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Abstract. Tracking of a handheld device’s three-dimensional (3-D) position and orientation is fundamental to
various application domains, including augmented reality (AR), virtual reality, and interaction in smart spaces.
Existing systems still offer limited performance in terms of accuracy, robustness, computational cost, and ease of
deployment. We present a low-cost, accurate, and robust system for handheld pose tracking using fused vision
and inertial data. The integration of measurements from embedded accelerometers reduces the number of
unknown parameters in the six-degree-of-freedom pose calculation. The proposed system requires two
light-emitting diode (LED) markers to be attached to the device, which are tracked by external cameras through
a robust algorithm against illumination changes. Three data fusion methods have been proposed, including the
triangulation-based stereo-vision system, constraint-based stereo-vision system with occlusion handling, and
triangulation-based multivision system. Real-time demonstrations of the proposed system applied to AR and
3-D gaming are also included. The accuracy assessment of the proposed system is carried out by comparing
with the data generated by the state-of-the-art commercial motion tracking system OptiTrack. Experimental
results show that the proposed system has achieved high accuracy of few centimeters in position estimation

and few degrees in orientation estimation. © 2016 SPIE and IS&T [DOI: 10.1117/1.JEI.25.4.041012]

Keywords: Pose tracking; sensor fusion; camera networks; augmented reality.
Paper 15905SS received Dec. 15, 2015; accepted for publication Jun. 20, 2016; published online Jul. 12, 2016.

1 Introduction

The estimation of a mobile device’s pose in three-dimen-
sional (3-D) space, i.e., the calculation of its position and
orientation in respect to a reference coordinate system, is a
critical process for many applications, including augmented
reality (AR) (e.g., to overlay virtual content upon the reality),
virtual reality (VR) (e.g., to navigate through a computer-
simulated world), and interaction in smart spaces (e.g., to
remotely control smart devices). Imagine a smart space (e.g.,
home, office, or museums) filled with controllable and inter-
active objects. In this space, based on the estimated position
and orientation of a mobile device, context awareness of
the surroundings, resource recommendations, and interaction
with smart objects can be implemented. Ideally, a pose esti-
mation system should be able to provide pose information
with no error and no latency. However, despite the progress
that has been made to date, current technologies still offer
limited performance in terms of accuracy, cost, robustness,
computational complexity, ease of deployment, and on-board
power consumption.

In this context, the contribution described in this paper is
to propose an accurate, fast, robust, and low-cost handheld
pose tracking system that fuses data from vision (external
cameras) and acceleration sensors (embedded in devices),
being customizable to smart space services and scalable for
both small and wide areas. Three novel data fusion methods
are presented, namely, the triangulation-based method for
stereo-vision system, constraint-based method for handling
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partial occlusion, and triangulation-based method for a mul-
ticamera network. The handheld device needs to be equipped
with two light-emitting diodes (LEDs) which are used as
markers. Our marker differentiates from traditional markers,
such as ARToolKit! and ARTag,2 in several aspects. First, in
the proposed approach, markers are tracked by external
stationary and calibrated vision sensors. This scheme is pop-
ularly called outside-in tracking® in the literature. By
processing data on a server, handheld devices are freed
from the pose estimation process, leaving most computing
power available for applications. Traditional squared marker-
based approaches adopt the inside-out tracking scheme, that
is, markers are placed in the environment and the device’s
pose is estimated by observing the markers from its internal
camera; Second, the artificial markers in the environment
may cause visual discomfort. Especially, in a wide area, a
large number of markers need to be placed and carefully cali-
brated. On the contrary, this system does not need any arti-
ficial marker in the surrounding environment; Moreover,
LEDs can be used to track objects with small surfaces, such
as mobile devices, glasses frames, or drones, whereas
traditional markers need a big and flat surface to be placed.
Compared with the state-of-the-art commercial motion
tracking system, such as OptiTrack® and Vicon,’ the cost is
largely reduced.

The integration of accelerometers reduces the number of
unknown parameters in the pose calculation and accordingly
diminishes the workload of the image processing task.
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Moreover, traditional inertial sensor-based approaches use
linear acceleration measurements to estimate device’s veloc-
ity and position. They suffer from severe drift caused by the
integration of measurement errors. Instead, this system uses
only current gravitational acceleration measurements to cal-
culate pose. As no integration is involved, the solution is
drift-free.

To evaluate the proposed system, user-in-motion experi-
ments were carried out in this paper: users held a mobile
device, walking in the working range, and the proposed sys-
tem was compared with the reference system OptiTrack, a
state-of-the-art commercial motion tracking system provid-
ing highly accurate estimations. OptiTrack claims to be
able to achieve submillimeter accuracy in marker location
estimation with an optimal capture volume size and camera
configuration. Experimental results show that our system has
achieved six-degree-of-freedom (DoF) pose estimation with
a mean error of few centimeters in position estimation and
few degrees in orientation estimation.

This paper is an extension of our earlier work presented at
ICDSC 2015,° where the stereo-vision system with/without
occlusion handling was proposed and initially validated by
experiments. In this work, each component of the system is
comprehensively and thoroughly analyzed. The adaptive
thresholding algorithm combined with a Kalman filter for
LED tracking is improved and explained in detail. Also,
in this work, the performance of the LED tracking algorithm
is analyzed and compared to alternative methods by exper-
imental data. In the pose estimation section, we provide a
more detailed description of the previously proposed two
fusion methods. In addition, the system is extended from a
stereo-vision system to a multicamera network in this work.
A novel data fusion algorithm based on multiview triangu-
lation is presented. Furthermore, this paper provides more
extensive experimental results to evaluate the system quan-
titatively and qualitatively. It also includes the results of a
real-live evaluation in AR and gaming applications.

The remainder of the paper is structured as follows.
Section 2 reviews previous research related to pose tracking.
Section 3 gives an overview of the entire system. An adaptive
thresholding algorithm combined with a Kalman filter for
LED tracking is described in Sec. 4. In Sec. 5, three fusion
methods for pose estimation are explained. Experimental
results and discussions are presented in Sec. 6. Then, Sec. 7
gives two application demonstrations of the proposed appro-
ach. Finally, Sec. 8 concludes the paper with future research
strategies.

2 Related Work

A considerable amount of research has been done on 3-D
handheld pose tracking during recent decades. According
to the enabling sensing technologies, most of the approaches
developed so far can be grouped into four categories: inertial
sensing, magnetic field sensing, visual sensing, and hybrid
sensing.

2.1 Inertial Sensing

Inertial sensing approaches use accelerometers and gyro-
scopes to continuously calculate the position and orientation
of a moving object. By integrating both the linear acceleration
measured by accelerometers and the angular velocity measured
by gyroscopes, the system’s current position and orientation

Journal of Electronic Imaging

041012-2

is determined. Recent advances in MEMS technologies have
made it possible to manufacture small and light inertial sen-
sors and embed them in mobile devices, which facilitate the
integration with other techniques. One obvious advantage of
inertial tracking is that inertial sensors are embedded and do
not rely on external resources. Therefore, they have no line-
of-sight requirement and are not influenced by illumination
changes as vision-based methods are. Moreover, they are
able to track fast and abrupt movements because their data
are updated at a high rate. On the downside, they suffer from
severe drift problems due to the accumulation of errors in the
measurements.” Thus, periodic corrections from some other
types of measurements are required. For example, in Ref. §,
measurements from a magnetic sensor are used to correct the
heading angle.

2.2 Magnetic Field Sensing

Magnetic field sensing approaches are based on the principle
of magnetic induction: when a coiled wire is moved through
a magnetic field, an electrical current will flow in the coil.
The strength of this current is a function of the distance and
the orientation of the coil relative to the source of the mag-
netic field. A magnetic receiver in the natural magnetic field
of the Earth is a 1-DoF tracker, indicating the direction rel-
ative to the “magnetic north.” To achieve 6-DoF pose esti-
mation, an artificial magnetic field is required, which is
typically generated by a transmitter containing three orthog-
onally orientated coils. Then, the position and orientation of
a receiver in this field are deduced based on the induction.
Magnetic trackers are lightweight, support multiple sensors,
and do not suffer from occlusion. Unfortunately, as is well-
known, one problem of magnetic sensing is the sensitivity to
magnetic and electrical interference caused by metallic
objects within the operating volume. Additionally, it is lim-
ited in range due to the decay of the strength with the dis-
tance between the emitting source and the sensors.” Under
laboratory conditions, the position can be estimated with sev-
eral millimeter-level accuracies for a distance of a couple of
centimeters.'” Sixense Entertainment, a leading company in
magnetic motion tracking for video games, has increased the
optimized performance range to 8-foot radius from the base
with its latest technology.''

2.3 Visual Sensing

Images captured by vision sensors carry a wealth of informa-
tion, based on which many object pose estimation approac-
hes have been developed. According to the system architec-
ture, approaches can be grouped into outside-in tracking (or
infrastructure-based methods), in which fixed external cam-
eras are installed to track the target and inside-out tracking
(or target-based tracking), in which the scene is observed by
an on-device camera. Outside-in tracking systems are usually
composed of external stationary wall- or tripod- mounted
cameras directed toward the operating volume. Most com-
mercial optical trackers use this configuration, such as
OptiTrack* and Vicon.? Inside-out tracking systems deter-
mine the pose of a device relative to a reference coordinate
system through observing the scene using the on-device
camera. For example, the HiBall tracking system developed
by Welch et al.'? uses ceiling-mounted LEDs as references to
determine the position and orientation of a moving optical
sensor. However, it is not practical in use, because it requires
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a dense array of LEDs deployed in the ceiling. Inside-out
tracking methods are widely adopted for handheld AR.
The pose of a handheld device is determined by tracking arti-
ficial markers or natural features from the internal camera.
Each approach has strengths and limitations in terms of
cost, accuracy, scalability, and on-device power consump-
tion. Inside-out tracking is device-centric and is widely used
in mobile AR due to its simple setup. On the other hand, the
on-board processing is still a great challenge due to the fact
that mobile platforms have limited processing power,
memory, and battery life. Additionally, certain landmarks or
natural features used for tracking have to be in the view of
the on-device camera. Outside-in tracking exhibits better
scalability to multiple targets than inside-out self-tracking.
Additionally, the installation and configuration of outside-
in tracking systems is usually faster and easier than the
existing inside-out tracking systems.'®

The objects to be tracked are typically marked with active/
passive/printable markers or marker-free. Active markers are
markers that emit light themselves, mostly LEDs. They are
easily detected and provide visibility up to long distance. In
addition, LEDs can be encoded in color and time dimension,
which is friendly to multiuser applications. They are used in
several systems, including the state-of-the-art commercial
motion tracking system ARTrack'* and Vicon. A similar
approach to ours was proposed by Klein and Drummond, '’
which relies on six LEDs mounted on the back of a tablet to
track its pose. The exposure of the full back of the tablet in
the field of view of the cameras largely constrains the devi-
ce’s movements. In our approach, with the aid of accelerom-
eters, the number of LEDs is reduced to two, which gains
more flexibility for users. Another recent LED-based system
is described in Ref. 16, in which four or more infrared LEDs
are placed at known positions on the target object and are
observed by an external camera.

Passive markers are retroreflective elements, i.e., they
reflect the incoming infrared radiation. They are used in
some of the best known commercial motion tracking sys-
tems, such as Vicon and OptiTrack. These systems use multi-
ple stationary calibrated infrared cameras to localize objects
attached with passive markers. In general, these systems can
provide highly accurate marker location estimation at a high
speed. To estimate a plane’s orientation, at least three non-
collinear markers are demanded to be in the field of view of
minimum two cameras. This fact adds more challenges to the
system in optimizing the capture volume size and minimiz-
ing the expense, as these commercial systems are expensive
for regular end users. Moreover, the accuracy of orientation
estimation is sensitive to that of marker location estimation
due to the fact that orientation is deduced from the geometric
configuration of markers.

Printable fiducial markers are maturely developed and
widely used in AR applications, such as ARToolKit,'
ARTag,” and AprilTags.!” Typical markers used in AR are
square or circle framed with a unique pattern inside for iden-
tification. They are cheap, accurate, easy to use, and easily
recognized. On the other hand, they are sensitive to the illu-
mination changes and the accuracy is affected by the distance
to the marker and the viewing angle. A novel square-based
fiducial system is proposed in Ref. 18, which lowers false
negative rates and deals with the occlusion problem. Inside-
out tracking configuration is usually adopted for handheld
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pose estimation, as these markers need a big and flat surface
to be place, being unsuitable to be attached to a mobile
device. They are widely used in simple scenarios because of
the easy setup. However, in case of a wide area, their use can
become complicated. First, placing markers in a wide area
can be intrusive to the environment. Second, each marker’s
position has to be measured carefully. In addition, from time
to time, they may need recalibration.

Instead of using artificial markers, tracking natural fea-
tures from the environment, such as points and edges, is
becoming an attractive topic of interest for researchers.
Robust local descriptors, such as SIFT,'”” SURF* and
Ferns®! are typically used for natural feature tracking. These
descriptors are stable under different viewpoints and lighting
conditions. Wagner et al.”> proposed a modified SIFT and
Ferns plus a template-matching-based method to run fast
natural featuring tracking on mobile phones. However, this
approach derives its speedup from tracking relatively fewer
features, making it less suitable for continuous 6-DoF
tracking in wide areas. Simultaneous localization and map-
ping (SLAM) systems have been recently developed to run
on mobile devices in large-scale areas. For example, Ventura
et al. present a key-frame based SLAM system that runs
locally on a camera-equipped mobile device in Ref. 23. A
feature-less monocular SLAM algorithm is presented in
Ref. 24, which allows building large-scale and consistent
maps of the environment. Generally speaking, natural feature
tracking is still a complex problem and is usually expensive
in terms of computational cost, and challenging for hand-
held devices.

2.4 Hybrid Sensing

The basic principle of hybrid sensing lies in fusing data from
disparate sources, thus overcoming the limitations of each
single approach and providing a robust, complete, and accu-
rate solution. Typically, current hybrid systems use inertial
sensors as a complement to aid visual sensors. For example,
within the tracking methods described in Refs. 25 and 26
gyroscope was adopted to measure orientation, and in return,
the vision-based system corrects the drift of the inertial
system. Kalman filter and its derivatives (unscented Kalman
filter and extended Kalman filter) are favorably selected to
perform sensor fusion.”’

The method proposed in this paper works on a similar
concept. Rather than using measurements from gyroscope,
we use gravitational acceleration, which avoids the common
drift problem. The accelerometer contributes to two rotation
angles and the calculation burden is largely reduced.

3 System Overview

3.1 System Architecture

The proposed system is composed of off-the-shelf cameras
(two or more), a server and a client mobile device equipped
with two LED markers and embedded accelerometers, as
shown in Fig. 1. In the test, one red LED (left) and one green
LED (right) are placed on the upper corners of the device.
Two colors are used to distinguish between left and right.
The system includes four modules: fiducial tracking, accel-
eration measuring, pose tracking, and applications. The
flowchart is illustrated in Fig. 2. Fiducial tracking by a sta-
tionary and calibrated visual sensor network outputs the
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LEDs’ positions in the images. Acceleration is measured by
the embedded three-axis accelerometer and transmitted to the
server. Then, the fusion of visual data and inertial sensor data
is carried out to estimate the current pose, which is afterward
exported as to the client (device) for application usage. The
implementations of each module are detailed in the following
sections.

3.2 Data Synchronization

Synchronization among different sensors is required and
important in hybrid tracking systems, which is difficult to
achieve in practice.” In the proposed system, cameras are
set to run at about 25 frames/s. Captured images are trans-
mitted to the server either by wireless connection or by cable
depending on the types of cameras. Accelerometers run in
the client side at around 100 Hz. The communication
between the server and the client is designed as wireless via
TCP/IP, running in a separate thread. The adopted approxi-
mate synchronization approach for real-time operation is
described as follows. The first step is to synchronize the
clocks on the server and the client by measuring the clock
offset using the IEEE 1588 precision time protocol.”’ Once
synchronized, the data request message sent to the client is
enclosed by the timestamp from the server. Then, the client
calculates the local corresponding timestamp at which the
message is sent and searches backward for the accelerometer
measurements at that timestamp. In this approach, a buffer is
necessary to save the accelerometer measurements and the
timestamps.
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4 LED Tracking

In this section, we propose an adaptive thresholding method
combined with a Kalman filter for LED tracking. This
method is then validated to largely improve the detection
rate, reduce the computational cost, and gain robustness
against illumination changes in Sec. 6.2.

4.1 Adaptive Thresholding for Light-Emitting Diode
Detection

LED detection is simple in principle, but still faces several
challenges. First, the appearance (shape and color) of LEDs
in the image varies according to the illumination conditions,
the distance between LEDs and cameras and the viewing
angle. Furthermore, LEDs are small and cover only a small
region in the images. Thus, they can be easily confused with
other objects in the environment.

Our method uses the color property to detect LED mark-
ers. The first step is to segment the foreground and back-
ground. The basic approach using frame difference of the
current frame with the previous frame is adopted due to its
simplicity and cheapness in computational cost. In this work,
a fixed low threshold 10 is selected to make sure LEDs are
detected as foreground. Alternatively, other background sub-
traction approaches may be used.’® Then, hue, saturation,
and value (HSV) color space is adopted for color threshold-
ing since it separates out the intensity (luminance) from the
color information (chromaticity).?! In order to understand the
color perception of LEDs under different illumination
conditions and different environments, and therefore set
proper threshold values, we captured images under different
controlled lightings. Then, we manually selected the LED
regions in the image and analyze their color properties in
HSYV space. The observations are represented in the form of
histograms in Fig. 3. Note that the H values of both colors are
concentrated in a quite narrow range, which is expected
because the H (hue) component represents the color tone
(e.g., red or blue). On the other hand, S and V values cover
a relative wide range. From experimental observations, we
found that wrong detections are mostly caused by the lower
limits of S and V channels, which lead to confusion by sim-
ilar colors from the surrounding environments. This obser-
vation indicates that color thresholding with fixed values
is not suitable for LED detection. Therefore, in the following,
we propose an adaptive thresholding method to set lower
limits on S and V channels dynamically.

In the following description of the approach, we will not
specify colors, as it is the same process for both types of
LEDs. The minimum values of S and V in the histogram
shown in Fig. 3 are indicated as S,;, and V;, (red LED:
Smin = 0.13, Vin = 0.30; green LED: S,;, = 0.11, Vi, =
0.11). Let MS;_; and MV _; be the minimum S and V values
of the detected LED marker in the frame k — 1. At the
beginning of the process of the frame &, our method first cal-
culates the values of 7'S; and TV,, which are the lower
threshold values applied to the frame k in S and V channels,
through taking the previous detected LED marker into
consideration

TSy = aMS;_; + (1 — a)Spin,
TVk :aMVk_] +(1 _a)Vmina (1)

where a is a weighting value between O and 1.
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Fig. 3 H, S, and V histograms of a red LED and a green LED.
The selection of the value of a depends on the actual X, = FiX +wi
experimental scenario, especially the lighting conditions,
as it indicates to which extent we should believe that the 10 Ar 0 00 0 0
lighting condition does not change during the frame update _({0o 1 0 A 00 0 O X1 + Wi
interval. However, it is difficult to provide an optimal value 00 0 0 1 0 Ar O
of a due to the sophisticated lighting condition and its effect 00 0 O 01 0 Ar

on the images. A rough guideline for the selection of « is to
set a high value in an almost constant lighting condition,
whereas it should be a small value in a varying lighting con-
dition. In our test, by sweeping over different values, we have
found that o = 0.5 gives a good weight to the previous detec-
tion result. After color thresholding, if more than one seg-
ment is detected as possible LED region, we then rank them
based on the segment centroid’s brightness (V value) consid-
ering the fact that LEDs emit light. The brightest centroid is
considered as the final detection result of the LED marker
position in the image.

4.2 Kalman Filter for Light-Emitting Diode Tracking

A Kalman filter is applied to track LED movements in the
image sequences. The purposes of this process are twofold.
First, the Kalman filter gives a prediction of the positions
where LEDs are supposed to appear in the next frame.
Instead of searching the entire image to locate LEDs, only a
small area around the predicted position is processed. In this
way, the computational cost is reduced, which is one of the
crucial criteria for real-time services. Additionally, confusion
caused by noise from the surrounding environment is allevi-
ated because the searching region is narrowed.

The state vector of the filter x is a 8 X 1 vector containing
the two-dimensional (2-D) position and 2-D velocity of two
LEDs in the image, which can be expressed as
x = (P1,P1, P2, P2), (2)
where p; and p, are the positions of the two LEDs in the
image.

Therefore, the state transition model relates the state at
a previous time instance k — 1 with the current state at time
k as
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3

where At is the time interval between updates and w;_; is the
process noise.

The measurement model relates the state vector to the
measurement vector z; through a transformation matrix
H, as follows:

7 = (p] ) = HiXy + vy
P2
1 000000 O
0100000 0
“looo0oo01 00 0]t @
00000T10 0

where v, is the measurement noise.

The error covariance matrices of the filter are determined
following the method proposed in the paper,’”” where the
reader can find more detailed explanations. A region of inter-
est (ROI) can be generated based on the predicted positions
where the tracked features are expected to appear in the next
frame. Therefore, the computational cost is reduced as there
is no need to process the entire image. The rectangular ROl is
centered at the predicted position of the LED, however, the
size of the ROI may be determined in various ways. For
example, a fixed size of 32 X 32 pixels is chosen in Ref. 33.
In Ref. 34, the size of the window is set as three or four times
of the size of the previously detected object. In this work,
the size of the ROI is determined by the predicted error
covariance matrix provided by the filter, as it indicates the
uncertainty of the prediction. Taking the tracking error into
account, three times of the predicted uncertainty is applied
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Algorithm 1 LED tracking.

1. Get a sub-image from the captured image / based on the
specified rectangular ROI

2. Segment the foreground and background based on frame
difference

3. Convert the image from RGB color space to HSV color space
4. Adjust the lower limit of the S and the V values

5. Filter the image by color thresholding and save the centroids
of the detected contours as candidates

6. Determine the centroid with the highest V value as the final
result

7. Update the Kalman filter and generate a rectangular ROI
around the predicted position

8. Go back to step 1 for the next frame

to generate a sufficiently large window to make sure the
tracked object is inside the selected window.

The complete LED tracking process is summarized in
Algorithm 1.

5 Pose Estimation Algorithms

In this section, we will present three fusion algorithms for
six-DoF pose calculation combining visual and inertial mea-
surements. We will first describe the coordinate systems
related to the system in Sec. 5.1. Next, the contribution of the
accelerometers to pitch and roll rotation angles estimation is
explained in Sec. 5.2. Then, the stereoscopic solution based
on triangulation is explained in Sec. 5.3. A constraint-based
algorithm for occlusion handling is described in Sec. 5.4.
Finally, a multiview solution by triangulation in a multica-
mera network is presented in Sec. 5.5.

5.1 Notation

Pose can be mathematically represented as a 3 X 4 transfor-
mation matrix from a certain coordinate system to the final
coordinate system; it is composed of a rotation matrix and
a translation vector. The coordinate systems used in the
remaining of this paper are defined as follows:

cos 0 cos ¢
R = Rx(l//)R,v(a)Rz(Cb) =

where R;(a) is a basic 3-D rotation matrix around the i axis
(i=x,yorz;a=uwy,0 or ¢).

The rotation matrix R converts a vector expressed in {w}
v,, to the expression in {a} v, as

v, = Rv,,. 6)

The gravitational vector is expressed in {w} as
g, = [0,0,—g|" (where g is the magnitude of gravity) and
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* World coordinate system {w}: the Z-axis points toward
the sky and is perpendicular to the ground plane. The X
axis and Y axis are in the horizontal plane and defined
following the right-hand rule. A point in {w} is
denoted by P = (X,Y,Z)".

* Accelerometer coordinate system {a}: when the
device is held in its default orientation, the X axis is
horizontal and points to the right, the Y axis is vertical
and points up, and the Z axis points toward the outside
of the screen face. A measurement of gravitational
acceleration is denoted as g, = (. g,.9.)"-

* Camera coordinate system {c}: we use a standard cam-
era coordinate system of which the origin is at the
center of projection and the Z axis is along the optical
axis. The X and Y axes are parallel to the image plane.

* Camera frame coordinate system {f}: a point in the
camera plane is expressed in pixels as p = (u, v).

5.2 Pitch and Roll Estimation Using Accelerometers

As is known that accelerometers sense both gravitational and
dynamic (movement induced) acceleration forces, in this
paper, only gravitational accelerations are isolated to contrib-
ute to the orientation estimation. The isolation can be
achieved by a low-pass filter. This topic is further studied in
literature.® In case of Android mobile devices, a “gravity
sensor’” is embedded since API Level 9 (Android 2.3) was
released. Thus, for this work we will not go further into
details about the isolation of gravitational accelerations.

The orientation of a handheld device can be defined by
a sequence of three elemental rotations, i.e., pitch (rotation
about the X axis), roll (rotation about the Y axis), and yaw
(rotation about the Z axis) from an initial status. The
composite rotation matrix R depends on the order in which
the pitch, roll, and yaw rotations are applied. There are six
possible orderings of the three angles. In principle, all these
are equally valid. However, four of these rotation sequences
are rejected as they are unsuitable for determining the devi-
ce’s inclination from accelerometers.®® It is conventional
therefore to select either the rotation sequence yaw-roll-pitch
or yaw-pitch-roll to allow solution for the roll and pitch
angles from acceleration measurements. In this work, we
choose the yaw-roll-pitch order. Therefore, the rotation
matrix R can be determined as

—sin 4
sin y cos 6 |, (®)]

cos 0 sin ¢

is expressed in {a} as g, = [g,. gy g.|". Applying the rota-
tion matrix to the gravitational vector gives:

9x 0 g sin 0
g.= |9 | =Rg,=R| 0 | =| —gsiny cos 0
9 —g —g cos y cos 6

)

Then, from Eq. (7), the roll and pitch rotation angles are
calculated as
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0= arcsin&, (8
g

w = arctan 2. ©)

Z

It is worth noting that accelerometers are insensitive to
rotation about the earth’s gravitational field vector. There-
fore, accelerometers are not sufficient to estimate the yaw
rotation angle.

5.3 Triangulation-Based Stereo-Vision System
5.3.1 Position estimation

The LEDs’ positions in the images are obtained following
the steps described in Sec. 4. In case that both LEDs are
detected in both camera views, the linear triangulation
method®’ is applied for the 3-D reconstruction of LEDs’
positions in {w}. Let P, = (X;, Y}, Z;)T denote the 3-D posi-
tion of the left LED and let P, = (X,,Y,,Z,)! denote the
3-D position of the right LED in {w}. The position of the
device P is considered as the center of the two LEDs.
Since the 3-D distance between two LEDs is fixed as D
once they are deployed, a further check can be carried out by
testing whether the distance between two estimated LEDs D
meets the condition ||D — D|| < T, where T is the threshold.
In this work, the value of T is selected as 30, where o is the
standard deviation of the calculated distances in a 5-min run-
ning test (in our test, D = 18.3 cm, ¢ = 1.23 cm). This test
provides a high degree of reliability to the final results.

5.3.2 Yaw estimation

As is aforementioned, accelerometers are insufficient to esti-
mate the yaw rotation angle. In this work, it is determined by
the estimated 3-D positions of the LEDs. Let AP,, and AP,
denote the vector from the left LED to the right LED
expressed in {w} and in {a}, respectively. Applying the rota-
tion matrix to the two vectors following Eq. (6) gives

AP, = RAP,,. (10)
According to the definition of {a}, AP, is known as
AP,=[D 0 O] an

The property of the rotation matrix determines that its
transpose is identical to its inverse. Therefore, Eq. (10)
can be rewritten as

AP, =P, —P,=RTAP, = | D cos 0 sin ¢

—D sin 6

D cos 0 cos ¢
1. (12)

Then, the roll and yaw rotation angles are obtained as

Z.—7Z
6 = — arcsin— L (13)
D
Y, -,
— arct . 14
¢ arcaan_X] (14)

The roll angle can be calculated through both vision data
and accelerometer data. Considering there may be wrong
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detections in the vision task, the roll angle is calculated
by Eq. (13).

5.4 Constraint-Based Stereo-Vision System with
Occlusion Handling

In this section, we propose a new fusion algorithm to deter-
mine the 6-DoF pose in case of partial occlusions, which
refers to the situations when one LED marker is located in
the view of one single camera. Let us start with the case when
the right LED marker is seen by one camera and the left LED
is seen by both cameras. The 3-D position of the left LED
marker P; is obtained by triangulation as is explained in the
previous section. We denote by p, = (u,, v,) the position of
the right LED marker in the detected camera view. The geom-
etry of the occlusion handling system is depicted in Fig. 4.

We mentioned in the previous subsection that the roll
rotation angle can be calculated either by Eq. (8) or by
Eq. (13). Therefore, combining the two equations, a con-
straint on the gravitational acceleration and the height differ-
ence between two LEDs can be obtained as

Z,—7Z
I _ _Lr” 41 (15)
g D
Thus, the element Z, of P, can be calculated as
Z,=2Z7,-Dg,/g. (16)

This constraint is essential in the proposed occlusion han-
dling approach to recover the position of the partially
occluded LED. As is well-known, in a pin-hole camera
model, a 2-D point in the image is corresponded to a ray of
3-D points that connects the camera projection center and the
2-D point, as depicted in Fig. 4 (the blue line). According to
the camera projection model, the relationship between the
LED’s 3-D position P, in {w} and its 2-D position p, in
the image can be expressed as

u Xr
r Pl |v,

ﬂ[v,]—M{l}—M ar (17)
1

r

where A is a scale factor and M is a 3 X 4 transformation
matrix.

Left camera
Right camera

(u,,v,)

Left image Right image

P(X,.Y,.Z)

Fig. 4 The geometry of the occlusion handling system.

Jul/Aug 2016 « Vol. 25(4)



Li et al.: Handheld pose tracking using vision-inertial sensors with occlusion handling

The matrix M indicates the transformation between {w}
and {c}, which is obtained by camera calibration. Therefore,
in Eq. (17), there are three unknown parameters (X,, Y,,
and 1) and three equations. Thus, the 3-D position of the
right LED can be calculated by this determined system.
Consequently, the position and the orientation of the device
are calculated in the same way as explained in the previous
section. The same process is done in case that the left LED
marker is partially occluded.

5.5 Triangulation-Based Multivision System

In a multicamera system, a marker may be viewed by N
(N > 2) cameras, several approaches can be used for multi-
view triangulation. In this work, the triangulation based on
the least squares minimization similar to the solution to the
stereo-vision triangulation is adopted. Applying Eq. (17)to a
general pair of 3-D-2-D corresponding point leads to

X
u
Y
Aol =M
Z
1
1
X
M(1,1) M(1,2) M(1,3) M(14) v
= |M(2,1) M(22) M2, M(2, 2|
M(3,1) M(3,2) M(3, M(34 )
(18)

where M; is the 3 X 4 transformation matrix of the i’th cam-
era, (u;, v;) is the detected LED in the image from the i’th
camera, i = 1,2...N.

Afterward, we do the same as in the stereo-vision system
to solve the equations using a least squares approach mini-
mizing ||AP,, — b|| and get

P, =A"b, (22)

where A" is the pseudoinverse matrix of A.

Once the 3-D positions of both LEDs are obtained, the
position and rotation of the device can be calculated as
explained in the previous section.

6 Evaluation

In this section, the LED tracking module and the pose esti-
mation module of the proposed system are quantitatively
evaluated. First, the prototype and the reference system setup
as well as the offline data synchronization are explained in
Sec. 6.1. Then, the aforementioned adaptive thresholding
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where 1 is the scale factor, (u,v) is the 2-D point
in the image, and (X,Y,Z) is the corresponding 3-D
point.

Eliminating A leads to two linear equations

[M(3,1)X + M(32)Y + M(33)Z + M(3.4)]u

= M(1,)X +M(12)Y + M(13)Z + M(1.4)
[M(3,1)X + M(32)Y + M(33)Z + M(3.4)]v

= MQ2D)X+M22)Y+MQ23)Z+M24). (19

When the marker is viewed by N cameras, the follow-
ing over-determined linear equations system can be
obtained

AP = AX,Y.Z]T = b, (20)

where A is a 2N X 3 matrix and b is a 2N X 1 matrix,
described next:

"‘lMl (3,4) —M1(1,4)
viM(3.4)—M,(2.4)

, b= : , (21
MNMN(3,4) —MN(1,4)
vyMy(3.4) —My(2,4)

approach combined with a Kalman filter for LED tracking
is compared with three other methods in Sec. 6.2. The per-
formance of the stereo-vision system with/without occlusion
handling is assessed in Sec. 6.3. Finally, the overall perfor-
mance of the proposed system integrated with several fusion
algorithms is analyzed in Sec. 6.4.

6.1 Experimental Setup
6.1.1 Prototype setup

The proposed system involves four RGB cameras deployed
in the four corners of the ceiling, as shown in Fig. 5(a). They
are calibrated beforehand following the calibration method
based on the POSIT algorithm.*® The image resolution is set
at 780 x 580 pixels, running at 25 frames/s. A tablet PC
Samsung Galaxy Tab S 10.4 is used as the hand-held device.
Two battery-powered LEDs with diameter of 5 mm are
placed on the border of the tablet with an interval of 18.3 cm,
as illustrated in Fig. 5(b). Gravity measurements are directly
obtained from the gravity sensor.
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Fig. 5 Experimental setup. (a) The deployment of four cameras. (b) The deployment of battery-powered
LEDs and OptiTrack markers. Six reflective markers are used in the OptiTrack system.

6.1.2 Reference system setup

The reference system OptiTrack is composed of eleven infra-
red cameras, covering a scene of 7.5 mXx4.0 m. The
cameras are calibrated using their own calibration tools. Six
reflective markers with diameter of 1.1 cm are placed on the
back of the tablet, as shown in Fig. 5(b). These markers are
selected as a rigid body. The pose estimation results are rel-
ative to the rigid body coordinate system. It has the same
axes as the accelerometer coordinate system, but with an off-
set from the center of the two LEDs, which is corrected dur-
ing comparison. The OptiTrack system works at 120 Hz.

6.1.3 Experimental data synchronization

For a fair comparison of the algorithms, we make sure they
work on comparable and synchronized data. Therefore, the
evaluation is done offline with image sequences recorded at
25 frames/s and the accelerometer data recorded at 100 Hz.

Data synchronization among the gravity sensor, image
sequences, and OptiTrack results are necessary to compare
our results to the OptiTrack results frame by frame. To enable
synchronization, at the beginning of the test, the user holds
the tablet horizontally and moves it up and down several
times. Then, the Y element of gravity sensor measurements
and the roll angle estimations from OptiTrack are plotted
in Fig. 6. As we can see, the shaking movements are

9.5

85

gy (m/s?)
~
[$,]
<

6.5

55

Rotation angle (deg)
i

represented in the figure as rise and fall. We select the
last local minimum as the starting point for the gravity sensor
and the OptiTrack. The corresponding physical meaning is
that the tablet is placed at the local lowest position which
could be easily searched from the video. As the data is
recorded at a constant frequency, correspondences can be
easily found by sampling with a known starting point.

6.2 Light-Emitting Diode Tracking Performance
Analysis

The performance of the proposed adaptive thresholding
approach combined with a Kalman filter is analyzed in terms
of correct LED detection rate and average processing time.
Our method is compared with three alternative approaches,
which are fixed thresholding, fixed thresholding with a
Kalman filter, and adaptive thresholding. In the fixed thresh-
olding method, the minimum and maximum values of H, S,
and V from the histogram in Fig. 3 are used as threshold
values.

In the test, a user held the tablet and walked around in
the scene from one corner to another corner. In total, 430
frames were recorded by the camera 0 and camera 1 shown
in Fig. 5(a). Each algorithm is tested on two video record-
ings. The detected red and green LEDs’ positions are saved
in a file. The ground truth of LEDs’ positions in the images is
manually generated in MATLAB®. If the difference between

90

n [} ~ [<3
o o o o
>

N
o

Fig. 6 Measurements from a gravity sensor and OptiTrack. The red squares in the figures indicate the
starting point. (a) Y elements of measurements from a gravity sensor. (b) Roll angle estimations from

OptiTrack.
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Table 1 Comparison of different LED tracking approaches.

LED correct detection rate

Left cam Right cam Average processing time (s)

Red Green Red Green Left cam Right cam
Fixed thresholding 54.88% 79.30% 87.8% 89.6% 0.20 0.19
Fixed thresholding + tracking 70.23% 92.56% 88.0% 90.6% 0.04 0.04
Adaptive thresholding 94.19% 94.19% 96.9% 96.3% 0.19 0.20
Adaptive thresholding + tracking 94.88% 96.05% 96.9% 96.3% 0.04 0.05

()

Fig. 7 Camera views: (a) left camera view and (b) right camera view.

the detected pixel position and the ground truth position is
within three pixels, we consider it as a correct detection. The
results are listed in Table 1.

The results validate that the proposed adaptive threshold-
ing method combined with a Kalman filter largely improves
the correct detection rate and reduces the processing time,
compared with the fixed thresholding method. It is also
noticeable that the LED detection rates are improved by
40% and 16.75% through using the proposed method com-
pared to the fixed thresholding method for the process of the
recording from the left camera. Let us check the image
sources from the cameras. Figure 7 demonstrates two exam-
ples of camera views from both cameras in the test. It can be
seen that the view from the right camera is towards a relative
closed space, which means the illumination change is small.
The capture area of the left camera is exposed to artificial
light sources, natural light sources and a strobe light from
one OptiTrack camera located around the top center of the
image. All these light sources introduce challenges to LED
detection, which can explain the low LED detection rate in the
left camera recording by using the fixed thresholding method.
However, our proposed approach is still able to achieve a high
detection rate in the varying illumination conditions.

6.3 Stereo-Vision System Performance Analysis

This section is focused on the assessment of the proposed
stereo-vision system with/without occlusion handling. The
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(b)

same experimental data from the LED tracking performance
analysis is exploited to evaluate the performance of the
stereo-vision system in terms of estimation accuracy and
LED detection rate. The accuracy assessment is carried out
by comparing with the reference system OptiTrack in terms
of 3-D position and orientation estimation. The detection rate
is defined as the percentage of the frames with good pose
estimation among the entire recording sequences. The posi-
tion and orientation errors are defined as the square root of
the error in each single axis.

150 o Constraint-based method

Triqngulation—bassd method
1001 - OptiTrack result
%

_200 - —

-250 L L I I | L
-150 -100 -50 0 50 100 150 200

X (cm)

Fig. 8 Estimated 2-D trajectories from the triangulation-based
method (green dots), constraint-based method (pink dots), and
OptiTrack (blue dots).
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Table 2 Comparison of pose estimation algorithms.

Triangulation-  Constraint-  Overall stereo-
based based vision solution

Mean position 1.91 1.93 1.91
error (cm)
Standard 0.80 0.90 0.83
deviation (cm)
Min position 0.23 0.40 0.23
error (cm)
Max position 3.97 6.75 6.75
error (cm)
Mean orientation 3.26 4.41 3.60
error (deg)
Standard deviation 1.55 3.53 2.41
(deg)
Min orientation 0.34 0.35 0.34
error (deg)
Max orientation 8.49 17.18 17.18
error (deg)
Detection rate 67.21% 30.23% 97.44%

The resulting 2-D trajectories from the two methods and
OptiTrack are depicted in Fig. 8, where it can be observed
intuitively that trajectories from both single methods are
close to the reference.

The quantitative comparison results of the two methods
and the overall stereo-vision solution from the 430-frame
test sequence are listed in Table 2. It shows that both single
methods have small errors. The overall stereo-vision solution
has achieved an accuracy of 1.91 cm in position estimation
and 3.60 deg in orientation estimation with a high-detection
rate of 97.44%. It is also observed that the constraint-based
method for occlusion handling has a bit larger errors and
standard deviation in the estimations, compared with the tri-
angulation-based method. This is expected because the
occlusion handling method is based on the equivalent rela-
tionship between the inertial measurements and LEDs’ posi-
tions, as expressed in Eq. (15), leading to a high sensitivity of
LEDs’ 3-D reconstruction to inertial measurements. How-
ever, in the triangulation-based method, LEDs’ 3-D positions
are obtained from pure visual data, independent from iner-
tial data.

The errors of the proposed overall stereo-vision system
compared with OptiTrack in terms of position and rotation
angles in three dimensions are depicted in Fig. 9. It is
obvious that yaw rotation angle estimations are noisier
than pitch and roll angle estimations. This is because yaw
angles are calculated from markers’ 3-D positions. A small
error in the marker position estimation will lead to a big error
in the angle estimation, if the interval between markers is
small. This is a common problem existing in most of the
marker-based tracking systems. Therefore, it is recommended
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Fig. 9 Pose estimation error: (a) position estimation error and (b) rota-
tion estimation error.
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Fig. 10 Estimated 2-D trajectories from OptiTrack (green dots) and
the proposed overall system (red dots) from the first sequence.

to place the markers at as large as possible interval in the run-
ning device.

6.4 Overall Performance Analysis

Our overall handheld pose estimation solution in a multica-
mera network is the integration of the three proposed data
fusion approaches. The performance of the overall solution
is assessed in terms of estimation accuracy by comparing
with the results generated by OptiTrack. In the experiment,
four cameras are involved and the recording procedure is the
same as previously mentioned. Testers held the tablet and
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Fig. 11 Estimation results from OptiTrack (green dots) and the pro-
posed overall system (red dots). (a) Position estimationin X, Y, and Z
axes. (b) Rotation estimation about X, Y, and Z axes.
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Fig. 12 Estimated 2-D trajectories from OptiTrack (green dots) and
the proposed overall system (red dots) from the second sequence.
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Fig. 13 A screen shot of an AR application for education.

walked around in a 7.5 m X 4.0 m room. Two sequences
were recorded.

In the first sequence, the tester walked in a rectangular
trajectory, and, in total, 785 frames were recorded. The 2-D
trajectories generated by OptiTrack and the proposed system
are plotted in Fig. 10. The position and rotation estimation in
each dimension are illustrated in Fig. 11. It can be seen that it
has achieved a high detection rate (99.8%). The mean errors
of the position and rotation estimation from this experiment
are 3.08 £+ 1.40 cm and 4.82 £ 3.52 deg, respectively.

In the second sequence, the tester walked in an irregular
pattern with varying lighting condition (manually con-
trolled). In total, 1800 frames were recorded. The 2-D trajec-
tories generated by OptiTrack and the proposed system are
plotted in Fig. 12. A high-detection rate of 99.8% has been
achieved (three losses of detection). The mean errors of the
position and rotation estimation from this sequence are
4.49 £1.69 cm and 5.51 £3.31 deg, respectively.

7 Applications

The proposed six-DoF pose tracking approach for hand-held
devices is a general solution which can be applied to various
application fields, including AR, VR, and interactions in
smart spaces. In this section, we include two demonstrations
of the proposed approach. One is to apply it to an AR appli-
cation for education in a slightly textured scene, which is
quite challenging for markerless approaches based on scene
texture. The other demonstration is to use the hand-held
device as a 3-D game controller which was presented in
ICDSC 2015 Demo Session.

7.1 Augmented Reality

Handheld AR has become increasingly attractive in recent
years. It is applied in various fields, such as smart spaces,
tourism, entertainment, training and education.* Computer
generated content (e.g., text, videos, images) is overlaid on
the real image to provide context aware data, enable the
manipulation of the displayed content, or facilitate the inter-
action with the physical world. One of the crucial challenges
is the registration of the virtual space with the physical space,
referred to the need of accurate tracking of the hand-held
device pose with respect to a certain coordinate system. We
implement an application for immersive learning based on
the proposed system. A virtual 3-D botanical garden with
various plants is created on top of a slightly-textured table.
By moving a hand-held device, users are allowed to navigate
in the garden, observing the plants’ features from different
views. Also, each plant is labeled with its name for education
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Fig. 14 Game scenario: (a) the environment setup and (b) a screen shot of the game.

usage. Figure 13 shows a capture of the view from the mobile
device.

7.2 Game Controller

A mobile device is allowed to work as a six-DoF game con-
troller with the proposed approach, providing an immersive
and 360-deg gaming experience. The 3-D game is designed
using Unity (Ref. 41), working with two or more cameras.
The estimated position of the hand-held device relative to a
reference coordinate system is used to control the move-
ments of the player in the game. The yaw rotation angle is
applied to control the gun direction, while the pitch angle is
designed as a shooting trigger. Compared with conventional
game controllers sensing button-presses, the proposed appro-
ach allows a more immersive gaming experience. Addition-
ally, the display screen of a hand-held device can be used to
display the game scenario and provide more possibilities for
multimedia elements integration. The game environment and a
screen shot of the game are shown in Fig. 14.

8 Conclusions

This paper describes a low-cost, accurate, fast, and robust
handheld pose estimation system by combining LED marker

tracking from two or more cameras and inertial measure- }‘5‘
ments. The experimental results validate its high accuracy ’
and robustness against the illumination changes and partial
occlusions. Moreover, two application examples of the pro- 16.
posed solution are implemented to validate its feasibility for
application usage. 17.
As we can see from the experimental results, the raw esti-
mation results from the proposed system are noisy. There- 18.
fore, future work will be done on data filtering. Additionally,
the adaptation of the proposed system to work for multiple 19.
users will be taken into consideration. -
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