Automated Context Dissemination for Autonomic Collaborative Networks
through Semantic Subscription Filter Generation

Steven Latré?, Jeroen Famaey®, John Strassner®, Filip De Turck®

“Ghent University - Department of Information Technology - IBBT, Belgium
steven.latre @intec.ugent.be
bSoftware R&D Laboratory, Huawei USA

Abstract

The current manual management of services and applications in today’s telecommunication networks is becoming increasingly
complicated. In the Future Internet, management is assumed to be automated by introducing an autonomic layer of distributed
management elements. These distributed management elements need to collaborate with each other to ensure end-to-end quality
guarantees. In this article, we focus on the context dissemination between such collaborative management elements. Context
dissemination is the exchange of all relevant management data and knowledge between the elements. Collaborating elements
typically generate large amounts of context and it is important to filter this continuous stream. We propose a context dissemination
approach that automates the context exchange between elements. The approach enables the automated generation of semantic
subscription filters. Subscription filters allow an element to define where, how, and when context needs to be requested from other
entities. Moreover, the proposed approach allows making the subscription filter generation dependent on the context. We present
algorithms that intelligently filter the knowledge that is stored in the ontology. The results show that the generation of subscription
filters can be done in the order of tens of milliseconds.

Keywords: Context dissemination, Autonomic collaborative networks, Future Internet, Semantic Approach, Service Management,
OWL, RDF

1. Introduction other AEs and (iii) knowledge that was inferred by other AEs.
All this management data can be seen as context. More specif-
ically, throughout this article, we call all management data that
is relevant to the decision making process of an AE, context.
More specifically. we use the following definition of context
from DEN-ng [2]: "The Context of an Entity is a collection
of measured and inferred knowledge that describe the state and
environment in which an Entity exists or has existed”. In partic-
ular, our definition emphasizes two types of knowledge: facts
(that can be measured) and inferred data, which results from
machine learning and reasoning processes applied to past and
current context. It also includes context history, so that current
decisions based on context may benefit from past decisions, as
well as observations of how the environment has changed.
Many autonomic architectures use the publish-subscribe pa-
radigm to communicate with other AEs and enable the collab-
oration between them. The publish-subscribe paradigm allows
consumers of context (i.e., AEs) to express their interest in con-
text by subscribing to that context at the producer (i.e., another
AE) [3]. This subscription is done through filters, which define
what type of context producers need to send to the consumers.
Traditionally, these subscription filters are statically defined by
the consumer interested in the context. In this article, we fo-
cus on the automated generation of subscription filters between
collaborating AEs in the autonomic networking paradigm. We
focus specifically on the context dissemination process inside
an administrative domain and declare the context dissemination

In recent years, the Internet has evolved from a best-effort
packet forwarding network towards a service-oriented delivery
framework that supports rich and complex services and applica-
tions. To support their management, delivery guarantees must
be provided in terms of Quality of Service and Quality of Expe-
rience (QoE). Therefore, it is becoming too costly and complex
to continue managing these services and applications manually.
In the Future Internet, a more automated management approach
is required that allows self-governing the network by introduc-
ing an intelligent autonomic layer on top of today’s network [1].
This autonomic layer features a decision making process that
supports an automated management of the network’s resources.
Given the scale and form of the current Internet, it is not pos-
sible to maintain a single decision making entity. Instead, an
autonomic network management substrate consists of special-
ized distributed decision making components, called autonomic
elements (AEs).

To ensure end-to-end management of the Future Internet,
the different AEs need to collaborate with each other. This col-
laboration is crucial in achieving a well-performing autonomic
management framework: it guarantees that AEs do not con-
tradict each other’s decisions. One of the primary challenges in
designing a collaborative autonomic network is the efficient dis-
semination of data. In order to collaborate with each other, AEs
require management data from other AEs such as (i) monitor-
ing reports falling outside their authority, (ii) decisions taken by

Preprint submitted to Journal of Network and Computer Applications January 23, 2014



between administrative domains as out of scope. In this context,
an administrative domain is a subnetwork that is managed by a
single network operator. Inside an administrative domain, the
main challenge of context dissemination is its scalability. Large
amounts of context are generated by different AEs and the type
of context that needs to exchanged can fluctuate rapidly. In-
stead, between administrative domains, other challenges are no-
table such as the negotiation of the context dissemination: this
is part of future work. We propose a context dissemination pro-
cess that allows coping with the fluctuation of context require-
ments by generating the subscription filters automatically. The
process takes into account the requirements and goals of a spe-
cific AE in terms of context, as well as changes in the state of
the environment.

The remainder of this article is structured as follows: an
illustrative use case of context dissemination for multimedia
delivery in an access network is described in Section 2. Sec-
tion 3 discusses similar work in the field of context modeling
in network management. The context dissemination process is
described in full in Section 4 and Section 5, which focus on the
design of the semantic model and the algorithmic contributions,
respectively. Finally, Section 6 presents detailed evaluation re-
sults of the performance of the proposed approach.

2. Use case: autonomic multimedia service management in
access networks

To provide a better understanding of the context dissemi-
nation process, we describe it for an illustrative use case. This
use case is centered around the autonomic management of mul-
timedia services in access networks. We assume that a ser-
vice provider is offering a number of multimedia services to
the end users. These multimedia services consist of the typical
video-based services (e.g., digital TV broadcasting, Video on
Demand) that are part of today’s triple play offers in IPTV en-
vironments. As illustrated in Figure 1, the content originates at
the video head-end in the access network. The service provider
can use its own access network, consisting of caches, access
routers and access nodes to stream the videos to its customers,
residing in the home network. The streaming is done to set-top
boxes (STBs), which are devices located in the home network
that are capable of playing the video on a television screen. De-
spite being located in the home network, the service manager is
typically the owner of a STB and therefore has access to it for
management purposes.

To manage the multimedia services, a set of collaborating
AE:s are logically deployed on top of the access network. Each
AE governs a specific type of device. The AEs collaborate with
each other by (i) exchanging context with each other and (ii)
requesting management actions from one AE to another, which
can then propagate this request to the device(s) it manages. For
example, every STB has its own AE that can monitor the deliv-
ered quality of the multimedia streams and offers an interface
to remote AEs to make configuration changes (e.g., a request to
send more context or a request to alter a configuration parame-
ter at the video client).

Routers

Live TV

captation
Access P

Nodes

Head-End

Set-Top-Box
Access Network

----» Context update

Home network

— Management action and/or request
for new context

Figure 1: Overview of the illustrative use case, representing a
multimedia delivery scenario in an access network. Different
autonomic elements (AEs) exchange context with each other to
maintain the highest possible video quality.

In this use case, we focus on the context dissemination pro-
cess of the video head-end AE. We assume that the video head-
end AE has a number of management tasks available to man-
age the multimedia services. For example, it can reduce the
streamed video quality if congestion occurs in the network. Al-
ternatively, it can protect the video against packet loss due to
lossy links by adding additional redundancy. In order to deter-
mine the optimal configuration of these management tasks, it
requires knowledge about the status of the managed network.
However, at the same time, it is useless to continuously request
all this knowledge if the current management configuration is
streaming the video at a satisfiable quality. Hence, there are
varying context requirements, depending on the state of the net-
work environment.

In terms of context, the video head-end AE initially only
requires the overall quality of the streamed video. As such,
it configures a subscription filter at the STB head-end to send
periodic updates of the perceived video quality. It is only useful
to request additional knowledge when these periodic updates
signal a drop in video quality.

Suppose that part of the network becomes congested. This
will result in packet loss in the network and ultimately in a drop
in video quality. The video head-end AE should detect this and
now requires a new set of subscription filters. This is because
the decision making components in the AE now require addi-
tional knowledge to be able to track down the reason for the
video quality drop. The context dissemination process, which
will be described in Section 4 detects these new context require-
ments and will generate a new set of subscription filters. More
specifically, these subscription filters will now also request con-
text from the other nodes in the access network such as QoS
parameters to determine the root cause of the problem.

Note that the generated subscription filters are semantic con-
structs. This means that, in contrast to a purely syntactic match-



ing, they can be semantically interpreted by the context pro-
ducer to determine whether the context needs to be exchanged
with the context consumer. Specifically related to the use case
this means that, instead of generating a subscription filter that
specifically defines the name and value of the packet loss on a
particular router, a semantic filter can define that it wants "All
QoS parameters related to flow X, where X is the flow that
suffers from a drop in quality. The context producer can then
semantically infer whether the QoS parameters they have avail-
able are related to flow X (e.g., because a router routes traffic
from flow X or because a cache stores part of the video). A
more in-depth discussion of these semantic subscription filters
is presented in Section 5.2.2.

Based on this novel knowledge, the problem can be de-
tected and solved (e.g., by reducing the streamed quality of
some video to free additional resources) and the video quality is
restored. Once the video quality is restored, an additional set of
subscription filters can again be generated: the QoS parameters
from other AEs in the access network become obsolete again
and the set of subscription filters can be reverted to the origi-
nal set. This dynamic generation of subscription filters ensures
that the context dissemination process is scalable and that no
useless context is exchanged. As will be detailed in Section 4,
the subscription filters are automatically generated by (i) trans-
lating the contextual requirements of the decision making com-
ponents residing in an AE, (ii) inferring the current contextual
requirements based on the current environment state and (iii)
summarizing the available information, residing in the model
to improve the performance of the translation step.

3. Related work

In this section, we describe related work in the area of con-
text retrieval and dissemination, its use of semantics and its ap-
plication to network management challenges.

3.1. Context retrieval and dissemination

In information systems, there is an increased attention to-
wards context retrieval and dissemination research. While many
solutions focus on effective presentation of the context (e.g.,
Bouras et al. [4]) another important challenge in context-related
research is the dissemination of the context. Disseminating con-
text in a scalable and effective way is key in designing a well
performant information system. A survey of the current chal-
lenges in designing context retrieval systems is presented by
Tamine-Lechani ef al. [5]. As the benefits of an effective con-
text dissemination are broad and generic, it has been applied to
many problem domains in information systems. For example,
Bikakis et al. [6] present motivating scenarios for designing a
context exchange and retrieval system for ambient intelligence
environments. Bakhouya et al. and Abdou ef al. discuss how
context dissemination can benefit the communication in Vehic-
ular Ad Hoc Networks [7, 8]. Similarly, Abdou et al. pro-
poses a novel communication strategy. Specifically to the field
of network management, broadcasting the context is typically
not possible due to scalability limits. In the Future Internet,

contextual data such as configuration management data is typ-
ically stored distributed in high performant databases (e.g., the
CMDBTf solution from the DMTF [9]). The dissemination of
aggregated monitoring information and context is necessary in
order to guarantee the continuous satisfaction of network-wide
goals. The publish-subscribe paradigm [3] is well suited to of-
fer these functionalities. It allows interested parties to subscribe
to specific types of events. When an event that matches the sub-
scription is published, it is routed accordingly.

3.2. Semantic context dissemination

To ensure inter-domain understanding and interoperability,
the exchanged context should be semantically annotated. This
is also argued by Jurisica et al. [10]: they survey the use of
ontologies for knowledge management in information systems
and conclude that ontologies are needed to attach meaning to
knowledge management systems and solve syntactic incompat-
ibilities through semantic integration [11]. Roantree et al. [12]
show the strength of applying semantics to context dissemina-
tion systems. The use of semantics and the publish-subscribe
model has been successfully combined to many network-based
communication information structures in the past. Renault ez al.
apply it to an Information-Centric Networking (ICN) [13] ar-
chitecture [14]. Their work focuses on the semantic annotation
of the content itself and its impact on the ICN paradigm, while
we focus on the context dissemination process. Petrovic et al.
proposed a subscription (query) language suitable for filtering
large numbers of RSS (Really Simple Syndication) documents
[15]. In [16], a semantic approach is described. It extends the
traditional attribute-value pair-based approach with capabilities
to process syntactically different, but semantically-equivalent,
information, by using an ontology. Our work is different from
both of these approaches, in that the ontology used in [16, 15]
is limited to RDF hyponym/hypernym relationships, whereas
our approach can use different linguistic and functional rela-
tionships. In addition, we use OWL in one of our reasoning
algorithms, as opposed to RDF, which provides greater flexibil-
ity and representation of semantics. Finally, our approach fo-
cuses on the automatic generation of subscription filters, while
Petrovic et. al focus on subscription filter matching.

In [17], the DARPA Agent Markup Language (DAML) and
the Ontology Inference Layer (OIL) were used to provide se-
mantic publish-subscribe capabilities. A DAML+OIL reasoner
was implemented for checking instance inferences between each
subscriber class description and publisher instance description
to see if they match. A drawback of this approach is that the
DAML+OIL ontologies must be agreed beforehand by the sub-
scribers and publishers. Our approach requires no such restric-
tion, and uses more powerful inferencing. A similar approach
is used by Wang et al. [18]. However, in this work, mes-
sages are represented in DAML+OIL, instead of message top-
ics. Skovronski & Chiu propose a semantic publish-subscribe
system that uses SPARQL queries as subscriptions [19]. How-
ever, this method scales poorly with an increasing number of
publishers. When 16 publishers are registered with the publish-
subscribe system, processing a single message took around 16



\ Contextual Data \ \

Context Types

Contextual Requirements \

tlme | Time Ontology

DENON-ng ‘
CAnyType
A

hasContextDataValue hasSource

7~ hasValidTime — hasContext |

r hasContextDataValue —l I_ hasOperator j

dng:Entity ‘

ContextDependency

A hasContextType - ¢

‘ Operator ‘

hasTarget

hasContextDependency

time:ValidTime

Type
Contex%’—)

ContextType

ContextDependency
List

A <9

hasParent hasContextValue

ContextValue

ContextValue
Composite

Atomic

ﬂ I- hasContextDependencyList —A

hasParent
ContextToQuery

Figure 2: Overview of the ontological context model, highlighting the main concepts and the interaction with related ontologies

such as DENON-ng and the Time ontology.

seconds. In this paper, we were able to improve this scalability
significantly.

3.3. Semantic context dissemination for network management

The publish-subscribe paradigm has also been successfully
applied to the dissemination of semantic information in large-
scale network management environments under the banner of
knowledge based networking (KBN) [20]. It is an extension
of content based networking (CBN) [21], which involves the
forwarding of events across a network based on subscription
filters based on the (meta-)data of the event’s contents. KBN
extends this and states that the semantics of messages play an
important part in the matching of publications to subscriptions.
To this end, the Sienna publish-subscribe system, originally de-
vised for CBN, was extended with more expressive semantics
for the specification of subscription filters [22] to satisfy the
KBN vision. Carzaniga et al. [21] additionally propose a set
of efficient and scalable routing strategies to forward messages
from publishers to interested subscribers. The KBN extension
[22], proposed by Keeney er al., adds limited support for se-
mantic messages and filters. The JITIK framework presented
by Brena et al. [23] takes a similar approach. Ontologies are
distributed across distributed agents: each agent has a common
ontology with local additions to support its specific manage-
ment tasks. Similar to our approach, ontologies are used to
interpret the context that is exchanged semantically.

This article builds further on previous work as described
in [24], where an initial version of the subscription filter gener-
ation algorithm was proposed. While we use the idea of the ini-
tial subscription filter generation algorithm, this article presents
a modified and more advanced generation algorithm specifi-

cally and broader context dissemination process in general. Hence,

this article contains several new contributions compared to the
work in [24]. First, the work in [24] assumed that the contex-
tual requirements of the decision making components of an AE
were already available in the ontology model. In this work,
we present an algorithm that allows inferring these contextual
requirements automatically. Second, in this article a more com-
plex and ontology model is used, based on the DEN-ng infor-
mation model [2], which improves the accuracy of the perfor-
mance results. Third, while the work in [24] only featured an

ontology-based reasoning algorithm, we now also propose a
more scalable algorithm based on RDF. Fourth and finally, this
article also features several summarization methods to reduce
the size of the model.

4. Semantic Context Model

To support the automated generation of subscription filters,
we use a semantic context model to describe, in formal terms,
the contextual requirements of the management components
and the applications that they are governing. In this section, we
discuss the details of this semantic model. Figure 2 provides an
overview of the main concepts in the context model. The ba-
sic notion of a context type is modeled in our model using the
ContextType concept. A ContextType represents different
types of context that can be requested from other components.
Typical examples of context types are the video quality of a
service or the experienced packet loss in a router.

The ContextType concept also has some descriptive rela-
tionships such as the hasName property that provides a name
for this context type (e.g., PACKET_LOSS) and other optional
properties (e.g., the hasSource and hasTarget properties that
provide information where the context originated from and what
entity it describes, respectively). Through these optional prop-
erties context can be described as broadly or narrowly as re-
quired by a specific task. For example, to describe all packet
loss related context, it suffices to define a packet loss concept
without a hasSource or hasTarget property.

The hasSource andhasTarget properties are linked with
the Entity class of the DENON-ng model. DENON-ng [25]
is an ontology-based subset of the DEN-ng information model.
DEN-ng is an information model that can be used to model a
telecommunication network. DEN-ng is used to represent the
physical and logical state of the network and its resources, as
well as the business goals and internal workings of the govern-
ing organizations. The Entity class of DEN-ng is the root
class to which all concepts belong. As such, we are able to
describe accurately to which entities in a telecommunication
network the context belongs.

Contextual data is modeled through the ContextValue con-
cept: we can define the type of context belonging to the data



hasContext

<<ContextDependency>> DataValue
Value must exist
<<Operator>>
hasOperstor Less Than Or Equal

hasContextType
<<ContextType>> hasContext
VideoQuality -< Instantiation <<ContextValue>>
hasContextDataValue

Figure 3: An example of an instantiation of the context model
for a multimedia delivery access network scenario.

hasContext
Dependency

<<ContextDependencyList>>
DependencyLi;
<<ContextType>>

<<ContextType>>
NetworkLoad

VideoServerLoad

(i.e., with its relationship with the ContextType property) and
define the time range during which it was measured. In our ap-
proach, time is modeled using the standard Time [26] ontology.
Since the context value can be a single value or a complete se-
ries of data, we use the composite pattern to model both con-
cepts as instances of ContextValueAtomic and ContextValue-
Composite.

The exchange of a context type can be restricted by intro-
ducing dependencies between context types. We define a con-
text dependency as follows: a context type X depends on an-
other context type Y if data from X depends on values from Y.
To model a context dependency, a ContextType hasahasCon-
textDependencyList property that links it with one or more
sets of context dependencies (modeled through a Context-
Dependency). A context type can be modeled with multiple
context dependency lists, meaning that it depends on multiple
sets of context types.

To illustrate the use of a context dependency, Figure 3 shows
an example of how data can be stored in the context model. In
this case, we use three context types: the maximum reported
video server load, the maximum reported network load and the
average video quality of a network AE. We define that the load
types should only be requested if there is an indication of an ac-
tual problem (i.e., a drop in video quality). This problem indi-
cation is modeled through a context dependency that introduces
a less than or equal comparison between the video quality score
and a constant equal to 0.33. Hence, the load context types will
be requested only if the value of the video quality is lower than
0.33. As can be seen, in this example, this is indeed the case, as
there is a context value instance with value 0.23. Note that not
all relations of the context model are shown here for the sake of
presentation clarity.

The instantiation of the context model, as illustrated in Fig-
ure 3, is a non-trivial task. However, in many cases (e.g., those
where the management algorithms are implemented using ex-
pert systems such as a rule-based system), this is instantiation
can be automated by an algorithm that automatically generates
the context dependencies from an expert system. Such an algo-
rithm is proposed in Section 5.1. If more advanced generation
use cases need to be supported, a domain expert can manually
define additional instantiations, assisted by a generation algo-
rithm as proposed in Section 5.1.

Update
- Semantic
Context Model
Section 4

Translate

Read
Management's Context |
Knowledge Base (Section 5.1)
.

(in parallel) yes

till Managing
Network?

(in parallel)

' lew contexi

received?

no

Sleep for
fixed time

v

Summarise

Generate
Mgdel Subscription Filters
(Section 5.3) (Section 5.2)

! '

Update Forward
Semantic subscription filters
Context Model to remote AEs

Figure 4: Overview of the context dissemination process.

5. Automated generation of semantic subscription filters

An overview of the context dissemination process is shown
in Figure 4. As shown, the context dissemination process con-
sists of three steps: first, the context requirements of decision
making components are translated and stored in the context
model. Second, a generation algorithm generates the subscrip-
tion filters, either through through OWL/SWRL or RDF/SPARQL
reasoning. Finally, the knowledge in the model is summarized
to keep the size of the model controlled. Once generated, the
subscription filters are updated at the remote AEs. We discuss
these three steps in more detail in the remainder of this section.

5.1. Context translation

The goal of this step is to derive the contextual require-
ments from the decision making components of the local AE
and store them in a way that allows semantic interpretation by
the subsequent steps. These contextual requirements, modeled
as a ContextDependency concept in the context model, de-
pend on the specific technology used by the decision making
components. For example, the way context is required by a
rule-based system can differ from the contextual requirements
of an artificial intelligence-based approach. On the other hand,
many management algorithms use the same technologies and
by only defining a handful of translation algorithms, the con-
textual requirements of the decision making components can
be automatically derived. In this section, we describe a context
translation algorithm for a rule-based system. Other transla-
tion algorithms can follow the same principle for deriving the
requirements. The translation algorithm is illustrated in Algo-
rithm 1. The output of the algorithm is a context requirement
set, which is modeled as a set of axioms that are stored in the
context model.

For the translation, we assume that all rules are rewritten
in Conjunctive Normal Form (i.e., as a conjunction of disjunc-
tions). The contextual requirements of a rule-based system are
in essence determined by the conditions of the rules in the rule
set. If we take all context types described in the conditions and
add them as context types, we have a basic set of contextual



requirements. This is illustrated in Algorithm 1, which queries
context types - as part of a context operand in the rule’s condi-
tion - and adds them to the context model (lines 5 - 9).

Algorithm 1 The translation of the contextual requirements of
a rule-based system to the context model.

translateRuleBasedSystem(graph, rulebase) e

1:

2: let contextset = ¢

3: Vrule € rulebase :

4: Yandclause € rule.conditions :

5: Yorclause € andclause :

6: Vatomicclause € orclause :

7. Yco € getAllContextOperands(atomicclause) :

8: cset = cset LI createContextType(c,co.ContextType)
9: cset = cset LI getDependencies(c,atomicclause,graph)

102 return contextset

12: getDependencies (c, clause, graph) S

13: let dependencylist = ¢

14: let dependencyVertices = getDependencyFromClause(graph, clause)
15: Vandclause € dependencyVertices :

16: let deps = createContextRequirementList(l)

17: Yorclause € andclause :

18: VYatomicclause € orconditions :

19: Vco € getAllContextOperands(atomicclause) :

20: found = true

21: deps = U createContextRequirement(req,co.ContextType)
22: deps = U hasContextRequirement(l,req)

23: if found = true

24: then

25: dependencylist = dependencylist LI deps

26: endif

27: return dependencylist

We can further refine this set of contextual requirements by
introducing dependencies between different context types (de-
scribed in the getDependencies function). To do this, we
first examine the rule base and build a condition dependency
graph. A condition dependency graph is a directed graph that
defines which conditions can only be true if other conditions are
true. In a condition dependency graph, the vertices are condi-
tions and an edge from vertex A to vertex B means that condi-
tion A is needed to trigger condition B. For example, consider
the following 3 rules:

AAB=CAD (1)
XAY=F )
CAF=G 3)

This results in the following condition dependency graph:
AANB—>CAF “)
XAY—>CAF (@)

The construction of this dependency graph is straightforward.
Since the execution of rule 3 (with condition C A F) can only
be fired if rule 1 and rule 2 are fired previously, there is a depen-
dency between the conditions of rule 1 and rule 3 on one hand
and rule 2 and rule 3 on the other hand (lines 17 - 22).

Based on this dependency graph, dependencies between con-
text types are constructed by building a ContextDependency-
List in the context model (lines 23 - 26). First, a list of con-
ditions is computed that define the dependencies of the given

atomic clause (i.e., if the atomic clause is part of a vertex in
the dependency graph). Second, the context dependency list is
constructed by adding every context type that is described in
the atomic clause to the list. The output of the getDependencies
function is one or more context dependency lists.

The output of the context translation step is thus a set of
context dependencies that can be stored in the context model.
Following the instantiation, illustrated in Figure 3, a set of rules
of the form:

IF VideoQuality < 0.3

THEN Raise Alarm("BadQuality")
IF BadQuality A NetworkLoad>90%

THEN Raise_Alarm("NetworkCongestion")
IF BadQuality A ServerLoad>907

THEN Raise_Alarm("ServerCongestion")
will lead to the following context dependency graph:
VideoQuality < 0.33 — BadQuality A NetworkLoad>90%
VideoQuality < 0.33 — BadQuality A ServerLoad>90%
and subsequently to the storage of the set of axioms that are
illustrated in Figure 3 in the context model.

5.2. Subscription filter generation algorithm

In this section, we discuss how the knowledge of contex-
tual requirements of the decision making components can
be exploited to automatically generate the subscription fil-
ters. The structure of the context model lends itself to effi-
ciently generate subscription filters since the ContextType
concept and its associated properties already model candidate
subscription filters. The goal of the context reasoning step is to
select a specific set of context types that need to be requested.
Afterwards, the translation of these types to subscription filters
is straightforward. The subscription filter generation algorithm
consists of two steps: in a first step, the context types that need
to be requested from remote AEs are identified. In a second
step, the identified context types are translated to subscription
filters.

5.2.1. Step I: Identification of context types

The goal of this step is to identify the relevant context types.
As illustrated in Figure 4 it is steered by policies, defined by
the network provider. These policies define how the generation
algorithm should interpret the contextual requirements of the
decision making components. Additionally, they allow defin-
ing restrictions on the generation of the subscription filters. In
this section, we propose two approaches to define these poli-
cies and consequently identify the context types. The first ap-
proach uses a combination of RDF ! and SPARQL 2. The On-
tology Web Language (OWL) 3 can be seen as an extension
of RDF. As such, it is possible to treat an OWL ontology as a
RDF document. SPARQL is the standard query language for

IResource Description Framework (RDF) - http://www.w3.org/RDF/

2SPARQL Query Language for RDF - http://www.w3.org/TR/rdf-sparql-
query/

30WL 2 Web Ontology Language Structural Specification and Functional-
Style Syntax - http://www.w3.org/TR/owl2-syntax/



RDF documents. It mainly focuses on a syntactic tuple match-
ing, which improves its scalability. In the second approach, we
use SWRL *, which is a rule language for OWL ontologies,
for inferring knowledge about the modelled data. Compared
to RDF, SWRL features a higher expressivity (as it is able to
do interpret complex semantical relationships such as transitiv-
ity and symmetry) at the cost of a lower scalability. These ap-
proaches were chosen for several reasons. First, RDF/SPARQL
and OWL/SWRL are two of the most widely used approaches
for inferring knowledge from ontologies in the semantic web.
Second, they are in various levels of standardization by the
W3C, and are therefore widely supported by several seman-
tic tools. Third, as SWRL and SPARQL have different levels
of expressivity and scalability, it is interesting to compare their
performance. For a more in depth discussion of these semantic
web technologies, we refer to [27].

RDF/SPARQL approach. The RDF/SPARQL approach identi-
fies the relevant context types through a series of intelligent
SPARQL queries that exploit the knowledge in the context model.
Each query represents a specific policy and thus defines how
the subscription filter generation process should occur. For ex-
ample, to use the context dependencies defined in the previous
context translation step, a generic SPARQL query can be spec-
ified that takes into account the context dependencies for all
context types as follows:

SELECT ?type

WHERE {
2type rdf:type ContextType
7type hasContextDependencyList ?list
?7list hasContextDependency ?dep
?dep hasOperator ?op
?7dep hasContextDataValue ?th
?7dep hasContextValue ?cval
?7cval hasDataContextValue ?val
NOT_EXISTS (! eval (?th ,?0p,? val))

The above SPARQL query identifies all context types of
which all their context dependencies evaluate to true as context
types to request and thus subscription filters. The eval func-
tion evaluates if the context dependency evaluates to true by
making a straightforward comparison of the the operator 7op
with the most recent context value ?val and the threshold de-
fined in the context dependency 7th.

OWL/SWRL approach. While the RDF/SPARQL approach al-
ready allows interpreting the contextual requirements in some
way (e.g., to automatically generate subscription filters based
on context dependencies) the overall expressivity of the ap-
proach is limited to that of RDF. As such, for more advanced
scenarios, where expressivity such as the definition of cardinal-
ity restrictions, or the transitivity of properties is required, the
OWL/SWRL approach is more suited.

4SWRL: A Semantic Web Rule Language Combining OWL and RuleML -
http://www.w3.org/Submission/SWRL/

In the OWL/SWRL approach, an additional concept - called
ContextToQuery - is defined in the context model. The sub-
scription filter generation process is controlled based on the
definition of this ContextToQuery concept. Only the context
types that actually comply with the definition of ContextTo-
Query are retained as subscription filters. The context type
identification works thus as follows: each time the generation
process is started, an ontology-based reasoner performs an on-
tological subsumption to check which instances of the Context-
Type concept are also instances of the ContextToQuery con-
cept. Hence, the ontological reasoner selects the appropriate
context types from all available context types (modeled as in-
stances of the ContextType concept) based on the given defi-
nition of ContextToQuery.

A network or service provider can provide its own definition
of ContextToQuery to introduce additional policies that con-
trol the context dissemination. By adjusting the ContextTo-
Query definition, the context dissemination can thus be gov-
erned. For example, an operator might state that context that
is linked with a service that has received at least two man-
agement alarms recently, should always be requested. To do
this, it suffices to give the following additional definition to
ContextToQuery:

ContextToQuery
and hasSource some (TrafficFlow
and hasContext min 2 (ContextValue
and hasContextType some Alarm))

In this OWL definition, a qualified cardinality restriction is
used that constrains the number of context values that are at
least needed particular context type (an Alarm). Similar ex-
pressive policies can be defined through SWRL rules as well.
For example, to require the retrieval of all context types that are
somehow linked with a traffic flow with a bad video quality, the
following SWRL rule can be used.

Entity (?e) and hasSource(?c,?e)
and BadVideoQuality (?c)
and isConnectedTo (?e,?e2)
and hasSource(?c2,%e2)

==> ContextToQuery(?c2)

The above SWRL rule defines that all context ?c2, which
is part of an entity that is connected to an entity that has a bad
video quality context value should be requested. In this case,
we defined the isConnectedTo property as a symmetric and
transitive property that links entities with each other. Hence,
the check whether one entity is connected to an entity will auto-
matically be propagated through inference of the semantic rea-
soner. Furthermore, the above SWRL rule relies on the con-
cept BadVideoQuality. This concept can easily be defined
in OWL to define video quality context, of which the value is
lower than a threshold (e.g., 0.33).

ContextValue
and hasContextType some VideoQuality
and hasContextDataValue[<=0.33] some float

These policies cannot be defined in RDF and SPARQL as
restrictions on the cardinality and the definition of transitivity
and symmetry of properties are not supported.



Note that, although these policies need to be defined manu-
ally by the network provider, the on-line subscription filter gen-
eration process is still completely automated. This is because
the specification of policies occurs off-line, while the subscrip-
tion filter generation occurs on-line. Furthermore, the number
of policies that are needed to govern the subscription filter pro-
cess is significantly less than the complete set of possible sub-
scription filters. This is because a single policy can easily trig-
ger the generation of plentiful of subscription filters.

5.2.2. Step 2: Translation to semantic subscription filters

Once the appropriate context types are selected as part of
the generation algorithms, the translation of these context types
to actual subscription filters is straightforward. This is illus-
trated in Algorithm 2, which shows the translation algorithm for
the OWL/SWRL approach. As shown, the filter generation pro-
cess simply queries all ContextToQuery instances and trans-
lates them into a set of subscription filters, bundled by their
source. The translation algorithm of the RDF/SPARQL ap-
proach is similar but depends on the result of the queries. Once
constructed, the list of subscription filters is sent to every corre-
sponding context producer, so that the required context can be
pushed when needed.

Algorithm 2 The algorithm for automatically generating the
subscription filters based on the context model.

getSubscriptionFilters(onr) £
let nodes = getNodes(ont)
let filtermap = ¢
Vn € nodes :
let filters = getSubscriptionFiltersByNode(ont, n)
filtermap = rulemap U (n — filters)
return filtermap
getSubscriptionFiltersByNode (ont, node) =
let filters = ¢
let types = getContextT oQuery(ont)
Vi € types
if hasS ource(i, node)
then
filters = filters U getFilterRestriction(i)
return filters

A subscription filter is modeled as a string that defines the
context type that needs to be retrieved (specified through the
getFilterRestriction). In its simplest form, this string is
just a reference to the context type itself. For example, to refer
to all possible packet loss values on all nodes in the network, the
filter restriction simply specifies “"PacketLoss”. This refers to
a subclass of Context in DEN-ng with the same name. How-
ever, by adding additional restrictions, the context type can be
specified in more detail. The default behavior of a subscription
filter is to refer to the node at which this context type can be
found as well. For example, a packet loss context type that is
located on a specific node can be referred to as follows:

PacketLoss and hasSource some (Entity and
hasIPAddress 7157.193.43.507)

The above subscription filter rule is in itself also an ontolog-
ical definition. Hence, the context producer can match context
to this subscription filter by means of an ontological reason-
ing process. The context dissemination process thus supports
semantic subscription filters. These subscription filters can be
made even more complex. The expressiveness of OWL allows
defining restrictions on the values of the context itself. For ex-
ample, to state that we are only interested in packet loss context
updates that report values of 5% and higher, the following OWL
definition can be used:

PacketLoss

and hasSource some (Entity
and hasIPAddress ”157.193.43.50”)

and hasContextValue some (BoundedValue
and hasPercentage some double[> 0.05]))

In previous work, we have proposed a context matching al-
gorithm that allows interpreting such OWL definitions (or other
semantic constructs such as SWRL or Jena rules) to derive whether
to forward context to the consumers. The algorithmic details of
the context matching algorithm is thus out of the scope of this
article, and we refer to [28] for more information.

5.3. Model Summarization

The context dissemination process described until now stores
all context in the context model. This allows all context to be
queried from the instances that are part of the ContextToQuery
class (if the OWL/SWRL generation algorithm is used) or through
the SPARQL queries (if the RDF/SPARQL generation algo-
rithm is used). However, it also introduces a significant per-
formance penalty, especially in the OWL/SWRL case. The time
needed for performing reasoning in ontologies is known to scale
exponentially with the number of instances in the ontology [29].
In order to control the performance of the context reasoning, we
try to limit the amount of contextual data in the model without
losing the expressiveness required by the automated subscrip-
tion filter generation algorithms. We refer to this process as
model summarization. The model summarization process con-
sists of two distinct algorithms: a fuzzification algorithm and
a history-based pruning algorithm. We explain both in the re-
mainder of this section.

Context fuzzification. The different AEs typically generate a
continuous stream of contextual data, which can be summarized
for two reasons. First, the context dissemination process often
does not need detailed values of every context type to base its
decision on. Second, changes in the context are especially of
importance, as they can potentially lead to a change in the gen-
eration of subscription filters. If the AEs forward context that
provide no major updates in values, there is no use in creating
anew ContextValue instance.

To introduce such a summarization behavior we propose a
fuzzification process that translates each contextual data into
a fuzzy variable (i.e. a linguistic label) and groups consecu-
tive contextual data values with the same fuzzy variable to the
same ContextValue instance in the context model but with a
larger timeframe. Figure 5 illustrates the fuzzification process



MODERATE HIGH

Membership value

Server load value (%)

Low

Moderate

ContextData instance

<
0 20 40 60 80
Server load (%)

(a) Used fuzzy variables

time

(b) Fuzzification process for exemplary server load values

Figure 5: Overview of the fuzzification process for illustrative server load values. The fuzzification results in a significant reduction
of the number of instances being stored in the ontological context model.

for an illustrative flow of context of the video server load con-
text type. For the server load, we defined 4 fuzzy variables, each
with their corresponding membership functions: low, moderate,
high and very high (Figure 5a). Figure 5b shows how each new
value of context triggers the calculation of the 4 membership
functions (membership values of 0 have been omitted for sim-
plicity), a labeling to a fuzzy variable and a modification to the
context model, either by changing an existing ContextValue
instance or by creating a new one.

History-based pruning. The context fuzzification will signifi-
cantly decrease the number of instances of ContextValue that
are created in the context model. However, without removing
data from the context model, the ontology will keep growing,
leading to a significant overhead. To tackle this issue, we pro-
pose a simple data pruning algorithm that only stores the con-
text values that are not older than T seconds. The higher this
time window T is, the more history can be taken into account in
the context dissemination process. We characterize the impact
of this time window T value on the reasoning performance in
Section 6.

6. Performance evaluation

6.1. Experimental setup

A prototype of the context dissemination process was im-
plemented to characterize the performance in terms of time re-
quired to generate the subscription filters. The context model
was constructed using the OWL API [30]; the Pellet library [31]
was used as an OWL2 reasoner and the Jena 3 library was used
to support the SPARQL queries. The Pellet reasoner was con-
figured both in normal and incremental reasoning mode. Fur-
thermore, we investigated the different subscription filter gen-
eration algorithms and characterized the impact of the model

3 Apache Jena - http://jena.apache.org

Table 1: Overview of the investigated context dissemination
configurations. Each configuration differs in the generation al-
gorithm that was used, the configuration of the reasoner and the
use of summarization.

Generation Summa-

Name Algorithm Reasoner rization
SPARQL | RDF/SPARQL  SPARQL querier no
SumSPARQL | RDF/SPARQL  SPARQL querier yes
OWL OWL Pellet no
IncrOWL OWL Incremental Pellet no
SumOWL OWL Pellet yes
SWRL SWRL Pellet no
SumSWRL SWRL Pellet yes

summarization step. This led to seven different configurations
of the context dissemination process, which are summarized
in Table 1. As, in the OWL/SWRL generation algorithm, the
policies can be either specified solely through OWL constructs
or solely through SWRL rules, these two configurations were
decoupled from each other. Note that incremental reasoning
and model summarization cannot be turned on together, as the
knowledge base is not monotonic when summarization is ap-
plied. Each experiment was repeated 100 times and carried out
on a Dual Core 2Ghz AMD machine with 3.5 GB of RAM
memory. We present average values; the corresponding stan-
dard deviation were always smaller than 5% of the mean.

To characterize the performance of the context dissemina-
tion process, we modeled an access network multimedia deliv-
ery scenario as described in Section 2. We focus on the video
server AE’s context dissemination process. Table 2 provides an
overview of the different context types that are available in this
network model. As shown, each context type, except the video
quality type, has both an aggregated view (i.e., an average over



Table 2: Overview of the available context types and their gran-
ularity. The aggregated context types denote the maximum
value reported by the corresponding local context types that are
controlled by the AE.

Name | Aggregated Local
Video quality | N/A 1 per Flow
Server CPU load | 1 per Server AE 1 per Server

Memory consumption
Video quality score

1 per Server AE
1 per Network AE

1 per Server
1 per Flow

Network load | 1 per Network AE 1 per Router
Packet loss | 1 per Network AE 1 per Router
Jitter | 1 per Network AE 1 per Router

Delay | 1 per Network AE 1 per Router

an AE) and a local view.

We assume that every context type provides an updated value
of its contextual status every second. We modeled an access
network of 10,000 nodes. Based on this network size, in to-
tal, 150,000 possible context types are continuously generated.
This thus leads to a huge amount of context that is being re-
quested if the context communication between the collaborat-
ing AEs is not carefully controlled. By using the context dis-
semination process, only a subset of this context will actually
be requested.

6.2. Detailed evaluation results

We investigated the impact of the different configuration
sets on the total time required to generate subscription filters.
We first compare the different generation algorithms with each
other without applying any summarization on the model (Sec-
tion 6.2.1). The impact of performing summarization is char-
acterized next (Section 6.2.2) and also investigate the influence
of the configuration of the summarization step (Section 6.2.3).
Furthermore, to investigate the scalability of the approach we
characterized the reasoning time for an increasing amount of
context types involved, triggered by an increase of the number
of AEs in the collaborative context dissemination process (Sec-
tion 6.2.4).

6.2.1. Reasoning time without model summarization

In this experiment, we characterize the performance of the
configuration sets without model summarization. We emulated
the scenario described in Section 2, with a network topology
containing 16 collaborating AEs. Figure 6 shows the reason-
ing time as a function over time as more and more context is
being stored into the context model. As shown, there are sig-
nificant differences between the four configuration sets. For
the OWL/SWRL-based approaches (i.e., OWL, SWRL and In-
crOWL), the reasoning time quickly increases as time elapses
and more context is being stored in the model. Especially the
OWL-based approach has important scalability issues: after 5
minutes of operation, it takes 2.82 seconds to generate the ap-
propriate subscription filters, while at startup only 400 millisec-
onds were needed. Furthermore, the reasoning time follows an

10

OWL ——
IncrOWL -
SWRL -
25 | SPARQL i
°
)
[}
£
2
c
3
[}
[}
o
Time (sec)
Figure 6: Influence of different configuration sets without

model summarization on the reasoning time as a function of
time.

exponential increase, which renders this approach infeasible for
any real-time operation. This significant increase in the reason-
ing time of the OWL reasoning configuration set is due to the
poor scalability of ontological reasoning as the number of in-
stances in an ontology increases. After 5 minutes more than
15,000 context values have been added to the ontology, as 50
context types generate an updated context value every second.
This results in an explosion of the size of the context model and
consequently in an explosion of the reasoning time.

Specifying the policies of the context dissemination pro-
cess in SWRL instead of OWL definitions can aid the perfor-
mance. As shown, the SWRL configuration set achieves an
overall lower reasoning time compared to the OWL configu-
ration set. However, also the SWRL configuration set clearly
shows an exponential increase as the context model increases.
As the reasoning process of the generation algorithm is in essence
monotonic (i.e., only new data is added, old data is not re-
moved), an incremental reasoner can also be used. This is
shown in Figure 6, where the IncrOWL configuration set corre-
sponds with the incremental reasoner supported by Pellet. As
shown, the IncrOWL clearly has a better performance than the
OWL reasoning without incremental reasoning. While the per-
ceived reasoning time still increases as the size of the model
increases, the growth is more linear then exponential. This
more linear evolution can also be seen when comparing with the
SWRL configuration set. While SWRL initially outperforms
IncrOWL, the steeper increase of SWRL makes IncrOWL bet-
ter for larger context models. However, although the perfor-
mance is already ameliorated considerably by using incremen-
tal reasoning, the overhead of OWL-based reasoning is still
considerable. After 5 minutes of operation, generating the ap-
propriate subscription filters takes approximately 1.21 seconds.

The fourth and final configuration set without model sum-
marization, the RDF/SPARQL-based approach, has a signifi-
cantly better performance than the OWL/SWRL-based approaches.
This is also shown in Figure 6: as shown, generating the appro-



05 T T T T T
SumOWL —l—
SumSWRL ---%--

045 SumSPARQL @ ]|
04
0.35
03 |
0.25

0.2

Reasoning time (sec)

0.15

K.

KoK, *
0.05 ]
00090%9000000000000000000000.,,4
0 50 100 150 200 250

Time (sec)

Figure 7: Influence of the Summarized OWL, Summarized
SWRL and Summarized SPARQL reasoner configuration sets
on the reasoning time as a function of the time.

priate subscription filters only takes approximately 19 msec.
Moreover, the performance of the RDF/SPARQL approach is
far less impacted by an increase in the context model’s size.
After 5 minutes of operation, the time required to generate the
subscription filters is 19.28 msec, compared to 18.67 msec at
the beginning of the experiment. Therefore, at the end of the ex-
periment, the RDF/SPARQL approach was a factor 148 times
faster than the OWL-based approach and 64 times faster than
the IncrOWL-based approach. Obviously, this performance gain
also comes with a cost of expressivity. As discussed in Sec-
tion 5.2, the RDF/SPARQL approach is a simpler and less ex-
pressive generation algorithm than the OWL/SWRL-based con-
figuration sets. As such, it is able to scale better with an in-
creasing context model size but it does not support inferring
new knowledge based on, amongst others, the transitivity and
symmetry of properties.

6.2.2. Influence of applying model summarization

The impact of applying model summarization is shown in
Figure 7. We characterize the time required to generate the
subscription filters for the 3 configuration sets that use model
summarization: SumOWL, SumSWRL and SumSPARQL. For
the summarization algorithms, we defined 5 fuzzy variables per
context type in the fuzzification algorithm, and chose to keep
the last 30 seconds of context in the history-based pruning al-
gorithm.

A number of observations can be made for these results.
First, for the OWL/SWRL-based approaches, applying summa-
rization clearly improves the performance of the context dis-
semination process, regardless if OWL or SWRL-based rea-
soning is used. Where the OWL reasoning without semantic
summarization resulted in reasoning times of 2.82 seconds after
5 minutes, enabling the semantic summarization process keeps
the obtained reasoning times around 240 milliseconds. A sim-
ilar behavior can be observed when enabling semantic summa-
rization for the SWRL-based reasoning. As the semantic sum-

11

marization process limits the context that is being stored into
the context model, we are able to decrease the required reason-
ing time considerably to reasoning times of only 74 millisec-
onds.

Second, the SPARQL-based configuration set is less im-
pacted by applying summarization on the model. Applying
model summarization results in average reasoning times of ap-
proximately 16.94 msec, compared to 18.81 msec without sum-
marization. This is only a marginal difference. Therefore, tak-
ing into account that summarization also removes some knowl-
edge from the model, applying summarization is typically not

useful for the SPARQL-based approach. Additionally, the SPARQL-

based approach was already sufficiently fast and not impacted
severely by an increase in the size of the context model, making
the summarization of the model less required.

Third, enabling the summarization also stabilizes the ob-
tained reasoning time for the OWL/SWRL-based approaches.
Note that the reasoning times were already stabilized in the RD-
F/SPARQL approach without summarization. The beneficial
effect of the summarization is clearly visible in Figure 7 where
the obtained reasoning times do not increase for the SumOWL
and SumSWRL configuration sets as the time increases. More-
over, the reasoning time slightly decreases in the first 30 sec-
onds to 60 seconds because of the reduced initial start-up over-
head of the reasoner. This is certainly an important observa-
tion. In order to be feasible in an on-line deployment, the per-
formance of the generation process should remain stable as a
function of the time. As shown in Figure 7, summarization
is needed for the OWL/SWRL-based approaches. This shows
that, for the OWL/ SWRL-based approaches, applying summa-
rization on the model is key in making an on-line deployment
feasible.

These results highlight an important aspect: when deploy-
ing the context dissemination process, the network and service
provider has an important choice to make. Either the expres-
siveness of the context dissemination process is favored, focus-
ing on describing complex relationships between the collabo-
rating AEs. In this case, the OWL/SWRL-based generation al-
gorithms are best suited but it is important to apply model sum-
marization. This allows the on-line deployment of the context
dissemination process and ensures that the subscription filters
can be generated sufficiently fast. Another option is to favor the
scalability of the context dissemination process. In this case, the
RDF/SPARQL-based approach is more suited. Additionally, it
has the advantage that it is still faster then the OWL/SWRL-
based approaches with summarization and that it does not re-
quire any removal of knowledge from the context model.

6.2.3. Configuration of the summarization algorithm

The previous results showed the advantage of summariz-
ing the context before it is stored in the context model. In this
section, we investigate the impact of the parameters of the sum-
marization algorithms on the reasoning time. More specifically,
we characterize the influence of the number of fuzzy variables
in the fuzzification algorithm and the time window T of the his-
tory based pruning algorithm that defines the amount of his-
tory that is stored in the context model. Both parameters in-



350 T T T

300 ]
250 ]
)
E
2 200 |
)
£
S 150 |
(2]
@
Q
o
100 - ]
50 . ]
15 Fuzzy variables —%—
10 Fuzzy variables ---B--
0 L ) 5 Fuzzy \{ariables P
0 50 100 150 200

Amount of history taken into account (sec)

Figure 8: Influence of an increasing time window T in the his-
tory based pruning algorithm, defining the history that is stored
in the context model, on the reasoning time. Different fuzzifi-
cation configurations are investigated.

fluence the ontology’s size, and also the reasoning time. We
focus on the context dissemination process of the SWRL-based
approach with summarization (SumSWRL) as the previous re-
sults showed that this is the configuration set that performs best,
while still needing the summarization of the model.

Figure 8 shows the reasoning time as a function of this T
parameter for various configurations of the fuzzification algo-
rithm. These various configurations are differentiated by a dif-
ferent number of fuzzy variables that are defined. As can be ex-
pected, increasing the time window leads to an increase in over-
all reasoning time: as more history is being stored into the on-
tology and not removed by the pruning algorithm, the ontology
increases, as does the reasoning time. However, the increase in
reasoning time is still linear because of the fuzzification algo-
rithm. As the fuzzification algorithm groups context with the
same value, increasing the history that is stored for one partic-
ular context type does not always lead to an additional context
value instance being stored into the context model. This allows
us to avoid a typical exponential increase in scalability of the
ontology’s performance. Instead, increasing the amount of his-
tory that is taken into account results in a linear increase from
70-120 msec, if 5 seconds of history is taken into account, up
to 250-300 msec, if 3 minutes of history is taken into account.

As shown, the configuration of the fuzzification algorithm
has a small but clear influence on the reasoning time. As more
fuzzy variables are defined, potentially more context value in-
stances are added to the ontology, especially if the context fea-
tures a strong oscillation in one or more data values. Conse-
quently, the higher ontology size results in a higher reasoning
time. However, the experienced increase in reasoning time is
rather small: increasing the number of fuzzy variables from 5
to 15 only leads to a 40 msec increase in reasoning time. As
the use of 15 fuzzy variables allows differentiating between 15
levels for a particular context value, this already offers a con-
siderable amount of expressivity.

12

600 T T T T T T T
SumSWRL - T=200sec —o—
SUmMSWAL - T=100sec -3¢ P
SumSWRL - T=10sec - .
500 SPARQL - 1
X
é 400 B
= 300 [ B
£
c
2
©
& 200 | g
100 B
0
0 10 20 30 40 50 60 70

Number of AEs involved in the context exchange process

Figure 9: Impact of an increasing number of AEs on the rea-
soning time. A context dissemination process with 75 collabo-
rating AEs, which represents a network topology of hundred of
thousands of nodes, results in a reasoning time of 478 msec.

6.2.4. Scalability evaluation results

Although the context dissemination process of the investi-
gated scenario already consisted of a managed network of mod-
erate size (i.e., 16 collaborating AEs), we investigate the scal-
ability of the context dissemination approach by increasing the
number of collaborating AEs that are involved in the context
dissemination process up to 75 AEs. As these AEs represent
AEs that each manage a subset of the network, that many AEs
involved in the context dissemination corresponds to a network
of hundreds of thousands of nodes. For this experiment, 5 fuzzy
variables were defined.

Figure 9 shows the obtained reasoning time for an increas-
ing number of AEs involved in the context dissemination. Two
types of reasoner configuration sets were investigated: the Sum-
SWRL configuration (with 3 configurations of the history-based
pruning’s T parameter) and the SPARQL-based approach. The
results show that the reasoning time increases for both configu-
ration types as the dimension of the managed network increases
as well. This is obvious: as more AEs are taken into account,
the context dissemination process increases in complexity and
therefore also in the time required to generate the subscription
filters.

The SPARQL-based approach still obtains the best perfor-
mance. Although a small increase in reasoning time is per-
ceived, it is still able to generate the subscription filters fast.
With 75 AEs collaborating in the context dissemination pro-
cess, subscription filters can be generated in 62.68 msec. Even
the SWRL-based approach with summarization is able to scale
to large and complex managed network dimensions. Although
increasing the number of AEs does lead to an increase in rea-
soning time, the experienced increase is still tolerable. If the
number of AEs involves is increased from 5 to 75, the reason-
ing time approximately doubles (e.g., if the last 100 seconds
of context is kept the reasoning time increases from 210 msec
to 478 msec). While these latter values correspond to a con-



siderable increase in reasoning time, it is safe to assume that
a collaborative network of 75 AEs will perform complex man-
agement tasks, whose execution is in the order of seconds, so
that high reasoning times for the context dissemination process
are allowed.

7. Conclusions

In this article, we proposed a context dissemination process
for autonomic collaborative networks. Entities in an autonomic
collaborative network generate a continuous stream of knowl-
edge, which we call context. The proposed context dissemina-
tion process enables the automated generation of subscription
filters, which define the context of remote autonomic elements
a local autonomic element subscribes to.

To enforce this, the context dissemination features a number
of contributions. First, it contains translation algorithms that
translate the contextual requirements of decision making com-
ponents into a semantic interpretable definition to be stored in
an ontology. Second, it contains two distinct subscription fil-
ter generation algorithms that generate the set of subscription
rules according to policies stated by the network provider. The
two generation algorithms either use a combination of OWL
and SWRL or RDF and SPARQL and differ in the trade-off be-
tween offered expressivity and experienced performance. We
discussed how the policies that steer the generation algorithms
can support complex operations on the context such as defining
semantic subscription filters. Finally, the performance of the
context dissemination process can be significantly improved by
including a fuzzification and pruning algorithm that summarize
the semantic information that is stored in the ontology.

A performance evaluation of a prototype of the context dis-
semination process was carried out, focusing on the reasoning
time required to generate the subscription filters. The results
showed that the expressivity of the OWL/SWRL-based genera-
tion algorithms comes with an important cost in reasoning time.
However, by applying the summarization algorithms, their per-
formance can be considerably improved. As a result, the ob-
tained reasoning times are in the order of tens of milliseconds
for the considered managed network sizes. For example, a
management network with 16 AEs involved in the context dis-
semination process is able to generate the subscription filters
in approximately 72 msec. As such, the results show that the
context dissemination process is able to react in a timely man-
ner to context changes, which makes it deployable in on-line
collaborative management environments. As an alternative to
the OWL/SWRL-based generation algorithms, the more scal-
able RDF/SPARQL-based generation algorithm. While this al-
gorithm has less expressivity power in defining the policies, it
can generate the subscription filters in the order of a few mil-
liseconds, even for large managed network sizes. For example,
the subscription filters of a management network with 16 col-
laborating AEs can be generated in 18 msec, when using the
OWL/SWRL-based generation algorithms.

In summary, the results show that a reasoner configuration
set can be found for every network dimension that enables an
on-line deployment of the context dissemination process and

13

thus automates the dynamic generation of subscription filters.
There is a trade-off in choosing the best configuration sets be-
tween expressivity and performance. The network and service
provider can choose which approach is best suited for the col-
laboration scenario at hand, taking into account the presented
results.

Acknowledgements

Steven Latré is funded by grant of the Fund for Scientific
Research, Flanders (FWO-V).

[1] B. Jennings, S. van der Meer, S. Balasubramaniam, D. Botvich,
M. O Foghlu, W. Donnelly, J. Strassner, Towards autonomic manage-
ment of communications networks, Communications Magazine, IEEE 45
(2007) 112 -121. 10.1109/MCOM.2007.4342833.

J. Strassner, Policy-Based Network Management: Solutions for the Next
Generation (The Morgan Kaufmann Series in Networking), Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

P. T. Eugster, P. A. Felber, R. Guerraoui, A.-M. Kermarrec, The many
faces of publish/subscribe, ACM Computing Surveys 35 (2003) 114-131.
10.1145/857076.857078.

C. Bouras, V. Poulopoulos, Enhancing meta-portals using dynamic user
context personalization techniques, Journal of Network and Computer
Applications 35 (2012) 1446 — 1453. 10.1016/j.jnca.2011.10.005.

L. Tamine-Lechani, M. Boughanem, M. Daoud, Evaluation of contex-
tual information retrieval effectiveness: overview of issues and research,
Knowledge and Information Systems 24 (2010) 1-34. 10.1007/s10115-
009-0231-1.

A. Bikakis, G. Antoniou, P. Hasapis, Strategies for contextual reason-
ing with conflicts in ambient intelligence, Knowledge and Information
Systems 27 (2011) 45-84. 10.1007/s10115-010-0293-0.

M. Bakhouya, J. Gaber, P. Lorenz, An adaptive approach for
information dissemination in vehicular ad hoc networks, Jour-
nal of Network and Computer Applications 34 (2011) 1971-1978.
10.1016/j.jnca.2011.06.010.

W. Abdou, A. Henriet, C. Bloch, D. Dhoutaut, D. Charlet, F. Spies, Us-
ing an evolutionary algorithm to optimize the broadcasting methods in
mobile ad hoc networks, Journal of Network and Computer Applications
34 (2011) 1794-1804. 10.1016/j.jnca.2011.01.004.

Distributed Management Task Force, Configuration management
database (CMDB) federation specification, 2010. Document Number:
DSP0252 - Version 1.0.1.

I. Jurisica, J. Mylopoulos, E. Yu, Ontologies for knowledge manage-
ment: An information systems perspective, Knowledge and Information
Systems 6 (2004) 380-401. 10.1007/s10115-003-0135-4.

Y. Xue, H. H. Ghenniwa, W. Shen, Frame-based ontological view for
semantic integration, Journal of Network and Computer Applications 35
(2012) 121 - 131. 10.1016/j.jnca.2011.02.010.

M. Roantree, J. Shi, P. Cappellari, M. F. O’Connor, M. Whelan,
N. Moyna, Data transformation and query management in personal health
sensor networks, Journal of Network and Computer Applications 35
(2012) 1191 — 1202. 10.1016/j.jnca.2011.05.001.

B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, B. Ohlman, A
survey of information-centric networking, Communications Magazine,
IEEE 50 (2012) 26 -36. 10.1109/MCOM.2012.6231276.

E. Renault, W. Drira, H. Medhioub, D. Zeghlache, Management and se-
mantic description of objects for the future internet, in: Second Interna-
tional Conference on Ubiquitous and Future Networks (ICUFN) (2010),
pp- 291 —296. 10.1109/ICUFN.2010.5547187.

M. Petrovic, H. Liu, H.-A. Jacobsen, G-ToPSS: Fast filtering of graph-
based metadata, in: 14th international conference on World Wide Web
(WWW) (2005), pp. 539-547. 10.1145/1060745.1060824.

M. Petrovic, 1. Burcea, H.-A. Jacobsen, S-ToPSS: semantic toronto pub-
lish/subscribe system, in: Proceedings of the 29th international confer-
ence on Very large data bases (VLDB) (2003), pp. 1101-1104.

H. Li, G. Jiang, Semantic message oriented middleware for publish/sub-
scribe networks, in: Sensors, and Command, Control, Communications,
and Intelligence (C3I) Technologies for Homeland Security and Home-
land Defense III (2004), volume 5403, pp. 124—133. 10.1117/12.548172.

(2]

[3]

[4]

(3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]



[18]

[19]

[20]

[21]

(22]

[23]

(24]

[25]

(26]

[27]

[28]

[29]

(30]

[31]

J. Wang, B. Jin, J. Li, D. Shao, A semantic-aware publish/subscribe sys-
tem with RDF patterns, in: 28th Annual International Computer Soft-
ware and Applications Conference (COMPSAC) (2004), pp. 141-146.
10.1109/CMPSAC.2004.1342818.

J. Skovronski, K. Chiu, An ontology-based publish-subscribe framework,
in: International Conference on Information Integration and Web-based
Applications Services (2006), pp. 49-58.

D. Jones, J. Keeney, D. Lewis, D. O’ Sullivan, Knowledge-based network-
ing, in: Proceedings of the second international conference on Distributed
event-based systems, DEBS ’08, ACM, New York, NY, USA, 2008, pp.
329-332. 10.1145/1385989.1386034.

A. Carzaniga, D. S. Rosenblum, A. L. Wolf, Design and evaluation of
a wide-area event notification service, ACM Transactions on Computer
Systems 19 (2001) 332 — 383. 10.1145/380749.380767.

J. Keeney, D. Roblek, D. Jones, D. Lewis, D. O’Sullivan, Extending
siena to support more expressive and flexible subscriptions, in: Second
International Conference on Distributed Event-Based Systems (DEBS)
(2008), pp. 35-46. 10.1145/1385989.1385995.

R. Brena, J. Aguirre, C. Chesnevar, E. Ramrez, L. Garrido, Knowledge
and information distribution leveraged by intelligent agents, Knowledge
and Information Systems 12 (2007) 203-227. 10.1007/s10115-006-0064-
0.

S. Latré, S. van der Meer, E. De Turck, J. Strassner, J. Won-Ki Hong,
Ontological generation of filter rules for context exchange in auto-
nomic multimedia networks, in: 12th IEEE/IFIP Network Oper-
ations and Management Symposium (NOMS) (2010), pp. 575-582.
10.1109/NOMS.2010.5488448.

M. Serrano, J. Serrat, J. Strassner, M. O Foghlu, Management and context
integration based on ontologies, behind the interoperability in autonomic
communications, Extended journal publication of the SIWN International
Conference on Complex Open Distributed Systems 1 (July 2007).

M. O’Connor, A. Das, A method for representing and querying temporal
information in OWL, in: A. Fred, J. Filipe, H. Gamboa (Eds.), Biomed-
ical Engineering Systems and Technologies, volume 127 of Communica-
tions in Computer and Information Science, Springer Berlin Heidelberg,
2011, pp. 97-110. 10.1007/978-3-642-18472-7_8.

T. Wang, B. Parsia, J. Hendler, A survey of the web ontology landscape,
in: 1. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika,
M. Uschold, L. Aroyo (Eds.), The Semantic Web - ISWC 2006, volume
4273 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2006, pp. 682-694.

J. Famaey, S. Latré, J. Strassner, F. De Turck, Semantic context
dissemination and service matchmaking in future network manage-
ment, International Journal of Network Management 22 (2012) 285-310.
10.1002/nem.805.

L.Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, S. Liu, Towards a complete OWL
ontology benchmark, in: Y. Sure, J. Domingue (Eds.), The Semantic Web:
Research and Applications, volume 4011 of Lecture Notes in Computer
Science, Springer Berlin / Heidelberg, 2006, pp. 125-139.

M. Horridge, S. Bechhofer, The OWL API: A Java API for Working
with OWL 2 Ontologies, in: R. Hoekstra, P. F. Patel-Schneider (Eds.),
OWLED, volume 529 of CEUR Workshop Proceedings, CEUR-WS.org,
2008, pp. 11-21.

E. Sirin, B. Parsia, B. Grau, A. Kalyanpur, Y. Katz, Pellet: A practical
OWL-DL reasoner, Web Semantics: Science, Services and Agents on the
World Wide Web 5 (2007) 51-53. 10.1016/j.websem.2007.03.004.

14



