
Author Retrospective for

Optimizing for Parallelism and Data Locality

Kathryn S. McKinley

Microsoft Research

mckinley@microsoft.com

ABSTRACT
Today there is an urgent need for algorithms, programming lan-
guage systems and tools, and hardware that deliver on the potential
of parallelism due to the end of Dennard scaling. This work (from
my PhD dissertation, supervised by Ken Kennedy) was one of the
early papers to optimize for and experimentally explore the tension
between data locality and parallelism on shared memory machines.
A key result was that false sharing of cache lines between proces-
sors with local caches on separate chips was disastrous to the per-
formance and scaling of applications. This retrospective includes a
short personal tour through the history of parallel computing, a dis-
cussion of locality and parallelism modeling versus a polyhedral
formulation of optimizing dense matrix codes, and how this prob-
lem is still relevant to compilers today. I end with a short memorial
to my deceased co-author and advisor Ken Kennedy.

Original paper: http://doi.acm.org/10.1145/143369.143427

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compilers; Optimization

Keywords
False Sharing; Loop Transformations; Parallelism; Locality

Parallel Computing: A Personal History
Parallel computing seemed to be entering its heyday in the late
1980s and early 1990s. At Rice in 1989, Ken Kennedy was awarded
an NSF Science and Technology Center for the Center for Re-
search on Parallel Computing (CRPC) as the Principal Investiga-
tor. The CRPC started with seven sites and eventually included
400 researchers, staff, and graduate students. Their technical ex-
pertise spanned parallel algorithms, compilers, runtimes, and hard-
ware. The CRPC vision that Ken, his collaborators, and students
shared was to invent parallel algorithms for critical problems in
science, coupled with programming language tools, such as com-
pilers, runtime systems, and programming environments, that made

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
ICS 25th Anniversary Volume. 2014
ACM 978-1-4503-2840-1/14/06.
http://dx.doi.org/10.1145/2591635.2591646.

them run fast. We were not trying to solve the dusty-deck prob-
lem of automatically converting sequential algorithms to parallel
ones. We understood that parallel and sequential algorithms for the
same problem require different solutions. However, tools would
do heavy lifting to map application parallelism to hardware paral-
lelism, such that the programmers would not have to reimplement
their algorithms for each new parallel architecture. A key aspect of
this problem is balancing parallelism, sharing between tasks, and
memory usage, which was the topic our paper addressed.

In this same period, a number of established companies and star-
tups, such as Sequent, had introduced parallel machines. The Se-
quent Symmetry was the machine on which we reported our results.
It was not yet clear that the research and development challenges
of parallel computing would make it too costly to win in the market
place in the short term. By the mid 1990s, this generation of paral-
lel computers together with some of the companies that built them
were pulled under by the economic tide and huge success of per-
sonal computers with a single processor. Clock scaling was deliv-
ering exponential performance improvements. Sequential software
was easier to build; the sequential programming interface was sta-
ble across generations of hardware and software; and hardware was
twice as fast every 18 months. Why invest in parallel computing?

In hindsight, abandoning sustained national funding, much re-
search, and advanced development on parallel computing was a
mistake. Today, leakage power and other manufacturing challenges
at small feature sizes have ended Dennard scaling and will soon end
Moore’s Law. Vendors have turned to parallelism as a strategy to
continue increasing computer capacity to meet computational de-
mands in science, government, and consumer markets. However,
researchers and companies are still struggling to deliver on the po-
tential of parallelism. For example, even though manufacturers can
fit 20 to 100 processors on a single chip, many commodity server,
client, and mobile chips have 1 to 12 CPUs with 2 to 24 hardware
contexts. Building, compiling for, programming, and porting soft-
ware between parallel systems is still hard.

Parallelism and Data Locality
Part of the reason programming and optimizing parallel machines,
even shared memory machines, is hard is due to real sharing and
false sharing of data between parallel tasks. In a typical shared
memory parallel machine, each CPU has some amount of private
cache memory and some shared main memory. In the 1990s, the
CPUs were on separate chips and today they are on the same chip,
but the basic memory hierarchy structure is similar.

Hardware caches exploit the observation that programs often ex-
hibit temporal locality – they reuse the same data — and spatial
locality — they access adjacent data elements — close together in
time. For example, a loop that sequentially iterates over a vector of



integers (allocated as a single vector) exhibits spatial locality with
a reuse distance of one iteration. Caches store the most recently
used items and cache lines typically contain between 32 B to 256 B
of data. The fewer accesses between reuse of data on the same
cache line, the more likely the cache will be to still hold the line.
Unfortunately, since the architecture only moves and tracks data at
a cache line granularity, false sharing occurs when two tasks on
different CPUs want to write independent data that resides on the
same cache line at the same time, they cannot. Only one cache can
write the line at a time, which requires invalidating and moving the
cache line, serializing execution.

Figure 1 in the paper shows the effect of false sharing on 18
processors of a Sequent shared-memory parallel machine executing
an addition of three 2D dense matrices and storing the result. For
the same amount of work, without false sharing, a speedup of 18
(best) is possible. With false sharing, speedup ranges between 6
and 9 (mem). That figure would have been better labeled “False
sharing more than halves speedup.”

The remainder of the paper presents an optimization algorithm
for dense matrices that seeks (1) to minimize the reuse distance for
cache lines for each parallel task, (2) to introduce parallelism at
the outermost loop possible, and (3) to eliminate false sharing by
strip mining, such that the outer loop is parallel and each parallel
iteration never shares a cache line with another parallel iteration.

The algorithm uses data dependence analysis to detect paral-
lelism and temporal reuse [4, 5, 12]. It precisely computes spatial
and temporal cache line reuse on inner loops and then generalizes to
the entire loop nest. It next determines the loop ordering that max-
imizes expected cache line reuse, and directly permutes the loops
to this order or the closest legal loop order. The next phase in-
troduces parallelism at the coarsest possible granularity (outermost
loop) without causing false sharing. It uses a combination of loop
permutation and strip mining. A machine specific cost model de-
termines if the parallel loop is of sufficient granularity to deliver
speedups. If the parallel loop also provides cache line reuse, the
algorithm strip mines the loop based on the line size and number of
processors, permuting the iterator loop to the outermost legal po-
sition and leaving the strips of consecutive iterations with reuse in
place to deliver cache locality. This transformation process ensures
that none of the outermost parallel loop iterations share cache lines,
eliminating false sharing.

Historical Positioning
Our work on optimizing compilers for parallel architectures at Rice
was greatly influenced by the research at UIUC, IBM, and Stan-
ford. David Kuck and his PhD students at UIUC introduced the
first analyses and optimizations in this area. For example, Uptal
Banerjee introduced the first practical dependence tests to detect
parallelism [4, 5] and Abu-Sufah introduced the first optimizations
for improving data locality [1]. Allen and Kennedy showed how
to use dependences to correctly permute loops and introduce paral-
lelism [3], and with Callahan, subsequently showed how to maxi-
mize the granularity of parallelism [2].

Irigoin and Triolet introduced the use of a polyhedral model of
dependences to increase parallelism [14] and the work of Wolf and
Lam extended this theory to introduce parallelism at all possible
levels [28]. Wolf and Lam also used this theory to produce all the
legal loop permutations and loop skews and then selected the one
that maximized cache reuse [27], however they did not consider
both locality and parallelism at once.

At the time, the polyhedral and unimodular models were re-
stricted to permuting, reversing, and skewing perfectly nested loops
operating on dense matrices. Optimizing one loop in isolation was

and is not sufficient for the best performance; data reorganization,
loop fusion, and loop distribution add substantial benefits [7, 10,
11, 16, 21, 22, 25]. Our model directly computed the best per-
mutations for locality and parallelism and we showed [7, 16, 20]
how to directly derive good loop fusion and distribution choices,
which the polyhedral model could not yet perform. Our approach
also had the advantage that the resulting code was human readable
and suitable for use in an interactive parallelization tool [17]. Sev-
eral comercial tools implemented our approach, including the DEC
Alpha compiler.

Today, the polyhedral approach combines fusion and distribution
with other loop optimizations [11, 22, 25] and is in wide use in
commercial and research compilers. These techniques use heuristic
search based on models, some similar to our model, to specialize
code for a variety of parallel architectures.

Loop nest optimization remains an active area of research [11,
22, 25], in part, because each generation of parallel hardware of-
fers new challenges and opportunities. Using the compiler to adapt
applications to a parallel machine achieves portability and high per-
formance, substantially reducing developer effort. Loop optimiza-
tions are critical to optimization in many modern settings, includ-
ing GPUs [18], high-level hardware synthesis [8, 19, 24], auto-
tuning [9, 23, 25], and library construction [13, 26].

None of the early work on locality or parallelism considered false
sharing and locality and parallelism interactions. Our paper high-
lighted the problems that false sharing caused, which subsequently
other researchers also sought to eliminate. For example, Jeremi-
assen and Eggers transformed data with padding [15] and Ding and
Kennedy performed array regrouping [10] to eliminate false shar-
ing and improve locality. Later my PhD student Emery Berger, oth-
ers, and I showed how the Hoard memory allocator avoided false
sharing to produce more scalable performance, compared to prior
C/C++ memory allocators [6]. The Hoard algorithm is now widely
used, for example, in Apple’s iOS.

Professor Ken Kennedy (1945 - 2007)
Ken loved his research and bringing people together on both a
small and large scale. He founded the Rice Computer Science
Department in 1985, CRPC, the Los Alamos Computer Science
Institute (LACSI), and co-chaired with Bill Joy, the President’s In-
formation Technology Advisory Committee (PITAC) from 1997 to
1999. This first PITAC committee initiated the NSF ITR program,
which funded the research of 1000s of faculty and graduate stu-
dents over a 10 year period. In his own research life, he could
not bear to cut back on people or research; he would instead raise
more money. He felt it was a personal failure if any student who
worked with him did not graduate and graduated over 40 PhD stu-
dents. Together with his students and colleagues, he invented pro-
gramming language technologies still in use today, such as regis-
ter allocation, strength reduction, prefetching, loop transformations
for scalar, vector, and parallel architectures (this paper is an ex-
ample), interprocedural analyses, interactive parallel programming
tools, FortranD, and telescoping languages.

In the last few years of his life as he struggled with pancreatic
cancer, he kept working because he loved his life, his students, and
his work. Ken laughed a lot and really loudly, especially at his own
jokes. I still miss him.

Acknowledgements I would like to thank again my graduate stu-
dent colleagues Chau-Wen Tseng, Preston Briggs, Cliff Click, Er-
van Darnell, and Nathaniel McIntosh for their contributions to this
work. I would also like to thank them as well as David Callahan,
Keith Cooper, Mark Hall, Mary Hall, Seema Hiranandani, Marina



Kalem, Amy Pullen, Linda Torczon, and Scotty Strahan (my hus-
band) for making graduate school a wonderful personal and intel-
lectual experience. I thank the anonymous reviewer for improv-
ing the first version and Steve Blackburn, Mary Hall, and Todd
Mytkowicz for discussions and comments on this version.

References
[1] W. A. Abu-Sufah. Improving the Performance of Virtual

Memory Computers, PhD Dissertation. PhD thesis, Dept. of
Computer Science, University of Illinois at
Urbana-Champaign, 1978.

[2] J. R. Allen, D. Callahan, and K. Kennedy. Automatic
decomposition of scientific programs for parallel execution.
In ACM Symposium on the Principles of Programming
Languages (POPL), pages 63–76, Munich, Germany, Jan.
1987.

[3] J. R. Allen and K. Kennedy. Automatic loop interchange. In
ACM Conference on Programming Language Design and
Implementation (PLDI), pages 75–90, Montreal, Canada,
June 1984.

[4] U. K. Banerjee. Data depedence in ordinary programs,
Master’s Thesis. Technical Report 76-837, Dept. of
Computer Science, University of Illinois at
Urbana-Champaign, 1976.

[5] U. K. Banerjee. Depedence Analysis for Supercomputing.
Kluwer Academic Publishers, Norwell, MA, 1988.

[6] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R.
Wilson. Hoard: A scalable memory allocator for
multithreaded applications. In ACM Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 117–128, Cambridge,
MA, Nov. 2000.

[7] S. Carr, K. S. McKinley, and C. Tseng. Compiler
optimizations for improving data locality. In ACM
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages
252–262, San Jose, CA, Oct. 1994.

[8] J. Cong, P. Zhang, and Y. Zou. Optimizing memory
hierarchy allocation with loop transformations for high-level
synthesis. In Annual Design Automation Conference (DAC),
pages 1233–1238, 2012.

[9] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,
L. Oliker, D. Patterson, J. Shalf, and K. Yelick. Stencil
computation optimization and auto-tuning on state-of-the-art
multicore architectures. In ACM/IEEE Conference on
Supercomputing, pages 4:1–12, 2008.

[10] C. Ding and K. Kennedy. Inter-array data regrouping. In
Languages and Compilers for Parallel Computing, pages
149–163, San Diego, CA, Aug. 1999.

[11] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello,
M. Sigler, and O. Temam. Semi-automatic composition of
loop transformations for deep parallelism and memory
hierarchies. International Journal of Parallel Programming,
34(3):261–317, June 1995.

[12] G. Goff, K. Kennedy, and C. Tseng. Practical dependence
testing. In ACM Conference on Programming Language
Design and Implementation (PLDI), pages 15–29, Toronto,
Canada, June 1991.

[13] K. Goto and R. van de Geijn. High-performance
implementation of the Level-3 BLAS. ACM Transactions on
Mathmatical Software (TOMS), 35(1):4:1–14, July 2008.

[14] F. Irigoin and R. Triolet. Supernode partitioning. In ACM
Symposium on the Principles of Programming Languages
(POPL), pages 319–329, San Diego, CA, Jan. 1988.

[15] T. E. Jeremiassen and S. J. Eggers. Reducing false sharing on
shared memory multiprocessors through compile time data
transformations. In ACM Symposium on Principles and
Practice of Parallel Programming (PPOPP), pages 179–188,
Santa Barbara, CA, July 1995.

[16] K. Kennedy and K. S. McKinley. Maximizing loop
parallelism and improving data locality via loop fusion and
distribution. In Languages and Compilers for Parallel
Computing, pages 301–321, Portland, OR, Aug. 1993.

[17] K. Kennedy, K. S. McKinley, and C. Tseng. Interactive
parallel programming using the ParaScope Editor. IEEE
Transactions on Parallel and Distributed Systems,
2(3):329–341, July 1991.

[18] M. Khan, G. R. P. Basu, M. Hall, C. Chen, and J. Chame. A
script-based autotuning compiler system to generate
high-performance CUDA code. ACM Transactions on
Architecture and Code Optimization, 9(4):31:1–25, 2013.

[19] Q. Liu, G. A. Constantinides, K. Masselos, and P. Y. K.
Cheung. Combining data reuse with data-level parallelization
for FPGA-targeted hardware compilation: A geometric
programming framework. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
28(3):305–315, Mar. 2009.

[20] K. S. McKinley. A compiler optimization algorithm for
shared-memory multiprocessors. IEEE Transactions on
Parallel and Distributed Systems, 9(8):769–787, Aug. 1998.

[21] K. S. McKinley and O. Temam. A quantitative analysis of
loop nest locality. In ACM Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), pages 94–104, Cambridge, MA, Oct. 1996.

[22] L.-N. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen,
J. Ramanujam, P. Sadayappan, and N. Vasilache. Loop
transformations: Convexity, pruning and optimization. In
ACM Symposium on the Principles of Programming
Languages (POPL), pages 549–562, 2011.

[23] M. Puschel, J. Moura, J. R. Johnson, D. Padua, M. M.
Veloso, B. W. Singer, J. Xiong, F. Franchetti, A. Gacic,
Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo.
SPIRAL: Code generation for DSP transforms. Proceedings
of the IEEE, 93(2):232–275, 2005.

[24] B. So, M. W. Hall, and P. C. Diniz. A compiler approach to
fast hardware design space exploration in FPGA-based
systems. In ACM Conference on Programming Language
Design and Implementation (PLDI), pages 165–176, 2002.

[25] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K.
Hollingsworth. A scalable auto-tuning framework for
compiler optimization. In IEEE International Symposium on
Parallel & Distributed Processing (IPDPS), pages 1–12,
2009.

[26] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated
empirical optimizations of software and the ATLAS project.
Parallel Computing, 27(1):3–35, 2001.

[27] M. E. Wolf and M. Lam. A data locality optimizing
algorithm. In ACM SIGPLAN Notices, pages 30–44, Toronto,
Canada, June 1991.

[28] M. E. Wolf and M. Lam. A loop transformation theory and
an algorithm to maximize parallelism. IEEE Transactions on
Parallel and Distributed Systems, 2(4):452–471, Oct. 1991.







total work

s p
 e 

e d
 - u

 p

2 4 6 8 10 12 14 16 18

2

4

6

8

10

12

14

16

18
best (J out,N=18,M=2:18)

mem (I out,M=18,N=2:18)

gran (J out,N=2:18,M=18)

worst (I out,M=2:18,N=18)











0 50 100 150 200 250 300 350 400 450 500

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19

120

140

160

400

500

600

1000

2000

3000

Interpolated contours in microseconds

total work

p r
 o 

c e
 s 

s o
 r s










