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The class of continuous time Bayesian network classifiers is defined; it solves the problem of supervised
classification on multivariate trajectories evolving in continuous time. The trajectory consists of the val-
ues of discrete attributes that are measured in continuous time, while the predicted class is expected to
occur in the future. Two instances from this class, namely the continuous time naive Bayes classifier and
the continuous time tree augmented naive Bayes classifier, are introduced and analyzed. They implement
a trade-off between computational complexity and classification accuracy. Learning and inference for the
class of continuous time Bayesian network classifiers are addressed, in the case where complete data are
available. A learning algorithm for the continuous time naive Bayes classifier and an exact inference algo-
rithm for the class of continuous time Bayesian network classifiers are described. The performance of the
continuous time naive Bayes classifier is assessed in the case where real-time feedback to neurological
patients undergoing motor rehabilitation must be provided.
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1. Introduction

Temporal data classification is concerned with databases con-
taining measurements over a period of time in history, while the
predicted class is expected to occur in the future.

Hidden Markov models (HMMs) [1], dynamic Bayesian net-
works (DBNs) [2] and dynamic network models [3], which have
been used to solve dynamic supervised classification problems [4–
9], represent time through discrete time points. HMMs have been
extended to dynamic naive Bayesian classifiers (DNBCs), while a
methodology to automatically learn these models from data has
been described in [10].

An extension of Bayesian network classifiers (BNCs) [11], called
temporal Bayesian classifiers (TBCs), adopts a more compact repre-
sentation than DBNs. TBCs augment the BNCs with a root node,
other than the class one, whose state is associated with discrete
time points. They have been used to diagnose muscular dystrophy
from gene expression data [12] and for spatio-temporal under-
standing of the visual field deterioration [13].

To the best of the authors’ knowledge no supervised classifica-
tion approaches based on probabilistic graphical models have been
described which explicitly model time. Indeed, HMMs, DBNs,
DNBCs and TBCs do not model time explicitly, while the impor-
tance to model and reason with time is well understood and recog-
nized in several domains [14,15].

Recently, an alternative to HMMs, DBNs, DNBCs and TBCs,
which extends BNs [16,17] from static to dynamic models by
ll rights reserved.
explicitly modeling time, has been offered by continuous time
Bayesian networks [18]. This network model overcomes the main
limitations of HMMs, DBNs, DNBCs and TBCs by explicitly repre-
senting temporal dynamics and allows us to recover the probabil-
ity distribution over time when specific events occur.

In this paper the continuous time Bayesian networks are trans-
lated into a new class of supervised classification models, the class
of continuous time Bayesian network classifiers. The paper makes
the following contributions:

� Defines a new class of supervised classifiers; namely the class of
continuous time Bayesian network classifiers. Two parsimoni-
ous instances from this class, i.e. the continuous time naive
Bayes classifier and the continuous time tree augmented naive
Bayes classifier, are introduced.
� Develops an exact algorithm for making inference on all

instances from the class of continuous time Bayesian network
classifiers.
� Compares the continuous time naive Bayes classifier with two

algorithms, namely dynamic time warping and open-end
dynamic time warping which is a state-of-the art algorithm
for real-time feedback to neurological patients undergoing
motor rehabilitation.

The rest of the paper is organized as follows. Section 2 gives the
basics of continuous time Bayesian networks together with an
overview on learning and inference. In Section 3 the class of con-
tinuous time Bayesian network classifiers is introduced, together
with their specializations in the continuous time naive Bayes
classifier and in the continuous time tree augmented naive Bayes
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classifier. The effectiveness of the continuous time naive Bayes
classifier is evaluated by comparing its classification accuracy
against the accuracy achieved by the dynamic time warping algo-
rithm and its real-time open-end version proposed in [19], specif-
ically designed to help patients in their post-stroke rehabilitation.
Finally, Section 5 is devoted to the conclusions.

2. Continuous time Bayesian networks

Dynamic Bayesian networks (DBNs) [2] are the standard exten-
sion of BNs [20] when dealing with dynamical systems. They do
not model time explicitly while they discretize it to represent a
dynamical system through several time slices.

However, ‘‘since DBNs slice time into fixed increments, one must
always propagate the joint distribution over the variables at the same
rate’’ [18]. Therefore, if the system consists of processes which
evolve at different time granularities and/or the obtained observa-
tions are irregularly spaced in time, the inference process may be-
come computationally intractable.

Continuous time Bayesian networks (CTBNs) overcome the
main limitations of DBNs by explicitly representing temporal
dynamics and thus allow us to recover the probability distribution
over time when specific events occur. They have been used to mod-
el the presence of people at their computers, together with the spe-
cific application they are using (e.g., email, word processing, web
browsing, etc.) [21], for dynamical systems reliability modeling
and analysis [22], for network intrusion detection [23], for model-
ing social networks [24] and cardiogenic heart failure [25].

A continuous time Bayesian network (CTBN) is a graphical mod-
el whose nodes are associated with random variables and whose
state evolves continuously over time. As a consequence the evolu-
tion of each variable depends on the state of its parents in the
graph. A CTBN consists of two main components: (i) an initial
probability distribution and (ii) the dynamics which rule the evo-
lution over time of the probability distribution associated with
the CBTN.

Definition 1 18 Continuous time Bayesian network. Let X be a set
of random variables X1, X2, . . ., XN. Each Xn has a finite domain of
values Val(Xn) = {x1,x2, . . . ,xI}. A continuous time Bayesian network
@ over X consists of two components: the first is an initial
distribution P0

X , specified as a Bayesian network B over X. The
second is a continuous transition model, specified as
� A directed (possibly cyclic) graph G whose nodes are X1, X2, . . .,
XN; pa(Xn) denotes the parents of Xn in G.
� A conditional intensity matrix, Q paðXnÞ

Xn
, for each variable Xn 2 X.

Given the random variable Xn, the conditional intensity matrix
(CIM) Q paðXnÞ

Xn
consists of a set of intensity matrices, one intensity

matrix

Q paðxnÞ
Xn

¼

�qpaðxnÞ
x1

qpaðxnÞ
x1x2

: qpaðxnÞ
x1xI

qpaðxnÞ
x2x1

�qpaðxnÞ
x2

: qpaðxnÞ
x2xI

: : : :

qpaðxnÞ
xI x1

qpaðxnÞ
xIx2

: �qpaðxnÞ
xI

2
66664

3
77775;

for each instantiation pa(xn) of the parents pa(Xn) of node Xn, where
qpaðxnÞ

xi
¼
P

xj–xi
qpaðxnÞ

xixj
, can be interpreted as the instantaneous proba-

bility to leave xi for a specific instantiation pa(xn) of pa(Xn), while
qpaðxnÞ

xixj
can be interpreted as the instantaneous probability to transi-

tion from xi to xj for a specific instantiation pa(xn) of pa(Xn).
CTBNs allow point evidence and continuous evidence while

HMMs, DBNs, DNBCs and TBCs allow only point evidence. Point evi-
dence is an observation of the value x of a variable Xn at a particular
instant in time, i.e. Xn(t) = x while continuous evidence provides
the value of a variable throughout an entire interval, which we take
to be a half-closed interval [t1, t2). CTBNs are instantiated with an
evidence sequence which will be called evidence stream. This con-
cept is better clarified with the following definitions.

Definition 2 (J-time-stream). A J-time-stream, over the left-closed
time interval [0,T), is a partitioning into J left-closed intervals
[0, t1); [t1, t2); . . .; [tJ�1,T).
Definition 3 (J-evidence-stream). Given a CTBN @, consisting of N
nodes, and a J-time-stream [0, t1); [t1, t2); . . .; [tJ�1,T), a J-evi-
dence-stream is the set of joint instantiations X = x for any subset
of random variables Xn, n = 1, 2, . . ., N associated with each of the J
time segments. A J-evidence-stream will be referred to as
(X1 = x1,X2 = x2, . . . ,XJ = xJ) or for short as (x1,x2, . . . ,xJ).

A J-evidence-stream (x1,x2, . . . ,xJ) is said to be fully observed in
the case where the state of all the variables Xn is known along
the whole time interval [0,T). A J-evidence-stream which is not fully
observed is said to be partially observed. Given a CTBN and a J-evi-
dence-stream (fully or partially observed), inference is concerned
with the computation of the posterior for those variables whose
state is unknown.

Exact inference in CTBNs is NP-hard, and thus several approxi-
mate algorithms have been proposed; expectation propagation (EP)
[26], EP-based algorithm using a flexible cluster graph architecture
[27], importance sampling [28] and Gibbs sampling [29].

The problem of learning a CTBN from data D has been addressed
in [30] as the problem of finding the structure G which maximizes
the following score:

score@ðG : DÞ ¼ ln PðDjGÞ þ ln PðGÞ: ð1Þ

This is an optimization problem over possible CTBN structures
whose search space is significantly simpler than that of BNs or
DBNs. While it is known that learning the optimal structure of a
BN is NP-hard, the same does not hold true in the context of CTBN
learning where all edges are across time and thus represent the ef-
fect of the current value of one variable on the next value of the
other variables. Therefore, no acyclicity constraints arise, and it is
possible to optimize the parent set for each variable of the CTBN
independently.
3. Continuous time Bayesian network classifiers

The CTBN model can be exploited to define a new class of super-
vised classification models which explicitly represent the evolution
in continuous time of the set of random variables Xn, n = 1, 2, . . ., N.
To define this new class of supervised classification models, which
will be called the class of continuous time Bayesian network clas-
sifiers (CTBNCs), an additional node Y associated with the class is
required. The continuous time Bayesian network classifier (CTBNC)
is defined as follows.

Definition 4 (Continuous time Bayesian network classifier). A con-
tinuous time Bayesian network classifier is a pair C ¼ f@; PðYÞg
where @ is a CTBN model with attribute nodes X1, X2, . . ., XN, class
node Y with marginal probability P(Y) on states Val(Y) =
{y1,y2, . . . ,yK}, G is the graph of the CTBNC, such that the following
conditions hold:

� G is connected.
� pa(Y) = ;, the class variable Y is associated with a root node.
� Y is fully specified by P(Y) and does not depend on time.



Fig. 1. Continuous time Bayesian network classifier; five attribute nodes X1, . . ., X5

and the class Y. Fig. 3. Continuous time tree augmented naive Bayes classifier: if the class variable Y
is removed, the remaining nodes form a tree.
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A CTBNC instance, with attributes X1, X2, X3, X4, X5 and class Y, is
depicted in Fig. 1. The class variable Y is associated with a root
node, i.e. a node with no parent nodes. This model contains two cy-
cles; the first one involves the following attributes X3, X2, X4 and X5

while the second one involves the attribute X1 which causes the
attribute X3 which in turn causes X1.

Several considerations concerning the exploitation of the struc-
ture of the graph G of the CTBNC in the case where the classifica-
tion task is performed on a fully observed J-evidence-stream can
be made. In such an evidential setting, the only unobserved ran-
dom variable is the class variable Y; thus it is possible to fruitfully
and conditionally exploit independence relationships between ran-
dom variables as it happens in ordinary BNs.

Given a data set D consisting of fully observed evidence streams, a
CTBNC can be learnt by maximizing the score function
score@ðG : DÞ (1) subjected to the constraints listed in Definition
4. Exact learning requires to set in advance the maximum number
of parents L for the nodes X1, X2, . . ., XN [30]. In the case where L is
not small a considerable computational effort is required to find
the optimal graph structure G, i.e. the one which maximises the
score function score@ðG : DÞ (1). In such a setting, the set of con-
straints due to Definition 4 does not help very much to reduce
the time required to find the optimal solution. Therefore, we have
to resort to hill-climbing optimization procedures to find an
approximate solution to the considered optimization problem.

Following the motivations presented in [11] concerning the
extension from BNs to BNCs and subsequently from BNCs to TAN,
we propose the following structurally constrained classifier in-
stances belonging to the class of CTBNCs: the continuous time na-
ive Bayes (CTNB) classifier and the continuous time tree
augmented naive Bayes (CTTANB) classifier. The CTNB classifier
(Fig. 2) is such that the class variable Y is a root node which is
the only parent for the attributes Xn, n = 1, 2, . . ., N.

Definition 5 (Continuous time naive Bayes classifier). A continuous
time naive Bayes classifier is a continuous time Bayesian network
classifier C ¼ f@; PðYÞg such that pa(Xn) = Y, n = 1, 2, . . ., N.
Definition 6 (Continuous time tree augmented naive Bayes classi-
fier). A continuous time tree augmented naive Bayes classifier is
a continuous time Bayesian network classifier C ¼ f@; PðYÞg such
that the following conditions hold:
Fig. 2. Continuous time naive Bayes classifier.
� Y 2 pa(Xn), n = 1, 2, . . ., N.
� the attribute nodes Xn, n = 1, 2, . . ., N, form a tree, $j:jpa(Xj)j = 1

while for i – j, jpa(Xi)j = 2.

The CTTANB classifier (Fig. 3) is such that the class variable Y is
a root node while each attribute Xn, n = 1, 2, . . ., N is constrained to
have as parents the class variable Y and at most one of the remain-
ing attributes.

It is worthwhile to mention that the learning problem for the
CTNB classifier reduces to the estimation of the CIMs parameters,
while for the CTTANB classifier the exact solution can be found
with little computational effort. Therefore, the CTNB and CTTANB
classifiers are interesting supervised classification models from
the class of CTBNCs which implement trade-off between computa-
tional complexity and classification performance.

A CTBNC C ¼ f@; PðYÞg when presented with a fully observed J-
evidence-stream (x1,x2, . . . ,xJ) classifies it according to the maxi-
mum aposteriori rule. The posterior probability P(Yj(x1,x2, . . . ,xJ))
is computed for all the states of the class variable Y and the CTBNC
classifies a fully observed J-evidence-stream with the state y 2 Val(Y)
maximizing the posterior probability:

PðY jðx1; x2; . . . ; xJÞÞ ¼ Pððx1;x2; . . . ;xJÞjYÞPðYÞ
Pððx1;x2; . . . ;xJÞÞ ; ð2Þ

where P(Y) is the marginal probability associated with the class var-
iable Y while the terms P((x1,x2, . . . ,xJ)jY) and P((x1,x2, . . . ,xJ)) de-
serve a more detailed description. P((x1,x2, . . . ,xJ)) represents the
probability of the evidence which in this particular setting will be
called probability of the fully observed J-evidence-stream. This quan-
tity, similarly to what happens in the case where BNCs models
are used, is not required to implement the maximum aposteriori
rule. Therefore, it is possible to write the following proportionality
relationship:

PðY jðx1; x2; . . . ; xJÞÞ / Pððx1;x2; . . . ;xJÞjYÞPðYÞ: ð3Þ

The term P((x1,x2, . . . ,xJ)jY) is the likelihood of the J-evidence-stream,
given the class variable. This term, which will be referred to as tem-
poral likelihood, is fundamental to implement the maximum aposte-
riori classification rule. The temporal likelihood, can be expressed as
follows:

Pððx1; x2; . . . ;xJÞjYÞ ¼
YJ

j¼1

PðxjjYÞPðxjþ1jxj;YÞ; ð4Þ

where P(xjjY) represents the probability that X stays in state xj dur-
ing the time interval [tj�1, tj) given the class variable Y while the
term P(xj+1jxj,Y) represents the probability that X transitions from
state xj to state xj+1 at time tj given the class variable Y (to ensure
consistency we set P(xJ+1jxJ,Y)=1).



Table 1
Description of the seven types of motor rehabilitation exercises.

i Description of the exercise type

1 Abduction–adduction of the upper limb on a frontal pane
2 Abduction–adduction of upper limb on a sagittal plane
3 External rotation of the forearm
4 Flexion–extension of the elbow
5 Pronation-supination of the forearm
6 Functional activity: eating
7 Functional activity: combing

Table 2
Description of the six modes of execution analyzed for each exercise.

j Description Correctness Speed

1 Reference Correct Slow
2 Reference Correct Average
3 Reference Correct Fast
4 Movement too small Incorrect Slow
5 Typical compensatory action (first) Incorrect Average
6 Typical compensatory action (second) Incorrect Fast

Table 3
Summary of the average values of accuracy achieved by BASELINE, DTW, OE-DTW and
CTNB on the seven types of motor rehabilitation exercises for the prediction of the
execution correctness (2-class), recognition of the execution correctness versus error type
(4-class) and prediction of the execution mode (6-class) experiments. Average values
are related to complete trajectories (Complete) and to half trajectories (Half). In bold
the best accuracy for each classification problem, while the 90% confidence interval
[31] is reported in brackets. The asterisk (⁄) is associated with a classifier achieving an
accuracy value which is better than those achieved by the other classifiers on the
same classification problem, a Z-test with 95% confidence was used [32,33].
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In the case where a model from the class of CTBNCs is consid-
ered, the term P(xjjY) can be written as follows:

PðxjjYÞ ¼
YN

n¼1

exp �qpaðXnÞ
xj

n
ðtj � tj�1Þ

� �
; ð5Þ

where qpaðXnÞ
xj

n
is the value of the parameter associated with the state

xj
n in which the variable Xn stays during the jth time segment [tj�1,tj)

given the state of its parents pa(Xn) during the same time segment
(we recall that t0 = 0 and tJ = T). Under the same assumption, the
term P(xj+1jxj,Y) can be written as follows:

Pðxjþ1jxj;YÞ ¼
YN

n¼1

P xjþ1
n jxj

n;Y
� �

; ð6Þ

where

P xjþ1
n jxj

n;Y
� �

¼ 1� exp �qpaðXnÞ
xj

nxjþ1
n
�

� �
if xj

n – xjþ1
n

1 otherwise

8<
: ; ð7Þ

while

� qpaðXnÞ
xj

nxjþ1
n

is the value of the parameter associated with the transi-
tion from state xj

n, in which the variable Xn was during the jth
time segment [tj�1, tj), to state xjþ1

n , in which the variable Xn will
be during the (j + 1)th time segment [tj, tj+1), given the state of
its parents pa(Xn) during the jth time segment,
� � is a small positive number, needed to make inference on point

evidence.

The Eqs. (5) and (6) can be combined to write the following:

PðxjjYÞPðxjþ1jxj;YÞ ¼
YN
n¼1

exp �qpaðXnÞ
xj

n
ðtj � tj�1Þ

� �
Pðxjþ1

n jxj
n;YÞ: ð8Þ

Term P xjþ1
n jxj

n; Y
� �

, defined according to (7), represents the
probability that the random vector X transitions from state xj to
state xj+1 given the value of the class variable Y.

CTBNs imply that at each time step tj, j = 1, 2, . . ., J, exactly one
component Xn of the random vector X is subject to state transition.
Therefore, the formula (7), in the case where the parameter �? 0,
computes the probability of the instantaneous transitioning of the
random variable Xn from the state xj

n to the state xjþ1
n , while the

other components of the random vector X, i.e. Xr, r – n, do not
change their state. The substitution of (8) into (4) allows to write
the following expression for the temporal likelihood:

Pððx1;x2; . . . ; xJÞjYÞ ¼
YJ

j¼1

YN

n¼1

exp �qpaðXnÞ
xj

n
ðtj � tj�1Þ

� �
Pðxjþ1

n jxj
n;YÞ;

ð9Þ

while by substituting (9) into (3) it is possible to write:

PðYjðx1;x2; . . . ;xJÞÞ / PðYÞ
YJ

j¼1

YN

n¼1

exp �qpaðXnÞ
xj

n
ðtj � tj�1Þ

� �
Pðxjþ1

n jxj
n;YÞ:

ð10Þ

Therefore, given a CTBNC C ¼ f@; PðYÞg and a fully observed J-evi-
dence-stream (x1,x2, . . . ,xJ) the maximum aposteriori classification
rule selects the class y⁄ 2 Val(Y) as follows:

y� ¼ arg max
Y2ValðYÞ

PðYÞ
YJ

j¼1

YN

n¼1

exp �qpaðXnÞ
xj

n
ðtj � tj�1Þ

� �
P xjþ1

n jxj
n;Y

� �
:

ð11Þ

Learning and inference algorithms for CTBNCs are presented and
described in detail in the Appendix.
4. Post-stroke rehabilitation

Post-stroke rehabilitation is known to be a challenging problem
in the clinical course of patients affected by an acute neurological
event. The main obstacles with the rehabilitation therapy are: the
post-event depression affecting the patient and the limited avail-
ability of rehabilitation structures. It is known that when the pa-
tient undergoes the therapy early on, the quality and speed of
recovery are increased while achieving a cost-effective patient
treatment. Furthermore, it is usual practice to keep patients in
the acute ward, which is extremely costly, until a place becomes
available in rehabilitation structures. This is why it is important
to encourage the patients’ autonomy along their path to recovery.
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In [19] the authors rely on the concept of providing the patient
with immediate feedback for rewarding and/or improving his/her
performance with self-rehabilitation devices. They describe an
algorithm which processes patient’s motion signals to check the
correctness of the execution of different types of rehabilitation
movement. The algorithm detects arm movements in real-time
from a sensorized shirt consisting of 29 sensing segments distrib-
uted over the arms, forearms and shoulders.

The problem of recognizing the quality of the movement by
using the time series, originating from the sensors, arises because
no direct correspondence between the amount of fabric stretch
of different parts of the garment and biomechanical parameters
is known. Furthermore, sensors’ readings are highly correlated
and in general redundant. In addition, sensors are affected by var-
ious sources of uncertainty which make it complex to compute
limb positions from sensors’ input. Finally, measurements suffer
from non-linearities of the sensor response to strain, difference
in body build and placement of the garment, even in the case of dif-
ferent sessions of the same patient. Therefore, the considered prob-
lem, posture classification from strain readings has been tackled by
machine learning algorithms. These models only classify instanta-
neous sensor readings, thus failing to take into account the time-
dependent behavior of exercises and sensors response.
Fig. 4. ROC of the CTNB classifier for the prediction of the execution correctness
experiment in the case where the full time series data is used (2-class, complete).
The reference dataset used for evaluating the effectiveness of
the CTNB classifier is described in [19]. It consists of time series
associated with the execution of seven types of motor rehabilita-
tion exercises including deficit-correlated and functional move-
ments, at different speeds, while knowing when they have been
performed correctly or not. The exercises have been performed
according to a given protocol and indexed by the sijk tuple where
s refers to the acquisition session (s = 1, . . . ,4), i to exercise type
(i = 1, . . . ,7) (Table 1), j to mode of execution (j = 1, . . . ,6) (Table 2)
while k to repetitions (k = 1, . . . ,5). The sensor acquisition protocol
includes exercises corresponding to all possible combinations of
the sijk tuple for a total number of 4 � 7 � 6 � 5 = 840 multivariate
trajectories.

CTBNCs are designed for discrete attributes and thus the trajec-
tories have been discretized, i.e. the range for each attribute has
been divided into intervals according to different quantile values.
No other pre-processing activity has been performed on the data-
set. Furthermore, in all numerical experiments the parameter �
of Algorithm 2 has been set to 10�6 while no probability threshold
has been used to classify the trajectories, i.e. each trajectory is clas-
sified by the maximum posterior probability class.

To compare the CTBNCs with the dynamic time warping (DTW)
algorithm proposed in [19] the same experimental setting has been
Fig. 5. ROC of the CTNB classifier for the prediction of the execution correctness
experiment in the case where the first half of each trajectory is used (2-class, half).
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adopted. We divided the dataset into seven subsets indexed by i
and consisting of 120 trajectories.

The estimation of the accuracy relies on leave one out cross-val-
idation, each of the 120 trajectories is classified after the learning
of the CTBNC by using the remaining 119 trajectories. Three types
of numerical experiments have been performed:

� prediction of the execution correctness,
� recognition of the execution correctness versus error type,
� prediction of the execution mode.

The prediction of the execution correctness experiment is formu-
lated as a binary classification problem and aims to discern
whether an exercise has been correctly performed or not. The class
of correct movements is associated with the execution modes in-
dexed by j = 1, 2, 3, thus 420 trajectories are associated with cor-
rect movements (Y = Correct), while j = 4, 5, 6 indices are
associated with the incorrect movements (Table 2), thus 420 tra-
jectories are associated with incorrect movements (Y = Incorrect).
The prediction of the execution correctness experiment is a 2-class
Fig. 6. ROC of the CTNB classifier for the recognition of execution correctness versus error ty
classification problem where the marginal probability of the two
classes is the same.

The recognition of the execution correctness versus error type
experiment is devoted to establishing whether the analyzed move-
ment was correctly performed or not, and in case it was not to pre-
dict the error type. Thus, the execution modes in Table 2 indexed
with j = 1, 2, 3, consisting of 420 trajectories, are assumed to be
correct (Y = Reference), while the remaining execution modes,
namely Movement too small (j = 4), Typical compensatory action
(first) (j = 5) and Typical compensatory action (second) (j = 6) are
three error types, each consisting of 140 trajectories. The recogni-
tion of the execution correctness versus error type experiment is a
4-class classification problem.

It is worthwhile to mention that the marginal probability of the
class of correct movements (Y = Reference) is equal to 0.5 while the
marginal probability for each of the remaining three classes (
Y = Movement too small, Y = Typical compensatory action (first) and
Y = Typical compensatory action (second)) is �0.167.

The prediction of the execution mode experiment is a 6-class clas-
sification problem where each class has marginal probability �
pe experiment in the case where the full time series data is used (4-class, complete).
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0.167. It aims to separate the following six classes (execution
modes); Reference-Slow, Reference-Average, Reference-Fast, Move-
ment too small, Typical compensatory action (first) and Typical com-
pensatory action (second) as listed in Table 2.

The average values of the accuracy achieved for the seven types
of motor rehabilitation exercise are summarized in Table 3.

The first four lines of Table 3 concern the performance of the
BASELINE classifier (the model which classifies each trajectory by
the apriori most frequent class), the original DTW algorithm, the
open-end DTW (OE-DTW) described in [19] and the CTNB classi-
fier, when they are applied to the full time series (Complete). Fol-
lowing [19], the second four lines report the performance of
BASELINE, DTW, OE-DTW and CTNB when queried with the first
half of each trajectory (Half). In this setting only the first half of
each trajectory was used. Performance values are related to the
2-class, 4-class and 6-class problem formulations, while the best
performance achieved for each classification problem is in bold
to make it easier to read-off the results from Table 3. Furthermore,
90% confidence intervals are reported in brackets.

In the Complete setting, i.e. when the full time series are used,
the best accuracy for the 2-class problem and for the 4-class
Fig. 7. ROC of the CTNB classifier for the recognition of execution correctness versus error ty
problem is achieved by the original DTW algorithm. Though the
accuracies of the OE-DTW algorithm and the CTNB classifier are
slightly worse than the ones of the DTW algorithm, they are
not significantly different from each other. The best accuracy
for the 6-class is achieved by the CTNB classifier, while the accu-
racy values achieved by the DTW and OE-DTW algorithms do not
significantly differ from each other. However, the accuracy
achieved by the CTNB classifier is significantly better, at the
95% confidence, than the performance achieved by the DTW
and OE-DTW algorithms.

In the Half setting, i.e. when the first half time series are used,
the best accuracy is always achieved by the CTNB classifier which
uniformly outperforms the DTW and the OE-DTW algorithms. It is
worthwhile to mention that for the 2-class and the 6-class prob-
lems the CTNB classifier achieved an accuracy which is signifi-
cantly better, at the 95% confidence, than the performance
achieved by the DTW and OE-DTW algorithms.

ROC curves for 2-class, 4-class and 6-class experiments, com-
plete and half, are depicted in Figs. 4–9.

Figs. 10 and 11 depict the evolution along time of the posterior
probability of class Y as computed by the CTNB classifier.
pe experiment in the case where the first half of each trajectory is used (4-class, half).



Fig. 8. ROC of the CTNB classifier for the prediction of the execution mode experiment in the case where the full time series data is used (6-class, complete).
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Fig. 9. ROC of the CTNB classifier for the prediction of the execution mode experiment in the case where the first half of each trajectory is used (6-class, half).
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Fig. 10 concerns the prediction of the execution correctness exper-
iment and shows the posterior probability of class Y = Correct, as
computed by the CTNB classifier, for a sample trajectory which is
known to be associated with an Incorrect movement. The CTNB
model classifies correctly the sample trajectory as belonging to
the class Y = Incorrect. The correct classification happens very early.
Indeed, for times greater than 0.37 s the posterior probability of
the class Y = Correct is smaller than 0.04.
Fig. 10. Prediction of the execution correctness; evolution of the posterior probability of
sample trajectory which is known to be associated with an Incorrect movement.

Fig. 11. Recognition of the execution correctness versus error type; evolution of the posterio
action (first) and Y = Typical compensatory action (second), as computed by the continuous
with a Movement too small movement. The line associated with the Typical compensator
(first).
Fig. 11 concerns the recognition of the execution correctness ver-
sus error type experiment and shows the evolution along time of
the posterior probability of the class, as computed by the CTNB
classifier, for a sample trajectory which is known to be associated
with a Movement too small movement. Also in this case the CTNB
classifies the sample trajectory by the correct class, i.e. Y = Move-
ment too small. It is worthwhile to mention that while from 0 to
0.77 s the most probable class is Y = Reference, for times greater
class Y = Correct, as computed by the continuous time naive Bayes classifier, for a

r probability of class Y = Reference, Y = Movement too small, Y = Typical compensatory
time naive Bayes classifier, for a sample trajectory which is known to be associated

y action (second) overlaps the line associated with the Typical compensatory action



Table 4
Average accuracy achieved by the CTNB classifier on the seven types of motor
rehabilitation exercises (Complete).

i 2-class 4-class 6-class

1 0.967 0.975 0.883
2 1.000 0.992 0.950
3 0.967 0.958 0.950
4 1.000 0.992 0.942
5 0.992 0.933 0.917
6 0.992 0.992 0.917
7 1.000 0.983 0.950

Baseline 0.500 0.500 �0.167
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than 0.77 s the most probable class is the true one, i.e. Y = Move-
ment too small, whose posterior probability becomes greater than
0.9, even just after 0.9 s.

However, the comparison of the performance achieved by DTW,
OE-DTW and CTNB, based on what is reported in Table 3 is on aver-
age accuracy values, i.e. accuracy values obtained by averaging accu-
racy values achieved for the seven types of motor rehabilitation
exercise. Therefore, no conclusions can be drawn from the point of
view of what the effectiveness of the CTNB classifier is with respect
to the specific type of motor rehabilitation exercise. Therefore, it is
useful to understand whether the average value of accuracy is signif-
icantly different with respect to the specific type of motor rehabili-
tation exercise. It may be the case that some types of motor
rehabilitation exercises can be easily classified, while others not.
In such a case it would be extremely useful to know which type/s
of exercise/s is/are difficult to forecast. Therefore, the average value
of the accuracy, achieved by the CTNB classifier, for each of the seven
types of motor rehabilitation exercise is reported in Table 4.
5. Conclusions

In this paper the authors defined and studied a new class of
probabilistic graphical models devoted to solving the problem of
supervised classification in the case where: (i) the attributes are
discrete, (ii) the time flows continuously, (iii) the attributes are
fully observed and (iv) the class is expected to occur in the future.

Two instances from the class of continuous time Bayesian net-
work classifiers, namely the continuous time naive Bayes and the
continuous time tree augmented naive Bayes, have been defined.
The learning algorithm for the continuous time naive Bayes classi-
fier and the inference algorithm for classifying input trajectories by
continuous time Bayesian network classifiers have been presented.

The class of continuous time Bayesian network classifiers, to the
best of the authors’ knowledge, is the first class of probabilistic
graphical models devoted to solving the problem of supervised
classification which directly models the time. Therefore, it is the
only one allowing to recover the probability distribution over time
when specific events occur. Models from this class are computa-
tionally efficient with respect to their static counterparts, which
are difficult to apply in realistic contexts. The inference algorithm
for continuous time Bayesian network classifiers allows us to make
the classification decision at any point in time without needing to
wait for the end of the trajectory. This is a particularly important
feature for applicative domains as the one studied in this paper
where the feedback to the patient must be given as soon as
possible.

The CTNB classifier performs very well when compared with
state-of-the-art algorithms, namely DTW and OE-DTW, and it sig-
nificantly outperforms these algorithms when half trajectory is
used. The CTNB classifier is particularly robust with respect to
the complexity of the classification problem, i.e. number of classes.
It achieves accuracy values which are more stable than those
achieved by the DTW and OE-DTW algorithms.

A final remark is devoted to highlight that the proposed classi-
fier is designed for discrete variables while motor rehabilitation
data are continuous. Therefore, a discretization procedure has been
developed. The performance of the classifier depends on the value
of the parameters of the discretization procedure and a complex
and time consuming tuning phase is required to achieve optimal
results. Therefore, an improvement of the performances of the
CTNB classifier, on the motor rehabilitation data, could possibly
be achieved with additional tuning of the discretization procedure.
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Appendix A

Algorithm 1. CTNB Learning
Algorithm 1 learns the parameter of a CTNB classifier by
exploiting an input data set D consisting of fully observed J-evi-
dence-streams. It can be split in three parts; lines 1–6 compute
the prior probability for the class variable Y (returned by variable
P), lines 7–16 compute the sufficient statistics associated with each
attribute Xn, n = 1, 2, . . ., N, of the learning data set D, i.e. M(x,x0,yk)
and T(x,yk) for each value yk of the class variable Y while lines 17–
25 compute the corresponding MLE parameter estimates (which
are returned embedded in the CTNB classifier @).
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Algorithm 2. CTBNC Inference
Given C ¼ f@; PðYÞg consisting of N attribute nodes and a cla
ss
node Y such that Val(Y) = {y1,y2, . . . ,yK}, a fully observed J-evidence-
stream (x1,x2, . . . ,xJ) and the value of the parameter �, Algorithm
2 computes the posterior probability and returns the most proba-
ble class (11). The for statement in line 1 computes the a priori
probability for each class. The core of the algorithm, lines from 4
to 15, computes (11) by exploiting (7) (lines 8, 9 and 11). The for
statement in line 4 ranges over the K classes, the for statement
in line 5 ranges over the J evidence streams while the for statement
in line 6 ranges over the N CTBNC attributes. The most probable
class y⁄ is computed by line 16.
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