
SoKNOS – Using Semantic Technologies
in Disaster Management Software

Grigori Babitski1, Simon Bergweiler2, Olaf Grebner1, Daniel Oberle1,
Heiko Paulheim1, and Florian Probst1

1 SAP Research
{grigori.babitski,olaf.grebner,d.oberle,heiko.paulheim,f.probst}@sap.com

2 DFKI GmbH
simon.bergweiler@dfki.de

Abstract. Disaster management software deals with supporting staff in
large catastrophic incidents such as earthquakes or floods, e.g., by pro-
viding relevant information, facilitating task and resource planning, and
managing communication with all involved parties. In this paper, we in-
troduce the SoKNOS support system, which is a functional prototype for
such software using semantic technologies for various purposes. Ontolo-
gies are used for creating a mutual understanding between developers
and end users from different organizations. Information sources and ser-
vices are annotated with ontologies for improving the provision of the
right information at the right time, for connecting existing systems and
databases to the SoKNOS system, and for providing an ontology-based
visualization. Furthermore, the users’ actions are constantly supervised,
and errors are avoided by employing ontology-based consistency check-
ing. We show how the pervasive and holistic use of semantic technologies
leads to a significant improvement of both the development and the us-
ability of disaster management software, and present some key lessons
learned from employing semantic technologies in a large-scale software
project.

1 Introduction

Disaster management software deals with supporting staff in catastrophic and
emergency situations such as earthquakes or large floods, e.g., by providing rel-
evant information, facilitating task and resource planning, and managing com-
munication with all involved parties.

Current situations in disaster management are characterized by incomplete
situation pictures, ad-hoc reaction needs, and unpredictability. First of all, these
situations require collaboration across organizations and across countries. Sec-
ond, they expose an ad-hoc need to resolve or prevent damage under extreme
time pressure and non-planned conditions. Third, disasters as such are unpre-
dictable by nature, although preventive planning for disasters can be taken.

Besides the ability to adapt to the current situation, software needs to adapt
to the end users’ needs as well. Members of disaster management organizations



Fig. 1. Screenshot of the SoKNOS prototype [1].

are to a large extent non-IT experts and only accustomed to casual usage of disas-
ter management software, since large incidents luckily occur rather infrequently.
This casual usage implies that, for example, users may not always have the right
terminology at hand in the first place, especially when facing information over-
load due to a large number of potentially relevant information sources. A large
incident poses a stressful situation for all involved users of disaster management
software. Users often need to operate multiple applications in a distributed and
heterogeneous application landscape in parallel to obtain a consistent view on
all available information.

The SoKNOS1 system [1] is a working prototype (see Fig. 1) for such soft-
ware using semantic technologies for various purposes. In SoKNOS, information
sources and services are annotated with ontologies for improving the provision of
the right information at the right time. The annotations are used for connecting
existing systems and databases to the SoKNOS system, and for creating visual-
izations of the information. Furthermore, the users’ actions are constantly super-
vised, and errors are avoided by employing ontology-based consistency checking.

A central design decision for the system was to ensure that any newly created
information as well as all integrated sensor information is semantically character-
ized, supporting the goal of a shared and semantically unambiguous information
basis across organizations. In this sense, semantic technologies were used in a
holistic and pervasive manner thought the system, making SoKNOS a good ex-
ample for the successful application of semantic technologies. Fig. 2 shows an
overview of the ontologies developed and used in the SoKNOS project.

1 More information on the publicly funded SoKNOS project can be found at http:

//www.soknos.de



DOLCE

Core Domain Ontology on Emergency Management UI and Interaction Ontology

Application Ontologies

Geosensor Discovery

Ontology

Ontology on 

Resources

Ontology on 

Damages
Dialog Ontology

Ontology on

Deployment Regulations

 imports 

 im
po

rts
 

 imports 

 imports 

 im
p
o
rt

s 

 imports 

 imports 

 im
ports

 imports 

 imports 

 mapped to 

Fig. 2. Ontologies developed and used in SoKNOS.

The central ontology is a core domain ontology on emergency management,
aligned to the foundational ontology DOLCE [2], which defines the basic vocab-
ulary of the emergency management domain. Specialized ontologies are used for
resources and damages, and deployment regulations defining the relations be-
tween resources and damages. Those ontologies have been developed in a close
cooperation with domain experts, such as fire brigade officers.

Furthermore, for the definition of system components, ontologies of user in-
terfaces and interactions as well as geo sensors have been developed. Specialized
application ontologies can be defined for each application used in the disaster
scenario, based on the aforementioned ontologies. For supporting speech based
interaction for finding resources, a specialized dialog ontology has been devel-
oped, which has a mapping to the resources ontology.

The remaining paper is structured as follows. In section 2, we first give an
overview on six use cases where we applied ontologies and semantic technology in
the SoKNOS support system. Second, we then detail for each of these use cases
the implemented functionality and its benefits for end users (e.g., the command
staff in disaster management) and software engineers. As this is a survey on the
different usages of semantics in SoKNOS, we only briefly highlight the benefits
of applying ontologies, and we refer to other research papers for details on the
implementation and evaluation where applicable.

In section 3, we present the lessons learned of the software engineering pro-
cess. We point out successes and potential for improvements of the semantic
technologies employed. Finally, we conclude in section 4 with a summary of the
presented use cases and lessons learned.

2 Use Cases and Ontology-based Improvements in the
SoKNOS Disaster Management Application

Six core use cases for ontologies and semantic technologies in disaster man-
agement turned out to be of particular interest during the SoKNOS project. We
have classified the use cases according to two criteria. First, the use cases provide
functionality applicable either during design time (before or after an incident)
or during run time (during the incident, including the chaos phase). Second, the
functionality is either used by the end users (firefighter, emergency management



Plausibility Checks

S
im

p
lifie

d
 D

a
ta

b
a

s
e

 In
te

g
ra

tio
n

S
y
s
te

m
 E

x
te

n
s
ib

ilty

Improved Service

Discovery

Improved Search

over Databases

Improved 

Visualization

D
e

s
ig

n
 T

im
e

R
u

n
 T

im
e

Benefits for 

End Users

Benefits 

for Developers

Fig. 3. Six use cases for semantic technologies covered in the SoKNOS project.

staff, etc.) or by software engineers. Fig. 3 shows an overview on these use cases
identified in SoKNOS, classified according to the two criteria.

Each of the use cases presented in this paper has been implemented in the So-
KNOS support system [3]. In this section, we illustrate the benefits of ontologies
for the end users in each of these use cases. Furthermore, we explain how this
functionality has been implemented using ontologies and semantic technology.

2.1 Use Case 1: System Extensibility

In disaster management, users typically encounter a heterogeneous landscape of
IT systems, where each application exposes different user interfaces and interac-
tion paradigms, hindering end users in efficient problem resolution and decision
making. For efficiently dealing with emergency situations, systems have to be
extensible so that applications can be added or integrated with little effort. The
SoKNOS prototype features ontology-based system extensibility that allows the
integration of new system components with comparatively little effort.

For saving as much of the engineering efforts as possible, we integrate appli-
cations on the user interface layer, thus being able to re-use as many software
components as possible, and confronting the end users with familiar user inter-
faces. From a software engineering point of view, integration on the user interface
level can be tedious, especially when heterogeneous components (e.g., Java and
Flex components) are involved. From a usability point of view, we enable the
end user to make use of the various existing applications which serve different
purposes, such as managing resources, handling messages, or displaying digital
maps – some of them may be domain-specific, such as resource handling, oth-
ers may be domain-independent, such as messaging or geographic information
software.

In SoKNOS, we have developed a framework capable of dynamic integration
of applications on the user interface level based on ontologies. For the integration,



each application is described by an application ontology, based on the SoKNOS
set of ontologies (see Fig. 2). Integration rules using the concepts defined in
those application ontologies express interactions that are possible between the
integrated applications. Integrated applications communicate using events an-
notated with concepts from the ontologies. A reasoner evaluating those event
annotations based on the ontologies and integration rules serves as an indi-
rection between the integrated applications, thus preventing code tangling and
preserving modularity and maintainability of the overall system. Details on the
integration framework can be found in [4].

Interactions between integrated applications encompass the highlighting of
related information in all applications when an object is selected, or the trigger-
ing of actions by dragging and dropping objects from one application to another.
Moreover, the user is assisted, e.g., by highlighting possible drop locations when
dragging an object. This allows users to explore the interaction possibilities of
the integrated system. Figure 1 depicts some of the integrated applications in
SoKNOS, together with example interactions.

A central innovation is that all components can expect certain events to
come with some well-known annotations since all events exchanged between
components are annotated using the ontologies from the SoKNOS ontology stack.
Therefore, the integration rules used to control cross-application interactions can
be defined based on those annotations and react to all events based on those
annotations. By mapping annotations of events to methods of the integrated
components, new components can therefore be added at run-time without having
to change the system, as long as the annotations of the events remain constant,
which in turn is ensured by using shared ontologies. For adding a new application
to SoKNOS, an appropriate application ontology has to be written, and the
mapping from events to methods has to be defined.

Although a reasoner is involved in processing the events exchanged between
applications, a sophisticated software architecture of the framework ensures that
the event processing times are below one second, thus, the user experience is not
negatively affected by the use of semantics. Details on the architecture and the
performance evaluation can be found in [5].

2.2 Use Case 2: Simplified Database Integration

Numerous cooperating organizations require the integration of their heteroge-
neous, distributed databases at run time to conduct efficient operational re-
source management, each using their own vocabulary and schema for naming
and describing things. As discussed above, having the relevant information at
the right place is essential in disaster management. Such information is often
stored in databases. One typical example in SoKNOS are databases of opera-
tional resources (e.g. fire brigade cars, helicopters, etc.), maintained by different
organizations, such as local fire brigades. Since larger incidents require ad hoc
cooperation of such organizations, it is necessary that such databases can be
integrated even at run-time.



In the SoKNOS prototype, we have used OntoBroker as an infrastructure
for integrating databases. As discussed in [6], OntoBroker can make instance
data stored in relational databases or accessed via Web service interfaces avail-
able as facts in the ontology. The SoKNOS “Joint Query Engine” (JQE) uses
that infrastructure to connect different heterogeneous resource databases in the
disaster management domain owned by different organizations.

A simple graphical user interface allows the user to pose queries against the
different databases. The JQE processes the query by unifying different names of
input-concepts like, e.g. “helicopter”, defined in the SoKNOS resources ontology,
which is mapped to the different underlying databases’ data models. The query
is then translated to a number of queries to the connected databases, and the
results are unified and returned to the querying application. In [5], we have
shown that directly passing the queries to underlying data sources is faster than
materializing the facts from the databases in the reasoner’s A-box.

For more sophisticated use cases, such as plausibility checking (see section
2.5), the JQE also provides an interface for reasoning on the connected data
sources. The query for the integrated reasoning engine must be formulated in
frame-logic (F-Logic), a higher order language for reasoning about objects [7].
The user interfaces, however, abstract from the query language and provide
simple, graphical access.

For establishing the mappings between the resources ontology and the differ-
ent databases’ data models, SoKNOS provides a user interface for interactively
connecting elements from the data model to the resources ontology. We have en-
hanced the interface described in [6] by adding the SAP AutoMappingCore [8],
which makes suggestions for possible mappings based on different ontology and
schema matching metrics. Internally, the mappings created by the user are con-
verted to F-Logic rules which call database wrappers. Thus, a unified interface
to heterogeneous databases is created using semantic technologies.

2.3 Use Case 3: Improved Search

As discussed in the previous section, one of the challenges in disaster manage-
ment is to quickly and reliably find suitable and available operational resources
to handle the operation at hand, even under stressful conditions. The challenge
in SoKNOS was to combine a spoken dialog system and the Joint Query En-
gine (JQE), described in section 2.2, in a multilevel process in order to arrive
at a more intuitive semantic search. This approach enables domain experts to
pose a single query by speech that retrieves semantically correct results from all
previously integrated databases.

Domain experts formulate queries using flexible everyday vocabulary and a
large set of possible formulations referring to the disaster domain. Natural spoken
interaction allows a skillful linguistic concatenation of keywords and phrases to
express filtering conditions which leads on one hand to more detailed queries
with more accurate results and on the other hand shortens the conventional
query interaction process itself. For example, the spoken query “Show me all
available helicopters of the fire fighters Berlin” may result in the display of the



two relevant available helicopters in Berlin along with an acoustical feedback
“Two available helicopters of the fire fighters Berlin were found”. The ontology-
based search approach developed to that end improves conventional search by
mouse and keyboard interactions through the addition of spoken utterances.
Implementation details on the dialog system can be found in [9].

The core components of the spoken dialog system are a speech recognizer and
a speech interpretation module. The recognized speech utterances are forwarded
to the speech interpretation module, which decomposes the speech recognizer
result into several sub-queries. The speech interpretation module relies on an
internal ontology-based data representation, the so called dialog ontology, which
defines domain knowledge and provides the basic vocabulary that is required for
the retrieval of information from natural language. Based on this dialog ontology,
the speech interpretation module can resolve ambiguities and interpret incom-
plete queries by expanding the input to complete queries using the situational
context. For processing the spoken queries with the JQE, the dialog ontology is
mapped to the SoKNOS resources ontology, as shown in Fig. 2.

The spoken dialog system translates the natural language query into com-
bined F-Logic expressions which the JQE processes to deliver search results (see
above). According to the task of giving an incident command, the development of
the dialog system was focusing on rapid and specific response to spoken domain-
specific user input, rather than on flexible input allowing for a broad common
vocabulary.

Simple measurements for the project work, carried out on a standard desktop
PC, have shown that the complete processing times of all integrated parsing and
discourse processing modules are in the range of milliseconds. This examination
shows that the processing of speech input will take place within the dialog plat-
form in real time. However, with increasing complexity of the knowledge domain,
the vocabulary and thus the complexity of the generated grammar also increase,
which in turn affects the runtime of the developed module. Detailed examina-
tions of the influence of the complexity of the knowledge domain on the runtime
behavior will be a subject of future research.

2.4 Use Case 4: Improved Discovery of External Sensor Observation
Services

Semantically correct, hence meaningful integration of measurements, for example
a system of water level sensors in a river, is especially problematic in situations
with high time pressure and low familiarity with a (sub) domain and its termi-
nology. In such cases, the crisis team member might be in need for additional
information and is just missing the appropriate search term. The SoKNOS sup-
port system addresses this need by providing an ontology-based service discovery
mechanism.

The crisis team member benefits from this functionality by being able to
integrate specific sensor information quickly, e.g., the water level of a river or
the concentration of a pollutant.



In our approach, Web services designed according to the SOS2 specification,
are semantically annotated. To this end, we have developed a geo sensor dis-
covery ontology which formalizes both observable properties (for example wind
speed, substance concentration etc.) and the feature of interest (e.g., a particular
river, a lake or a city district). The annotation is performed by extending the
standard service description with URLs pointing to the respective categories in
the ontology.

To facilitate discovery, we have established a way to determine the observable
property of interest, based on the ontology. The crisis team member specifies a
substance or geographic object (e.g., river) to which the observable properties
may pertain (e.g., water level, or stream velocity). The latter are then determined
through the relation between an observable property and its bearer, as formalized
in the ontology. To get sensor data, the end users finally specify the area of
interest by marking this area on a map, provided by a separate module in the
SoKNOS System, and by specifying the desired time interval. Details of the
implementation can be found in [10].

2.5 Use Case 5: Plausibility Checks

In an emergency situation, the stress level in the command control room is
high. Therefore, the risk of making mistakes increases over time. Mistakes in
operating the system can cause severe problems, e.g., when issuing inappropriate,
unintended orders. Therefore, it is important to double check the users’ actions
for adequacy and consistency, e.g. by performing automatic plausibility checks.
Missing plausibility checks in disaster management solutions further increase
stress and hence errors on end user side. For example, the system checks the
plausibility of an assignment that a crisis team member issues and warns the
user if the assignment of tactical unit (e.g., a fire brigade truck) to a planned
task (e.g., evacuating a building) does not appear plausible.

Plausibility checks have been considered very useful by the end users, how-
ever, they do not want to be “over-ruled” by an application. Therefore, it is
important to leave an open door for doing things differently – the system should
therefore warn the user, but not forbid any actions explicitly. As emergencies
are per definition unforeseeable, the system has to provide means for taking
unforeseeable actions instead of preventing them.

While such checks may also be hard-coded in the software, it can be bene-
ficial to perform them based on an ontology, such as proposed in [11]. From an
engineering point of view, delegating consistency checking to an ontology rea-
soner reduces code tangling, as consistency checking code may be scattered way
across an application. Furthermore, having all statements about consistency in
one ontology eases maintainability and involvement of the end users.

In SoKNOS, the ontology on deployment regulations contains the informa-
tion about which operational resource is suitable for which task. Based on this

2 The Sensor Observation Service Interface Standard (SOS) is specified by the Sen-
sor Web Enablement (SWE) initiative of the Open Geospatial Consortium (OGC);
http://www.opengeospatial.org



ontology, a reasoner may check whether the assigned unit is suitable for a task
or not. The domain knowledge involved in this decision can be rather complex;
it may, for example, include information about the devices carried by a tactical
unit, the people operating the unit, the problem that is addressed by the task,
and so on.

The implementation is quite straight forward: when the user performs an
assignment of a resource to a task, an F-Logic query is generated and passed
to the JQE (see above), which asks whether the resource is suitable for the
respective task. Based on the knowledge formalized in the ontology, the reasoner
answers the query. The processing time of the query is below one second, so the
user can be warned instantly, if required, and is not interrupted in her work.

2.6 Use Case 6: Improved Information Visualization

In a typical IT system landscape, information is contained in different IT system.
Finding and aggregating the information needed for a certain purpose is often a
time consuming task.

In SoKNOS, we have used the semantic annotations that are present for
each information object for creating an ontology-based visualization of the data
contained in the different systems. Each IT system integrated in SoKNOS has
to offer its data in a semantically annotated format, comparable to Linked Data
[12]. Those different annotated data sets can be merged into a data set comprising
the information contained in all the systems.

Based on that merged data set, an interactive graph view is generated by
the Semantic Data Explorer (SDE). The user can interact with the SDE and
the existing applications’ interfaces in parallel, thus allowing a hybrid view for
data exploration3. User studies have shown that for complex information finding
tasks in the domain of emergency management, such as finding resources that
are overbooked, the Semantic Data Explorer leads to significant improvements
both in task completion time and in user satisfaction. Details on the architecture
and the user study can be found in [13].

3 Lessons Learned – Disaster Management Applications
and Ontologies

In the three years of research and development within SoKNOS, we have imple-
mented the use cases sketched in this paper, employing semantic technologies in
numerous places. We present our lessons learned from that work in three parts:
the ontology engineering process, the software engineering process, and the usage
and suitability of ontologies in the disaster management domain.

3 A demo video of the Semantic Data Explorer can be found at http://www.soknos.

de/index.php?id=470.



3.1 Ontology Engineering Process

Involving end users. The early and continuous involvement of end users actually
working in the disaster management domain was a core success factor.

On the one hand, discussions with end users to gather and verify the do-
main understanding are at the core of both the ontology engineering process
and the application development. In our case, we built the ontology and appli-
cations based on multiple workshops with the German firefighting departments
of Cologne and Berlin. Additionally, using real-life documents such as working
rules and regulations and user generated knowledge sources such as Wikipedia
supported the re-construction and formalization of the knowledge to a great
extent.

On the other hand, evaluating the ontologies with end users helped to consol-
idate and validate the engineered ontologies. As a result of frequent evaluation
workshops, we were able to consolidate the overall ontology and tighten the
representation of the domain.

Establishing the role of an ontology engineer. The ontology engineering task as
such usually cannot be executed by end users. The person taking the role of an
ontology engineer needs to work in close cooperation with the end users as well as
the application’s business logic developer. Knowledge exchange with end users is
important to gather a correct and complete understanding of the domain, while
software developers need support in understanding the ontology’s concepts.

Working with end users, the role requires knowledge in both ontology engi-
neering and the respective domain that is to be formalized. We found that the
task of formalizing the domain terminology cannot be done by end users as it re-
quires ontology awareness, for example in the form of taking modeling decisions
and obeying to modeling conventions. Without this awareness, no formally cor-
rect ontology will emerge, and the ontology cannot be used for reasoning tasks.
Working with software developers, the ontology engineer can communicate the
usage of the ontology in the application and thus develop an awareness where
and how to place semantic annotations.

We had good experiences with an ontology engineer in a dedicated role em-
bedded in the project team. The ontology engineer worked with both end users
and software developers. This way, we could map the end users’ domain knowl-
edge efficiently into the application’s business logic.

Finding the right tools. Current tools are rarely designed with end users, i.e.,
laymen with respect to ontological modeling, in mind. In fact, ontology editors
are especially weak when it comes to complex ontologies [14].

The complex terminology modeling involved in ontology engineering is hard
to comprehend for domain experts in case of existing modeling artifacts. We
experienced domain experts in the disaster management as not been trained in
any modeling environment.

Ontology editors need improvement in their “browsing mechanisms, help sys-
tems and visualization metaphors” [14], a statement from 2005 which unfortu-
nately still holds true. Better ontology visualization helps to quickly gain an



understanding of the ontology and better browsing mechanisms helps editors
get better suited to modeling laymen and domain-knowledgeable end users.

Details on the ontology engineering process in SoKNOS can be found in [15].

3.2 Software Engineering Process and Ontologies

Developing new mechanisms for semantic annotations. In SoKNOS, we have
relied on semantic annotation of all data within a SoKNOS system. To this end,
data models and ontologies need to be interrelated, so that each data object
instance can be semantically annotated. Based on these annotations, various
useful extensions to the system, as sketched in section 2, have been implemented.

Current approaches for interrelating class models and ontologies most often
assume that a 1:1 mapping between the class model and the ontology exists. With
these approaches, the mapping is static, i.e. each class is mapped to exactly one
ontological category, and each attribute is mapped exactly to one ontological
relation. Moreover, most annotation approaches are implemented in an intrusive
fashion, which means that the class model has to be altered in order to hook
it up with the annotation mechanism, e.g., by adding special attributes and/or
methods to classes. In SoKNOS, we have learned that both these premises –
static annotation and intrusive implementation – are not practical in a real
world software engineering setting.

The goals of ontologies and class models are different: class models aim at
simplification and easy programming, while ontologies aim at complete and cor-
rect formal representations. Thus, we cannot assume that a 1:1 mapping always
exists, and static approaches are likely to fail. A typical example from SoKNOS
is the use of one common Java class for predicted as well as for actual problems,
distinguished by a flag. While this is comfortable for the programmer, the class
cannot be statically mapped to a category in the ontology, because predicted
and actual problems are very different ontological categories.

Semantic annotations of data objects must feature a non-intrusive implemen-
tation for non-alterable legacy code or binary packages where source code and
class model cannot be altered. Class models often come as binary packages or are
created by code generators which do not allow changes to the way the classes are
generated, or licenses of integrated third-party components forbid altering the
underlying class models. In these cases, intrusive implementations for semantic
annotation are bound to fail.

As a consequence, we have developed a novel approach for semantic anno-
tation of data objects in SoKNOS. This approach is dynamic, i.e. it allows for
computing the ontological category a data object belongs to at run-time, and it is
implemented in a non-intrusive way: The rules for annotating objects are stored
separately from the class models, and an annotation engine executes those rules
by inspecting the objects to annotate, using mechanisms such as Java reflection.
Thus, class models which cannot or must not be altered can be dealt with [16].

Addressing performance. An essential requirement for user interfaces in general
is high reactivity. On the other hand, introducing a reasoning step in the event



processing mechanism is a very costly operation in terms of run time. As reaction
time of two seconds for interactions is stated as an upper limit for usability in
the HCI literature, high reactivity of the system is a paramount challenge.

We have evaluated different architectural alternatives with respect to run
time performance and scalability to larger integrated systems, such as central-
ized vs. decentralized event processing, or pushing vs. pulling of dynamic instance
data into the reasoner’s A-box (assertion component). With our optimized sys-
tem design, we are able to keep the reaction times on a reasonable level, even
for a larger number of integrated applications used in parallel, with a relatively
high number of integration rules (where each integration rule controls one type
of cross-application interaction). Details on the evaluation can be found in [5].

3.3 Ontology Usage and Suitability

Finding the right modeling granularity. Both domain experts and end users
face problems in dealing with concepts needed due to ontology formalisms. We
observed that end users were irritated by the concepts and methods imposed
by the use of a strictly formal top level ontology such as DOLCE, which were
not part of their colloquial language, but needed for formally correct modeling.
We found two sources of “problematic” concepts where domain experts and end
users had problems with.

First, domain experts were not used to concepts needed to create a formally
correct ontology, e.g., as induced by using top level ontologies. Using reference
ontologies, like in our case the DOLCE top level ontology, requires complying
with a certain structure and formalism. For example, the SoKNOS ontologies
are based on DOLCE which uses concepts like “endurant” and “perdurant” to
cater for semantic interoperability between information sources. However, from
a domain expert’s point-of-view, this terminology is complicated to understand
compared to normal, colloquial language usage [17]. In our case, professional
firefighters as the domain experts were irritated by these concepts.

Second, end users were irritated by modeled domain terminology that was not
part of their colloquial language. There are concepts that firefighters don’t use in
their colloquial language but which are needed for a formally correct modeling of
the ontology, e.g., to satisfy reasoning requirements. For example, resources are
categorized in the ontology via their usage characteristics. In the given example,
the class “rescue helicopter” is sub-class of the classes “equipment”, “means of
transportation”, “motorized means of transportation”, “flying motorized means
of transportation”, “helicopter” and “ground-landing helicopter”. Except for the
term “equipment”, all other terms are not part of a firefighter’s colloquial lan-
guage but are needed have a formally correct ontology and support useful rea-
soning.

In SoKNOS, we have found that this question cannot be answered trivially, as
a heuristic for identifying an optimal proportion between “every day concepts”
and “top level concepts” in the ontology is missing. Having a dedicated ontology
engineer, as discussed above, involved in the ontology engineering session helped
the domain experts understand the need and the intention of top level concepts.



Finding the right visualization depth. Offering only a class browser with a treelike
visualization of the ontology’s extensive OWL class hierarchy caused confusion
among end users. The SoKNOS inventory management application visualized the
modeled OWL class hierarchy directly in a class browser. Here, the end user for
example can browse resources like cars, trucks and aircrafts. However, due to the
numerous concepts and the extensive class hierarchy, the user actions of selecting
and expanding nodes were often too complicated for the end user. In case that the
end user doesn’t know exactly where in the class hierarchy the desired concept
is located, browsing involves a high error-rate in the exploration process when
the explored classes and sub-classes do not contain the concept the end user
looks for. As shown in the example above, the concept “rescue helicopter” has
six upper classes. An end user needs to select and expand in this example six
times the right node to finally select the concept “rescue helicopter” as resource
in this class browser due to the direct OWL class hierarchy visualization. In
sum, we found the simple browser visualization of an OWL class hierarchy as
not sufficient for an end user interface.

In SoKNOS, we have addressed this challenge by hiding top level categories
in the user interface. Only concepts defined in the core domain ontology are used
in the user interface (but are still available to the reasoner); the foundational
categories from DOLCE are not. Thus, the end user only works with concepts
from her own domain. As a further extension, immediate categories that do not
provide additional value for the end user, such as “motorized means of trans-
portation”, can be suppressed in the visualization.

Finding the right visualization. Various ways of visualizing ontologies and anno-
tated data exist [18]. In the SoKNOS Semantic Data Explorer discussed above,
we have used a straight forward graph view, which, like the standard OWL vi-
sualization, uses ellipses for instances and rectangles for data values. The user
studies have shown that even that simple, straight forward solution provides a
large benefit for the end user. Thus, slightly modifying Jim Hendler’s famous
quote [19], we can state that a little visualization goes a long way.

4 Conclusion

In this paper, we have introduced the SoKNOS system, a functional prototype
for an integrated emergency management system which makes use of ontologies
and semantic technologies for various purposes.

In SoKNOS, ontologies have been used both at design-time and at run-time
of the system. Ontologies are used for providing a mutual understanding between
developers and end users as well as between end users from different organiza-
tions. By annotating information objects and data sources, information retrieval,
the discovery of relevant Web services and the integration of different databases
containing necessary information, are simplified and partly automated. Further-
more, ontologies are used for improving the interaction with the system by fa-
cilitating user actions across application borders, and by providing plausibility
checks for avoiding mistakes due to stressful situations.



During the course of the project, we have employed ontologies and semantic
technologies in various settings, and derived several key lessons learned. First,
the ontology engineering process necessarily should involve end users from the
very beginning and foresee the role of dedicated ontology engineers, since ontol-
ogy engineering is a non-trivial task which is significantly different from software
engineering, so it cannot be simply overtaken by a software engineer. Tool sup-
port is currently not sufficient for letting untrained users build a useful ontology.

Second, current semantic annotation mechanisms for class models are not
suitable. Those mechanisms are most often intrusive and require a 1:1 mapping
between the class model and the ontology. When dealing with legacy code, both
assumptions are unrealistic. Thus, different mechanisms for semantically anno-
tating class models are needed. Furthermore, relying on a programming model
backed by an ontology and using reasoning at run-time imposes significant chal-
lenges to reactivity and performance.

Third, it is not trivial to find an appropriate modeling and visualization depth
for ontologies. While a large modeling depth is useful for some tasks, the feedback
from the end users targeted at the need for simpler visualizations. In SoKNOS,
we have addressed that need by reducing the complexity of the visualization,
and by providing a straight forward, but very useful graphical visualization of
the annotated data.

In summary, we have shown a number of use cases which demonstrate how
the employment of ontologies and semantic technologies can make emergency
management systems more useful and versatile. The lessons learned can also be
transferred to projects with similar requirements in other domains.

Acknowledgements

The work presented in this paper has been partly funded by the German Federal
Ministry of Education and Research under grant no. 01ISO7009.

References

1. Paulheim, H., Döweling, S., Tso-Sutter, K., Probst, F., Ziegert, T.: Improving Us-
ability of Integrated Emergency Response Systems: The SoKNOS Approach. In:
Proceedings ”39. Jahrestagung der Gesellschaft für Informatik e.V. (GI) - Infor-
matik 2009”. Volume 154 of LNI. (2009) 1435–1449

2. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: WonderWeb De-
liverable D18 – Ontology Library (final) (2003) http://wonderweb.semanticweb.

org/deliverables/documents/D18.pdf. Accessed August 2nd, 2010.
3. Döweling, S., Probst, F., Ziegert, T., Manske, K.: SoKNOS - An Interactive Visual

Emergency Management Framework. In Amicis, R.D., Stojanovic, R., Conti, G.,
eds.: GeoSpatial Visual Analytics. NATO Science for Peace and Security Series C:
Environmental Security, Springer (2009) 251–262

4. Paulheim, H., Probst, F.: Application Integration on the User Interface Level: an
Ontology-Based Approach. Data & Knowledge Engineering Journal 69(11) (2010)
1103–1116



5. Paulheim, H.: Efficient Semantic Event Processing: Lessons Learned in User In-
terface Integration. In Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuck-
enschmidt, H., Cabral, L., Tudorache, T., eds.: The Semantic Web: Research and
Applications (ESWC 2010), Part II. Volume 6089 of LNCS., Springer (2010) 60–74

6. Angele, J., Erdmann, M., Wenke, D.: Ontology-Based Knowledge Management
in Automotive Engineering Scenarios. In Hepp, M., Leenheer, P.D., Moor, A.D.,
Sure, Y., eds.: Ontology Management. Volume 7 of Semantic Web and Beyond.
Springer (2008) 245–264

7. Angele, J., Lausen, G.: Ontologies in F-Logic. In Staab, S., Studer, R., eds.:
Handbook on Ontologies. International Handbooks on Information Systems. 2nd
edition edn. Springer (2009) 45–70

8. Voigt, K., Ivanov, P., Rummler, A.: MatchBox: Combined Meta-model Match-
ing for Semi-automatic Mapping Generation. In: Proceedings of the 2010 ACM
Symposium on Applied Computing, New York, NY, USA, ACM (2010) 2281–2288

9. Sonntag, D., Deru, M., Bergweiler, S.: Design and Implementation of Combined
Mobile and Touchscreen-based Multimodal Web 3.0 Interfaces. In Arabnia, H.R.,
de la Fuente, D., Olivas, J.A., eds.: Proceedings of the 2009 International Confer-
ence on Artificial Intelligence (ICAI 2009), CSREA Press (2009) 974–979

10. Babitski, G., Bergweiler, S., Hoffmann, J., Schön, D., Stasch, C., Walkowski, A.C.:
Ontology-Based Integration of Sensor Web Services in Disaster Management. In:
Proceedings of the 3rd International Conference on GeoSpatial Semantics. GeoS
’09, Berlin, Heidelberg, Springer (2009) 103–121

11. Liu, B., Chen, H., He, W.: Deriving User Interface from Ontologies: A Model-Based
Approach. In: ICTAI ’05: Proceedings of the 17th IEEE International Conference
on Tools with Artificial Intelligence, Washington, DC, USA, IEEE Computer So-
ciety (2005) 254–259

12. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. Interna-
tional Journal on Semantic Web and Information Systems 5(3) (2009) 1–22

13. Paulheim, H., Meyer, L.: Ontology-based Information Visualization in Integrated
UIs. In: Proceedings of the 2011 International Conference on Intelligent User
Interfaces (IUI), ACM (2011) 451–452

14. Garćıa-Barriocanal, E., Sicilia, M.A., Sánchez-Alonso, S.: Usability evaluation of
ontology editors. Knowledge Organization 32(1) (2005) 1–9

15. Babitski, G., Probst, F., Hoffmann, J., Oberle, D.: Ontology Design for Information
Integration in Catastrophy Management. In: Proceedings of the 4th International
Workshop on Applications of Semantic Technologies (AST’09). (2009)

16. Paulheim, H., Plendl, R., Probst, F., Oberle, D.: Mapping Pragmatic Class Models
to Reference Ontologies. In: 2nd International Workshop on Data Engineering
meets the Semantic Web (DESWeb). (2011)

17. Hepp, M.: Possible Ontologies: How Reality Constrains the Development of Rele-
vant Ontologies. IEEE Internet Computing 11(1) (2007) 90–96

18. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.G.: On-
tology Visualization Methods - A Survey. ACM Comput. Surv. 39(4) (2007)

19. Hendler, J.: On Beyond Ontology. http://iswc2003.semanticweb.org/hendler_
files/v3_document.htm (2003) Invited Talk at the International Semantic Web
Conference 2003.


