regrouping. In
Languages and Compilers for Parallel Computing, pages
149-163, San Diego, CA, Aug. 1999.

S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello,
M. Sigler, and O. Temam. Semi-automatic composition of
loop transformations for deep parallelism and memory
hierarchies. International Journal of Parallel Programming,
34(3):261-317, June 1995.

G. Goff, K. Kennedy, and C. Tseng. Practical dependence
testing. In ACM Conference on Programming Language
Design and Implementation (PLDI), pages 15-29, Toronto,
Canada, June 1991.

K. Goto and R. van de Geijn. High-performance
implementation of the Level-3 BLAS. ACM Transactions on
Mathmatical Software (TOMS), 35(1):4:1-14, July 2008.

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

F. Irigoin and R. Triolet. Supernode partitioning. In ACM
Symposium on the Principles of Programming Languages
(POPL), pages 319-329, San Diego, CA, Jan. 1988.

T. E. Jeremiassen and S. J. Eggers. Reducing false sharing on
shared memory multiprocessors through compile time data
transformations. In ACM Symposium on Principles and
Practice of Parallel Programming (PPOPP), pages 179-188,
Santa Barbara, CA, July 1995.

K. Kennedy and K. S. McKinley. Maximizing loop
parallelism and improving data locality via loop fusion and
distribution. In Languages and Compilers for Parallel
Computing, pages 301-321, Portland, OR, Aug. 1993.

K. Kennedy, K. S. McKinley, and C. Tseng. Interactive
parallel programming using the ParaScope Editor. [EEE
Transactions on Parallel and Distributed Systems,
2(3):329-341, July 1991.

M. Khan, G. R. P. Basu, M. Hall, C. Chen, and J. Chame. A
script-based autotuning compiler system to generate
high-performance CUDA code. ACM Transactions on
Architecture and Code Optimization, 9(4):31:1-25, 2013.

Q. Liu, G. A. Constantinides, K. Masselos, and P. Y. K.
Cheung. Combining data reuse with data-level parallelization
for FPGA-targeted hardware compilation: A geometric
programming framework. I[EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
28(3):305-315, Mar. 2009.

K. S. McKinley. A compiler optimization algorithm for
shared-memory multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, 9(8):769-787, Aug. 1998.
K. S. McKinley and O. Temam. A quantitative analysis of
loop nest locality. In ACM Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), pages 94-104, Cambridge, MA, Oct. 1996.
L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen,

J. Ramanujam, P. Sadayappan, and N. Vasilache. Loop
transformations: Convexity, pruning and optimization. In
ACM Symposium on the Principles of Programming
Languages (POPL), pages 549-562, 2011.

M. Puschel, J. Moura, J. R. Johnson, D. Padua, M. M.
Veloso, B. W. Singer, J. Xiong, F. Franchetti, A. Gacic,

Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo.
SPIRAL: Code generation for DSP transforms. Proceedings
of the IEEE, 93(2):232-275, 2005.

B. So, M. W. Hall, and P. C. Diniz. A compiler approach to
fast hardware design space exploration in FPGA-based
systems. In ACM Conference on Programming Language
Design and Implementation (PLDI), pages 165-176, 2002.
A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K.
Hollingsworth. A scalable auto-tuning framework for
compiler optimization. In /EEE International Symposium on
Parallel & Distributed Processing (IPDPS), pages 1-12,
20009.

R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated
empirical optimizations of software and the ATLAS project.
Parallel Computing, 27(1):3-35, 2001.

M. E. Wolf and M. Lam. A data locality optimizing
algorithm. In ACM SIGPLAN Notices, pages 30—44, Toronto,
Canada, June 1991.

M. E. Wolf and M. Lam. A loop transformation theory and
an algorithm to maximize parallelism. IEEE Transactions on
Parallel and Distributed Systems, 2(4):452-471, Oct. 1991.

Optimizing for Parallelism and Data Locality

Ken Kennedy

ken@rice.edu

*

Kathryn S. M¢Kinley

kats@rice.edu

Department of Computer Science
Rice Universily
Houston, TX 77251-1892

Abstract

Previous research has used program transformation to
introduce parallelism and to exploit data locality. Un-
fortunately, these two objectives have usually been con-
sidered independently. This work explores the trade-
offs between effectively utilizing parallelism and mem-
ory hierarchy on shared-memory multiprocessors. We
present a simple, but surprisingly accurate, memory
model to determine cache line reuse from both mul-
tiple accesses to the same memory location and from
consecutive memory access. The model is used in mem-
ory optimizing and loop parallelization algorithms that
effectively exploit data locality and parallelism in con-
cert. We demonstrate the efficacy of this approach with
very encouraging experimental results.

1 Introduction

Transformations to exploit parallelism and to improve
data locality are two of the most valuable compiler
techniques in use today. Independently, each of these
optimizations has been shown to result in dramatic im-
provements. This paper seeks to combine the benefits
of both by using a simple memory model to drive opti-
mizations for data locality and parallelism. By unify-
ing the treatment of these optimizations, we are able to
place loops with data reuse on inner loops and to intro-
duce parallelism for outer loops. Our strategy produces
data locality at the innermost loops, where it is most
likely to be exploited by the hardware and places paral-
lelism at the outermost loop, where 1t is most effective.
If these two goals conflict, we present an algorithm that
usually reaps the benefits of both.

Optimizing data locality is necessarily both archi-
tecture and language dependent. However, the reuse
of memory locations and the consecutive access of ad-
jacent memory locations form the foundation of most
memory hierarchy optimizations. Reuse of a particu-
lar memory reference for arrays can be discovered using

* Proceedings of the 1992 ACM International Conference on
Supercomputing, Washington, D.C, July, 1992.

data-dependence analysis [KKPT81]. However, reuse of
consecutive accesses, often called unit stride access, 1s
a significant source of reuse that can easily be deter-
mined when the storage order of arrays and the cache
line size is known. In this paper we introduce a simple
model for estimating the cost, in memory references,
of executing a given loop nest. The principal advan-
tage of this model over previous models 1s that it takes
into account cache reuse due to consecutive accesses to
the same cache line. We show how this model can be
used to exploit data locality at multiple levels via loop
permutation.

Parallelism is usually most effective when it achieves
the highest possible granularity, the amount of work
per parallel task. Granularity is highest when paral-
lel tasks contain the largest amount of work possible.
In this paper, parallelism is introduced via the paral-
lel loop construct for shared-memory multiprocessors.
Our algorithm first uses the memory model to find a
loop organization that exploits data locality. It then
seeks to parallelize the outermost loop or a parallel
loop that can be positioned outermost. Given suffi-
clent iterations, it then strip mines the loop into two
loops, such that one loop is used to achieve locality and
the other is used to introduce parallelism.

1.1 Matrix Multiply Example

As an example of this process, consider the ubiquitous
matrix multiply.
DO J=1,N
DOK =1, N
DO I=1,N
C(1,J) = C(LJ) + A(LK) * B(K,J)

Assuming arrays are stored such that columns of the ar-
rays are in consecutive memory locations, i.e. column-
major order, this loop organization exploits data local-
ity in the following manner. The consecutive access on
the inner T loop to C(1,J) and A(I,K) provide an oppor-
tunity for cache line reuse when the cache line size is
greater than 1. There is also a loop-invariant reuse of
B(K,J) on the I loop. Additionally, the J and the T loops
can be parallel. However, if the number of processors,
P, 18 less than the number of iterations of either loop, it
is not profitable to utilize both levels of parallelism at
once due to additional scheduling overhead. A better
execution time would result by maximizing the granu-
larity of one level of the parallelism and then matching

it to the machine. If N = P, selecting J to be executed in
parallel preserves data locality and introduces a single
level of parallelism with maximum granularity.
PARALLEL DO J = 1, N
DOK =1, N
DO T=1,N
C(1,J) = C(LJ) + A(LK) * B(K,J)
However, if the number of loop iterations is greater
than the number of processors, N > P, it is often useful
to combine independent iterations into a single parallel
task to achieve granularity that matches the machine.
The parallel loop is strip mined by the number of pro-
cessors where the strip size is SS = [N/P |. We call the
J loop the strip and the JJ loop, which walks between
strips, the iterator.
PARALLEL DO JJ = 1, N, S8
DO J = JJ, MIN(JJ + SS - 1, N)
DOK =1, N
DOI=1,N
C(1,J) = C(1J) + A(LK) * B(K,J)

The parallel JJ loop carves up the data space nicely,
but if each processor’s cache is still not large enough
to contain all of array A, tiling the loop nest further
improves performance by providing reuse of A. Tiling
combines strip mining and loop interchange to promote
reuse across a loop nest [IT88, Wol89a]. For matrix
multiply, the loop nest may be tiled by strip mining

the K loop by TS and then interchanging it with 7J.
PARALLEL DO JJ =1, N, SS
DO KK = 1, N, TS
DO J = JJ, MIN(JJ + SS - 1, N)
DO K = KK, MIN(KK + B - 1, N)
DOTI=1,N
C(1,J) = C(1J) + A(LK) * B(K,J)
Here, TS is selected based on the cache size. This
organization moves the reuse of A(1:N,KK:KK+TS-1) on
the J loop closer together in time, making it more likely
to still be in cache.
This optimization approach may be divided into

three phases:
1. optimizing to improve data locality,
2. finding and positioning a parallel loop, and
3. performing low-level memory optimizations such
as tiling for cache and placing references in regis-

ters [LRW91, CCK90].

This paper focuses on the first two phases. We ad-
vocate the first two phases be followed by a low-level
memory optimizing phase, but do not address it here.

The remainder of this paper is divided into 10 sec-
tions. We first present some terms used in this paper to
describe data dependence and the machine model. The
next section explores and illustrates the effects of par-
allelism and memory access on performance. The next
two sections present a cost model for determining reuse
and an algorithm for improving it. Section 6 describes
the parallelization strategy. The overall strategy com-
bines the two in Section 7. In Section 8, experimental
results are reported. We then overview related work
and conclude.

2 Background
2.1 Data Dependence

Dependence analysis is the compile-time analysis of a
program’s memory accesses. A data dependence be-
tween two references Ref, and Ref, indicates that they
read or write a common memory location [KKP*81].
True, anti, and output dependences arise when at least
one reference is write; the order between Ref, and Ref,
must be preserved to maintain the semantics of the
original program. Input dependences arise if both Ref;
and Ref, are reads; they do not restrict program order.

Data dependences may be characterized by their ac-
cess pattern between loop iterations. The number of
loop iterations d separating the source and sink of
the dependence is its dependence distance [KMCT2,
Lam74]; it may also be summarized as a dependence
direction consisting of ‘<’, ‘=", or ‘>’ [WB87, Wol89b].

Dependence distances and directions are represented
as a vector whose elements, displayed left to right, rep-
resent the dependence from the outermost to the inner-
most loop in the nest. By definition all distance and
direction vectors are lexicographically positive. We use
§= (61,...,6,) torepresent a distance or direction vec-
tor, where é; is the dependence distance or direction for
the loop at level 1.

Dependences may also be characterized as either
loop-independent or loop-carried. Loop-independent
dependences occur on the same iteration of a loop. A
dependence between iterations of a loop is called loop-
carried and prevents the iterations of a loop from being
executed in parallel [AK87]. A dependence is carried
by the outermost loop for which the element in the
direction vector is not an ‘=’.

Data dependence is used to determine the legality of
a given loop permutation by checking whether any per-
muted true, anti, or output dependence vector becomes
lexicographically negative [Ban90b, WL90]. Data de-
pendence also characterizes reuse of individual memory

locations [CCK90].

2.2 Memory and Language Model

The techniques developed in this paper are intended
for shared-memory multiprocessors where each proces-
sor has at a local cache and the processors are con-
nected with a common bus. Because we are evaluating
reuse, we require some knowledge of the memory hier-
archy. However, because our model is very simple, only
minimal knowledge of the cache is required; the com-
piler must know the cache line size (¢ls). The size, set
associativity, and replacement policy of the cache are
not important here. In addition, we assume a write-
back cache and ignore non-unique write references. If
the cache is write-through, these writes should be in-
cluded.

In addition, we only concern ourselves with memory

"] best (J out,N=18,M=2:18)

gran (J out,N=2:18,M=18)

speed-up

8 —| mem (I out,M=18,N=2:18)

worst (I out,M=2:18,N=18)

total work
Figure 1: Memory and parallelism tradeoffs

accesses caused by array references, since they domi-
nate memory access in scientific Fortran codes. We also
assume that arrays are stored in column-major order,
where unit stride accesses in the first array dimension
translate into contiguous memory accesses. Our results
are also valid for row-major arrays such as those found
in C with only minor changes.

3 Tradeoffs in Optimization

This section illustrates with an experiment the influ-
ence of memory reuse and parallelism granularity on
speed-up. As expected, it indicates the best perfor-
mance 1s possible only when both are utilized effec-
tively in concert. It also shows that when both cannot
be achieved at once, there are situations where favor-
ing one or the other results in the best execution time.
Neither always dominates. To illustrate, we phrase the
following question.

Given enough computation to make parallelism prof-
itable, what s the effect of reuse and how should it
affect the optimization strategy?

Figure 1 presents the results of executing different par-
allel versions of the following loop nest on 18 processors
of a Sequent Symmetry S81 with 20 processors, with
increasing amounts of total work.
DOJ=1,N
DOT=1,M
DOH=1,L
C(L,)y =¢C J) + AL J) + B(L J)
The total amount of work 1s increased by varying the
upper bounds N and M from 2 to the number of pro-
cessors (P = 18). We consider positioning I or J as the

outer parallel loop in the nest. In Figure 1, the best
version of this loop nest has an outer parallel J loop
with 18 iterations (N = 18) and total work is increased
by varying M from 2 to 18. Each of the 18 processors
accesses distinct columns of each array. This organi-
zation exploits cache line reuse on each processor and
results in linearly-scalable speed-up.

When the J loop is outermost and the number of par-
allel iterations of is varied from 2 to 18 along with P
and the T loop contains 18 iterations, the total amount
of work increases, but the work per processor remains
the same. This organization is illustrated by the gran
line. In this case, the speed-up scales by the number
of parallel iterations, but cache line reuse is still facili-
tated on each processor.

If instead the I loop is made outermost and parallel,
then processors must compete for the cache line which
contains C(I,J) in order to write it. This competition
is called false sharing. In addition, multiple processors
require cache lines containing A(1,J) and B(I,J), increas-
ing network contention and total memory utilization.
When the number of parallel iterations of the T loop as
outermost varies from 2 to 18 along with P and the J
loop contains 18 iterations, the worst line indicates the
performance. If the number of parallel iterations of T is
held at 18 while the J loop is varied from 2 to 18, the
mem line results.

Compare the pair of lines best and mem. The factor
of two difference 1s due to the benefit of cache line
reuse in best, and the limitations of false sharing and
increased bus and memory utilization in mem. The
same comparison holds for the gran and worst lines.
These results indicate that the parallelizing algorithm
must recognize reuse and false sharing to be effective.

Now compare the pair of crossing lines gran and
mem. These computations differ only by an inter-
change. An optimization strategy that only used loop
interchange would be forced to pick between the two.
To obtain the best performance for this example, the
J loop would be outermost when N > 8, otherwise the I
loop should be outermost. In addition, this “crossover”
point would need to be determined for each computa-
tion, a daunting task. Our approach instead combines
loop interchange and strip mining in a parallelization
strategy that minimizes false sharing and exploits data
reuse.

4 Optimizing Data Locality

In this section we describe two sources of data reuse,
then we incorporate both in a simple yet realistic cost
model. In subsequent sections, this cost model is used
to guide optimizations for improving data locality and
exploiting parallelism.

4.1 Sources of Data Reuse

We first consider the two major sources of data reuse.

e multiple accesses to the same memory location
e accesses to consecutive memory locations (i.e.

stride 1 or unit stride access)

Multiple accesses to the same memory location may
arise from either a single array reference or multiple
array references. These accesses are loop-independent
if they occur in the same loop iteration, and are loop-
carried if they occur on different loop iterations. This
type of reuse is called temporal reuse. The most ob-
vious source of temporal reuse is from loop-invariant
references. For instance, consider the reference to A(J)
in the following loop nest. It is invariant with respect
to the T loop, and is reused by each iteration.
DO J=1,N
DOT=1,N
S=S+ AJ)+ B+ €1

A second source of data reuse is caused by multi-
ple accesses to consecutive memory locations. For in-
stance, each cache line is reused multiple times on the
inner I loop for B(I) in the above example. This reuse
is called spatial reuse. The actual amount of reuse is
dependent on the size of B(I) relative to the cache line
size and the pattern of intervening references. For the
rest of this paper, we assume for simplicity that the
cache line size is expressed as a multiple of the number
of array elements. For reasonably large computations,
references such as C(J,I) do not provide any reuse on
the T loop, because the desired cache lines have been
flushed by intervening memory accesses.

Previous researchers have studied techniques for im-
proving locality of accesses for registers, cache, and
pages [AS79, CCK90, WL91, GJG88]. In this paper
we concentrate on improving the locality of accesses
for cache; 1.e. we attempt to increases the locality of
access to the same cache line. Empirical results show
that improving spatial reuse can be significantly more
effective than techniques that consider temporal reuse
alone [KMT92]. In addition, consecutive memory ac-
cess results in reuse at all levels of the memory hierar-
chy except for registers.

4.2 Simplifying Assumptions

To simplify analysis we make two assumptions. First,
our loop cost function assumes that reuse occurs only
across iterations of the innermost loop. This assump-
tion decreases precision but greatly simplifies analysis,
since 1t allows the number of cache line accesses to be
calculated independent of the permutation of all outer
loops. This assumption is accurate if the inner loop
contains a sufficiently large number of memory accesses
to completely flush the cache after executing all of its
iterations. We show later that our optimizations to
improve locality can select a desirable permutation of
outer loops even with this restriction.

Figure 2: Algorithm RefGroup

INpPUT:
Refs = {Ref, ... Ref ,} references
DG = {{Ref,; gRef]>, ...} the dependence graph

| = candidate innermost loop

OutpUT:
{RefGroup, ... RefGroup,,} reference groups for I

ALGORITHM:
m =0
while Refs # 0 do
m=m-++1
RefGroup,, = {r}, where r € Refs
Refs = Refs — {r}
for each (r gr') or (r' gr) € DG s.t. r' € Refs
if (6; is a constant d) & (6; is the only
nonzero entry in 5)
RefGroup,, = RefGroup,, + {r'}
Refs = Refs — {r'}
endif
endfor
endwhile

Cache wnterference refers to the situation where two
memory locations are mapped to the same cache line,
eliminating an opportunity to exploit reuse for one of
the references. Our second assumption is that cache
interferences occur rarely for small numbers of inner
loop iterations, compared to the total number of dis-
tinct cache lines accessed in those iterations. In other
words, we expect very few interferences for each cache
line being reused, since the cache line is only needed
for a small number of consecutive inner loop iterations.
Lam et al. show that this assumption may not hold if
cache lines must remain live for longer periods of time.
Considerable interference may take place when loops
are tiled to increase reuse across outer loops [LRW91].

4.3 Loop Cost Function

Given these assumptions, we present a loop cost func-
tion LoopCost based on our memory model. Its goal
is to estimate the total number of cache lines accessed
when a candidate loop [is positioned as the innermost
loop. The result is used to guide loop permutation to
improve data locality. The estimate is computed in
two steps. First, references that will access the same
cache line in the same or different iterations of the [
loop are combined using RefGroup. Second, the num-
ber of cache lines accessed by all groups is calculated
using LoopCost.

4.4 RefGroup
The goal of the RefGroup algorithm is to partition
variable references in the program text into reference

groups such that all references in a group access the
same memory locations, and consequently the same

cache line. Wolf and Lam call these groups equivalence
classes exhibiting group-temporal reuse. The partition
process 1s particularly simple here because we only con-
sider reuse for each loop when it is positioned inner-
most.

Two references are in the same reference group for
loop [if they actually access some common memory
location (data dependence § exists between them), and
the reuse occurs on [if it is positioned as the innermost
loop. The common accesses then occur on either the
same iteration of { (& = 0) or across d iterations of {
(& = d). More formally we define RefGroup as follows.

Definition: Two references Ref; and Ref, belong
to the same reference group with respect to loop [if
and only if:

1. 3 ReflgRef2 , and

2. 6isa loop-independent dependence, or
67, the entry in § corresponding to loop [, is a
constant d (d may be zero) and all other entries
are zero.

4.4.1 Jacobi Example

For instance, consider the following Jacobi iteration ex-
ample.
DO T = 2,N-1
DO J = 2,N-1
A(JD) = 0.2* (B(J,I) + B(J-1,I) + B(J,I-1)
+ B(J+1,1) + B(J,I+1))

Data dependences connect all references to B. The ref-
erence groups for the I loop are:

{A(3 D}, {B(J,1),B(J,1-1),B(J,1+1) },
{B(J-1,D}, {B(J+1,)}.

The reference groups for the J loop are:

{A(3 D}, {B(J,1),B(J-1,1),B(J+1,1) },

{B(3,1-1)}, {B(J,1+1)}.
Algorithm RefGroup is shown in Figure 2. Its effi-
ciency may be improved by pruning all identical array
references, since they access the same memory location
on each iteration and always fall in the same reference

group.
4.5 LoopCost

After the number of reference groups for loop [is com-
puted with RefGroup, the algorithm RefCost is applied
to estimate the total number of cache lines that would
be accessed by each reference group if [were the inner-
most loop. Once again, the task i1s simplified because
we only consider reuse between iterations of /.
RefCost works by considering one array reference Ref
from each reference group; these representative refer-
ences are classified as loop-invariant, consecutive, or
non-consecutive with respect to loop [. Loop-invariant
array references have subscripts that do not vary with

l; they require only one cache line for all iterations
of .1 Consecutive array accesses vary with { only
in the first subscript dimension. They access a new
cache line every cls iterations, resulting in trip/cls
cache line accesses; assuming [performs ¢rip iterations.
Fewer cache lines are reused for nonunit strides. Non-
consecutive array accesses vary with [in some other
subscript dimension; they access a different cache line
each 1iteration, yielding a total of ¢rip cache line ac-
cesses.

Once RefCost is computed, the algorithm LoopCost
calculates the total number of cache lines accessed by
all references when [is the innermost loop. It sim-
ply sums RefCost for all reference groups, then multi-
plies the result by the trip counts of all the remaining
loops. This calculation will underestimate the number
of cache lines accessed on the inner loop, if the dis-
tance of the dependences for a particular RefGroup set
are greater than cls. Also, slight underestimates occurs
because the exact alignment of arrays in memory is not
known until run-time. LoopCost will overestimate the
number of cache lines, if there is additional reuse across
an outer loop.

LoopCost is expressed more formally in Figure 3 for
the following loop nest containing one array reference
from each reference group RefGroup, ... RefGroup,,:

do il = lbl, Ubl, 51

do iz = lbz, sz, S9

do i, = lb,, uby, sy

Refl(fl(il, . .,in), . .,fj(il, . ,Zn))
Refm(gl(il,...,in),... ,Zn))

Note that LoopCost can be used to calculate cache line
accesses even for array references with complex sub-

agk‘(ila ..

script expressions. For instance, it determines that
A(I4+J4N) results in consecutive memory accesses with
respect to both the T and J loops.

4.6 Imperfectly Nested Loops

Because of their simplicity, both RefGroup and Loop-
Cost can also be applied to imperfectly nested loops.
Consider the following example, where the first defini-
tion of A(J) is imperfectly nested:

DO J =1, 100
AY=0
DO T =1, 100
A(J) = A(J) + ...

RefGroup would place all references to A(J) in the same
reference group. When we apply RefCost to calculate
the number of cache lines accessed by a reference group,
we need to select the most deeply nested member of

1Of course, loop-invariant references should eventually be put
in registers by later optimizations [CCK90].

Figure 3: Algorithm LoopCost

1o} aloop nest with headers b, ub, s
., Ref,, } representatives from each reference group

appear(f) = the set of index variables that appears in the subscript expression f
coeff(ir, f) = the coefficient of the index variable 4; in the subscript f (it may be zero)

1)) Aleoeff (i, f)l = D A(lsi] = 1) A

LoopCost(l) = Z RefCost(Ref , (fi(i1,...,in), ..., [i(i1,...,in))) * H tripy

h#l

loop invariant

unit stride

INPUT: L=1{L,..
R ={Ref,..
trip; = (ubl — b + 51)/51
cls = the cache line size,
OuTPUT:
LoopClost(l) = number of cache lines accessed with [as innermost loop
ALGORITHM:
k=1
RefCost(Ref;,) =
1 if (i & appear(fr)) A ... A (i1 & appear(f;))
tripi/cls if (i1 € appear(f
(4 & appear(f:

trip; otherwise

D)) AL A (4 € appear(f;))

no reuse

the group. LoopCost then multiplies the result by the
trip counts of all the loops that actually enclose the
reference.

5 Loop Permutation

The previous section presents our cost model for eval-
uating the data locality of a given loop structure with
respect to cache. In this section we show how the sim-
plicity and accuracy of the cost model guides loop per-
mutation to restructure a loop nest for better data lo-
cality.

A naive optimization algorithm would simply gen-
erate all legal loop permutations and select the per-
mutation that yields the best estimated data locality
using LoopCost. Unfortunately, generating all possible
loop permutations takes time that is exponential in the
number of loops and can be very expensive in practice.
It becomes increasingly unappealing when transforma-
tions such as strip mining introduce even larger search
spaces.

Instead of testing all possible permutations, we show
how our cost model allows us to design an algorithm
to directly compute a preferred loop permutation.

5.1 Memory Order

The locality evaluating function LoopCost does not cal-
culate data reuse on outer loops; however, we can still
restructure programs to exploit outer loop reuse. The
key insight is that if loop [causes more reuse than loop
" when both are considered as innermost loops, [will
also promote more reuse than !’ when both loops are
placed at the same outer loop position.

LoopCost can thus be considered to be a measure
of the reuse carried by a loop. This allows us to se-

lect a desired permutation of loops called memory or-
der that yields the best estimated data locality. We
simply rank each loop [using LoopCost, ordering the
loops from outermost to innermost ({; .. .1,) such that

LoopCost(l;_1) > LoopCost(l;).
5.1.1 Memory Order Algorithm

The algorithm MemoryOrder is defined as follows. It
computes LoopCost for each loop, sorts the loops in
order of decreasing cache line accesses (i.e. increasing
reuse), and returns this loop permutation.

5.1.2 Example

As an example, recall matrix multiply. We compute
memory order with ¢ls = 4. The reference groups for
matrix multiply put the two references to C(1,J) in the
same group on all the loops and A(I,K) and B(K,J) are
placed in separate groups. LoopCost computes the rel-
ative reuse on each of the loops as seen below.

LoopCost as innermost

references J K I
C(L,J) n % n? 1% n? 1/4n % n?
A(LK) 1% n? n % n? 1/4n % n?
B(K, J) nxn? 1/4n x n? 1% n?

totals | 2n® + 02 | 5/4n® + 72 | 1/2n° 4 n?

The algorithm MemoryQOrder uses these costs to com-
pute a preferred loop ordering of (J, K, I), from out-
ermost to innermost. The same result is obtained by
previous researchers [AK84, WLI1].

5.2 Permuting to Achieve Memory Order

We must now decide whether the desired memory or-
der is legal. If it is not, we must select some legal
loop permutation close to memory order. To determine

whether a loop permutation is legal is straightforward.
We permute the entries in the distance or direction
vector for every true, anti, and output dependence to
reflect the desired loop permutation. The loop permu-
tation is illegal if and only if the first nonzero entry
of some vector is negative, indicating that the exe-
cution order of a data dependence has been reversed

[AK84, Ban90a, Ban90b, WL90].

In many cases, the loop permutation calculated by
MemoryOrder is legal and we are finished. However, if
the desired memory order is prevented by data depen-
dences, we use a simple heuristic for calculating a legal
loop permutation near memory order. The algorithm
for determining this organization takes max(D,n?)
time in the worst-case where n is the depth of the
nest and D is the number of dependences, a definite
improvement over considering all legal permutations,
which is exponential in n. The algorithm is guaran-
teed to find a legal permutation with the desired inner
loop, if one exists.

5.2.1 Permutation Algorithm

Given a memory ordering {is,,%s,,...,%5,} of the
loops {i1, s, ...,i,} where i,, has the least reuse and
15, has the most, we can test if it is a legal permutation
directly by performing the equivalent permutation on
the elements of the direction vectors. If the result is a
legal set of direction vectors, the loops are permuted
accordingly.

Otherwise, we attempt to achieve a “nearby” per-
mutation with the algorithm NearbyPermutation. The
algorithm builds up a legal permutation in P by first
testing to see if the loop 7., 1s legal in the outermost
position. If it is legal, it is added to P and removed
from L. If it is not legal, the next loop in £ is tested.
Once a loop [is positioned, the process is repeated
starting from the beginning of £ — {l} until £ is empty.
The following theorem holds for the NearbyPermuta-
tion algorithm.

Theorem: If there exists a legal permutation where
oy, 18 the innermost loop, then NearbyPermutation will
find a permutation where o, 1s innermost.

The proof by contradiction of the theorem proceeds
as follows. Given an original set of legal direction vec-
tors, each step of the “for” is guaranteed to find a loop
which results in a legal direction vector, otherwise the
original was not legal [AK84, Ban90a]. In addition, if
any loop o7 through o,_1; may be legally positioned
prior to o, it will be.

This characteristic is important because most data
reuse occurs on the innermost loop and is due to spatial
reuse, so positioning the inner loop correctly will yield
the best data locality.

Figure 4: Algorithm NearbyPermutation

INnpPUT:
O = {i1,12,...,1n}, the original loop ordering
DY = set of original legal direction vectors for I,
L ={is;,l09,-.-,10,} , a permutation of O
OuTpPUT:

P a nearby permutation of O

ALGORITHM:
P=0; k=0; m=n
while £ £ 0
for y=1,m
I=l, el
if direction vectors for {p1,...,px,!} are legal
P={p1,...,px, 1}
L=L-{}; k=k+1; m=m-—1
break for
endif
endfor
endwhile

6 Parallelism

In the following two subsections, parallelism is eval-
uated and exploited. We first present a performance
estimator that evaluates the potential benefit of paral-
lelism. A parallel code generation strategy then uses
performance estimation and the cost model developed
in the previous section with other transformations to
combine effective parallelism and memory order, mak-
ing tradeoffs as necessary.

6.1 Performance Estimation

This section uses performance estimation to quantify
the effects of parallelism on execution time. Our per-
formance estimator predicts the cost of parallel and se-
quential performance using a loop model and a training
set approach.

The goal of our performance estimator is to assist in
code generation for both shared and distributed mem-
ory multiprocessors [BFKK92, KMM91]. Modeling the
target machines at an architectural level would require
calculating an analytical model for each supported
architecture. Instead our performance estimator uses
a training set to characterize each architecture in a
machine-independent fashion. A training set is a group
of kernel computations that are compiled, executed and
timed on each target machine. They measure the cost
of operations such as multiplication, branching, intrin-
sics, and loop overhead. These costs are then made
available to the performance estimator via a table of
data. Note, the training sets for the performance es-
timator only measure access times to data in registers
or the closest cache.

Of particular interest is the estimation of parallel
loops. Given sufficient parallel granularity, using all
available processors results in the best execution time.

processors

Interpolated contours in microseconds

9 10 11 12 13 14 15 16 17 18 19

7 8

6

T T T T T T T T T T T
o} 50 100 150 200 250 300 350 400 450 500

total work
Figure 5: Parallel loop training set

Estimating the cost in this circumstance may be mod-
eled by determining the following.

c¢s = cost of starting parallel execution
c; = cost of forking and synchronizing
a parallel process

P = number of processors
b = number of iterations of the parallel loop
t(B) = cost of the loop body

If the loop bounds are unknown, a guess is used that is
based on the declared dimension of the arrays accessed
in the loop. With these parameters the performance of
a parallel loop with sufficient work may be estimated

by:
b
s P — | #(B) .
¢+ +[P1 (B)

However, if the amount of work 1s not sufficient, parallel
loop execution 1s more difficult to model. Instead of an
equation, a table is used to indicate the appropriate
number of processors for the best performance. The
model and the table are generated using a training set.

The sample training set for determining parallel loop
overhead begins by varying the total amount of work.
For each unit of work, the number of processors is var-
ied from 1 to the total available. The number of pro-
cessors which minimize the execution time of this work
is selected. The result of a training run for parallel
loops on the Sequent S81 appears in Figure 5.

This particular training run repeatedly performed a
single scalar operation that executed for approximately
10 microseconds, which represents one unit of work in
Figure 5. Each of the contour lines indicates a partic-
ular execution time. The single line cutting across the

contour lines represents the minimum execution time
for executing a particular work load and the appropri-
ate number of processors. When total work is below
250 a table determines the appropriate number of pro-
cessors and approximate execution time. Once the to-
tal work is over about 250, the parallel loop model is
used. The estimator provides a single cost function for
evaluating loops that chooses between the techniques
based on total work and number of loop iterations.

Estimate(l, how) returns (7, np) where
[1s a loop with body B
how indicates whether | may be run in parallel

This function returns a tuple (7, np) with an estimate 7
which is the minimal execution time and the number of
processors np necessary to obtain the estimate, based
on whether the loop is parallel. Note, if the loop is
sequential or it is not profitable to run it in parallel,
the sequential running time and np = 1 are returned.

6.2 Introducing Parallelism

The key to introducing parallelism is to maintain mem-
ory order during parallelization by using strip mining
and loop shifting (loop shifting moves an inner loop out-
ward across one or more loops). Strip mining performs
two functions in parallelization. (1) It preserves cache
line reuse in parallel execution. Without strip mining,
consecutive iterations may be scheduled on different
processors, denying cache line reuse. (2) Because strip
mining results in two loops, the parallel iterator loop
may be shifted outward to maximize granularity while
the sequential strip remains in place providing the data
locality introduced using memory order. To illustrate
this point, consider the subroutine dmxpy from Lin-
packd written in memory order [DBMS79].
DO J = JMIN, N2
DO I=1,N1
Y(I) = Y(I) + X(J) * M(L,J)

The J loop is not parallel. The I loop can be parallel.
Both contain reuse. A simple parallelization that max-
imizes granularity would interchange the two loops and
make the T loop parallel without strip mining. Unfortu-
nately with this organization, the parallel loop may be
scheduled such that consecutive iterations are assigned
to different processors causing false sharing of Y and
eliminating cache line reuse for consecutive accesses to
X and M. In addition, cache lines containing the same
array elements would be required at multiple proces-
sors, increasing total memory and bus utilization.

We instead strip mine a parallel loop by strip size
8S =[N1/P] to provide reuse on the strip and parallelize
the resultant iterator. If the parallel loop is outermost,
as in matrix multiply, parallelization 1s complete. If
not, we use loop shifting to move the parallel iterator
to its outermost legal position, maximizing its granu-
larity. Applying this strategy to dmxpy, we begin with

the memory ordered loop nest. The I loop is the only
parallel loop and it contains reuse. Therefore, it is strip
mined. The parallel iterator is not outermost, but it is
legally shifted to the outermost position. The compiler
shifts the loop, resulting in maximum granularity and
data locality as illustrated below.

PARALLEL DO I = 1, N1, S
DO J = JMIN, N2
DO II = I, MIN(I + SS - 1, N1)
Y(II) = Y(II) + X(J) * M(ILJ)

6.3 Strip Mining Algorithm

If a loop is selected to be performed in parallel, it is
strip mined if it contains any reuse. Given sufficient
iterations, strip mining exploits data locality and par-
allelism by using [N/P] as the strip size where N is the
number of iterations. Assuming ¢ls < P, the iteration
space is sufficiently large if P < N. If

P <N <cls*P,

strip mining by [N/P] is less than the c¢ls and may
result in false sharing. However, the granularity of the
parallel loop does match P and some reuse will occur.
In this case, we still strip mine by [N/P]. However, if
N < P, strip mining may provide reuse but at the cost
of drastically reducing the granularity of parallelism.
This tradeoff is very machine specific. We choose not
to strip mine when N < P.

When memory order is computed, the loops are
marked to indicate if they contain any reuse. If there is
reuse, the strip mining algorithm uses the above equa-
tions to select a strip size that maximizes granularity
and reuse. If there is no reuse, the strip mining al-
gorithm does not perform strip mining, giving more
flexibility to the scheduler.

6.4 Parallelization Algorithm

For memory ordered loop nests that are not parallel
on the outermost loop, the Parallelization algorithm
uses loop shifting to introduce parallelism. It uses loop
shifting, rather than a general loop permutation algo-
rithm, in order to minimize the effect of parallelization
on data locality. It performs strip mining when the
loop contains reuse before shifting for the same reason.

The algorithm for introducing parallelism into mem-
ory order appears in Figure 6. It begins by testing
whether the outermost loop is parallel. In the first it-
eration of the “for k” (j = k = 1), the first “if” tests if
the outermost loop is parallel. Trivially, a shift of loop
o; to position j is always legal.

If the loop is parallel, it is strip mined and paral-
lelized and the algorithm returns. If the loop is not
parallel, a legal shift of an inner loop to position j
which is parallel at position j is sought. If a parallel
loop 1s found that can be shifted outermost to j, it is
strip mined, parallelized and shifted and the algorithm
returns. Otherwise, a shift to position j may cause the

Figure 6: Algorithm Parallelize

INPUT: L = {o1,...,0n} alegal permutation
OutpuT: 7 a parallelizing transformation
ALGORITHM:
T=0
for yj=1,n
for k=j,n

if ok legal at position j & parallel
7 = { StripMine(o),
shift iterator to j, parallelize it }
return 7
elseif oy legal at 7 & o; becomes parallel
T = {StripMine(o}), shift k iterator to j,
StripMine(new o;41),
parallelize the j+1 iterator }
endif
endfor
if 7 # 0 return 7
endfor

next inner loop, i.e. the loop originally positioned at 7,
to be parallel. This situation is determined in the “el-
seif.” Because it is more desirable to parallelize a loop
at position j than at j + 1, all other shifts to position
j are considered before this parallelization is returned
at the completion of the “for £.”

In Figure 6 the Parallelize algorithm does not detect
when strip mining results in a strip size of less than cls
or strip mining is not performed due to insufficient par-
allel iterations. As we saw in Section 3 these conditions
are unavoidable in some cases and the best possible
performance is gained even when they hold. However,
we extend Parallelize as follows to seek a better paral-
lelization for which neither condition holds.

If StripMine returns with a strip size of less than
cls or does not strip mine due to insufficient parallel
iterations, then the number of parallel iterations PI
and the size of the strip SS are recorded and the “for
k” loop continues instead of returning. If the “for k”
finds a parallelization where neither condition holds, it
returns. Otherwise, at the completion of the “for k” it
selects the parallelization with the largest pair (P1, S8).

7 Optimization Algorithm

The optimization driver for exploiting data reuse and
introducing parallelism appears in Figure 7. It com-
bines the component algorithms described in the pre-
vious sections and is also O(n?) time.

It first calls MemoryOrder to optimize data locality
via loop permutation. It then determines whether the
loop contains sufficient computation to pursue paral-
lelism. If 1t does, the memory ordered loop nest is
provided to the algorithm Parallelize. If needed, Par-
allelize uses strip mining and loop shifting to introduce
loop level parallelism.

Figure 7: Algorithm Optimizer

INPUT: L={l,... 1}
OurpuT: 7 an optimization of £
ALGORITHM:

O = MemoryOrder(£)

np = Estimate (O, parallel)

if np > 1 (parallelism is profitable)
7 = Parallelize(O)

endif

perform { O, 7 }

The search space in Parallelize is constrained to meet
our goal of perturbing the memory order as little as
possible. If parallelism is not discovered and would be
profitable, other optimization strategies that consider
all loop permutations, loop skewing [WL90], or loop
distribution [McK92] should be explored.

8 Experimental results

We tested the algorithm for optimizing data locality in-
dependently and report some of those results here. The
overall parallelization strategy was also tested by ap-
plying it by hand to several kernels and to the program
Erlebacher, provided by Thomas Eidson from ICASE.
The results of these experiments are very promising.

8.1 Matrix multiply

We executed all possible loop permutations of matrix
multiply for 3 problem sizes, 150 x 150, 300 x 300 and
512x 512, on a variety of uniprocessors to determine the
accuracy of the MemoryOrder in predicting the best
loop permutations. In Table 1, the permutations are
ordered from the most desirable to the least based on
the ranking computed by MemoryOrder. On most of
the processors, memory order JKI produced the best re-
sults. On all the processors but the Sequent, the entire
ranking generally served to accurately predict relative
performance. These results illustrate that LoopCost is
effective in predicting relative reuse on outer loops as

Table 1: Matrix Multiply (in seconds)

Loop Permutation
Processor JKI | KJI | JIK | UK | KIJ | IKJ
150 x 150
Sequent Weitek | 26.0 | 27.1 | 31.1 | 30.7 | 28.4 | 26.9
Sun Sparc2 2.33 | 2.25 | 3.20 | 3.16 | 2.81 | 2.79
Intel i860 1.16 | 1.17 | 1.23 | 1.18 | 3.50 | 3.42
IBM RS6000 0.42 | 046 | 0.36 | 0.38 | 1.08 | 1.08
300 x 300
Sun Sparc2 183 [17.8 | 26.1 | 25.2 | 24.9 | 27.1
Intel i860 9.7 | 102 | 21.7 | 21.8 | 59.1 | 58.9
IBM RS6000 3.37 | 347 | 12.5 | 125 | 56.4 | 56.5
512 X 512
Sun Sparc2 91.0 | 93.6 | 223 | 240 | 277 | 336
Intel i860 60.2 | 46.7 | 143 | 156 | 202 | 292
IBM RS6000 16.7 | 17.0 | 183 | 186 | 399 | 399

well as inner loops.

Interestingly, the disparity in execution times be-
tween permutations became greater as the processor
speed increased. On the individual processors, execu-
tion times varied by significant factors of up to 3.69
on the Sparc2, 6.25 on the 1860, and a dramatic 23.89
on the RS6000. These results indicate that data lo-
cality should be the overwhelming force driving scalar
compilers today.

Table 2: Speed-ups for Parallel Matrix Multiply

speed-up of parallel JKI tiled
over over
sequential JKI | sequential JKI tiled

19 processors

150x150 20.5 18.8

300x300 20.1 18.7
7 processors

150x150 7.5 6.8

300x300 7.5 7.0

The speed-ups of a parallel tiled matrix multiply on 7
and 19 processors of a Sequent Symmetry S81 for ar-
rays of size 150 x 150 and 300 x 300 are presented in
Table 2. We ran a sequential version with the loops
in memory order JKI, a sequential tiled version, and
the identically tiled parallel version. The parallel ver-
sion is tiled by 4 and is the same version presented in
Section 1.1. Besides tiling, no other low-level memory
optimizations were used. The speed-ups were basically
linear for both matrix sizes when comparing the two
tiled versions.

8.2 Dmxpy

The subroutine dmxpy from Linpack was optimized us-
ing these algorithms as illustrated in Section 6.2. In
scientific programs, there are many instances of this
type of doubly-nested loop which iterates over vectors
and/or matrices, where only one loop is parallel and
it is best ordered at the innermost position. These
loops may be an artifact of a vectorizable programming
style. They appear frequently in the Perfect bench-
marks [CKPK90], the Level 2 BLAS [DCHHS88], and
the Livermore loops [McM86].

Table 3 illustrates the performance benefits with the
organization of dmxpy generated by our algorithm on
matrices of size 200 x 200 on 19 processors. For compar-
ison, the performance when the I strip is not returned
to its best memory position and a parallel inner I loop
were also measured.

Table 3: Dmxpy on 19 processors

loop organization
I loop parallel
TJIT | T11J | JI
speed-up over sequential JI | 16.4 13.8 2.9

8.3 Erlebacher

Erlebacher is a tri-diagonal solver for the calculation
of variable derivatives written by Thomas Eidson at
ICASE, NASA-Langley. It uses 3 dimensional 64 x
64 x 64 arrays. It contains 1341 lines of Fortran. The
Optimizer algorithm was performed by hand on the
entire program. No low-level memory optimizations
were performed. The speed-up from this algorithm on
19 processors was 14.2 for the entire application. The
speed-up for the parallel portions of the program was

15.0.
9 Related work

Our work bears the most similarity to research by Wolf
and Lam [WL91]. They develop an algorithm that
estimates all temporal and spatial reuse for a given
loop permutation, including reuse on outer loops. This
reuse is represented as a localized vector space. Vector
spaces representing reuse for individual and multiple
references are combined to discover all loops £ carry-
ing some reuse. They then exhaustively evaluate all
legal loop permutations where some subset of £ is in
the innermost position, and select the one with the best
estimated locality.

Wolf and Lam’s algorithm for selecting a loop per-
mutation is potentially more precise and powerful than
the one presented in this paper. It directly calculates
reuse across outer loops and can suggest loop skewing
and reversal to achieve reuse; however, how often these
transformations are needed is yet to be determined.
Skewing in particular is undesirable because it reduces
spatial reuse.

Gannon et al. also formulate the dependence test-
ing problem to give reuse and volumetric information
about array references [GJ(G88]. This information is
then used to tile and interchange the loop nests for
cache, after which parallelism is inserted at the out-
ermost possible position. They do not consider how
the parallelism affects the volumetric information nor
if interchange would improve the granularity of paral-
lelism.

Porterfield presents a formula that approximates the
number of cache lines accessed, but is restricted to a
cache line size of one and loops with uniform depen-
dences [Por89]. Ferrante et al. present a more general
formula that approximates the number of cache lines
and is applicable across a wider range of loops [FST91].
However, they first compute an estimate for every ar-
ray reference in a loop nest and then combine them,
trying not to do dependence testing. Like Wolf and
Lam, they exhaustively search for a loop permutation
with the lowest estimated cost.

Many algorithms have been proposed in the litera-
ture for introducing parallelism into programs. Calla-
han et al. use the metric of minimizing barrier syn-

chronization points via loop distribution, fusion and in-
terchange for introducing parallelism [ACK87, Cal87].
Wolfand Lam [WL90] introduce all possible parallelism
via the unimodular transformations: loop interchange,
skewing, and reversal. Neither of these techniques try
to map the parallelism to a machine, or try take into
account data locality, nor is any loop bound informa-
tion considered. Banerjee also considers introducing
parallelism via unimodular transformations, but only
for doubly nested loops [Ban90b]. Banerjee does how-
ever consider loop bound information.

Because we accept some imprecision, our algorithms
are simpler and may be applied to computations that
have not been fully characterized in Wolf and Lam’s
unimodular framework. For instance, we can support
imperfectly nested loops, multiple loop nests, and im-
precise data dependences. We believe that this ap-
proximation is a very reasonable one, especially in view
of the fact that we intend to use a scalar cache tiling
method as a final step in the code generation process
[CCK90]. In addition, the algorithms presented here
are O(n?) time in the worst case, where n is the depth
of the loop nest, and are a considerable improvement
over work which compares all legal permutations and
then picks the best, taking exponential time.

10 Summary and Conclusions

We have addressed the problem of choosing the best
loop ordering in a nest of loops for exploiting data local-
ity and for generating parallel code for shared-memory
multiprocessors. As our experimental results bear out,
the key issue in loop order selection is achieving ef-
fective use of the memory hierarchy, especially cache
lines. Our approach improves data locality, provides
the highest granularity of parallelism, and properly po-
sitions loops for low-level memory optimizing transfor-
mations. When possible, the benefits of parallelism
and data locality are therefore both exploited.

We believe our experimental results provide strong
evidence for the effectiveness of this approach. With
this method, the programmer is permitted to pay more
attention to the correctness of a calculation and less
to the explicit loop structure required to achieve high
performance.

Acknowledgments

We are especially grateful to Chau-Wen Tseng for his
significant contributions to this work. We would like to
thank Preston Briggs, ClLiff Click, Ervan Darnell, and
Nathaniel McIntosh for their many helpful discussions
and experiments. We also appreciate the constructive
detailed suggestions from one of our reviewers.

This research was supported by the CRPC, the Cen-
ter for Research on Parallel Computation, a National
Science Foundation Science and Technology Center,

and by a DARPA/NASA Research Assistantship in

Parallel Processing, administered by the Institute for

Advanced Computer Studies,
Use of the Sequent Symmetry S81 was pro-

land.

University of Mary-

vided by the CRPC under NSF Cooperative Agreement
CDAS619893.

References

[ACKS87]

[AKS4]

[AKS7]

[AS79]

[Ban90a)

[Ban90b]

[BFKK92]

[Cal’87]

[CCK90]

[CKPK90]

[DBMS79]

[DCHHSS]

[FST91]

J. R. Allen, D. Callahan, and K. Kennedy. Auto-
matic decomposition of scientific programs for paral-
lel execution. In Proceedings of the Fourteenth An-
nual ACM Symposium on the Principles of Program-
ming Languages, Munich, Germany, January 1987.

J. R. Allen and K. Kennedy. Automatic loop inter-
change. In Proceedings of the SIGPLAN 84 Sympo-
stum on Compiler Construction, Montreal, Canada,
June 1984.

J. R. Allen and K. Kennedy. Automatic translation
of Fortran programs to vector form. ACM Trans-

actions on Programming Languages and Systems,
9(4):491-542, October 1987.

W. Abu-Sufah. Improving the Performance of Vir-
tual Memory Computers. PhD thesis, Dept. of
Computer Science, University of Illinois at Urbana-
Champaign, 1979.

U. Banerjee. A theory of loop permutations. In
D. Gelernter, A. Nicolau, and D. Padua, editors,
Languages and Compilers for Parallel Computing.
The MIT Press, 1990.

U. Banerjee. Unimodular transformations of double
loops. In Advances in Languages and Compilers for
Parallel Computing, Irvine, CA, August 1990. The
MIT Press.

V. Balasundaram, G. Fox, K. Kennedy, and U. Kre-
mer. A static performance estimator in the Fortran
D programming system. In J. Saltz and P. Mehrotra,
editors, Languages, Compilers, and Run-Time Envi-
ronments for Distributed Memory Machines. North-
Holland, Amsterdam, The Netherlands, 1992.

D. Callahan. A Global Approach to Detection of Par-
allelism. PhD thesis, Rice University, March 1987.

D. Callahan, S. Carr, and K. Kennedy. Improving
register allocation for subscripted variables. In Pro-
ceedings of the SIGPLAN ’90 Conference on Pro-
gram Language Design and Implementation, White
Plains, NY, June 1990.

G. Cybenko, L. Kipp, L. Pointer, and D. Kuck. Su-
percomputer performance evaluation and the Perfect
benchmarks. In Proceedings of the 1990 ACM In-
ternational Conference on Supercomputing, Amster-
dam, The Netherlands, June 1990.

J. Dongarra, J. Bunch, C. Moler, and G. Stew-
art. LINPACK User’s Guide. SIAM Publications,
Philadelphia, PA, 1979.

J. Dongarra, J. Du Croz, S. Hammarling, and
R. Hanson. An extended set of Fortran basic linear
algebra subprograms. ACM Transactions on Math-
ematical Software, 14(1):1-17, March 1988.

J. Ferrante, V. Sarkar, and W. Thrash. On estimat-
ing and enhancing cache effectiveness. In U. Baner-
jee, D. Gelernter, A. Nicolau, and D. Padua, editors,
Languages and Compilers for Parallel Computing,
Fourth International Workshop, Santa Clara, CA,
August 1991. Springer-Verlag.

[GIG8S)

[ITs8]

[KKP*81]

[KMC72]

[KMMo1]

[KMT92]

[Lam74]

[LRWO1]

[McK92]

[McM86]

[Por89]

[WBS7]

[WL90]

[WLo1]

[Wol89a)]

[Wol89b]

D. Gannon, W. Jalby, and K. Gallivan. Strategies for
cache and local memory management by global pro-
gram transformation. Jouwrnal of Parallel and Dis-
tributed Computing, 5(5):587-616, October 1988.

F. Irigoin and R. Triolet. Supernode partitioning. In
Proceedings of the Fifteenth Annual ACM Sympo-
stum on the Principles of Programming Languages,
San Diego, CA, January 1988.

D. Kuck, R. Kuhn, D. Padua, B. Leasure, and M. J.
Wolfe. Dependence graphs and compiler optimiza-
tions. In Conference Record of the Eighth Annual
ACM Symposium on the Principles of Programming
Languages, Williamsburg, VA, January 1981.

D. Kuck, Y. Muraoka, and S. Chen. On the
number of operations simultaneously executable in
Fortran-like programs and their resulting speedup.
IEEE Transactions on Computers, C-21(12):1293—
1310, December 1972.

K. Kennedy, N. McIntosh, and K. S. MC¢Kinley.
Static performance estimation in a parallelizing com-
piler. Technical Report TR91-174, Dept. of Com-
puter Science, Rice University, December 1991.

K. Kennedy, K. S. M¢Kinley, and C. Tseng. Improv-
ing data locality. Technical Report TR92-179, Dept.
of Computer Science, Rice University, March 1992.

L. Lamport. The parallel execution of DO loops.
Communications of the ACM, 17(2):83-93, February
1974.

M. Lam, E. Rothberg, and M. E. Wolf. The
cache performance and optimizations of blocked al-
gorithms. In Proceedings of the Fourth Interna-
tronal Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, Santa
Clara, CA, April 1991.

K. S. McKinley. Automatic and Interactive Paral-
lelization. PhD thesis, Rice University, April 1992.

F. McMahon.
computer test of the numerical performance range.
Technical Report UCRL-53745, Lawrence Livermore
National Laboratory, 1986.

A. Porterfield. Software Methods for Improvement
of Cache Performance. PhD thesis, Rice University,
May 1989.

M. J. Wolfe and U. Banerjee. Data dependence
and its application to parallel processing. Interna-
tional Journal of Parallel Programming, 16(2):137—
178, April 1987.

M. E. Wolf and M. Lam. Maximizing parallelism via
loop transformations. In Proceedings of the Third
Workshop on Languages and Compilers for Parallel
Computing, Irvine, CA, August 1990.

M. E. Wolf and M. Lam. A data locality optimiz-
ing algorithm. In Proceedings of the SIGPLAN ’91
Conference on Program Language Design and Im-
plementation, Toronto, Canada, June 1991.

The Livermore Fortran Kernels: A

M. J. Wolfe. More iteration space tiling. In Proceed-
ings of Supercomputing 89, Reno, NV, November
1989.

M. J. Wolfe. Optimizing Supercompilers for Super-
computers. The MIT Press, Cambridge, MA, 1989.

