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Abstract—The increasing popularity of wearable devices
in recent years means that a diverse range of physiologi-
cal and functional data can now be captured continuously
for applications in sports, wellbeing, and healthcare. This
wealth of information requires efficient methods of clas-
sification and analysis where deep learning is a promis-
ing technique for large-scale data analytics. While deep
learning has been successful in implementations that uti-
lize high-performance computing platforms, its use on low-
power wearable devices is limited by resource constraints.
In this paper, we propose a deep learning methodology,
which combines features learned from inertial sensor data
together with complementary information from a set of shal-
low features to enable accurate and real-time activity clas-
sification. The design of this combined method aims to
overcome some of the limitations present in a typical deep
learning framework where on-node computation is required.
To optimize the proposed method for real-time on-node
computation, spectral domain preprocessing is used before
the data are passed onto the deep learning framework. The
classification accuracy of our proposed deep learning ap-
proach is evaluated against state-of-the-art methods using
both laboratory and real world activity datasets. Our results
show the validity of the approach on different human ac-
tivity datasets, outperforming other methods, including the
two methods used within our combined pipeline. We also
demonstrate that the computation times for the proposed
method are consistent with the constraints of real-time on-
node processing on smartphones and a wearable sensor
platform.

Index Terms—ActiveMiles, deep learning, Human Activ-
ity Recognition (HAR), Internet-of-Things (IoT), low-power
devices, wearable.

I. INTRODUCTION

D EEP learning is a paradigm of machine learning that uses
multiple processing layers to infer and extract information

from big data. Research has shown that the use of deep learning
can achieve improved performance in a range of applications
when compared to traditional approaches [1]–[6]. Conventional
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learning approaches use a set of predesigned features—also
known as “shallow” features—to represent the data for a spe-
cific classification task. In image processing and machine vision,
shallow features such as SIFT or FAST are often used for land-
mark detection [7], whereas for time-series analysis, statistical
parameters are used [8]–[11].

Human Activity Recognition (HAR), e.g., generally exploits
time-series data from inertial sensors to identify the actions be-
ing performed. In healthcare, inertial sensor data can be used for
monitoring the onset of diseases as well as the efficacy of treat-
ment options [11], [12]. For patients with neurodegenerative dis-
eases, such as Parkinson’s, HAR can be used to compile diaries
of their daily activities and detect episodes such as freezing-of-
gait events, for assessing the patient’s condition [13]. Quantify-
ing physical activity through HAR can also provide invaluable
information for other applications, such as evaluating the con-
dition of patients with chronic obstructive pulmonary disease
(COPD) [14], [15] or evaluating the recovery progress of pa-
tients during rehabilitation [16], [17].

Currently, smartphones, wearable devices, and internet-of-
things (IoT) are becoming more affordable and ubiquitous.
Many commercial products, such as the Apple Watch, Fitbit,
and Microsoft Band, and smartphone apps including Runkeeper
and Strava, are already available for continuous collection of
physiological data. These products typically contain sensors
that enable them to sense the environment, have modest com-
puting resources for data processing and transfer, and can be
placed in a pocket or purse, worn on the body, or installed at
home. Accurate and meaningful interpretation of the recorded
physiological data from these devices can be applied potentially
to HAR. However, most current commercial products only pro-
vide relatively simple metrics, such as step count or cadence.
The emergence of deep learning methodologies, which are able
to extract discriminating features from the data, and increased
processing capabilities in wearable technologies give rise to the
possibility of performing detailed data analysis in situ and in
real time. The ability to perform more complex analysis, such
as activity classification on the wearable device would be ad-
vantageous for the aforementioned applications.

The rest of the paper is organized as follows: In Section II,
we introduce the current state-of-the-art in machine learning
for HAR. Our proposed methodology is then described in
Section III. Datasets used for performance evaluation are pre-
sented in Section IV along with detailed comparison of the dif-
ferent approaches. Our findings and contributions are concluded
in Section V.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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II. RELATED WORK

One of the main challenges, when designing a classification
method for time-series analysis, is selecting a suitable set of fea-
tures for subsequent classification. Recent surveys of research
in activity recognition show the diverse range of features and
classification methods used [18], [19].

In [20], a simple energy thresholding method applied to fre-
quency analysis of the input data is used for the detection of
freezing of gait in Parkinson patients. In other applications,
statistical parameters [8], basis transform coding [9], and sym-
bolic representation [10] are often used as “shallow” features to
describe time-series data. Methods such as decision trees and
support vector machines (SVM) are then trained to classify the
data using the given features [21]–[23]. Catal et al. [24] pro-
posed a method for HAR that combines multiple classification
methods, known as an ensemble of classifiers, to maximize the
accuracy that can be attained from each classification method.

Using deep learning methods, such as deep belief networks
(DBN), restricted Boltzmann machines (RBM), and convolu-
tional neural networks (CNN), a discriminative set of features
can be learnt directly from the input data [3]–[5]. However, for
HAR, changes in sensor orientation, placement, and other fac-
tors require that deep learning approaches for HAR must use
complex designs with many layers in order to discover a com-
plete hierarchy of features to properly classify the raw data. Al-
sheikh et al. [6] demonstrate activity recognition using a method
based on DBNs and RBMs formed using multiple hidden lay-
ers. A hybrid deep learning and hidden Markov model (HMM)
approach is finally used with three 1000 neuron layers. While
utilizing additional hidden layers and neurons to improve recog-
nition accuracy is not a significant burden for high-performance
computer systems, it makes these methods unsuitable for de-
vices with fewer resources.

A deep learning approach optimized for low-power devices
presented in [1] uses a spectrogram representation of the iner-
tial input data to provide invariance against changes in sensor
placement, amplitude, or sampling rate, thus allowing a more
compact method design. However, the results reported in [1] do
not always overcome the accuracy obtained from shallow fea-
tures, which may be due to resource limitations and the simple
design of the method. For this reason, we propose to combine a
set of shallow features with those obtained from deep learning
in this paper. As far as we know, we are the first that propose
to combine efficiently both shallow and deep features with a
method that can be executed in real time on a wearable device.

III. METHODS

As mentioned previously, in Ravı̀ et al. [1], it is shown that
features derived from a deep learning method performed on de-
vices with limited resources are sometimes less discriminative
than a complete set of predefined shallow features. A possible
reason for this behavior may lie in the fact that deep learning
methods with less computational layers cannot find the entire
hierarchy of features. Another possibility is that, since the ex-
traction of features through deep learning is driven by data, if
the dataset is not well represented in all the possible modalities

Fig. 1. Schematic workflow of the proposed method: the raw datasets
measured by the inertial sensors are collected and divided into seg-
ments. The automatically learnt features and the shallow features are
extracted in processes A and B, respectively. In the last block, the fea-
tures are combined together and classified using a fully connected layer
and a soft-max layer of the deep learning model.

(i.e., location of the sensor, different sensor’s properties such
as amplitude or sampling rate) the deep learning approach is
not capable to generalize these data modalities automatically
for the classification task. In these scenarios, shallow features
may achieve better performance than deep learning approaches.
Consequently, we believe that shallow and deep learnt features
provide complementary information that can be jointly used for
classification.

The pipeline of the proposed approach that combines both
shallow and deep learnt features is described in Fig. 1. The first
block within the pipeline collects the raw data obtained from
the inertial sensors. The second block extracts the input data
into segments to be used along both process A and process B
of the pipeline where features from a deep learning method and
shallow features are computed in parallel. In the final block of
the pipeline, these two sets of features are merged together and
classified using a fully connected and a soft-max layers. The
details of the approach are further explained in Algorithm 1 and
each of these blocks are described as follows:

A. Input

For the application of HAR, we will be using inertial sensors,
such as accelerometers and gyroscopes for the input block of
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Fig. 1. It is important to note that the described approach also
caters for additional time-series data from other sensor types,
such as Electrocardiography (ECG) for measuring heart rhythm
or Electromyography (EMG) for muscle activity.

B. Extract Segments

After the raw signals are collected, segments of n samples
are extracted and forwarded along processes A and B of the
pipeline. The number of samples to consider depends on the
type of application involved. Of course, increasing the length
of the segments can introduce an improvement in recognition
accuracy, but at the same time it would cause a delay in response
for real-time applications as longer segments of data need to be
obtained and the boundary between different activities become
less well defined. Typically, segments of 4 to 10 s are used for
HAR [6]. The reason that segments rather than single data points
are used is motivated by the fact that the highly fluctuating raw
inertial measurements make the classification of a single data
point impractical [25]. Therefore, segments are obtained using
a sliding window applied individually to each axis of the sensor.

C. Spectrogram and Deep Learning Module

In process A of Fig. 1, a set of deep features is automatically
extracted using the proposed deep learning module. This module
takes advantage of a spectrogram representation and an efficient
design to achieve its task. In previous work, Ravı̀ et al. [1] show

the importance of using a suitable domain when a deep learn-
ing methodology is applied to time-series data. Specifically, they
show that the spectrogram representation is essential for extract-
ing interpretable features that capture the intensity differences
among nearest inertial data points. The spectrogram representa-
tion also provides a form of time and sampling rate invariance.
This enables the classification to be more robust against data
shifting in time and also against changes in amplitude of the
signal and sampling rate. Moreover, frequency selection in the
spectrogram domain also provides an implicit way to allow noise
filtering of the data over time.

A spectrogram of an inertial signal x is a new representation
of the signal as a function of frequency and time. Specifically, the
spectrogram is the magnitude squared of the short-time Fourier
transform (STFT). The procedure for computing the spectro-
gram is to divide a longer time signal into short segments of
equal length and then compute the Fourier transform separately
on each shorter segment. This can be expressed as

STFT{x[n]}(m,ω) = X(m,ω) =
∞∑

n=−∞
x[n]ω[n − m]e−jωn

(1)
likewise, with signal x[n] and window w[n]. The magnitude
squared of the STFT yields the spectrogram of the function:

spectrogram{x(n)}(m,ω) = |X(m,ω)|2 . (2)

The resulting spectrogram is a matrix st × sf , where st is the
number of different short term, time-localized points and sf is
the number of frequencies considered. Therefore, the spectro-
gram describes the changing spectra as a function of time. In
Fig. 2, we show examples of the averaged spectrograms across
different activities. As we can see, their representations exhibit
different patterns. Specifically, it appears that highly variable
activities exhibit higher spectrogram values along all frequen-
cies, instead repetitive activities, such as walking or running,
only show high values on specific frequencies. These discrim-
inative patterns can be detected by the deep learning module,
which aims to extract features and characterize activities.

Once the spectrograms have been computed, they are pro-
cessed using the deep learning module. The design of our deep
learning module is aimed at overcoming some of the issues
typically present in a deep learning framework where on-node
computation is required. Specifically, these disadvantages in-
clude the following:

1) deep learning modules can contain redundant links be-
tween pairs of nodes that connect two consecutive layers
of the neural network;

2) correlations in different signal points are usually over-
looked; and

3) a large set of layers can be built on top of each other
to extract a hierarchy of features from low level to high
level.

Deep learning approaches with these designs tend to have high
computation demands and are unsuitable for low-power devices
being considered in this paper. In our proposed approach, we
reduce the computation cost by limiting the connections be-
tween the nodes of the network and by computing the features
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Fig. 2. Examples of averaged spectrograms extracted from different activities of the ActiveMiles dataset. Their representations exhibit different
patterns for feature extraction and class recognition.

efficiently through the use of few hidden layers. Specifically,
the spectral representations of different axes and sensors are
prearranged so that the data represent local correlations and
they can be processed using 1-D convolutional kernels with the
same principle that CNN [26] follows. These filters are applied
repeatedly to the entire spectrogram and the main advantage
is that the network contains just a number of neurons equal to
a single instance of the filters, which drastically reduces the
connections from the typical neural network architecture.

The proposed prearrangement of the spectrograms is shown
in the deep learning module of Fig. 1. Here the spectrograms
computed on the x, y, and z axes are grouped together column
wise while the spectrograms obtained from different sensors are
grouped row wise. The processing of our deep learning mod-
ule is based on the use of sums of local 1-D convolutions over
this prearranged input. Since each activity has a discriminative
distribution of frequencies, as shown in Fig. 2, the sum is per-
formed in correspondence to each frequency. Specifically, each
filter wi—with size kw × st—is applied to the spectrogram ver-
tically, and the weighted sum of the convolved signal at time t
is computed as follows:

o[t][i] =
st∑

j=1

kw∑

k=1

w[i][j][k] ∗ input[j][dw ∗ (t − 1) + k] (3)

where dw is the stride of the convolution. These convolutions
produce an output layer o with size wp × OutputFrame with
OutputFrame = (InputFrame − kw)/dw + 1 and wp, the num-
ber of filters. The results of the convolution obtained from the x,
y, and z axes of an inertial sensor are summed together without

TABLE I
SHALLOW FEATURES EXTRACTED FROM THE PROPOSED APPROACH AND

COMBINED WITH THE LEARNT FEATURES

Input Data Features

Interquartile Range Amplitude Kurtosis
Root Mean Square Variance Mean

Raw signal Standard Deviation Skewness Min
Mean-cross Median Max
Zero-cross

First derivative
Root Mean Square Variance Mean
Standard Deviation

any discrimination so that the orientation invariance property is
maintained. This helps the proposed deep learning framework
to be more generalizable even when variation in the data re-
sulting from different sensor orientation is not well represented
in the dataset. The filters applied to the three axes share the
same weights, which is important for reducing the number of
parameters for each convolution layer.

D. Shallow Features

In process B of Fig. 1, 17 predefined shallow features are
considered. These features, listed in Table I, are extracted sepa-
rately from each segment of each axis, creating a vector repre-
sentation for the considered segment. This step is expressed on
line 5 in Algorithm 1. In our case, it takes six input segments,
a[1], a[2], a[3], g[1], g[2], g[3], representing, respectively, the
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TABLE II
SUMMARY OF HUMAN ACTIVITY DATASETS

Dataset Description # of Classes Subjects Samples Sampling Rate Reference

ActiveMiles Daily activities collected by smartphone in uncontrolled environments 7 10 4,390,726 50 – 200 Hz [1]
WISDM v1.1 Daily activities collected by smartphone in a laboratory 6 29 1,098,207 20 Hz [27]
WISDM v2.0 Daily activities collected by smartphone in uncontrolled environments 6 563 2,980,765 20 Hz [28][29]
Daphnet FoG Freezing of gait episodes in Parkinson’s patients 2 10 1,917,887 64 Hz [20]
Skoda Manipulative gestures performed in a car maintenance scenario 10 1 ∼ 701, 440 98 Hz [30]

accelerometers and the gyroscope data vector along the three
axes and produces a final vector of 102 features as output.

E. Classification

Once both deep and shallow features have been computed
they are merged together into a unique vector and classified
through a fully connected layer and a soft-max layer, as shown
by lines 20 and 21 of Algorithm 1.

F. Training Process

Shallow and deep features are trained together in a unified
deep neural network. During each stage of the training, errors
between the target and obtained values are used in the back-
ward propagation routine to update the weights of the different
hidden layers. Stochastic gradient descent (SGD) is used to min-
imize the loss function defined by the L2-norm. To further im-
prove the training procedure of the weights, we have used three
regularizations:

1) Weight decay: it is a term in the weight update rule that
causes the weights to exponentially decay to zero if no
other update is scheduled. It is used to avoid over fitting.

2) Momentum: it is a technique for accelerating gradient
descent and attempting to move the global minimum of
the function. It accumulates a velocity vector in directions
of persistent reduction in the objective across iterations.

3) Dropout: it is a technique that prevents overfitting and
provides a way of combining many different neural net-
work architectures efficiently for consensus purposes. At
each iteration of the training, dropout temporarily re-
moves nodes from a neural network, along with all its
incoming and outgoing connections. The choice of which
units to drop is random and is determined according to
a probability p of retaining a node. Training a network
with dropout leads to significantly lower generalization
error.

IV. EXPERIMENTAL RESULTS

A. Datasets

To evaluate the proposed system, we analyze the perfor-
mance obtained on complex real world activity data, collected
from multiple users. Five public datasets are analyzed using
tenfold cross validation. Table II summarizes these datasets.
Noteworthy is the release of our dataset, ActiveMiles (available
at http://hamlyn.doc.ic.ac.uk/activemiles/), which contains un-
constrained real world human activity data from ten subjects

Fig. 3. Behavior of the proposed approach by increasing the probabil-
ity of retaining a node in the dropout regularization, where size of the
convolutional kernel is 2, number of levels is 2, and number of filters
is 40.

collected using five different smartphones. Each subject was
asked to annotate the activities they carried out during the day
using an Android app developed for this purpose. There are no
limitations on where the smartphone is located (i.e., pocket, bag,
or held in the hand). Annotations record the start time, end time,
and label of a continuous activity. Since each smartphone uses
a different brand of sensor, the final dataset will contain data
that have many modalities, including different sampling rates
and amplitude ranges. It is one of the largest datasets in terms
of number of samples with around 30 h of labeled raw data, and
it is the first database that groups together data captured using
different sensor configurations.

B. Parameters Optimizations

The proposed deep learning framework contains a few hyper-
parameters that must be defined before training the final model.
An optimization process based on a grid search is proposed to
find the best values for the following:

1) the probability of retaining a node during the dropout
regularization;

2) the size of the convolutional kernels for all relative con-
volutional layers;

3) the total number of convolutional layers; and
4) the total number of filters in each convolutional layer.

The behavior of the system when these parameters are sys-
tematically tested is shown in Figs. 3, 4, and 5. In Fig. 3, we can
infer for datasets that have many classes and large variability,
increasing the probability of retaining a node during dropout
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Fig. 4. Behavior of the proposed approach by increasing the number
of convolutional levels, where probability of retaining a node is 0.2, size
of the convolutional kernel is 2, and number of filters is 40.

Fig. 5. Behavior of the proposed approach by increasing the size of
convolutional kernels in all the convolutional layers, where probability of
retaining a node is 0.1, number of levels is 1, and number of filters is 40.

makes the results worse. Instead, for datasets with fewer classes
and less variability, increasing this probability provides better
performance. The results in Fig. 4 show instead that the pro-
posed approach requires only a few levels in order to obtain a
complete hierarchy of learnt features and increasing the number
of levels does not result in substantial improvement. Finally,
Fig. 5 shows that the optimal size of the 1-D convolutional ker-
nels in all the convolutional layers is two or three depending,
also in this case, on the complexity of the datasets. For simple
datasets, a filter size of two seems to provide the best perfor-
mance, while for more complex datasets this size needs to be
increased up to three. In our experiments, we also discover that
32 filters in each convolutional layer and 80 neuron nodes in
the fully connected layer are the optimal values. However, since
they show that reducing the number of filters does not affect
classification accuracy, the number of filters can be reduced up
to ten if there are resource limitations.

C. Implementation

The proposed solution has been implemented for different
low-power platforms. The deep learning model is trained of-
fline on a standard workstation (2× Intel Xeon E5-2680v2 CPU,

Fig. 6. Intel Edison features a dual-core Intel Atom CPU at 500 MHz,
wireless connectivity, and compact physical dimensions at 35.5 × 25.0 ×
3.9 mm. It is a small but powerful platform that is well suited for wearable
devices.

Fig. 7. Graphical user interface used in the app ActiveMiles. (a) Main
view presented to the user for browsing all the recorded data of the app.
(b) Pie chart shows the percentage of the different activities captured
during the day. (c) Histogram is used to show the METS per minute
computed in each hour.

64GB DDR3 RAM) and then exported onto these platforms.
Only the feedforward routine of the deep learning module is
used for on-node classification of the data. Specifically, the pro-
posed approach has been deployed as an app for Android devices
and also as an embedded algorithm for the Intel Edison Develop-
ment Platform, Fig. 6. The app is available on the Google Store at
the following link: https://play.google.com/store/apps/details?
id=org.imperial.activemilespro. The mobile app allows mon-
itoring of human activity throughout the day and a complete
summary of the detected activities is presented to the user, as
shown in Fig. 7(b). The app also provides an estimation of
the metabolic equivalents (METS) per minute captured for each
hour of the day [see Fig. 7(c)]. Differently from other energy ex-
penditure metrics, such as Calories or Joules, METS is a biolog-
ical parameter that expresses a normalized level of physical ac-
tivity that does not factor in person’s weight. In the ActiveMiles
app, METS are measured by multiplying the amount of min-
utes spent for each activity by a relatively well defined constant
value and summed together [31], [32] The second implementa-
tion of the proposed system is for the Intel Edison (Intel Atom
Tangier CPU, 1GB RAM, dimensions: 35.5 × 25.0 × 3.9 mm).
This implementation is used to demonstrate the on-node hu-
man activity classification. For both architectures, we use the
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TABLE III
COMPARISON OF OUR PROPOSED SOLUTION AGAINST EXISTING METHODS IN DIFFERENT DATASET

Features Results for each dataset

ActiveMiles WISDM v1.1 WISDM v2.0 Skoda (Node 16) Daphnet FoG
Approach Shallow Deep Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)

Shallow-features-only
√

✗ 95.0 97.4 92.5 95.9 95.8
Catal et al. [24]

√
✗ 91.7 94.3 89.8 86.9 94.8

Alsheikh et al.[6] ✗
√

84.5 98.2 82.9 89.4 91.5
Ravı̀ et al.[1] ✗

√
95.1 98.2 88.5 91.7 95.7

Ours
√ √

95.7 98.6 92.7 95.3 95.8

FFTW3 library [33] to extract the spectrogram and the Torch
framework [34] to implement the deep learning model.

D. Classification Results

To demonstrate the relative merit of the proposed method,
we have compared the performance of the proposed solution
against other methods. We have considered a baseline approach
that is purely based on shallow features, defined as “shallow-
features-only,” which corresponds to process B of the pipeline
of our combined approach. We also consider approaches that are
purely based on deep learning, such as [1], [6] in our evaluation.
In particular, the approach in [1] corresponds to process A of
our combined pipeline. The classification results are presented
in Table III. Nonoverlapping window sizes of 4 s (for Skoda
and Daphnet-FoG datasets) and 10 s (for ActiveMiles, WISDM
v1.1 and WISDM v2.0 datasets) were used to segment the raw
inertial time-series data.

From Table III, it is evident that approaches based entirely
on deep learnt features or shallow features do not always pro-
vide the best performance. In fact, on the WISDM v2.0 and
Skoda datasets, the proposed baseline “shallow-features-only”
obtains 4% and 4.2% greater classification accuracy when com-
pared to [1], which only uses deep learnt features. On the other
hand, the same approach in [1] obtains 0.1% and 0.8% greater
accuracy on the ActiveMiles and WISDM v1.1 datasets than
the baseline. Combining both deep learnt and shallow features
allows the best of the approaches to be exploited, producing a
more generalizable solution that, as shown in our experiments,
overcomes the other approaches for all datasets except for the
Skoda dataset. While the other deep learning approaches do not
perform well on this last dataset, which is most likely due to
the small amount of activity segments available (Table I shows
there is a low number of samples and a high sampling rate),
our combined approach obtains a result that is much closer
to the best accuracy, achieved in this case by the “shallow-
features-only” method. Therefore, we can conclude that shal-
low features provide complementary information toward deep
learning.

In Table IV, more detailed results about the perclass preci-
sion and recall values obtained by the proposed approach are
presented. In addition to showing the different classes for each
dataset, the table also shows the quality of the multiclass pre-
diction. For most classes, precision and recall is above 85%. For
the Daphnet FoG dataset, the under representation of the class

TABLE IV
PRECISION AND RECALL VALUES OBTAINED BY THE PROPOSED APPROACH

IN ALL THE CONSIDERED DATASETS

“freeze” in the training data is the most plausible reason for the
lower precision and recall results observed.

To evaluate if the proposed method could achieve real-time
performance on a smartphone or a miniature wearable device,
the computation time required to perform the classification task
for a 10 s segment of data was measured. Using a LG Nexus
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5 smartphone, Samsung Galaxy S5 smartphone, and Intel Edi-
son, to represent the different low-power hardware that can be
used for continuous monitoring of human activity, computation
times of 53.8, 125.2, and 198.8 ms were obtained, respectively.
Marginal differences in computation time exist due to differ-
ences in hardware and software, such as CPU, memory, and
operating system specification. The computation cost obtained
is significantly less than the 10 s segments used, which demon-
strates the feasibility of real-time analysis.

V. CONCLUSION

In this paper, we have presented a method that combines
shallow and learnt features from a deep learning approach for
time-series data classification. The proposed method is designed
to overcome some of the issues typically present in a deep learn-
ing framework when on-node computation is required. Thanks
to a prearrangement of the data before they are passed into the
deep learning framework and thanks to a simplified computa-
tion layer the learnt features are computed efficiently through
the use of just a few levels. The experiments conducted show
that the accuracy of the proposed method is better when com-
pared to the current state-of-the-art approaches. Moreover, the
ability of the proposed method to generalize across different
classification tasks is demonstrated using a variety of human
activity datasets, including datasets collected in unconstrained
real world environments. Finally, we show that the computation
time obtained from low-power devices, such as smartphones,
wearable devices, and IoT, is suitable for real-time on-node
HAR.
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