
econstor
Make Your Publications Visible.

A Service of

zbw
Leibniz-Informationszentrum
Wirtschaft
Leibniz Information Centre
for Economics

Kesten, Onur; Kurino, Morimitsu; Nesterov, Alexander

Working Paper

Efficient lottery design

WZB Discussion Paper, No. SP II 2015-203

Provided in Cooperation with:
WZB Berlin Social Science Center

Suggested Citation: Kesten, Onur; Kurino, Morimitsu; Nesterov, Alexander (2015) : Efficient
lottery design, WZB Discussion Paper, No. SP II 2015-203

This Version is available at:
http://hdl.handle.net/10419/107132

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

www.econstor.eu



  

 

(WZB) Berlin Social Science Center 
Research Area 
Markets and Choice 
Research Unit 
Market Behavior 

 

 
  

 

 

 

Put your  
Research Area and Unit 

Onur Kesten 
Morimitsu Kurino 
Alexander Nesterov 
 
Efficient Lottery Design 
 

Discussion Paper 

SP II 2015–203 
February 2015 
 



Wissenschaftszentrum Berlin für Sozialforschung gGmbH 
Reichpietschufer 50 
10785 Berlin 
Germany 
www.wzb.eu 

 

 

 

 

Onur Kesten, Morimitsu Kurino, Alexander Nesterov 
Efficient Lottery Design 

Affiliation of the authors: 

Onur Kesten 
Carnegie Mellon University 

Morimitsu Kurino 
University of Tsukuba 

Alexander Nesterov 
WZB  

Copyright remains with the author(s). 

Discussion papers of the WZB serve to disseminate the research results of work 
in progress prior to publication to encourage the exchange of ideas and 
academic debate. Inclusion of a paper in the discussion paper series does not 
constitute publication and should not limit publication in any other venue. The 
discussion papers published by the WZB represent the views of the respective 
author(s) and not of the institute as a whole. 



Wissenschaftszentrum Berlin für Sozialforschung gGmbH 
Reichpietschufer 50 
10785 Berlin 
Germany 
www.wzb.eu 

 

 

 

Abstract 

Efficient Lottery Design 

by Onur Kesten, Morimitsu Kurino and Alexander Nesterov* 

There has been a surge of interest in stochastic assignment mechanisms which proved to 
be theoretically compelling thanks to their prominent welfare properties. Contrary to 
stochastic mechanisms, however, lottery mechanisms are commonly used for indivisible 
good allocation in real-life. To help facilitate the design of practical lottery mechanisms, 
we provide new tools for obtaining stochastic improvements in lotteries. As applications, 
we propose lottery mechanisms that improve upon the widely-used random serial 
dictatorship mechanism and a lottery representation of its competitor, the probabilistic 
serial mechanism. The tools we provide here can be useful in developing welfare-enhanced 
new lottery mechanisms for practical applications such as school choice. 
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1 Introduction

A lottery is a common tool to establish fairness in real-life indivisible goods allocation problems
such as object/task assignment, on-campus housing, kidney exchange, course allocation, and school
choice. The simplest of these problems is the so-called assignment problem where a set of distinct
objects is allocated to a set of agents. A widely-used real-life mechanism for such problems is the
random serial dictatorship (RSD): A random ordering of agents is drawn from a uniform lottery,
and the first agent picks her favorite object; the second agent picks her favorite object among
the remaining ones, and so on. RSD satisfies many desirable properties. Ex post efficiency is an
important one, which means that after the resolution of the lottery, the resulting deterministic
assignment is Pareto efficient. In a number of school districts, where schools are equipped with
possibly distinct and coarse priority orders over students, popular assignment mechanisms such as
Boston and Deferred Acceptance (Gale and Shapley, 1962) are applied upon randomly breaking
the ties in schools’ priority orders. All of these mechanisms, which we henceforth refer as lottery
mechanisms, induce a probability distribution over deterministic assignments, i.e., a lottery over
mappings of agents to objects.

Notwithstanding the prominence and popular usage of lottery mechanisms in practice,1 there
has been much recent interest in stochastic mechanisms that prescribe the marginal probabil-
ities with which each agent is assigned each object. In other words, a stochastic mechanism,
unlike a lottery mechanism, does not immediately output a deterministic assignment but rather a
(sub)stochastic assignment matrix indicating agents’ marginal assignment probabilities. In order
to implement a stochastic mechanism one often resorts to a Birkhoff-von Neumann type of de-
composition that transforms the outcome of the stochastic mechanism into an equivalent lottery
over deterministic assignments. An important advantage and a chief motivation of the stochastic
approach is that it makes it possible to achieve superior efficiency properties relative to lottery
mechanisms. Two by now well-known examples of this approach are the probabilistic serial (PS)
mechanism by Bogomolnaia and Moulin (2001) (BM hereafter) and competitive equilibrium from
equal incomes (CEEI) mechanism by Hylland and Zeckhauser (1979),2 both of which have become
the cornerstones of a rapidly growing body of literature concerning stochastic mechanisms (cf.
Kojima and Manea (2010), Yilmaz (2010), Hashimoto et al. (2014); Budish (2011); Kesten and
Ünver (2011), He et al. (2012)).

BM have pointed out that the RSD outcome may suffer from unambiguous efficiency losses
1Indeed we are not aware of any stochastic mechanisms practically in use for any assignment problem.
2PS, which was originally proposed by Crès and Moulin (2001) for a simple model where all agents have identical

preferences, treats each object as a continuum of probability shares and allows agents to simultaneously “eat away”
from their favorite objects at the same speed until each agent has eaten a total of 1 probability share. The share of
an object an agent has eaten during the process represents the probability with which she assigned the object by
PS. See Section 5 for a more precise decription.
CEEI is a pseudo-market mechanism in which agents maximize utility subject to artificial budgets based on equal

shares from the social endowments. It elicits cardinal preferences from agents and achieves ex ante efficiency, which
is stronger than th sd-efficiency notion we study here.
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regardless of the von Nemann-Morgenstern utilities compatible with agents’ ordinal preferences.
They introduce a stronger notion of efficiency which we call “sd-efficiency:” A stochastic assignment
is sd-efficient if it is not dominated by another stochastic assignment. Surprisingly, RSD may not
always induce sd-efficient outcomes. BM have proposed PS as a serious contender to RSD, which
selects the central point within the sd-efficient set. The attractive sd-efficiency (as well as the
sd-envy-freeness) property have triggered much interest to further extend and generalize PS to
richer and more structured assignment problems (cf. Kojima 2009; Yilmaz 2010; Athanassoglou
and Sethuraman 2011; Budish et al. 2013).

Since implementing a stochastic mechanism requires to decompose it into a lottery (Birkhoff,
1946; von Neumann, 1953; Budish et al., 2013), we contend that this additional procedure might
hinder the transparency and practicality of such mechanisms. This is also the case when contrast-
ing the two competing mechanisms, RSD and PS. Expressing their take on the feasible lottery
mechanism RSD, Che and Kojima (2010) write:3

Perhaps more importantly for practical purposes, the random priority mechanism is straightfor-
ward and transparent, with the feasible lottery used for assignment specified explicitly. Trans-
parency of a mechanism can be crucial for ensuring fairness in the eyes of participants, who
may otherwise be concerned about “covert selection”.

An obvious advantage of lottery mechanisms is that they largely facilitate ex post analysis, which
may focus on considerations such as incentives, fairness, stability, individual rationality and ef-
ficiency. On the other hand, the lottery approach has not been as successful as the stochastic
approach as far as achieving stronger welfare properties than ex post efficiency.4 Nevertheless,
because a stochastic assignment needs to be decomposed into a feasible lottery before actual im-
plementation, ex post considerations are comparably more difficult, if not impossible, to handle
in the domain of stochastic assignments.5 Therefore we believe that bridging the gap between the
two approaches and developing tools which would allow one to work directly with lotteries without
sacrificing efficiency is an important task. In this paper, our goal is to show that ex ante efficiency
analysis in addition to ex post analysis can be directly done using lotteries.

We set off on our quest by uncovering the link between ex post efficiency and sd-efficiency.
In a related paper, Abdulkadiroğlu and Sönmez (2003) study whether the sd-inefficiency of a
stochastic assignment could be attributed to the Pareto inefficiency of a deterministic assignment
it may induce, and give a negative answer to this question. We provide a complementary result
to this observation. In particular, we show that for any given stochastic assignment P of any

3The random serial dictatorship mechanism is also called the random priority.
4For example, as far as we are aware, a non-trivial lottery mechanism satisfying sd-efficiency (or the stronger

ex-ante efficiency) is yet to be reported or studied. Additionally imposing strategy-proofness readily leads to
impossibilities (Zhou, 1990; Bogomolnaia and Moulin, 2001).

5Budish et al. (2013) develop tools for handling complex constraints while working directly with stochastic
mechanisms.
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given assignment problem �, there exists a corresponding deterministic assignment µ(P,�) which
is Pareto efficient if and only if P is sd-efficient at � (Theorem 1). The deterministic assignment
µ(P,�) is obtained by transforming the n−agent stochastic assignment problem into an at most
n2−agent deterministic assignment problem that introduces multiple replicas of each agent. A
immediate corollary is the Abdulkadiroğlu and Sönmez’s characterization of sd-efficiency to via
notions of domination across sets of assignments.

An important contribution of our study, consistent with the commonly used methodology and
trends in indivisible goods allocation literature,6 is to develop a method for the construction of
a lottery that improves upon a given inefficient lottery while maintaining feasibility of the final
outcome (Theorem 2). We observe, however, that the former part of such an objective may turn
out to be quite subtle as an ex ante welfare improvement over an ex-post lottery can actually give
rise to an ex-post inefficient lottery (Example 2). For the latter part of the objective we propose an
algorithm that generates a feasible lottery from an infeasible lottery provided that it has a feasible
equivalent. Section 4 provides an application of our tools and ideas, where we propose new lottery
mechanisms that stochastically improve upon RSD. Our proposals combine the above mentioned
methods with the celebrated object assignment method called top trading cycles (TTC) method
of David Gale.7 One of these proposals, which we call the TTC-based RSD (TRSD) mechanism,
is sd-efficient, stochastically dominates RSD and satisfies equal treatment of equals (Theorem 3).
We also provide practical approximations of TRSD that are computationally simpler (Theorem 4).

Finally, we offer a lottery mechanism that is equivalent to PS that may help facilitate its
applicability in practice. The lottery representation of PS is based on the identification of a set

6Improving upon a ‘status quo’ allocation (or a partial allocation) while respecting other considerations has
been a common goal in various applications of indivisible good allocation. Examples abound. In housing markets
(Shapley and Scarf, 1974), starting from an initial allocation of houses to agents, the objective, among other
considerations, has been to achieve a Pareto efficient allocation that Pareto dominates the initial allocation. In this
case Pareto domination of the initial allocation implies individual rationality. In the stochastic version of this model,
a feasible lottery mechanism called core from random endowments, yields an ex-post efficient feasible lottery by
individually Pareto improving upon each (distinct) feasible assignment in the support of a given ex-post inefficient
initial feasible lottery. In on-campus housing, starting from a partial initial allocation of houses, a central objective
has been again to obtain Pareto improvements while also using societal endowments of houses. The same objective
has been pursued in kidney exchange problems with good samaritan donors (e.g., Sönmez and Ünver, 2006). In
school choice with coarse priority structures, a common starting point in the recent literature (Erdil and Ergin,
2008; Abdulkadiroğlu et al., 2009; Kesten, 2010) has been the allocation induced by the lottery mechanism that
uses the well-known student-proposing deferred acceptance algorithm upon randomly breaking the ties within equal
priority classes. All these applications however have focused on achieving ex post properties.

7It was first proposed in the context of housing markets (Shapley and Scarf, 1974) where one seeks an optimal
reallocation of objects (which are now endowments) among agents. Because of its appealing efficiency and incentive
features, a number of mechanisms based on the TTC method have been proposed and characterized for a variety
of applications such as on-campus housing (Abdulkadiroğlu and Sönmez, 1999; Chen and Sönmez, 2002), school
choice (Abdulkadiroğlu and Sönmez, 2003; Kesten, 2010), and kidney exchange (Roth et al., 2004, 2005). Although
for deterministic settings, all proposed TTC based mechanisms are Pareto efficient, little is known about the
applicability of this procedure to the stochastic assignment context and its relation to sd-efficiency for that matter.
Kesten (2009) shows that if a simple version of the TTC method is applied to a market in which each agent is
initially endowed with an equal probability share of each object, then the resulting outcome is sd-efficient and
coincides with that of PS.
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of priority orders such that the equal-weight lottery over the serial dictatorship outcomes induced
by the collection of these priority orders results in exactly the same random assignment as that
produced by the eating algorithm that yields the PS outcome. Recall that RSD is an equal-weight
lottery over all possible priority orders of agents regardless of agents’ preferences. Unlike the RSD
lottery, however, the set of priority orders in the support of the lottery representation of PS, are
constructed based on agents’ preferences. This implies that in order to implement PS in this
fashion as a lottery mechanism, we need to elicit agents’ preferences a priori and determine the set
of priority orders to be used in the lottery draw. Once the support of the lottery is constructed,
the rest of the assignment process proceeds in exactly the same way as with RSD: the first agent
picks her favorite object; the second agent picks her favorite object among the remaining agents,
etc. We generalize this approach by proposing a lottery representation algorithm which, for any
given random assignment, generates an equivalent equal-weight lottery (Theorem 5).

The rest of the paper is organized as follows. Section 2 introduces the model. Section 3
establishes a link between ex post and ex ante efficiency and describes our algorithm for generating
a feasible lottery. Section 4 introduces the TTC-based RSD mechanisms and Section 5 the lottery
representation of PS. Section 6 concludes.

2 The Model

A discrete resource allocation problem (Hylland and Zeckhauser, 1979; Shapley and Scarf, 1974)
is a list (N,A, q,�) where N = {1, . . . , n} is a finite set of agents; A is a finite set of objects;
(qa)a∈A is a positive integer vector where qa denotes the quota of object a ∈ A. We assume that
|N | ≤

∑
a∈A qa; �= (�i)i∈N is a preference profile where �i is the strict preference relation of

agent i ∈ N on A. Let �i denote the weak relation associated with �i. Let P be the set of all
preferences of any agent, and PN the set of all preference profiles. The null object, if assumed to
exist, is denoted by a0 and assigned a quota of n so that all agents can simultaneously consume it.
Agents who are assigned the null object are viewed as taking their outside options. We fix N,A,
and q throughout the paper, and denote a problem by a preference profile �∈ PN .

A (deterministic) assignment is a function µ : N → A. Moreover, it is feasible if for
each a ∈ A, |µ−1(a)| ≤ qa. Let D be the set of all assignments, and Df the set of all feasible
assignments. A feasible assignment µ is Pareto efficient at � if there is no µ′ ∈ Df such that
for all i ∈ N , µ′(i) �i µ(i), and for some i ∈ N , µ′(i) �i µ(i). A deterministic mechanism
associates a feasible assignment with each problem.

A stochastic allotment is a probability distribution Pi := (pi,a)a∈A over A where pi,a denotes
the probability that agent i receives object a, and thus for each a ∈ A, 0 ≤ pi,a ≤ 1 and

∑
b∈A pi,b =

0. A stochastic assignment P = [Pi]i∈N = [pi,a]i∈N, a∈A is a substochastic matrix such that for
each i ∈ N and each a ∈ A,

∑
b∈A pi,b = 1 and

∑
j∈N pj,a ≤ qa. Let S be the set of all stochastic

assignments. A stochastic mechanism associates a stochastic assignment with each problem.
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Definition 1. A lottery L =
∑

s∈S wsµs is a probability distribution over assignments such that
(L1) The set S, called an index set, is nonempty and finite;
(L2)

∑
s∈S ws = 1;

(L3) for each s ∈ S, 0 < ws ≤ 1 and ws is a rational number;
(L4) for each s ∈ S, µs ∈ D,

where ws is called the weight of µs, and µS = (µs)s∈S ∈ DS is the support of L. Moreover, it has
the equal weights if for each s ∈ S, ws = 1/|S|. Also, it is feasible if instead of (L3), it satisfies
(L3’): for each s ∈ S, µs ∈ Df .

Note that the support is a product set, contrary to the standard terms.8 Also note that the
index set is finite and the weights are rational numbers.9 A (feasible) lottery mechanism
associates a (feasible) lottery with each problem.

For each assignment µ ∈ D, let π(µ) be a |N | × |A| matrix that represents µ. Note that a
given feasible lottery L =

∑
swsµs induces the stochastic assignment P =

∑
swsπ(µs). Therefore

every feasible lottery mechanism can be uniquely represented as a stochastic mechanism. Given
any stochastic assignment, the well-known Birkhoff-von Neumann theorem states that there is at
least one feasible lottery that induces it. However a stochastic mechanism may not be uniquely
represented as a feasible lottery mechanism.

When we analyze a lottery in a later section, we look at some special “equivalent” lottery, where
we mean that two lotteries are equivalent if they induce the same stochastic assignment. The
following is a useful lemma.

Lemma 1. For each lottery, there is an equivalent equal-weight lottery.

Proof. Let L =
∑

s∈S wsµs be a lottery. The lemma is obvious if S is a singleton. Thus, suppose
not. Without loss of generality, let S = {1, . . . , |S|}. By (L2) and (L3), for some n ∈ N, for each
s ∈ S, there is ms ∈ N such that ws = ms/n and

∑
s∈Sms = n. Then, π(L) = π

(∑
s∈S

ms

n
µs
)

=

π[ 1
n

∑
s∈S(

ms︷ ︸︸ ︷
µs + . . .+ µs)]. We iteratively define a collection of sets, {Ms}s∈S: M1 = {1, . . . ,m1},

for s ≥ 2, Ms =
{∑s−1

k=1mk + 1, . . . ,
∑s−1

k=1mk +ms

}
. Moreover, let M = ∪s∈SMs. Also, we define

a collection of assignments, (νm)m∈M as follows: for each m ∈ M , since there is a unique s ∈ S
with m ∈ Ms, let νm = µs. Then, the lottery 1

n

∑
m∈M νm is of equal weights and equivalent to

L.

Example 1. Let S = {1, 2}, µ1, µ2 ∈ Df . Consider two lotteries L = 2
3
µ1 + 1

3
µ2 and L′ =

1
3
µ1 + 1

3
µ1 + 1

3
µ2. Lottery L′ is the equivalent equal-weight lottery of L. ♦

8The reason will be clear in relating sd-efficiency of a lottery with Pareto efficiency of an assignment in some
replica economy in the next section.

9This tractability assumption generally holds in practice, and is satisfied by lotteries induced by all well-known
mechanisms.
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2.1 Axioms

A feasible lottery is ex-post efficient if it can be represented as a probability distribution over
Pareto-efficient feasible assignments. A popular ex-post efficient feasible lottery mechanism is the
random serial dictatorship (RSD). BM propose an appealing ex ante notion of sd-efficiency which
also implies ex post efficiency, which we introduce next. Let �∈ PN be given. For each i ∈ N and
each a ∈ A, let U(�i, a) := {b ∈ A | b �i a} be the upper contour set of i at a. Given i ∈ N and
P,R ∈ S, Pi stochastically dominates Ri at �i if for each a ∈ A,

∑
b∈U(�i,a)

pi,b ≥
∑

b∈U(�i,a)
ri,b.

In addition, P weakly stochastically dominates R at � if for each i ∈ N , Pi stochastically
dominates Ri at �i. P stochastically dominates R at � if P weakly stochastically dominates
R at � and P 6= R.

A stochastic assignment is sd-efficient at � if it is not stochastically dominated by another
stochastic assignment at �. Next is a much weaker efficiency property. A stochastic assignment
P ∈ S is non-wasteful at � if for each i ∈ N , each a ∈ A with pi,a > 0, and each b ∈ A with
b �i a, we have

∑
j∈N pj,b = qb.

We define our fairness axiom. Let �∈ PN . A stochastic assignment P ∈ S satisfies the equal
treatment of equals at � if for each i, j ∈ N , �i=�j implies Pi = Pj.

Axioms of a lottery mechanism except ex post efficiency are defined for its induced stochastic
assignment for each preference profile. A stochastic (lottery) mechanism is said to satisfy a property
if for each preference profile, its (induced) stochastic assignment satisfies that property.

A stochastic mechanism φ is sd-strategy-proof if for each �∈ PN , each i ∈ N , and each
�i∈ P, ϕi(�) stochastically dominates ϕi(�′i,�−i) at �i. A lottery mechanism is sd-strategy-proof
if its induced stochastic mechanism is sd-strategy-proof.

A stochastic mechanism ϕ weakly stochastically dominates a stochastic mechanism
ψ if for each �∈ PN , ϕ(�) weakly stochastically dominates ψ(�). Also, a stochastic mechanism
φ stochastically dominates a stochastic mechanism ψ if φ weakly stochastically dominates
ψ and for some �∈ PN , φ(�) stochastically dominates ψ(�) at �. Similarly, we can define the
stochastic dominance of a lottery mechanism by looking at its induced stochastic mechanism.

3 Sd-efficiency and Pareto efficiency

3.1 Characterization of sd-efficiency

Abdulkadiroğlu and Sönmez (2003) investigate a possible link between sd-efficiency and Pareto
efficiency. In particular, they ask whether lack of sd-efficiency of a stochastic assignment (or
equivalently, the sd-inefficiency of all lotteries it induces) can be associated with the lack of Pareto
efficiency of a feasible assignment induced by it. They show that such a link between the two
efficiency notions fails to exist: it turns out that even if every feasible assignment in the support
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of every feasible lottery that can be induced by a stochastic assignment is Pareto efficient, this
may not be sufficient to guarantee the sd-efficiency of this feasible lottery. Our first objective is
to recover the link between the two efficiency notions — albeit in a different sense —through an
intuitive characterization result. We show that the sd-efficiency of a given feasible lottery is in
fact implied by (and does imply) the Pareto efficiency of a “special” allocation constructed from
the support of this feasible lottery. Before stating this result more precisely, we need the following
definition.

Definition 2. Let � be a problem and S be an index set. We rename N as the set of types. In
the |S|-fold replica problem, for each type i ∈ N , there are |S| agents; for each object a ∈ A,
the quota is qa|S|; for each type i ∈ N , all |S| agents of that type share the common preferences
�i on A. Let is be the agent of type i indexed by s ∈ S, Ns = {1s, · · · , is, · · · , ns} be the set of
all agents indexed by s, and NS := ∪Ss=1Ns be the set of all agents. We say that �Ns := (�is)is∈Ns

is the s−replica problem, and �S:= (�Ns)s∈S denotes the |S|-fold replica problem.

Let � be a problem and S be an index set. An |S|−fold replica assignment is a function
νS : NS → A such that for each a ∈ A, |ν−1(a)| ≤ qa|S|. Let DS be the set of all |S|−fold replica
assignments. Given νS ∈ DS and s ∈ S, an s−replica assignment is a function νs : Ns → A

such that for each is ∈ Ns, νs(is) = ν(is). Thus, we denote νS = (νs)s∈S. An |S|−fold replica
assignment νS = (νs)s∈S is feasible if for each s ∈ S, s−replica assignment is feasible, i.e., for
each a ∈ A, |ν−1s (a)| ≤ qa.

Now we relate an |S|−fold replica assignment with a support of a lottery. Given a support
µS = (µs)s∈S of a lottery, the |S|−fold replica assignment induced by the support µS is
the |S|−fold replica assignment where for all s ∈ S, each agent is ∈ Ns is assigned object µs(i).
Conversely, given an |S|−fold replica assignment νS, the support (of a lottery) induced by
the |S|−fold replica assignment νS is the support in which at each event s ∈ S, each agent
i ∈ N is assigned object νs(is). Note that a lottery with the induced support does not always
induce a stochastic assignment. It does, however, if its weights are equal:

Lemma 2. The equal-weight lottery with the support induced by an |S| −fold replica assignment
produces a stochastic assignment.

Proof. Let µS be an |S|−fold replica assignment, and νS be the support of a lottery induced by
µS. Also, let P := (1/|S|)

∑
s∈S π(νs). To show that P is a stochastic assignment, we need to

check that (i) for each i ∈ N ,
∑

a∈A pi,a = 1, and (ii) for each a ∈ A,
∑

i∈N pi,a ≤ qa. Condition
(i) results from the fact that µS is a function from NS to A. On the other hand, condition (ii)
results from the facts that the lottery is of equal weights, and by definition of |S|−fold replica
assignment, for each a ∈ A,

∑
s∈S |ν−1s (a)| ≤ qa|S|.

8



Remark 1. By Lemma 2, from now on, unless confusion arises, we take the following: the support
of an equal-weight lottery is an |S|−fold replica assignment, and vice versa.

An |S|−fold replica assignment µS Pareto dominates an |S|−fold replica assignment µ′S at
�S if for all is ∈ NS, µS(is) �i µ′S(is) and for some is ∈ NS, µS(is) �i µ′S(is). Also, an |S|−fold
replica assignment is Pareto efficient at a problem �S if it is not Pareto dominated by any other
|S|−fold replica assignment. The following result relates the Pareto dominance of |S|−fold replica
assignments with the stochastic dominance of the equal-weight lottery with the induced support.

Lemma 3. Let S be an index set, and µS, µ′S be |S|−fold replica assignments. Suppose that µS
Pareto dominates µ′S at �S. Then, the equal-weight lottery with support µS stochastically dominates
the equal-weight lottery with support µ′S at �.

The proof is straightforward and so we omit it. The following result links sd-efficiency of a
(feasible or infeasible) lottery and Pareto efficiency of its support in the |S|−fold replica problem.

Theorem 1. Let �∈ PN and L be a lottery with an index set S. Then, lottery L is sd-efficient
at � if and only if the support of L is Pareto efficient at �S.

The characterization of sd-efficiency given by Theorem 1 is quite intuitive. Theorem 1 also forms
the basis of a practical test of sd-efficiency. Whereas determining whether a random assignment
is stochastically dominated or not may be difficult to check, Pareto efficiency of the support of
a lottery is fairly straightforward by drawing on the top trading cycles (TTC) method which we
later describe.10

3.2 Welfare improvement from an ex-post efficient lottery

In later sections, we aim to show that ex ante efficiency analysis besides ex post analysis can
be directly done using lotteries. In particular, we shall propose a method to directly construct
a new feasible lottery that stochastically improves upon a given sd-inefficient feasible lottery.
But before doing so, we make a useful observation about a possible ex post welfare consequence
of stochastically improving upon a given feasible lottery. The next example shows that an ex
ante welfare improvement over an ex-post efficient feasible lottery may actually entail an ex-post
inefficient lottery.

Example 2. (Ex ante welfare improvement over an ex-post efficient lottery results in
ex-post inefficient lottery)

Let N = {1, 2, 3, 4}, A = {a, b, c, d}, and qa = qb = qc = qd = 1. Preferences are as follows.
10Simply apply the TTC to the problem where the support of the lottery is interpreted as an extended housing

market with endowments. Then the following is easy to show. The support of the lottery is Pareto efficient if and
only if the TTC algorithm generates only self-cycles.

9



�1 �2 �3 �4

a a b b

b b a a

c c d d

d d c c

Consider the following ex-post efficient lottery.

L =
1

2

(
1 2 3 4

a b d c

)
+

1

2

(
1 2 3 4

c d b a

)
, and π(L) =


1/2 0 1/2 0

0 1/2 0 1/2

0 1/2 0 1/2

1/2 0 1/2 0

 .

Next consider the following feasible lottery:

L′ =
1

2

(
1 2 3 4

a c b d

)
︸ ︷︷ ︸

µ1

+
1

2

(
1 2 3 4

c b d a

)
︸ ︷︷ ︸

µ2

, and π(L′) =


1/2 0 1/2 0

0 1/2 1/2 0

0 1/2 0 1/2

1/2 0 0 1/2

 .

Clearly, lottery L′ stochastically dominates lottery L. However, the support of L′ contains
Pareto inefficient assignment µ2. Thus L′ is not ex-post efficient. We can show that there is no
other feasible lottery that induces the stochastic assignment π(L′).11 ♦

Given that sd-efficiency implies ex post efficiency, the observation in Example 2 is counter
intuitive. It implies that ex post efficiency is not preserved under welfare improvements in stochas-
tic assignments. Given an ex-post efficient but sd-inefficient feasible lottery, one can arrive at
an sd-efficient (and thus ex-post efficient) feasible lottery by iteratively obtaining a stochastically
improving lotteries (See Section 4).

One of our objectives in this paper is to develop a method for constructing a new feasible lottery
that stochastically improves upon a given sd-inefficient feasible lottery L while also ensuring ex

11For the proof, we first show that there is no feasible and equivalent lottery with L′ that is ex-post efficient
and of the support size of 2. Let L′′ = w1µ

′′
1 + w2µ

′′
2 where µ′′1 and µ′′2 are feasible. Consider agent 1. Since

π1(L
′′) = (1/2, 0, 1/2, 0, 0), w1 = w2 = 1/2. Wlog, µ′′1(1) = a and µ′′2(1) = c; Consider agent 2. Since π2(L′′) =

(0, 1/2, 1/2, 0, 0), either [µ′′1(2) = b and µ′′2(2) = c] or [µ′′1(2) = c and µ′′2(2) = b]. Since µ′′2(1) = c, by the feasibility
of µ′′2 , the former is impossible. Thus, µ′′1(2) = c and µ′′2(2) = b; Consider agent 3. Since π3(L′′) = (0, 1/2, 0, 1/2, 0),
either [µ′′1(3) = b and µ′′2(3) = d] or [µ′′1(3) = d and µ′′2(3) = b]. Since µ′′2(2) = b, by the feasibility of µ′′2 , the latter is
impossible. Thus, µ′′1(3) = b and µ′′2(3) = d; Consider agent 4. Clearly Thus, µ′′1(4) = d and µ′′2(4) = a. Therefore,
µ1 = µ′′1 and µ2 = µ′′2 . Similarly, we can show that any equal-weight lottery that is equivalent to L′ has the support
consisting only of µ1 and µ2. Also, for any lottery, by Lemma 1 and its proof, there is its equivalent lottery L′′ that
only contains the same assignment as the original lottery. Thus, any feasible lottery that is equivalent to L′ has the
support consisting only of µ1 and µ2, and thus is not ex-post efficient.
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post efficiency. To this end, we first take an equal-weight lottery with support µS equivalent to
L (Lemma 1), and then by the correspondence of the support and |S|−fold replica assignment
(Remark 1), we consider a Pareto improvement from µS in the |S|−fold replica problem. To this
end, we introduce an |S|−fold replica problem with endowments µS where each agent is ∈ NS

owns object µS(is) ≡ µs(is). The problem is defined by (�S, µS).
In order to have a Pareto improving assignment in the problem (�S, µS), we use the notion

of (improvement) cycle: it is a finite list of objects and agents (a1, i1, a2, i2, . . . , am, im), where
am+1 := a1, such that each agent il owns object al, and prefers al+1 to his owned object al. Finding
an improvement cycle, and exchanging each agent’s owned object for the next agent’s owned object
in the cycle, we can obtain a Pareto improving assignment.

However, there is a complication in the approach of obtaining a stochastically improving lottery:
Even if the initial lottery is feasible, the resulting lottery induced by a Pareto improvement may
not be feasible. Thus, in Section 3.3, we propose a method that transforms a given infeasible
lottery into an equivalent feasible one, and then in Section 4.3, we introduce a method of Pareto
improvement in the replica problem with endowments.

3.3 Feasible assignment generating (FAG) algorithm

Given an equal-weight but infeasible lottery with the support µS = (µs)s∈S, we introduce an
algorithm that generates an equivalent and feasible lottery. To this end, we introduce some notion:
an |S|−fold replica assignment µS is frequency equivalent to an |S|−fold replica assignment νS
if for each a ∈ A, |µ−1S (a)| = |ν−1(a)|. Note that as we defined in Section 3.1, an |S|−fold replica
assignment νS is feasible if for each s ∈ S and each a ∈ A, |ν−1s (a)| ≤ qa.

Feasible Assignment Generating (FAG) Algorithm.

Initialization. Given is an |S|−fold replica assignment µS = (µs)s∈S. Without loss of generality,
assume S = {1, 2, . . . , |S|}. We focus on swapping objects in the set Ā :=

{
a ∈ A | |µ−1S (a)| > 0

}
— those which are assigned under µs for some s ∈ S. For given i ∈ N and s ∈ S, µs(i) is
sometimes denoted by µS(s, i). We use both notations whenever convenient. Let
µS(S, i) =

{
µ(s, i) ∈ Ā | s ∈ S

}
and µS(1, I) =

{
µ(1, i) ∈ Ā | i ∈ I

}
. Given O ⊆ Ā, let

B(O) = ∪i∈N :µ(1,i)∈O {µS(S, i)} ,

Bt(O) =

O if t = 1,

B(Bt−1(O)) if t ≥ 2.

11



Phase 1 (Swap path identification). Let a ∈ µS(1, S) such that |µ−11 (a)| > qa, i.e., object a
is assigned agents more than its quota at µ1 (If no such object exists, µ1 is feasible and we are
done.). Let X =

{
c ∈ Ā | |µ−11 (c)| ≤ qc − 1

}
, i.e., the set of objects that are only partially assigned

to agents at µ1 under µS. Check if B1({a}) ∩X 6= ∅; if not, check if B2({a}) ∩X 6= ∅; . . .; and so
on. Let t ∈ N be the smallest number such that Bt({a}) ∩X 6= ∅. This procedure is well-defined
by the following claim whose proof can be found in the Appendix.

Claim 1. 1) B0({a}) ⊆ B1({a}) ⊆ B2({a}) ⊆ . . .;
2) For each t ∈ {0} ∪ N, if Bt({a}) ∩X = ∅, then Bt({a}) ( Bt+1({a});
3) There is t ∈ {0} ∪ N such that Bt({a}) ∩X 6= ∅. Thus, {a} ( B1({a}) ( . . . ( Bt({a}).

Phase 2 (Execution of swaps). Phase 1 implies that there are (t+ 1), t ≥ 1, distinct objects
b0 := a, b1, . . . , bt := x such that b1 ∈ B({b0}), b2 ∈ B({b1}), ..., bt = x ∈ B({bt−1}) ∩X. This
implies that there are t distinct agents, i1, i2, . . . , it, and corresponding indices, ki1 , ki2 , . . . , kit
such that µS(1, i1) = b0 = a and µS(ki1 , i1) = b1; µS(1, i2) = b1 and µS(ki2 , i2) = b2; ...;
µS(1, it) = bt−1 and µS(kit , it) = bt = x. Next update the support µS by setting µS(1, i1) := b1

and µS(ki1 , i1) := b0 = a; µS(1, i2) := b2 and µS(ki1 , i2) := b1, ..., µS(1, it) := bt and
µS(kit , it) := bt−1 = x.

Iteration. Given the support µS, repeating Phases 1 & 2 at most n − 1 times yields a new
support µ1

S whose first index assignment, µ1
1, is feasible. Thus, we have finalized the first index

assignment. Next we obtain a new support µ2
S, whose first index assignment coincides with that

of µ1
S, by iteratively applying Phases 1 & 2 to the sub-support obtained from µ1

S by restricting to
the assignments from 2 to |S|. Thus we have finalized the second index assignment. Continuing
similarly the algorithm terminates once we have cleared indices 1 through |S|−1. The final support
µ
|S|−1
S consists of |S| feasible assignments.
Therefore, we obtain the following.

Proposition 1. Given an |S|−fold replica assignment µS, the FAG algorithm produces a feasible
|S|−fold replica assignment that is frequency equivalent to µS.

The following is a corollary of Lemma 1 and Proposition 1.

Corollary 1. Given any infeasible lottery, there is an equivalent feasible lottery with equal weights.

We call a stochastic assignment rational if all of its entries are rational numbers. Then we can
represent a rational stochastic assignment by an equal-weight infeasible lottery in a
straightforward way. Thus, as a corollary of Proposition 1, we have

Corollary 2. Any rational stochastic assignment can be expressed as a feasible equal-weight lottery
that induces it.
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Remark 2. Note that Corollary 2 gives a version of Birkhoff (1946); von Neumann (1953) when a
stochastic assignment is restricted to be rational.

Example 3. (Finding feasible assignment)
Let N = {1, 2, 3, 4, 5, 6} and A = {a, b, c, d, e, f} such that all of objects have the quota of 1.

Consider the following support µS = (µ1, µ2, µ3).

µ1 =

(
1 2 3 4 5 6

a a b c d e

)
, µ2 =

(
1 2 3 4 5 6

a c c d f e

)
, and µ3 =

(
1 2 3 4 5 6

b b d e f f

)
.

Initialization. We first tabulate these assignments into a table:

µS =

 a [a] b [c] d [e]

a [c] c d f e

b b d [e] f [f ]

 .

Phase 1 (Swap path identification). Observe that object a is assigned to multiple agents
at µ1 although qa = 1; and object f is not assigned to any agent at µ1, i.e., X = {f}. We
start with B({a}) = {a, b, c}. Since B({a}) ∩ X = ∅, we proceed with B2({a}) = B ({a, b, c}) =

{a, b, c, d, e}. Since B2({a}) ∩ X = ∅, we proceed with B3({a}) = B({a, b, c, d, e}) = A \ {a0}.
Since B3({a}) ∩X = {f}, we conclude that t = 3.
Phase 2 (Execution of swaps). From Phase 1 we easily obtain a set of four objects {b0 = a, b1 =

b, b2 = d, b3 = f} such that b ∈ B({a}), d ∈ B({b}), and f ∈ B({d}). In particular, we obtain a
corresponding set of three agents {1, 3, 5} such that µ(1, 1) = a and µ(3, 1) = b; µ(1, 3) = b and
µ(3, 3) = d; and µ(1, 5) = d and µ(2, 5) = f . The agents and their assignments identified in this
fashion are indicated in boldface in the above table. (Note that such agent and object sets may
not be uniquely obtained. An alternative path from object a to f is indicated in brackets in the
above table.) Next we execute the vertical swaps to update the table as follows:

µS =

 b a d c f e

a c c d d e

a b b e f f

 .

Iteration. Observe that the first row of the updated table above induces a feasible assignment
which is indicated in boldface. So we next re-apply Phases 1 & 2 to the remaining two rows. Then
it is not much difficult to see that the remaining table contains two trivial vertical swaps involving
agent 5 and either of agents 2 and 3 for swapping object c with b; and object d with f . The
following is one possible final table whose three rows induce the feasible assignments µ1, µ2, and
µ3 respectively.
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µS =

 b a d c f e

a b c d f e

a c b e d f

 .

♦

3.4 An alternative proof of an sd-efficiency characterization

Based on Theorem 1, we next provide an alternative proof of Abdulkadiroğlu and Sönmez (2003)’s
characterization of sd-efficiency. Their characterization is based on the following “domination”
notion.

Definition 3. A set of feasible assignments M ′dominates a set of feasible assignments M if
1. there exists a set of assignments M that is frequency equivalent to M ′ and,
2. there exists a one-to-one function f : M →M such that
(a) for all µ ∈M, µ Pareto dominates or is equal to f(µ), and
(b) there exists µ ∈M such that µ Pareto dominates f(µ).

We provide a relatively shorter and transparent proof of the main characterization result of
Abdulkadiroğlu and Sönmez (2003):

Corollary 3. (Abdulkadiroğlu and Sönmez, 2003) Given a problem � let feasible lottery L
be an arbitrary decomposition of a stochastic assignment P. P is sd-efficient at � if and only if
each subset M of the support of lottery L is undominated.

Proof. (⇒) Suppose there is a set M ⊆ S(L) that is dominated. Let M be the set in Definition
3 that is frequency equivalent to M, and for each µ ∈ M let f(µ) ∈ M be the assignment that
(weakly) Pareto dominates µ. Let Σ(L) be the allocation induced by the support of L, and β be
an allocation that would be induced if each µ ∈ M were to be replaced by f−1(µ) ∈ M. Clearly,
β Pareto dominates Σ(L). By Theorem 1 lottery L (and thus P ) is sd-inefficient.

(⇐) Suppose that lottery L with support S(L) ≡ {µ1, µ2, . . . , µK} is sd-inefficient at �.
By Theorem 1 there is an an allocation β : NK → H which Pareto dominates Σ(L). Let
M = {µ′1, µ′2, . . . , µ′K} be the set of assignments inversely-induced by allocation β. Since β Pareto
dominates S(L), for each k ∈ {1, . . . , K}, µ′k is either equal to or Pareto dominates µk. By Propo-
sition 1, applying the FAG algorithm to the set M yields a set of feasible assignments M ′ that is
frequency equivalent to M. Thus S(L) is dominated.

In the remainder of the paper, we provide illustrative applications of the tools and ideas we
have developed so far for constructing lottery mechanisms.
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4 Lottery Mechanism dominating the Random Serial Dicta-

torship Mechanism

The most widely-used lottery mechanism in real-life markets is the random serial dictatorship
mechanism (RSD). However, as BM pointed out, the RSD is not sd-efficient but only ex-post
efficient. In this section, we propose two methods of improving upon RSD.

4.1 The random serial dictatorship mechanism (RSD)

To define the random serial dictatorship mechanism (RSD), we introduce some notions: We use a
priority of agents in N that is a bijection from {1, 2, . . . , |N |} to N . For example, given a priority
f , f(1) is the agent with the highest priority, f(2) is the one with the second-highest priority, and
so on. Let F be the set of all priorities.

Next is the serial dictatorship (deterministic) mechanism induced by a priority f ∈ F .
We denote it by SDf . Fix a problem �. The assignment SDf (�) is found iteratively as follows.
Step 1: The highest priority agent f(1) is assigned her top choice object under �f(1).

...
Step k: The kth highest priority agent f(k) is assigned her top choice object under �f(k) among
the remaining objects.

Now we are ready to define the random serial dictatorship mechanism (RSD), denoted
by RSD: Fix a problem �. First, a priority f is chosen with probability 1/n!. Second, agents are
assigned objects according to SDf (�). Formally,

RSD(�) =
1

n!

∑
f∈F

SDf (�).

Note that RSD is a lottery mechanism and its index set is the set F of all priorities.

Remark 3. RSD is known to be sd-strategy-proof, ex-post efficient, and satisfy the equal treatment
of equals. However, it is wasteful (Erdil, 2014).

4.2 Efficient lottery construction (ELC) procedure

We shall propose a method, called the efficient lottery construction (ELC) procedure, to
directly construct a new ex-post efficient and feasible lottery that stochastically dominates a given
sd-inefficient feasible lottery: Let a preference profile � and a feasible lottery L be given. Our
method is as follows.
Stage 1: (Initialization). We obtain an equivalent equal-weight lottery, Le (Lemma 1), with the
support µS. We decide which assignments in the the support to improve on, which is given by a
partition S of S.
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Stage 2 (Improvement). For each M ∈ S, we consider the |M |-fold replica problem �M with
endowments µM , and then apply some Pareto improvement algorithm (to be introduced in the
next subsection) which selects a Pareto improving assignment νM .
Stage 3 (FAG algorithm). For each M ∈ S and each νM , we apply the FAG algorithm (Section
3.3) and obtain a feasible |M |−fold replica assignment, νfM .
Stage 4: (Improvement) For each m ∈ M , we consider the original problem � with endowments
νfm, and then apply some Pareto improvement algorithm (to be introduced in the next subsection)
which delivers a Pareto efficient assignment ν̂m.
Stage 5 (New lottery). Take the equal-weight lottery 1

|S|
∑

s∈S ν̂s.
Note that stage 2 implies that the resulting equal-weight lottery stochastically dominates the

original lottery L (Lemma 3). Moreover, as we saw in Section 3.2 that the welfare improvement
does not always lead to ex-post efficiency, Stage 4 makes sure that the new lottery is ex-post
efficient. This is summarized in the next result whose straightforward proof is omitted.

Theorem 2. For each problem � and each feasible lottery L, the ELC algorithm induces an ex-post
efficient lottery that weakly stochastically dominates L.

4.3 Top Trading Cycles (TTC) Algorithm

We introduce a Pareto improving algorithm that we alluded to in the ELC procedure. This is
based on the well-known idea of Gale’s top trading cycles (Shapley and Scarf, 1974). The top
trading cycles (TTC) algorithm is originally for a housing market where each object is owned by
only one agent. In contrast, we deal with replica problems with endowments where an object is
owned by multiple agents. Thus, we adapt TTC idea to our problem as follows.

For a given problem (�S, µS) , the TTC algorithm induces an |S|−fold replica assignment:

Step 0: For each object a ∈ A, assign a counter that keeps track of how many copies are available
at the object. Initially set the counters equal to qa|S|.

Step 1: Each agent points to her favorite object. Each object points to all of its owners. There is
at least one (improvement) cycle although several cycles might intersect. Choose at least one
cycle where if chosen cycles intersect, removing them should be feasible. Each agent in a chosen
cycle is assigned a copy of the object that she is pointing to and is removed. The counter of each
object in the cycle is reduced by one and if it reduces to zero, the object is also removed.
Counters of all of the other objects stay the same.

Step k: Each remaining agent points to her favorite object among the remaining ones. Each
remaining object points to all of its remaining owners. There is at least one cycle. Choose at
least one cycle where if chosen cycles intersect, removing them should be feasible. Each agent in
a chosen cycle is assigned a copy of the object that she is pointing to and is removed. The
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counter of each object in the cycle is reduced by one and if it reduces to zero, the object is also
removed. Counters of all of the other objects stay the same.

The algorithm terminates when all agents are assigned objects. Notice that when several cycles
intersect, we do not specify a cycle selection rule in the above algorithm. Thus, we will specify a
cycle selection rule later in using the TTC algorithm.

An |S|−fold replica assignment νS is individually rational at �S if for each is ∈ NS, νS(is) �i
µS(is). Now we are ready to state:

Proposition 2. For each |S|−fold replica problem with endowments (�, µS), the TTC algorithm
induces an individually rational and Pareto efficient assignment at �S.

The proof is in the Appendix.

4.4 Mechanisms that stochastically dominates the random serial dicta-

torship mechanism

4.4.1 TTC-based random serial dictatorship (TRSD) mechanism

Using the ELC procedure, we construct an sd-efficient lottery mechanism among the ones that
stochastically dominate RSD, and satisfies the equal treatment of equals. As RSD induces an
equal-weight lottery with the index set F and the support SDF (�) := (SDf (�))f∈F , we take F as
a unique element of the partition in the ELC procedure. In other words, given a problem �∈ PN ,
we apply the TTC algorithm to the |F |−fold replica problem with endowments, (�F , SDF (�)),
to obtain the induced |F |−fold replica assignment. By Theorem 2, the resulting lottery is ex-post
efficient and weakly stochastically dominates RSD. Since the equal treatment of equals should be
satisfied as part of our objective, we develop a cycle selection rule in the TTC algorithm for this
purpose. We first introduce some notion.

Given f ∈ F and distinct agents i1, . . . , im, j1, . . . , jm ∈ N , define the priority f (i1↔j1,i2↔j2,...,im↔jm) ∈
F such that for each l ∈ {1, . . . ,m}, the positions of il and jl in f is switched and all of the other
agents keep the same priorities as in f .

Moreover, for each i ∈ N , let N(i) := {j ∈ N |�j=�i} be the set of agents who have the same
preferences as i does. Let N := {N(i) | i ∈ I}. Note that for each i ∈ N , i ∈ N(i) and N is a
partition of N .12

Finally, given f1, . . . , fm ∈ F and i1, . . . , im such that N = {N(i1), . . . , N(im)}, we define

F (f1,...,fm) =
{

(h1, . . . , hm) ∈ Fm | for each l ∈ {1, . . . ,m} and some jl ∈ N(il),

for each k ∈ {1, . . . ,m} , hk = f
(i1↔j1,...,im↔jm)
k

}
.

12A partition of a set N is a collection of disjoint nonempty subsets of N whose union is N .
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Note that |F (f1,f2,...,fm)| = |N(i1)| × |N(i2)| × . . . |N(im)|.
Now we are ready to introduce a cycle selection rule in the TTC algorithm that is based on an

exogenous priority g ∈ F . Consider each step in the TTC algorithm.
Round 1: Each remaining agent points to her top choice among the remaining objects. Each
remaining object points to an arbitrary agent whose type has the highest priority among these
owners’s types according to g ∈ F . Since each agent points to one object and each object points
to one agent, there is at least one cycle and no two distinct cycles intersect. We call them initial
cycles.
Round 2: For each initial cycle, we make additional cycles (if they exist) as follows. Take an initial
cycle denoted by (a1, i1f1 , a

2, i2f2 , . . . , a
m, imfm) where for each l ∈ {1, . . . ,m}, il ∈ N and ilfl ∈ NF .

Note that N(i1), N(i2), . . . , N(im) are disjoint, and for each l ∈ {1, . . . ,m}, al = SDfl(�)(il).
Pick (h1, . . . , hm) ∈ F (f1,...,fm). Let j1 ∈ N(i1), . . . , jm ∈ N(im) such that for each k ∈

{1, . . . ,m}, hk = f
(i1↔j1,...,im↔jm)
k . Then, for each l ∈ {1, . . . ,m}, SDfl(�)(jl) = SDhl(�)(il).

Thus, we have a cycle (a1, j1h1 , a
2, j2h2 , . . . , a

m, jmhm), called an additional cycle. In this way, we
can construct |N(i1)| × · · · × |N(im)| cycles.
Round 3: For each initial cycle, we remove the initial cycle and all of the additional cycles.

The TTC-based RSD mechanism (TRSD) induced by a priority g ∈ F is defined to be
an equal-weight lottery with the support induced by the TTC algorithm specified in the above.

Therefore, we have the following.

Theorem 3. Suppose n ≥ 4. For each g ∈ F , the TTC-based RSD mechanism induced by g is
sd-efficient, stochastically dominates the RSD, and satisfies the equal treatment of equals.

Proof. The sd-efficiency follows from Theorem 1 and Proposition 2. The stochastic dominance
follows from Theorem 2. We show the equal treatment of equals. Let �∈ PN and i1, j1 ∈ N such
that �i1=�j1 . Then, j1 ∈ N(i1). It is sufficient to show that in each step of the TTC algorithm,
the number of removed cycles involving agents with type i1 is equal to the one involving agents
with type j1. In a step when an agent with type i is involved in a cycle (a1, i1f1 , a

2, i2f2 , . . . , a
m, imfm),

by construction in Round 2, the number of removed cycles involving agents with type i1 is |N(i2)|×
|N(i3)| × . . .× |N(im)|, which is equal to the one involving agents with type j1.

However, TRSD is not practical, because the size of the support is |F | = n! which is compu-
tationally demanding as n gets large. In the next subsection, we develop a much more practical
mechanism.

4.4.2 TTC-based random serial dictatorshipK mechanism (TRSDK)

Using ELC procedure (Section 4.2), we introduce a practical lottery mechanism, called TTC-
based random serial dictatorshipK mechanism (TRSDK), which stochastically dominates RSD
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and satisfies the equal treatment of equals, where K ∈ {1, . . . , n!}. To this end, we introduce a
notation: Let

F(K) = {{f1, . . . , fK} | f1, . . . , fK ∈ F are distinct } .

Note that |F(K)| =
(
n!
K

)
, where

(
n!
K

)
is the number ofK−combinations from n! elements. We define

theTTC-based random serial dictatorshipK mechanism (TRSDK), whereK ∈ {1, . . . , n!},
by specifying the index set S and a partition S of S needed to use our ELC procedure as follows.

({f1, . . . , fK}, g, f) ∈ F (K)× {f1, . . . , fK} × {f1, . . . , fK} ∈ S,

{({f1, . . . , fK}, g, f) | {f1, . . . , fK} ∈ F (K), g, f ∈ {f1, . . . , fK}} ∈ S.

We fix �∈ PN and K ∈ {1, . . . , n!}. TRSDK is the ELC procedure where the second stage we
use TTC for the corresponding replica problem with endowments, and the selection rule in TTC
is to use priority g. In particular,
Round 1: Choose F (K) = {f1, . . . , fK} ∈ F(K) with equal probability 1/

(
n!
K

)
.

Round 2: Choose g ∈ F (K) with equal probability 1/K.
Round 3: Consider the |F (K)|−fold replica problem with endowments (�F (K), SDF (K)(�)), where
SDF (K)(�) := (SDf (�))f∈F (K), and apply the following cycle selection rule in the TTC algorithm:
In each step of the TTC algorithm, each remaining agent point to her favorite object among the
remaining ones. Each remaining object points to an arbitrary agent whose type has the highest
priority among these owners’ types according to g ∈ F (K). There is at least one cycle, and no
two cycles intersect.

We apply the TTC algorithm with the above cycle selection given a priority g ∈ F (K), and
obtain the |F (K)|−fold replica assignment, denoted by TTCF (K)(�F (K), SDF (K)(�); g). Its f−
replica assignment is denoted by TTCf (�F (K), SDF (K)(�); g). Then for each f ∈ F (K), we apply
the TTC algorithm for the original problem with endowments TTCf (�F (K), SDF (K)(�); g). We
denote this outcome by the same notation as TTCf (�F (K), SDF (K)(�); g) for notational simplic-
ity. Then, we run the induced equal-weight lottery 1

K

∑
f∈F (K) TTCf (�F (K), SDF (K)(�); g). In

summary, the TRSDK mechanism is formally expressed as

TRSDK(�) =
1(
n!
K

) ∑
F (K)∈F(K)

1

K

∑
g∈F (K)

1

K

∑
f∈F (K)

TTCf (�F (K), SDF (K)(�); g). (1)

Remark 4. Note that the TRSD1 mechanism coincides with the RSD mechanism.

Theorem 4. Let K ∈ {2, . . . , n!}. TRSDK is ex-post efficient, stochastically dominates RSD, and
satisfies the equal treatment of equals. However, it is not sd-efficient.

Proof. The ex-post efficiency follows from Theorem 2. To see the stochastic dominance, we
express RSD as follows. Given a problem �,
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RSD(�) =
1

n!

∑
f∈F

SDf (�)

=
1

n!
(
n!−1
K−1

)∑
f∈F

∑
F (K)∈F(K) s.t.f∈F (K)

SDf (�)
(
∵ | {F (K) ∈ F(K) | f ∈ F (K)} | =

(
n!−1
K−1

))
=

1

K
(
n!
K

)∑
f∈F

∑
F (K)∈F(K) s.t.f∈F (K)

SDf (�) (∵
(
n!
K

)
=
(
n!−1
K−1

)
× n!

K
)

=
1

K
(
n!
K

) ∑
F (K)∈F(K)

∑
f∈F (K)

SDf (�) =
1

K2
(
n!
K

) ∑
F (K)∈F(K)

∑
g∈F (K)

∑
f∈F (K)

SDf (�)

=
1(
n!
K

) ∑
F (K)∈F(K)

1

K

∑
g∈F (K)

1

K

∑
f∈F (K)

SDf (�). (2)

Comparing the expression (1) of TRSDK with the one (2) of RSD, by Theorem 2, given F (K) ∈
F(K) and g ∈ F (K), the |F (K)|−fold replica assignment TTCF (K)(�F (K), SDF (K); g) Pareto
dominates the one SDF (K)(�). Thus, by Lemma 3, TRSDK stochastically dominates the RSD.

The proof for the equal treatment of equals can be found in the appendix. Moreover, we can
see the sd-inefficiency by the computational simulation in Example 4.

Example 4. Let N = {1, 2, 3, 4}, A = {a, b, a0}, qa = qb = 1, and �∈ PN such that

�1 �2 �3 �4

a a b b

b b a a

a0 a0 a0 a0

where a0 is the null object. The following tables show the induced stochastic assignments through
computer simulations.

RSD TRSD2 TRSD3

a b a0 a b a0 a b a0

Agent 1 0.4167 0.0833 0.5000 0.4312 0.0688 0.5000 0.4417 0.0583 0.5000
Agent 2 0.4167 0.0833 0.5000 0.4312 0.0688 0.5000 0.4417 0.0583 0.5000
Agent 3 0.0833 0.4167 0.5000 0.0688 0.4312 0.5000 0.0583 0.4417 0.5000
Agent 4 0.0833 0.4167 0.5000 0.0688 0.4312 0.5000 0.0583 0.4417 0.5000

We show the working of TRSD2.
Round 1: Suppose that F (2) = {f1, f2} is drawn with probability 1/

(
4!
2

)
where f1 = (1, 2, 3, 4) and

f2 = (3, 4, 1, 2). Then, SDf1(�) =

(
1 2 3 4

a b a0 a0

)
and SDf2(�) =

(
1 2 3 4

a0 a0 b a

)
.

Round 2: Suppose that f1 is drawn with probability 1/2.
Round 3: Then, we apply the TTC algorithm induced by f1 as follows.
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Here, for simplicity, we draw only the pointing arrows from agents who are pointed out by
objects. Then,

TTCF (2)

(
�F (2), SDf1(�), SDf2(�); f1

)
=

1

2

(
1 2 3 4

a a a0 a0

)
+

1

2

(
1 2 3 4

a0 a0 b b

)

=
1

2

(
1 2 3 4

a a0 b a0

)
+

1

2

(
1 2 3 4

a0 a a0 b

)
(FAG algorithm)

Similarly, if in round 2, f2 is drawn with probability 1/2, then we have the same lottery as the
previous one. That is, in this example, the selection of priorities from F (2) does not matter for
the TTC algorithm. The next example shows the case where it does matter. ♦

Example 5. (Cycle selection matters) Let N = {1, 2, . . . , 6} ,A = {a, b, c, d}, qa = qb = qc = qd =

1, and �∈ PN such that

�1 �2 �3 �4 �5 �6

b c a d b a

a b c c d d

a0 a0 a0 a0 a0 a0

We consider K = 2.
Round 1: Suppose that F (K) = {f1, f2} is drawn with probability 1/

(
5!
2

)
where f1 = (5, 1, 6, 4, . . .)

and f2 = (6, 3, 2, 5, . . .). Then,

SDf1(�) =

(
1 2 3 4 5 6

a a0 a0 c b d

)
and SDf2(�) =

(
1 2 3 4 5 6

a0 b c a0 d a

)
.

Round 2-case 1: Suppose that f1 is drawn with probability 1/2.
Round 3-case 1: Apply the TTC algorithm induced by f1 as follows.
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Here, to illustrate the difference of cycle selections, we illustrate the algorithm until a cycle
selection matters. Then,

TTCF (2)(�F (2), SDf1(�), SDf2(�); f1) =
1

2

(
1 2 3 4 5 6

a a0 a0 d b d

)
+

1

2

(
1 2 3 4 5 6

a0 c c a0 b a

)
.

Round 2-case 2: On the other hand, suppose that f2 is drawn with probability 1/2.
Round 3-case 2: Apply the TTC algorithm induced by f2 as follows.

Then,

TTCF (2)(�, SDf1(�), SDf2(�); f2) =
1

2

(
1 2 3 4 5 6

b a0 a0 c b d

)
+

1

2

(
1 2 3 4 5 6

a0 c a a0 d a

)
.

♦

5 A Lottery Representation of Probabilistic Serial

Motivated by the sd-inefficiency of RSD, BM introduced a central stochastic mechanism that
achieves sd-efficiency — the probabilistic serial mechanism (PS). However, since PS is not a lottery

22



mechanism, it might be less tempting to implement in practice as discussed in the Introduction.
In this section, we offer a method of representing the PS stochastic assignment by a lottery.

5.1 The probabilistic serial mechanism (PS)

For each problem �, the stochastic assignment of the probabilistic serial mechanism (PS) is
computed via the following simultaneous eating algorithm:13 Given a problem �, think of each
object a as an infinitely divisible good with supply qa that agents eat in the time interval [0, 1].
Step 1: Each agent eats away from her top choice object at the same unit speed. Proceed to the
next step when some object is completely exhausted.

...
Step k: Each agent eats away from her top choice object from her remaining ones at the same unit
speed. Proceed to the next step when some object is completely exhausted.

The algorithm terminates after some step when each agent has eaten exactly 1 total unit of
objects (i.e., at time 1). The stochastic allotment of an agent i by PS is then given by the amount of
each object she has eaten until the algorithm terminates. Let PS(�) be the stochastic assignment
of PS for problem �.

Remark 5. PS is known to be weakly sd-strategy-proof, sd-efficient, and envy-free (Bogomolnaia
and Moulin, 2001).

5.2 Lottery representation of the probabilistic serial mechanism

In this section we introduce an algorithm by which any PS stochastic assignment can be represented
as an equal-weight lottery L. Specifically, for each preference profile �, we construct a set of
priorities, F ∗, such that

PS(�) =
1

|F ∗|
∑
f∈F ∗

SDf (�).

Note that

RSD(�) =
1

|F |
∑
f∈F

SDf (�),

where F is the set of all priorities. The difference is that F ∗ depends on preference profiles, while
F ∗ might be smaller than F and will usually contain several copies of some of the priority orderings.
We show how to construct F ∗.14

13See Hugh-Jones et al. (2014) for an experimental evaluation of PS.
14We can show a more general result in which any sd-efficient random assignment (and not only PS) can be

represented as an equal-weight lottery using the same algorithm. The only requirement for such a stochastic
assignment is that all its elements are rational numbers. It is easy to see that if some elements are irrational then
the lottery representation is not feasible due to the fact that irrational weights are excluded by (L3) in the definition
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Consider a preference profile �∈ PN and a random assignment P = PS(�). Note that P is
sd-efficient and contains only rational elements. Let us relabel the objects as a1, a2, ..., ak, in the
exhausting order in the eating algorithm of PS, that is, object a1 is exhausted first, a2 second, and
so forth until ak is exhausted in the end. When two or more objects are simultaneously exhausted
we order them randomly. The objects which have not been eaten fully but only to some extent
are put in the end of the ordering in some random order: ak+1, ..., a|A|. Note that the null-object
a0 is never exhausted and does not appear in this ordering. For each object aj, let E(aj) be the
set of agents that have eaten aj, i.e., E(aj) = {i ∈ N |piaj > 0}.15

Since all elements in P = {pij} are rational they can be represented as irreducible fractions of
natural numbers pij =

rij
tij
, where rij, tij ∈ N. Let tj be the least common multiple among all tij,

i ∈ N , corresponding to some object aj:

tj = arg min
t′

(t′ : ∀i ∈ N t′
...tij),

and in case some object aj′ is not eaten at all, we assume its corresponding tj′ = 1.
We now construct a set of priorities F ∗ = {fm}m≤|F ∗|. For exposition purposes, we express the

set F ∗ as a matrix (also denoted as F ∗) whose elements are agents and whose columns determine
priority orderings. Thus, the first row of the matrix F ∗contains the agents that get top priorities,
the second − agents with priorities of the second order and so forth till the last row which contains
the agents that have bottom priorities.

Construction of the matrix F ∗ therefore requires determining the size and the elements of this
matrix. In the algorithm however we first determine the elements, as if we knew the number of
its columns |F ∗| already from the beginning. This assumption simplifies the algorithm and the
notation and does not lead to any logical difficulties since we get the true size of the matrix as a
result after we determine the elements in F ∗.

In the algorithm, we proceed along the order of the objects. At each stage j of the algorithm
we determine the j’s row in the matrix F ∗ (denoted as Fj) and therefore find the j’s position
(starting from the top) in each priority f ∈ F ∗. For example, in the first stage we find agents that
have the top priority in all orderings, in the second − the second priority and so forth.

The matrix representation of F ∗ simplifies the procedure by which the set of priority orderings
is constructed. This procedure is the following: at the first stage we divide the first row F1 of the
matrix F ∗ in several groups (the number of groups denoted as |F1|) and all elements in each of
these groups are assigned to some agent. (In terms of priority orderings, we partition the set F ∗

of a lottery and that the sum of rational numbers is rational. Therefore, the algorithm can find an equal-weight
lottery for any sd-efficient stochastic assignment if such a lottery exists. For the clarity of explanation we will use
the case of PS, however the logic applies also for the general case.

15For the general case objects are also relabeled according to the exhausting order, although the underlying eating
algorithm proceeds not using constant eating speed functions, but some other profile of eating speed functions. Such
profile of eating speed functions exists for each sd-efficient random assignment as shown in Bogomolnaia et al., 2001.
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into several sets according to the top priorities in the priority orderings.)16 In the second stage
we divide each of the previous groups in several new smaller groups of equal size and each of
these new groups is assigned one agent, and so forth. (Again, in terms of priority orderings, we
partition each of the sets determined in the previous stage). Similarly, if at some stage j of the
algorithm two columns f and f ′ of matrix F ∗ are said to belong to the same group Fjm, it means
that the elements from the top down to slot j in these columns (and in the entire group Fjm)
will be allocated identically, but the allocation below the row j might differ. (In terms of priority
orderings, if orderings f and f ′ belong to the same partition Fjm of the set F ∗, then positions in
these orderings are assigned identically down to position j but they might differ after j.)

At each stage of the algorithm we exhaust one of the objects: a1 is exhausted at the first
stage, a2 at the second and so forth, so that these objects are assigned to the agents with the
corresponding priorities. The same rule applies to stages after stage k where objects are not
exhausted anymore.

We can now define the algorithm formally.

Definition 4. The lottery representation algorithm constructs the set of priority orderings F ∗ by
determining the elements in the corresponding matrix F ∗ in the following way:
Stage 1: Divide the first row F1 of the matrix F ∗ into t1 groups of equal size (such that each group
has |F

∗|
t1

elements). In each of these groups assign elements of row F1 to agents in E(a1) such
that for each agent i ∈ E(a1) her share of elements in row F1 is equal to her share of object a1
in random assignment P : pi1|F ∗| = |F1i|, where F1i denotes the columns of matrix F ∗ that have
agent i in their first row.17

Stage j ≤ k : Consider first the groups defined at the previous stage j − 1 in the row Fj−1 of the
matrix F ∗. Divide each of these groups into qj identical subgroups in the row Fj (we refer to them
as to subgroups temporarily: at the next stage (j + 1) they become normal groups). If each agent
i ∈ E(aj) appears in the procedure for the first time, then for each of the groups in Fj−1 assign
the elements in the row Fj of its subgroups to the agents in E(aj) according to their random
assignment probabilities of aj, as it was done at the stage 1. Otherwise, if some agent i′ appeared
in the earlier stages and received elements in some row Fj′ for some j′ < j, then do the following:

(a). First assign this agent i′ the total of |Fj|pi′j elements in the row Fj of those columns that
did not include i′ in the earlier stages, and do this assignment equally among such groups in Fj−1.18

16Notice again that during the procedure we determine the elements in matrix F ∗ without restricting its size |F ∗|
from the beginning. That is why we may assume that the division operations for any of the rows at any stage are
feasible (otherwise we could duplicate each column in matrix F ∗ enough times so that divisions become feasible).

17Notice that for the PS random assignment F1i has exactly |F
∗|

t1
columns since all agents i in E(a1) gets the

same share of a1, which is no longer true in the general case.
18For example, let pi′j = 1

3 , let there be four groups in Fj−1, each of them divided into six subgroups in Fj (thus
twenty four subgroups in total), and in one of these four groups all columns contain agent i′ at some earlier row.
Then we first assign elements in the other three groups to agent i′ (thus there are remaining eighteen subgroups
to be potentially assigned to i′). We do it so that subgroups of i′ are equally distributed among the three groups.
Therefore, three subgroups in each of the three groups are assigned to agent i′, which makes the share of elements in
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Repeat this operation for all other such agents until no agent E(aj) remains that appeared at the
earlier stages.

(c). Assign the elements in the remaining subgroups in Fj (corresponding to the remaining
agents in E(aj)) equally among the remaining groups in Fj−1 such that every agent i ∈ E(aj) gets
|F ∗|pij of the elements in Fj.
Stage j > k : Repeat the same procedure as for j ≤ k but assign some of the groups in Fj that
correspond to the non-eaten part of aj to the agents that prefer a0 over any aj′ where j′ ≥ j.
Final stage: Assign the remaining elements in matrix F ∗ to the remaining agents in such a way
that no agent appears only once in each column. The weight of the equal-weight lottery is then
w = 1/|F ∗|.

The next example demonstrates the usage of the lottery representation algorithm.

Example 6. Let |N | = 3, |A| = 4 and the preference profile � and the corresponding random
assignment PS(�) be as follows:

�1 �2 �3

a a b

b c a

c b a0

a0 a0 c

, P =

 1/2 1/4 1/4 0

1/2 0 1/2 0

0 3/4 0 1/4

.

The eating order is then a, b, c, where c is never fully eaten, therefore k = 2. The sets of eaters
are: E(a) = {1, 2}, E(b) = {1, 3}, E(c) = {1, 2}. The least common multiples of the assignment
probabilities are: q1 = 2, q2 = 4.

The matrix (and the set of priority orders) F ∗ is then found in k + 1 = 3 stages:
Stage 1: Divide the first row F1 in F ∗ into |F1| = q1 = 2 equal groups F11 and F12. Assign
elements in F11 to agent 1 ∈ E(a) and elements of F12 to the other agent 2 ∈ E(a): for each
f ∈ F11, f = (1, . . .); and for each f ∈ F12, f = (2, . . .).
Stage 2: In the second row of the priority matrix F ∗, split the groups F11 and F12 into q2 = 4

identical subgroups (eight subgroups in total, denote them as fm,m = 1, ..., 8). Since agent 1 has
appeared earlier at stage one while agent 3 did not, according to the rule (a) of the algorithm we
first assign the subgroups to agent 1. At the previous stage we had only two groups F11 and F12

one of which was occupied by agent 1, therefore at the second stage agent 1 gets two subgroups
(since |F ∗|p1b = 2) which belong to the group F12. Let these subgroups be f25 and f26. After this
is done, assign the remaining slots to agent 3.
Stage 3: Complete the assignment in F ∗ by filling the third row F3 with agents that have not
appeared earlier in the priority orderings. The resulting priority set is then as follows:

Fj that correspond to i′ and the share of object aj in the random assignment P received by i′ equal: pi′j |F ∗| = |Fji′ |.
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F ∗ =

 F1

F2

F3

 =

 F11, | F12

f21, f22, f23, f24, |f25, f26, f27, f28
f31, f32, f33, f34, |f35, f36, f37, f38

 =


1

3

2

,

1

3

2

,

1

3

2

,

1

3

2

,

2

1

3

,

2

1

3

,

2

3

1

,

2

3

1

 .

It is left to check that the equal-weight lottery over the support induced by these priorities is
indeed identical to P . The following theorem proves this in general. ♦

Theorem 5. For each preference profile �∈ PN and a random assignment P − containing only
rational elements and sd-efficient at �, the lottery representation algorithm induces an equal-weight
lottery that is equivalent to P .

Proof. We first show the feasibility of operations in at all stages of the algorithm and that it
indeed induces an equal-weight lottery. These operations are: division of groups into subgroups
and assignment of elements in the subgroups.

First, notice that at each stage j of the algorithm the equal division of the groups in Fj−1 (into
qj subgroups in Fj) is feasible. This is due to the fact that all elements in P are rational numbers
and that the dimension of F ∗ is made such that it is divisible by any natural number.

Second, after the equal division in Fj is done, each agent i receives |Fj|pij of the groups in
Fj. We first assign groups in Fj to those agents that appeared at earlier stages. Because of the
nested structure of F ∗, the only subgroups in Fj that cannot be assigned to i are those that belong
to some group Fmj′ of an earlier stage j′ that has been assigned to agent i already. (In terms of
priority orderings, if for some subset of priority orderings agent i cannot be assigned the position
j after the previous positions have been determined, it is only due to that i has been assigned
some position in these priority orderings at earlier stages.) Since P is stochastic, there are at least
|Fj|pij subgroups in Fj that do not include elements assigned to i at earlier stages and thus these
elements can be assigned to i at stage j. Therefore all stages are feasible and the algorithm induces
an equal-weight lottery.

It is left to see that the resulting equal-weight lottery is equivalent to P . First we make sure
that for each priority f ∈ F ∗ each agent i that appears at some position j ≤ k (as well as in the
row Fj and stage j of the algorithm) is indeed assigned object aj under serial dictatorship given
priority f . This is true since objects are initially ordered according to how they are exhausted
during the simultaneous eating algorithm, and agents in this algorithm begin by eating their most
preferred object and when it is exhausted continue to the next preferred among the remaining
ones. Consequently, each agent i that appears at stage j prefers object aj to any other object aj′
unless aj′ has appeared at an earlier stage and thus has been exhausted already. Therefore, under
the serial dictatorship given priority f agent i picks aj because it is her most preferred object
among the remaining ones. For stages j > k we can use the same logic for agents that receive
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normal objects and for agents that receive the null-object, since their more preferred objects have
been already assigned and their best alternative among remaining ones is the null-object.

Finally, we make certain that the assignment probabilities in the lottery and in P match. For
all objects the amount |F ∗|pij of elements in the row Fj is equivalent to the number of single
priorities in F ∗ by construction of the groups. Therefore, since the weight in the equal-weight
lottery is just w = 1

|F ∗| agent i receives precisely w|F
∗|pij = pij of each object aj.

The immediate corollary of the theorem is its application to PS, since its random assignment
is always sd-efficient and contains only rational elements:

Corollary. For each preference profile �∈ PN , the lottery representation algorithm based on ran-
dom assignment P = PS(�) induces an equal-weight lottery that is equivalent to P .

An important property of the lottery representation algorithm is that its induced lottery is
flexible and can be further simplified or modified in order to achieve certain qualities.

First of all, this simplification can reduce the size of the support. For instance, for the preference
profile used in the Example 2, for a PS stochastic assignment the algorithm gives the following set
of priorities F ∗ (assuming objects are eaten as a, b, c, d) which can be reduced to the set F ∗∗ and
even further to the set F ∗∗∗:

F ∗ =


1

3

2

4

,

1

3

2

4

,

1

4

2

3

,

1

4

2

3

,

2

3

1

4

,

2

3

1

4

,

2

4

1

3

,

2

4

1

3

 , F ∗∗ =


1

3

2

4

,

1

4

2

3

,

2

3

1

4

,

2

4

1

3

 , F ∗∗∗ =


1

3

2

4

,

2

4

1

3

 .

Another possible modification deals with the distribution of slots in F ∗. This can be done,
for example, in order to make the lottery appear more equitable such that agents receive equal or
comparable amounts of slots of different order: from top slots to bottom slots. Notice, that the
priorities induced by the algorithm are flexible in that they allow for some replacements of the
slots without changing the resulting assignment. For instance, in each of the priorities above one
can replace the neighboring slots unless they are occupied by pairs of agents {1, 2} or {3, 4}. Using
these replacements in the second and third priority of F ∗∗ we can get the following equitable-looking
set of priorities F̃ ∗:

F̃ ∗ =


1

3

2

4

,

4

1

3

2

,

3

2

4

1

,

2

4

1

3

 .

Although the lotteries based on F ∗∗ and F̃ ∗ are essentially equivalent, the mechanism designer
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might prefer the latter for its fair appearance: under F̃ ∗ each of the four agents receives one of the
four slots, while under F ′ agents 1 and 2 received the top slots and agents 3 and 4 received the
bottom slots.

The question remains whether this result can be generalized: whether for any preference profile
there exist an equal-weight lottery equivalent to the PS stochastic assignment such that each
agent receives the same number of each slot in the priorities. Unfortunately, it is not the case as
demonstrated by the following example.

Example 7. Let the preference profile � be as follows:

�1 �2 �3 �4

a b a b

b a c c

d c b a

c d d d

.

The PS stochastic assignment and the set of priorities F ∗ are then as follows (here we assume
that objects are eaten as a, b, c, d but another possible order b, a, c, d leads to the same result):

PS(�) =


1
2

0 0 1
2

0 1
2

1
3

1
6

1
2

0 1
3

1
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0 1
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1
3

1
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 , F ∗ =
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 .

Similarly to the previous example, we can adjust the first two lines in F ∗ such that the top
two slots are equally distributed among all agents. However, the problem arises when we try to
do the same with the next two lines. For example, agent 3 has four slots of level three and only
two bottom slots which could be corrected by just one replacement, but this would distort the
assignment. Indeed, in the priorities {f2, ..., f5} that have to be corrected, agent 3 is followed
either by agent 2 or agent 4. Since in all these priorities objects a, b have been picked by other
agents already, agents in both pairs prefer object c to object d. Therefore replacing agent 3 by
agent 2 or agent 4 distorts the resulting stochastic assignment. ♦

More generally, in terms of preferences the reason why the adjustment of slots in the example
is not possible is the fact that agents 2, 3 and 4 have similar preferences for objects and receive
identical assignment probabilities for objects c and d. Thus the resulting set of priorities F ∗

contains all three agents in rows three and four which makes the structure of F ∗ very tight and the
necessary replacement becomes impossible. In order to generalize this observation, let us formally
define the degree of heterogeneity of preferences and the degree of equitability of the equivalent
lottery.
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Definition 5. A preference profile � is said to have a degree of heterogeneity k if in the
object-agent correspondence L� induced by the top choice algorithm k is the minimal number of
stages by which all agents appear at least once.

For PS, for instance, heterogeneity means that in the simultaneous eating algorithm the agents
begin by eating different objects. The last exhausted object among all objects that agents began
to eat as their top choices determines the degree of heterogeneity. In the examples above degree
of heterogeneity of preferences equals two.

Definition 6. The equal-weight lottery is called equitable of degree k ≥ 0 if its corresponding
set of priorities F has identical number of slots for all agents from the top slot down to slot k.

Given these two definitions we formulate the following conjecture about the sufficient condition
for the existence of an equitable lottery of degree k.

Conjecture 1. For each preference profile � and each stochastic assignment P (sd-efficient and
containing only rational elements), there exist an equitable of degree k equal-weight lottery with
stochastic assignment identical to P , where k is the level of heterogeneity of preferences in �.

We are not able to prove the conjecture because of the complexity of the problem. The proof of
the existence result in Theorem 5 is based on the nested structure of F ∗, and this nested structure
allows us to proceed from the top line of F ∗ to the bottom without violating any feasibility con-
straints or distorting the resulting random assignment. In case of the conjecture, on the contrary,
in the process of modifying F via replacements of priority slots we need to proceed in both ways:
from the top to the bottom and from the bottom to the top. Each replacement might restrict the
set of remaining potential replacements, making the problem not very tractable.

If the conjecture is true, then a sufficient condition for a fully equitable-looking lottery (of
degree n) would be the fact that some agent is assigned some object with certainty. In order to
motivate the conjecture, we can demonstrate that the previous statement is true for Example 7
above if we add one more object e and one more agent 5 with opposing preferences such that the
degree of heterogeneity becomes equal to five. The preference profile � then writes as:

�1 �2 �3 �4 �5

a b a b e

b a c c a

d c b a b

c d d d c

e e e e d

.

For this preference profile and the corresponding random assignment P = PS(�) there exist
an equal-weight lottery equitable of degree n = 5 with the following set of priority orderings F̃ ∗:
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

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 2, 2, 4, 1, 1, 2, 3, 3, 4, 4, 3, 1, 2, 2, 4, 1, 1, 2, 3, 3, 4, 4, 3, 1, 2, 2, 4, 1, 1, 2, 3, 3, 4, 4, 3, 1, 2, 2, 4, 1, 1, 2, 3, 3, 4, 4, 3

1, 2, 2, 4, 1, 1, 2, 3, 3, 4, 4, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 2, 1, 1, 1, 4, 4, 3, 2, 2, 3, 3, 4, 2, 1, 1, 1, 4, 4, 3, 2, 2, 3, 3, 4, 2, 1, 1, 1, 4, 4, 3, 2, 2, 3, 3, 4

2, 1, 1, 1, 4, 4, 3, 2, 2, 3, 3, 4, 2, 1, 1, 1, 4, 4, 3, 2, 2, 3, 3, 4, 5, 5, 5, 5, 5, 2, 5, 5, 5, 5, 5, 2, 4, 5, 5, 3, 3, 2, 1, 4, 4, 1, 1, 2, 4, 3, 3, 3, 3, 2, 1, 4, 4, 1, 1, 2

4, 3, 3, 3, 3, 2, 1, 4, 4, 1, 1, 2, 4, 3, 3, 3, 3, 2, 1, 4, 4, 1, 1, 2, 4, 3, 3, 3, 3, 5, 1, 4, 4, 1, 1, 5, 5, 4, 4, 2, 2, 5, 5, 1, 1, 2, 2, 1, 5, 5, 5, 2, 2, 5, 4, 5, 5, 2, 2, 5

3, 4, 4, 2, 2, 3, 4, 1, 1, 2, 2, 1, 3, 4, 4, 2, 2, 3, 4, 1, 1, 2, 2, 1, 3, 4, 4, 2, 2, 3, 4, 1, 1, 2, 2, 1, 3, 3, 3, 5, 5, 3, 4, 5, 5, 5, 5, 5, 3, 4, 4, 5, 5, 3, 5, 1, 1, 5, 5, 1


.

As one this example demonstrates adding one agent with very different preferences provides
enough flexibility in the set F ∗ such that it can be made equitable of degree n.

6 Concluding Remarks

In this paper we have introduced new tools that would allow the designer to directly work with
lotteries and enhance the efficiency properties of an existing lottery mechanism. Whereas the
stochastic approach has already proved extremely useful in achieving superior welfare features than
their lottery counterparts, coupling lottery-type assignment methods with the tools developed here
may help close the gap between the two approaches while also benefiting from the practical appeal
of lottery mechanisms.

Our analysis on the construction of ex post and sd-efficient lotteries lends itself to new interpre-
tations on the workings of the prominent mechanisms RSD and PS. Abdulkadiroğlu and Sönmez
(1998) have shown that the lottery produced by RSD is equivalent to a lottery constructed in the
following way: Start from the initial lottery that assigns an equal probability (namely, 1

n!
) to each

feasible assignment, and apply the TTC algorithm to each feasible assignment in the support of
the initial lottery and replace feasible assignment by the corresponding outcome of the algorithm.
Since the TTC algorithm produces Pareto efficient feasible assignments, such a lottery is ex-post
efficient (as is the one induced by RSD). But because this procedure allows the trades to be carried
out only within feasible assignments within the support of the initial lottery, the support of the
new lottery may still admit an improvement cycle and thus the new lottery may be sd-inefficient
(as is the one induced by RSD). Kesten (2009) shows that the stochastic assignment produced by
PS is equivalent to a stochastic assignment constructed in the following way: Start from an initial
stochastic assignment that endows each agent each object with the same probability (namely, 1

n
)

and apply the TTC algorithm (that considers self and pairwise-cycles) in a way that allows each
agent to trade assignment probabilities of her most-preferred object with every other agent who is
endowed with a positive probability of this object.19 Note that decomposing the initial stochastic
assignment (that endows each agent with an equal probability of each object) leads to the lottery
that that assigns an equal probability to each feasible assignment, i.e., the same initial lottery that
the alternative lottery (to RSD) proposed by Abdulkadiroğlu and Sönmez (1998) relies on. The
difference between the two mechanisms, however, comes from the way they choose the improvement
cycles from among those induced by the support of the initial lottery. Whereas RSD considers
only those top trading cycles induced by each feasible assignment in the support of the initial

19See Kesten (2009) for a more precise description of this particular TTC procedure.
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lottery individually, PS considers all the top trading cycles induced by all feasible assignments in
the support of the initial lottery altogether.

In the U.S. many school districts use centralized clearinghouses to determine student assign-
ments to public schools (see Abdulkadiroğlu and Sönmez 2003). In school choice, each school has
multiple capacity and is assigned a priority order of students by the school district to be used
while determining student assignments. Priority orders may be determined based on different pol-
icy criteria such as walk zone, sibling status, special needs etc. In many school districts student
priorities are typically coarse, giving rise to weak priority orders. As a consequence, school districts
rely on lottery mechanisms that use randomization to generate strict priority orders by breaking
the ties among equal-priority students via lottery draws. Although an assignment problem is a
special school choice problem with each school having unit capacity and all students having equal
priority for all schools, our analysis can be straightforwardly generalized and adapted to school
choice problems, and in particular, could be helpful in improving the ex ante efficiency of school
choice lotteries.

A Appendix

A.1 Proofs of Theorem 1

T prove Theorem 1, we need some notions and lemmas.

Definition 7. Let �∈ PN and P,R ∈ S. An improvement cycle from R to P is a finite list
(a1, i1, a2, i2, . . . , am, im), where am+1 ≡ a1 and m ≥ 2, such that for each l ∈ {1, . . . ,m}, (i) il ∈ N
and al ∈ A \ {a0}, (ii) al+1 �il al, (iii) pil,al < ril,al , and (iv) pil,al+1 > ril,al+1 .

Lemma 4. Let �∈ PN , i ∈ N , and P,R ∈ S be non-wasteful at �. Suppose that P stochastically
dominates R at � and P 6= R. Then there is an improvement cycle from R to P .

Proof. Since P 6= R, there is i1 ∈ N such that Pi1 6= Ri1 . Thus, since Pi1 stochastically dominates
Ri1 at �i1 , there are a1, a2 ∈ A such that a2 �i1 a1, pi1,a2 > ri1,a2 , and pi1,a1 < ri1,a1 . Since
ri1,a1 > pi1,a1 ≥ 0, by non-wastefulness of R, a1 �i1 a0. Note that a1 is not always in A \ {a0}.
Thus, since a2 �i1 a1, a2 ∈ A \ {a0}. Also, by feasibility of P and non-wastefulness of R, since
ri1,a1 > pi1,a1 ≥ 0 and a2 �i1 a1, we have

∑
j∈N pj,a2 ≤ qa2 =

∑
j∈N rj,a2 . Thus, since pi1,a2 > ri1,a2 ,

there is i2 ∈ N such that pi2,a2 < ri2,a2 . Thus, since Pi2 stochastically dominates Ri2 at �i2 , there
is a3 ∈ A such that a3 �i2 a2 and pi2,a3 > ri2,a3 . Since ri2,a2 > pi2,a2 ≥ 0, by non-wastefulness of R,
a2 �i2 a0. Thus, since a3 �i2 a2, a3 ∈ A \ {a0}. Also, by feasibility of P and non-wastefulness of
R, since ri2,a2 > pi2,a2 ≥ 0 and a3 �i2 a2), we have

∑
j∈N pj,a3 ≤ qa3 =

∑
j∈N rj,a3 . Repeating this

process, since N and A are finite, there is a cycle (al, il, . . . , am, im) where 1 ≤ l ≤ m − 1. Note
that if l = 1, a1 = am+1 ∈ A \ {a0}.
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Proof of Theorem 1. Let L be a lottery with the support µS: (⇒) We show the
contrapositive. Suppose that the support µS of L is not Pareto efficient at �S. Then, there is an
|S|−fold replica assignment νS that Pareto dominates µS at �S. As in Lemma 1, there is an
equal-weight lottery Le = (1/|M |)

∑
m∈M µ′m that is equivalent to L such that for each m ∈M

there is a unique s(m) ∈ S with µ′m = µs(m). Now we define an |S|−fold replica assignment ν ′M :
for m ∈M , ν ′m = νs(m). Then, ν ′M Pareto dominates µ′M at �M . By Lemma 3, the equal-weight
lottery with the support ν ′M stochastically dominates the equal-weight lottery µ′M at �. Thus, L
is not sd-efficient at �.

(⇐) We show the contrapositive. Suppose that L is wasteful (and thus not sd-efficient) at �. Let
R = π(L) be the stochastic assignment induced by L. Then, there is i ∈ N , a ∈ A with ri,a > 0,
and b ∈ A with b �i a such that

∑
j∈N rj,b < qb. As ri,a > 0, there is s ∈ S such that µs(is) = a.

Then, let νs be an s−replica assignment such that νs(is) = b and for each j ∈ N , νs(js) = µs(js).
Then, the |S|−fold replica assignment (νs, µS\{s}) Pareto dominates µs at �S.

Suppose that L is non-wasteful but not sd-efficient at �. Then, there is a stochastic assignment
P 6= R that stochastically dominates R at �. By Lemma 4, there is an improvement cycle,
denoted by (a1, i1, . . . , am, im), from R to P . Then, we can find indices s1, . . . , sm ∈ S such
that µs1(i1) = a1, . . . , µsm(im) = am. Then, define an |S|−fold replica assignment νS such that
νs1(i

1) = a2, . . . , νsm−1(im−1) = am, νsm(im) = a1, and any other agent is assigned the same object
as in µ. Then, νS Pareto dominates µS at �S. �

A.2 Other proofs

Proof of Proposition 2. Let νS be an |S|−fold replica assignment induced by the TTC algorithm.
Consider the TTC algorithm. We first show individual rationality. Each agent is ∈ NS is an owner
of some object a. Object a points to her until she leaves. Therefore, the assignment of is cannot
be worse than her owned object a.

We show Pareto efficiency. Suppose for a contradiction that there is an |S|−fold replica assign-
ment ν ′S that Pareto dominates νS at �S. Let Nk

S be the set of agents who leave at step k and K
be the last step of the algorithm. We show by induction on k that for each k = 1, 2, . . . , K and
each i ∈ Nk

S , ν ′S(i) = νS(i). Any agent who leaves at Step 1 is assigned her top choice and thus
cannot be made better off. Thus, for each agent i ∈ N1

S, ν ′S(i) = νS(i).
Suppose that the claim is true up to step k − 1 where k ≥ 2. Suppose for some agent

i ∈ Nk
S , ν ′S(i) 6= νS(i). Since ν ′S Pareto dominates νS at �S, ν ′S(i) �i νS(i). Since i ∈ Nk

S

and ν ′S(i) �i νS(i), the object ν ′S(i) is already removed at an earlier step. That is, letting
a := ν ′S(i), we have | {j ∈ C1 ∪ . . . ∪ Ck−1 | νS(j) = a} | = qa|S|. By the induction hypothesis,
{j ∈ C1 ∪ . . . ∪ Ck−1 | ν ′S(j) = a} | = qa|S|. Thus, since a = ν ′S(i), we have |(ν ′S)−1(a)| > qa|S|,
contradicting the feasibility of ν ′S. �
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Proof of Claim 1. Part (1) is obvious by construction of Bt(·).

Part (2): Let t ∈ {0}∪N. SupposeBt({a})∩X = ∅, butBt({a}) = Bt+1({a}). Let {i1, . . . , iM} :=

{i ∈ I | µS(1, i) ∈ Bt({a})}, and for each m ∈ {1, . . . ,M}, let am := µ(1, im) ∈ Bt {a}. Since
Bt({a}) ∩ X = ∅, am 6∈ X, i.e., for each m ∈ {1, . . . ,M}, |µ−11 (am)| ≥ qam . This inequality is
strict for at least one m, as {a} ∈ Bt({a}) and |µ−11 (a)| > qa. Thus,

∑
a∈{a1,...,am} |µ

−1
1 (a)| =∑M

m=1 |µ
−1
1 (am)| >

∑M
m=1 qam ≥

∑
a∈{a1,...,am} qa, which contradicts the feasibility of µS.

Part (3): If the claim is not true, we have {a} ( B1({a}) ( . . . ( Bt({a}) ( . . ., which
contradicts the finiteness of A. �

Proof of Theorem 4. We show that TRSDK satisfies the equal treatment of equals. Let
i, j ∈ N with i 6= j and �∈ PN such that �i=�j. Note that the size of the support is
|F(K)| ×K ×K. Consider the lottery of the TRSDK after F (K) = {f1, . . . , fK} ∈ F(K) is
selected. Agents face the equal-weight lottery 1

K

∑
g∈F (K) TTCF (K)(�F (K), SDF (K)(�); g). Then,

consider F i↔j(K) =
{
f i↔j1 , . . . , f i↔jK

}
and the equal-weight lottery

1
K

∑
g∈F i↔j(K) TTCF i↔j(K)(�F i↔j(K), SDF i↔j(K)(�); g). Since the role of agent i and j is just

reversed, the resulting lotteries are the same except that agent i and j’s stochastic assignments
are switched. That is, we have

1

K

∑
g∈F (K)

TTCF (K)(�F (K), SDF (K)(�); g)(i) =
1

K

∑
g∈F i↔j(K)

TTCF i↔j(K)(�F i↔j(K), SDF i↔j(K)(�); g)(j).

Now, there exist nonempty and disjoint sets H and H′ such that H ∪ H′ = F(K) and for
each F (K) ∈ H, F i↔j(K) ∈ H′. Then, using the above equation and letting φ(F (K), g) =
1
K
TTC[�F (K), SDF (K)(�); g],

TRSDK(�)(i) ≡ 1(
n!
K

) ∑
F (K)∈F(K)

∑
g∈F (K)

φ(F (K), g)(i) =
1(
n!
K

) ∑
F (K)∈F(K)

∑
g∈F i↔j(K)

φ(F i↔j(K), g)(j)

=
1(
n!
K

) ∑
F (K)∈H

∑
g∈F i↔j(K)

φ(F i↔j(K), g)(j) +
1(
n!
K

) ∑
F (K)∈H′

∑
g∈F i↔j(K)

φ(F i↔j(K), g)(j)

=
1(
n!
K

) ∑
F (K)∈H′

∑
g∈F (K)

φ(F (K), g)(j) +
1(
n!
K

) ∑
F (K)∈H

∑
g∈F (K)

φ(F (K), g)(j)

=
1(
n!
K

) ∑
F (K)∈F(K)

∑
g∈F (K)

φ(F (K), g)(j)

≡ TRSDK(�)(j).

The equality of the first term in the second and the third line comes from the following:
[F (K) ∈ H and g ∈ F i↔j(K)] ⇔ [F i↔j(K) ∈ H′ and g ∈ F i↔j(K)] ⇔ [F ′(K) ∈ H′ and h ∈ H′].
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Similarly, the equality of the second term in the second and the third line comes from the following:
[F (K) ∈ H′ and g ∈ F i↔j(K)]⇔ [F i↔j(K) ∈ H and g ∈ F i↔j(K)]⇔ [F ′(K) ∈ H and h ∈ F ′(K)].
Hence, the TRSDK satisfies the equal treatment of equals. �
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