
Resource-Aware Scheduling
of Distributed Ontological Reasoning Tasks

in Wireless Sensor Networks
Tim De Pauw∗†, Stijn Verstichel∗, Bruno Volckaert∗, Filip De Turck∗ and Veerle Ongenae†

∗Department of Information Technology (INTEC)
Ghent University – IBBT, Gaston Crommenlaan 8 bus 201, 9050 Ghent, Belgium

†Faculty of Applied Engineering Sciences (INWE)
Ghent University College, Schoonmeersstraat 52, 9000 Ghent, Belgium

Email: tim.depauw@intec.ugent.be

Abstract—As the number of wireless sensor network applica-
tions continues to grow, the need for specialized task scheduling
mechanisms, aware of the sensor devices’ capabilities and real-
time resource availability, is becoming more and more apparent.
In this paper, we therefore propose a generic model for task
scheduling in heterogeneous networks, which we subsequently
use to schedule distributed reasoning tasks, originating from a
real-world WSN monitoring and management application. By
means of simulation, we evaluate several developed scheduling
heuristics and compare the results to an optimal solution of
the same WSN task scheduling problem, obtained using ILP.
Experiments show that our heuristics produce acceptable task
schedules while maintaining a low resource footprint.

I. INTRODUCTION

Wireless sensor networks or WSNs—i.e., networks contain-
ing wireless nodes instrumented with sensor equipment—have
steadily become a premier research topic. By aggregating data
from these sensors, one may provide applications with aug-
mented context information, such as time-stamped temperature
readings, user locations, etc. Typical scenarios for WSN de-
ployment include home automation, medical monitoring, and
battlefield surveillance. [1], [2] The IBCN research group’s
testbed, for example, is comprised of 400 wireless mesh
network nodes and 200 sensor nodes, measuring temperature,
light and humidity—ideal for researching every aspect of
WSNs, from hardware to application. [3]

The machines in a WSN can range from heavily resource-
constrained sensor nodes to powerful back-end processing
machines. Due to this heterogeneity, planning the execution of
a distributed application in a WSN often turns out to be a far
more facetious problem than in a more traditional network en-
vironment: sensor nodes may run different operating systems
than traditional machines, offer fewer computing resources, be
equipped with a limited supply of energy, etc. [4]
The allocation of resources to tasks (i.e., matching) and the
ordering of these tasks (i.e., scheduling) is a problem generally
known to be NP-complete. [5] This is no different in a sensor
network, introducing a clear need for intelligent near-optimal
matching and scheduling techniques.

An important aspect of WSNs is power management. Sensor
nodes are generally battery-operated, so it is imperative that
their autonomy be maximized. As wireless communication is
a relatively costly operation, it can often be beneficial to carry
out as much processing as possible on the node itself, however
limited its resources may be. In doing so, one can avoid the
expensive radio transmissions required for the delegation of
tasks to other nodes in the network. [6], [7]
This paradigm has been applied to a monitoring and man-
agement application for wireless sensor networks, based on
distributed reasoning technology [8]. Reasoning decouples
business logic from the application, allowing for a formal
specification independent of program code. Through the use
of ontologies [9] in this process, real-world concepts can be
modeled in an expressive fashion.
By subsequently distributing ontological reasoning mecha-
nisms across a set of interconnected machines, the computa-
tions as well as the information behind them can be managed
in a decentralized manner. In the case of the WSN monitoring
and management application, this allows for highly flexible
sensor data processing and fault detection.

Of course, the monitoring and management application is
just one example of a distributed WSN application. In this
paper, we therefore propose a generic model for the off-
line scheduling of tasks; while the model was designed with
WSNs in mind, it can also be applied to other heterogeneous
network environments. The characteristics of the monitoring
and management application as well as the network are sub-
sequently expressed in terms of the newly introduced model.
In addition, we apply a set of solvers to the problem model.
Firstly, an integer linear program (ILP) [10] is used to obtain
optimal schedules. Secondly, a set of heuristics is introduced,
in order to produce suboptimal schedules within reasonable
time. We attempt to satisfy two distinct objectives. The first
is to minimize the execution time of the full workload; the
second is to use a minimal number of processing nodes to carry
out the workload. For the purpose of validating the heuristic
solvers, simulations were carried out, based on real-world
scenarios; the results of these simulations are also discussed.



The remainder of this paper is structured as follows. In
Sect. II, we provide an overview of related work. Sect. III
focuses on distributed reasoning, elaborating on its compo-
nents and their interaction. Next, in Sect. IV, we outline our
assumptions, which lead to the formal problem specification
we present in Sect. V. Sect. VI then describes the solution
techniques we used to tackle the scheduling problem—an ILP
formulation and a set of heuristics. In Sect. VII, we outline our
approach toward simulating distributed reasoning scenarios
from the monitoring and management application. The results
of these simulations are then discussed in Sect. VIII. We end
this paper with our conclusions and ideas for future work.

II. RELATED WORK

An extensive amount of research has already been con-
ducted in the field of task scheduling for distributed sys-
tems. Given the NP-complete nature of the matching and
scheduling problem, one generally strives to obtain a near-
optimal solution. Dhodhi et al. cite examples of “optimal
selection theory-based approaches, graph-based approaches,
genetic algorithm-based techniques and other heuristics.” [11]

Specifically for heterogeneous systems, Braun et al. com-
pared eleven heuristics and found that genetic algorithms con-
sistently produced the best results for the scenarios considered.
[12] The possibility of multitasking is however not considered
and, most importantly, requirements are modeled by stating
whether or not a task can be executed on a given node, whereas
our approach is not limited to a binary option.

Regarding the generation of network topologies, popular
tools such as BRITE [13] were not designed with sensor net-
works in mind. GenSeN [14] and topo gen [15], on the other
hand, target this type of configuration specifically. However, as
these tools focus on characteristics not part of our model, we
opted for the implementation of our own topology generator.

The integration of semantic technologies with sensor net-
works is an active area of research. The Semantic Sensor Web,
for instance, enhances sensor networks with spatial, temporal
and thematic semantic metadata, resulting in an ontological
model unburdened by interoperability issues. [16] Hu et al.
have used ontologies to enable adaptive sensor information
provisioning. [17] WSN middlewares enabling semantic for-
malisms have also emerged. The platform introduced by da
Rocha et al., for instance, applies rule-based reasoning and
fuzzy logic to ontologies. [18]

III. DISTRIBUTED REASONING

The distributed application whose tasks we will be schedul-
ing allows for monitoring and management of a wireless
sensor network: by collecting and analyzing data from the
sensors, the application detects various issues in the network.
An important aspect of the application is that there is no need
to reengineer source code upon alterations to the network, as
it is based on ontological reasoning in a distributed manner.
In this section, we provide a brief introduction to the concept.

Recent years have seen an increase in the research on
intelligent services. Adding intelligence to services creates the
added value that the functionality and business logic exposed
to a client is adapted and enhanced according to the context
and environment in which client and service collaborate. Using
ontologies as a modeling language—more specifically, the Web
Ontology Language [9]—creates the possibility to formally
reason over model and data. This aspect is supported by
the foundation of ontologies in first-order description logic.
However, as this process can become rather resource-intensive
in large data-oriented systems, there is a clear need to study
these mechanisms in a distributed environment, allowing for
the development of an enabling service platform for distributed
ontology-based reasoning.

Fig. 1 gives an overview of the workflow with its different
phases and components in the platform.
First of all, the submitted query is analyzed and partitioned
according to the meta-information available. [19] The reason-
ing tasks are specified through SPARQL [20] queries. Logically
defined concepts in these queries trigger the reasoning process
on the individual nodes.
Once the partitioning is completed, the subqueries are sched-
uled on the nodes in the network. These nodes contain both the
model and the data, so that, given a specific query, the correct
reasoning tasks are initiated. Different technologies are used to
implement such nodes. These can either be natively ontology-
based, making use of existing ontology-based libraries such as
Jena [21], or they can also be based on conversion libraries
like D2R [22] or RDF123 [23]. These are combined with
description logic reasoners, such as Pellet [24] or Racer [25].
After the completion of the reasoning tasks, the nodes return
their individual results to the back-end platform. Finally,
the back-end platform merges the information received and
provides the eventual result to the originally requesting client.

For a more elaborate overview of the workings of this
distributed reasoning platform, we refer to [8].

ResultRequest

Post-processing and 

monitoring feedback module

Request/Query partitioning module

A B

monitoring feedback module
1 2 3

Partitioning decision module

Answer collection module

Partitioning decision module

A B

Scheduling module

Fig. 1: Distributed Reasoning Workflow



IV. ASSUMPTIONS

A. Topology Model

A topology consists of nodes—i.e., machines capable of
executing tasks in parallel. To model the nodes’ capabilities,
each of them receives a set of properties. Rather than using
predefined properties, we require that they conform to either
one of these property types:
• A binary property is a property which can be either true

or false. An example would be a property indicating the
presence of a temperature sensor.

• A discrete property is a property describing the total
supply of a depleting resource, expressed as a positive
integer. Such a property could, for instance, represent the
amount of available memory.

B. Task Set Model

The tasks which are to be carried out all have a duration,
expressed as an integer amount of time slots. Similarly, each
task specifies a deadline; this is the index of the time slot
before which the task must be completed.

Each task imposes requirements on the executing node,
which calls for corresponding requirement types:
• A binary requirement determines whether or not a certain

binary property must be true on the executing node. Tasks
requiring the same binary property may be simultane-
ously active on the same node.

• A discrete requirement states how much of the supply
of a certain discrete property the task is expected to use
during its execution.

Each task must await the completion of all its predecessors.
Tasks may be represented as the vertices of an unweighted
directed acyclic graph or DAG [26], in which each arc
represents a dependency between predecessor and task.

V. PROBLEM FORMULATION

To reiterate, the problem tackled here is that of scheduling
a set of interdependent tasks T on a network topology N,
respecting time constraints as well as resource requirements.
As mentioned, times are expressed in terms of discrete slots.

We envisage two possible objectives for our scheduler. The
first is to minimize the workload execution time c. The second
objective is to minimize the number of nodes used by the
task set. We expect there to be a trade-off between these
two metrics: the more nodes are used, the more concurrency,
reducing the workload execution time.

For each task t ∈ T, its duration dt is the number of time
slots required to complete the task. Thus, if a task t’s start
time is given by st , the workload execution time c is readily
obtained using the expression

c = max
t∈T

(st +dt) (1)

It is required that each task t be completely carried out
before time slot et , defined as its deadline:

st +dt ≤ et ∀ t ∈ T (2)

However, task t cannot be initiated until all of the tasks
p ∈ Pt , its predecessor set, have been carried out:

sp +dp ≤ st ∀ t ∈ T, p ∈ Pt (3)

Whether or not a task can be matched to a node and
scheduled to be executed on it is determined by comparing
t’s requirements to n’s properties.
For each of a task t’s binary requirements qt , the corresponding
binary property qn must also be present on the executing node.
In other words, if we express true and false values by one
and zero, respectively, the following is a prerequisite for the
matching of t and n:

qt ≤ qn ∀ t ∈ T,n ∈ N (4)

The value of each discrete requirement rt is an integer amount.
The corresponding discrete property rn’s value must be at least
that of rt . If we define rn,υ to represent the remaining supply
of rn at slot υ , t can only be matched to n and scheduled to
start at slot τ if

rt ≤ rn,υ ∀ t ∈ T, t ∈ N,υ = τ, . . . ,τ +dt −1 (5)

If task t is indeed scheduled to start at slot τ on node n, its
start time st is assigned the value τ and the associated supplies
rn,υ are decremented by rt .

If all of the tasks could be scheduled without violating
property constraints and/or deadlines, the schedule is said to
be complete; otherwise, it is incomplete.

VI. SOLUTION TECHNIQUES

A. Integer Linear Program
The first of our solvers is based on integer linear program-

ming. It uses the simplex and branch and bound algorithms
[10] to produce optimal schedules. These can then be used as
reference solutions, to assess our heuristics. The ILP solver
was implemented in Java 6, using ILOG CPLEX 11 [27]. In
this section, the underlying ILP formulation is provided.

1) Parameters: In Table I, the ILP formulation’s parameters
are shown. These are in fact identical to the ones introduced
in the problem formulation from Sect. V.

2) Variables: Discrete and binary requirements are to be
expressed as ILP constraints. In order to do so, the decision
variables of the ILP need to take binary values. As the task
start times st are not binary, we define decision variables
xt,n,τ ∈ {0,1} to express whether task t is matched to node
n and scheduled to start at time slot τ . For convenience, we
also define variables mt,n ∈ {0,1}, each of which indicates
whether task t is matched to node n.

TABLE I: ILP Parameters

dt = the duration of task t
et = the deadline of task t
Pt = the predecessor set of task t
rt = the amount of discrete property r that is required for task t
rn = the amount of discrete property r that is available at node n
qt = 1 if the binary property q is required for task t

= 0 otherwise
qn = 1 if the binary property q is available at node n

= 0 otherwise



3) Objective Function: As discussed in Sect. V, our goal is
to minimize either the workload execution time or the number
of nodes used by the schedule. The latter is expressed through
an additional set of variables un ∈ {0,1}, each indicating
whether node n is matched to any of the tasks. In order to
allow for a trade-off between both objectives, we add weight
factors α and β , resulting in the objective function

min αc+β

∑
n∈T

un (6)

4) Constraints: The program’s first set of constraints de-
fines the value of the auxiliary variables mt,n, which take the
value 1 if task t is matched to node n. They are derived from
the decision variables xt,n,τ :

mt,n =
∑
τ∈N

xt,n,τ ∀ t ∈ T,n ∈ N

Next, they are used to obtain the values of the variables un.
As max is not a linear function, the expression is converted
to a set of inequalities, yielding

un = max
t∈T

(mt,n) ∀ n ∈ N

⇒ un ≥ mt,n ∀ n ∈ N, t ∈ T

Again using the variables mt,n, we ensure that each of the
tasks be matched to exactly one node:∑

n∈N

mt,n = 1 ∀ t ∈ T

As task start times are not used as decision variables in this
formulation, their values are derived as:

st =
∑
n∈N

∑
τ∈N

τxt,n,τ ∀ t ∈ T

The other constraints of the ILP were introduced in Sect. V.
The first three are given by (1), (2) and (3). As we again
encounter the nonlinear max function in (1), this expression
requires reformulation as well:

c = max
t∈T

(st +dt) ⇒ c≥ st +dt ∀ t ∈ T

For binary properties, we defined (4). To extrapolate this to
the ILP formulation, we again use mt,n:

mt,nqt ≤ qn ∀ t ∈ T,n ∈ N

Discrete properties are slightly more complex. In order to
formulate (5) as a set of ILP constraints, we now see to it that
the sum of each resource consumed at a given node during a
given time slot, does not exceed the supply of that resource.
Which and how many resources are consumed during each
time slot depends on the tasks which are scheduled to be active
during that slot. Hence, we need to take into account each task
t that started up to dt−1 slots ago; we again use the variable
υ to iterate over these consecutive slots.∑

t∈T

rt

τ∑
υ=max(0,τ−dt+1)

xt,n,υ ≤ rn ∀ n ∈ N,τ ∈ N

B. Heuristics

A set of heuristics was also developed to tackle the same
problem: scheduling a set of tasks on a topology, respecting
deadlines and requirements. Like the ILP solver, the heuristic
solvers were implemented in Java 6.

The heuristics described here are all based on bin packing
problems [28]. While four separate heuristics are introduced,
they all share a common workflow; a pseudocode representa-
tion of this workflow is given in Fig. 2.

First, topological sorting [26] is applied to the DAG repre-
senting the task set. This process results in a list of tasks in
which each task’s predecessors come before the task itself.
For each task, bounds for the start time are determined. The
lower bound is deduced from the end times of the task’s
predecessors. Due to the topological order, these have all been
scheduled at this point; their end times are therefore known.
The upper bound, on the other hand, is easily deduced from
the task’s deadline and duration.
Then, an attempt is made to schedule the task at each subse-
quent time slot. For every slot, the task is matched to every
node in the topology, until a combination is encountered which
does not violate any requirements. The order in which nodes
are selected depends on the heuristic used; this is expressed
through the abstract function next node(). As soon as a
suitable slot and node are encountered, the task is scheduled
and the algorithm proceeds to the next task.

The described version of the workflow focuses on minimiz-
ing the workload execution time. Therefore, tasks will always
be scheduled as early as possible. However, by swapping
the for and while loops in Fig. 2, priority is shifted to a
minimization of the number of nodes used.

Now, let us consider the heuristics individually.
1) First Fit: In the First Fit heuristic, the nodes are selected

in the order in which they are defined in the topology. For each
task and for each time slot, the topology is examined node by
node, until one is encountered which can execute the task.
Thus, this heuristic imposes more load on the first nodes.

2) Next Fit: The Next Fit heuristic remembers the node
where a task was last scheduled successfully. Thus, upon each
attempt to schedule the next task, the last node that was used
is first considered before examining the rest of the topology.
Next Fit thereby aims to reuse nodes as much as possible.

3) Best Fit: The Best Fit heuristic keeps track of how much
load is imposed on each node and uses this information to
order the nodes. Nodes whose resources have already been
partly consumed are the first candidate locations for the current
task. Hence, the heuristic orders nodes by their accumulated
load, allowing it to always reuse the most active nodes.

4) Fair Fit: The Fair Fit heuristic uniformly selects the
next candidate node. It bears a resemblance to First Fit, with
the exception that the list of nodes is shuffled each time the
algorithm proceeds to the next task to schedule. In doing
so, it is expected that each node be treated equally, hence
distributing loads evenly.



task list← topological sort(task set)
for all task ∈ task list do

min start← 0
for all pred ∈ task.predecessors do

pred end← get start(pred)+ pred.duration
if pred end > min start then

min start← pred end
max start← task.deadline− task.duration
for time← min start to max start do

while node← next node() do
if f easible(task,node, time) then

allocate(task,node, time)
next task

Fig. 2: Heuristic Scheduler Pseudocode

VII. PROBLEM GENERATOR

In order to apply the distributed reasoning workflow to the
generic problem formulation, the associated software com-
ponents were benchmarked in a test setup. In this setup,
five ALIX-based nodes [29] were tasked with reasoning on
temperature, light and humidity readings, for the purpose of
detecting faulty data originating from the sensors.

Using the resulting benchmarks, a problem generator was
developed, which simulates more elaborate versions of the
scenario just outlined. The generated problems all take place in
a fictitious office environment of six by four rooms, arranged
in a grid structure; an example is shown in Fig. 3. Each of
these rooms is equipped with an ALIX node, which collects
readings for the room and is able to reason on them. Each
node is installed in a randomly selected corner, placing it close
enough to any adjacent rooms to also obtain the readings from
those. Most readings are therefore present at multiple nodes.
A binary property is used to model this.

As in any distributed reasoning scenario, the goal is to
transmit the results of the individual reasoning processes from
the nodes to a back-end server. We assume the presence of a
single back-end server, distinguished from the ALIX nodes by
an additional binary property.
Contrary to the test setup, the ALIX nodes do not transmit their
results directly to the back-end server. Instead, clusters of two
by two nodes are created, as displayed in alternating colors in
Fig. 3. Within each cluster, reasoning results are provided to
one of the nodes, which then forwards the aggregated data to
the back-end server. Each aggregation task requires a binary
property, which is shared by the clustered tasks. The rationale
behind the aggregation is that, because a transmission to the
back-end server can consume quite a bit of power, it is better
to sacrifice only one in four nodes’ resources. Evidently, this
concept can be extended in various ways.

To summarize, there are four types of tasks. The back-end
preprocessor analyzes and splits the incoming query. For each
set of sensor readings associated with a room, a subquery is
created. Each of these is processed by a reasoning task on one
of the ALIX nodes aware of the appropriate readings. Next,

Fig. 3: Office Environment with Sensors

in each ALIX cluster, one node aggregates the results of the
cluster, and finally returns them to the back-end postprocessor.

In each generated problem, three such cycles are to be
scheduled for simultaneous execution. However, the dis-
tributed reasoning tasks are not the only ones to be scheduled.
As the IBCN testbed, for one, is shared between researchers,
multitasking is commonplace. Thus, in addition to the dis-
tributed reasoning workflow, it is assumed that several miscel-
laneous tasks are also competing for resources. Half of these
receive an additional binary requirement, expressing that they
depend on sensor readings from a single, uniformly selected
room; the other half may be scheduled on any node.

Each of the tasks requires a certain amount of memory,
which we model using a discrete property. The parameter
values used are listed in Table II. When a range of (discrete)
values is listed, a value is in fact uniformly selected from that
range. Durations are expressed in units of five seconds. The
corresponding topology parameters are shown in Table III.

Regarding deadlines, by default, it is assumed that none
of the tasks have to wait until adequate resources become
available. This implies that a task can be initiated as soon
as all of its predecessors have been processed. Of course, this
is not very realistic, as tasks will often compete for resources.
Therefore, for each task type, we introduce a grace period
gt : the number of time slots by which the task’s completion
may be delayed. Unused grace periods propagate to tasks’
successors. Thus, if t2 follows t1, the deadline of t2 becomes
et2 = et1 +dt2 +gt2 , where et1 = dt1 +gt1 .
The ALIX reasoning tasks all receive such a grace period of
60 slots. In the event that resources become scarce, they may
therefore wait for (at least) two of their siblings to complete
on the same ALIX node, without violating any deadlines.

TABLE II: Simulated Task Types

Task Type Node Count Duration Memory
Preprocessing Server 3 × 1 1 100–200 MB

Reasoning ALIX 3 × 24 1–30 30–90 MB
Aggregation ALIX 3 × 1 1 100–200 MB

Postprocessing Server 3 × 1 1 100–200 MB
Miscellaneous ALIX 20 1–20 0–100 MB

TABLE III: Simulated Node Types

Node Type Real-life Equivalent Memory
Server Generic back-end machine 1,000 MB
ALIX ALIX-based processing node 100 or 200 MB



VIII. EVALUATION

The solution techniques introduced in Sect. VI were as-
sessed by applying them to a set of 100 problems created by
the problem generator from Sect. VII. All simulations were
carried out on a dual quad-core Intel Xeon L5420 machine
with 16 GB of RAM, running Scientific Linux.

A phenomenon common to ILP solvers is that their ex-
ecution times are difficult to predict. Therefore, in order to
avoid spending too many computational resources on a single
simulation, problems which could not be solved within four
hours were abandoned.

A. Minimal Workload Execution Time

The ILP objective function (6) was first tailored toward a
minimization of workload execution times: α was set to 1 and
β to 0. In doing so, the ILP solver yielded optimal schedules
for 37 problems, while 40 others could not be solved within
four hours. Interestingly, applying the heuristics to these 37
problems, every schedule obtained was also complete.
Applied to all 100 problems, the heuristics still produced
largely complete schedules. On average, just 1.10% of the
tasks could not be scheduled; the worst-case loss was 5.17%.

Of course, our main intent was to compare workload exe-
cution times. Again for the 37 completed problems, the ILP
solver required an average of 42.9 slots, while the heuristics
introduced a delay of about 36%. Exact results are shown in
Fig. 4a. Also displayed in this chart is the number of nodes
used, which was consistently close to the maximum of 25.
Best Fit produced the lowest workload execution times, with
First Fit performing only slightly worse. Interestingly, Fair Fit
was a close third, implying that uniform selection of nodes
yields competitive results. Next Fit’s attempts to reuse nodes
were most likely thwarted by the numerous constraints.

It is important to note that the delay introduced by the
heuristics is mitigated by the time required to produce sched-
ules. The heuristic solvers’ execution times averaged at 291
milliseconds, compared to 79 minutes for the ILP solver. Note
that this discrepancy would be even more apparent if we were
to lift the four-hour time limit for the latter.
Memory usage revealed similar patterns. The heuristic solvers
barely used 50 MB, while the ILP solver averaged at 1.95 GB
and peaked at 9.31 GB. However, the latter is indispensable in
obtaining optimal schedules.

B. Minimal Number of Nodes Used

Here, the parameters of the ILP objective function were
chosen to minimize the number of nodes used: α now becomes
0 and β becomes 1. In this case, the ILP solver was less
affected by the four-hour time limit: 47 problems resulted in
optimal schedules. The heuristics, however, suffered: complete
schedules were returned by all four in a mere 20 cases.
Consequently, looking at all 100 problems, unscheduled task
rates were slightly elevated, with averages between 1.34%
(Fair Fit) and 1.65% (Best Fit). In the worst case, First Fit
reached losses of up to 8.62%.

Fair Fit’s apparent advantage is easily explained: as nodes
are selected on a random basis, the heuristic is actually the
worst alternative in terms of minimizing the number of nodes
used. Considering the 20 sets of complete schedules, Fair Fit
required an average of no less than 24.9 out of 25 nodes,
compared to just 17.7 for Best Fit and even 10.3 in the
optimal case, using the ILP solver. These results are shown
in Fig. 4b. Consequently, on average, even our best heuristic
used 73% more nodes than optimally required—a significant
rise compared to the first case.

Also displayed in Fig. 4b are the average workload exe-
cution times. Clearly, there is a trade-off between our two
objectives, time and resources. While the ILP solver uses
far fewer nodes, its workload execution times are now the
highest. This is not surprising: as α is 0, c is not minimized
at all. Additional tuning of both parameters would improve the
results. However, preliminary experiments suggested that this
would increase most solution times well beyond four hours.
Taking both objectives into account, Best Fit and First Fit are
close contenders; depending on one’s priorities, both may be
beneficial. Like Fair Fit, Next Fit may produce low execution
times, but its load distribution is unsatisfactory.

As in the previous case, the heuristic solvers completed
virtually instantly; their execution times averaged at 449
milliseconds. Similarly, their memory usages were nearly
identical to those of their counterparts minimizing workload
execution times. The ILP solver, however, was slightly less
greedy, taking up an average of 1.74 GB of memory and
peaking at 5.40 GB. Its execution took 47 minutes, on average;
again, we must remark that this value is affected by the fact
that a maximum solution time of four hours was enforced.

57.9 59.5 57.8 58.6

42.9

24.9 25.0 24.9 25.0 24.9

0

5

10

15

20

25

30

0

20

40

60

80

100

First Fit Next Fit Best Fit Fair Fit ILP

Workload Execution Time Nodes Used

(a) Minimal Workload Execution Time

85.9 84.3 87.8
78.9

92.9

18.0
21.4

17.7

24.9

10.3

0

5

10

15

20

25

30

0

20

40

60

80

100

First Fit Next Fit Best Fit Fair Fit ILP

Workload Execution Time Nodes Used

(b) Minimal Number of Nodes Used

Fig. 4: Solver Metrics (averages)



IX. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed the scheduling of distributed rea-
soning tasks in wireless sensor networks. First, we described a
generic model for task scheduling in heterogeneous networks.
An ILP formulation was subsequently devised, allowing us to
obtain optimal schedules. A set of bin-packing heuristics was
also introduced and assessed. For this purpose, we developed
a realistic problem generator, using benchmarks of our WSN
monitoring and management application based on distributed
reasoning. Through the simulation of a large amount of
such testing scenarios, we showed that the heuristics perform
adequately, while maintaining a very low resource footprint.

The model and algorithms devised in this paper can already
be applied to various scheduling problems in heterogeneous
networks. In future research, we aim to extend them with
characteristics such as network link awareness, and the spec-
ification of task durations on a per-node basis.
Issues specific to WSNs will also be modeled. One example
is the periodic availability of resources, like a sensor node’s
wireless link; this helps the node conserve its power.
Finally, alternative objective functions will be considered. One
might, for instance, prefer to minimize energy consumption.

While this paper only covers off-line scheduling, it is our
intent to also investigate the on-line adaptation of schedules.
Thus, at a later stage, the introduced model and algorithms
will be repurposed to this end. This will allow us to cope
with varying circumstances, such as a change in demand for
specific components, or hardware failure.

ACKNOWLEDGMENT

Tim De Pauw would like to thank the University College
Ghent Research Fund for financial support through his Ph.D.
grant. Stijn Verstichel would like to thank the IWT (Institute
for the Promotion of Innovation through Science and Technol-
ogy in Flanders) for financial support through his Ph.D. grant.
Our gratitude is also due to the IBBT project DEUS [30] for
supporting this research. Computational resources and services
used in this work were provided by Ghent University.

REFERENCES

[1] K. Romer and F. Mattern, “The design space of wireless sensor net-
works,” IEEE Trans. Wireless Commun., vol. 11, no. 6, pp. 54–61, Dec.
2004.

[2] D. Cruller, D. Estrin, and M. Srivastava, “Overview of sensor networks,”
IEEE Trans. Comput., vol. 37, no. 8, pp. 41–49, 2004.

[3] L. Tytgat, B. Jooris, P. De Mil, B. Latré, I. Moerman, and P. Demeester,
“Demo abstract: WiLab, a real-life wireless sensor testbed with environ-
ment emulation,” in European conference on Wireless Sensor Networks,
EWSN adjunct poster proceedings, Cork, Ireland, Feb. 2009.

[4] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Commun. Mag., vol. 40, no. 8, pp. 102–114,
Aug. 2002.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, Jan. 1979.

[6] M. Ghazvini, M. Vahabi, M. Rasid, R. Abdullah, and W. Musa, “Low
energy consumption MAC protocol for wireless sensor networks,” in
Proc. 2nd International Conference on Sensor Technologies and Appli-
cations, 2008, pp. 49–54.

[7] J. Haapola, Z. Shelby, C. Pomalaza-Ráez, and P. Mähönen, “Multihop
medium access control for WSNs: an energy analysis model,” EURASIP
J. Wirel. Commun. Netw., vol. 2005, no. 4, pp. 523–540, 2005.

[8] S. Verstichel, F. Ongenae, B. Volckaert, F. De Turck, B. Dhoedt,
T. Dhaene, and P. Demeester, “An autonomous service platform to sup-
port distributed ontology-based context-aware agents,” Expert Systems:
The Journal of Knowledge Engineering on Engineering Semantic Agent
Systems, Accepted for publication.

[9] D. L. McGuinness and F. van Harmelen. (2004, Feb.) OWL Web
Ontology Language Overview. [Online]. Available: http://www.w3.org/
TR/owl-features/

[10] R. J. Vanderbei, Linear Programming: Foundations and Extensions,
3rd ed. Springer, Nov. 2008.

[11] M. Dhodhi, I. Ahmad, A. Yatama, and I. Ahmad, “An integrated tech-
nique for task matching and scheduling onto distributed heterogeneous
computing systems,” Journal of Parallel and Distributed Computing,
vol. 62, no. 9, pp. 1338–1361, Sep. 2002.

[12] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I.
Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F.
Freund, “A comparison of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed computing systems,”
Journal of Parallel and Distributed Computing, vol. 61, no. 6, pp. 810–
837, Jun. 2001.

[13] A. Medina, I. Matta, and J. Byers, “BRITE: A flexible generator of
internet topologies,” Boston University, Boston, MA, USA, Tech. Rep.,
2000.

[14] T. Camilo, J. Silva, A. Rodrigues, and F. Boavida, “GENSEN: A topol-
ogy generator for real wireless sensor networks deployment,” Lecture
Notes in Computer Science, vol. 4761, pp. 436–445, 2007.

[15] I-LENSE. Topology generator (topo gen). [Online]. Available: http:
//www.isi.edu/ilense/software/topo gen/topo gen.html

[16] A. Sheth, C. Henson, and S. Sahoo, “Semantic Sensor Web,” IEEE
Internet Computing.

[17] Y. Hu, Z. Wu, and M. Guo, “Ontology driven adaptive data processing
in wireless sensor networks,” in Proc. 2nd International Conference on
Scalable Information Systems, 2007.

[18] A. da Rocha, F. Delicato, J. de Souza, D. Gomes, and L. Pirmez, “A
semantic middleware for autonomic wireless sensor networks,” in Proc.
2009 Workshop on Middleware for Ubiquitous and Pervasive Systems.
ACM Press, 2009, pp. 19–25.

[19] S. Verstichel, M. Strobbe, P. Simoens, F. De Turck, B. Dhoedt, and
P. Demeester, “Distributed reasoning for context-aware services through
design of an OWL meta-model,” in Proc. 4th International Conference
on Autonomic and Autonomous Systems. IEEE Computer Society, 2008,
pp. 70–75.

[20] E. Prud’hommeaux and A. Seaborne. (2008, Jan.) SPARQL
query language for RDF. [Online]. Available: http://www.w3.org/
TR/rdf-sparql-query/

[21] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and
K. Wilkinson, “Jena: Implementing the Semantic Web recommenda-
tions,” in Proc. 13th International World Wide Web Conference. ACM
Press, 2004, pp. 74–83.

[22] C. Bizer and R. Cyganiak, “D2R Server: Publishing relational databases
on the Semantic Web,” 5th International Semantic Web Conference,
2006.

[23] L. Han, T. Finin, C. Parr, J. Sachs, and A. Joshi, “RDF123: A mechanism
to transform spreadsheets to RDF,” in Proc. 21st National Conference
on Artificial Intelligence. Menlo Park, CA, USA: AAAI Press, 2006.

[24] E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical OWL-DL reasoner,” Web Semantics: Science, Services and
Agents on the World Wide Web, vol. 5, no. 2, pp. 51–53, Jun. 2007.

[25] V. Haarslev and R. Möller, “Racer: An OWL reasoning agent for
the Semantic Web,” in Proc. International Workshop on Applications,
Products and Services of Web-based Support Systems, vol. 13, Halifax,
Canada, Oct. 2003, pp. 91–95.

[26] J. Gross and J. Yellen, Graph Theory and its Applications. Boca Raton,
FL, USA: CRC Press, 1999.

[27] ILOG, Inc. ILOG CPLEX. [Online]. Available: http://www.ilog.com/
products/cplex/

[28] C. Kenyon, “Best-fit bin-packing with random order,” in Proc. 7th
Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, Oct. 1995,
pp. 359–364.

[29] PC Engines GmbH. ALIX system boards. [Online]. Available:
http://pcengines.ch/alix.htm

[30] IBBT v.z.w. DEUS: Deployment and Easy Use of wireless Services.
[Online]. Available: http://www.ibbt.be/en/project/deus


