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Abstract—Border Gateway Protocol (BGP) is the core compo-
nent of the Internet’s routing infrastructure. Abnormal routing
behavior impairs global Internet connectivity and stability. Hence,
designing and implementing anomaly detection algorithms is
important for improving performance of routing protocols. While
various machine learning techniques may be employed to detect
BGP anomalies, their performance strongly depends on the
employed learning algorithms. These techniques have multiple
variants that often work well for detecting a particular anomaly.
In this paper, we use the decision tree and fuzzy rough set methods
for feature selection. Decision tree and extreme learning machine
classification techniques are then used to maximize the accuracy
of detecting BGP anomalies. The proposed techniques are tested
using Internet traffic traces.

Keywords—Machine learning; decision tree; fuzzy rough sets;
extreme learning machine; weighted extreme learning machine.

I. INTRODUCTION

Border Gateway Protocol (BGP) enables exchange of
routing information between gateway routers in a network
of Autonomous Systems. Its main function is to exchange
reachability information among BGP peers and select the best
route based on a set of metrics such as the shortest AS-
path, the nearest next-hop router, or routing policies. BGP
anomalies are triggered by a variety of events such as session
resets, router misconfigurations, and link or router failures.
They affect Internet routers and, consequently, slow down
servers and hosts. BGP anomalies often occur and techniques
for their detection have recently gained visible attention and
importance. A number of anomaly detection techniques have
been reported in the literature.

Anomaly detection techniques have been applied in com-
puter networks [1]. These techniques are employed to detect
BGP anomalies that frequently affect the Internet [2], [3] and
its applications. They may be applied to detect BGP anomalies,
intrusion attacks, worms, and distributed denial of service at-
tacks (DDoS) because they all have similar characteristics [4],
[5]. Anomaly detection may be viewed as a classification
problem of assigning an “anomaly” or “regular” label to a
data point. There are numerous machine learning methods that
address these classification tasks. However, redundancies in
the collected data may affect the performance of classification
methods. Feature selection and feature extraction may be
used to reduce redundancy among features and improve the
generalization of classification algorithms. Feature selection
methods such as decision tree [6] and fuzzy rough sets [7]
are used to select a subset of features from the original

feature space. Furthermore, feature extraction methods such as
principal component analysis project the original data points
onto a lower dimensional space. However, features transformed
by feature extraction lose their original physical meaning.

The main focus of approaches that have been proposed
in the past is developing models for traffic classification. The
accuracy of a classifier depends on the extracted features, the
combination of selected features, and the underlying model. In
this paper, we use feature selection methods to select subsets of
the original features while preserving the physical meaning of
the features. We examine the effects of feature selection on the
performance of BGP anomaly classification. We employ two
methods for feature selection (decision tree and fuzzy rough
sets) and evaluate their performance in terms of classification
accuracy and execution time. We then train an extreme learning
machine (ELM) [8], [9] classifier using the selected features.
ELM is a fast learning algorithm used with a single hidden
layer feed-forward neural (SLFN) network. It randomly selects
the weights of the hidden layer and analytically determines
the SLFN output weights. It avoids the iterative tuning of the
weights used in traditional neural networks and, hence, it is
fast and could be used as an online algorithm.

This paper is organized as follows. In Section II, we
describe the BGP datasets and extracted features relevant to the
detection of BGP anomalies. The proposed machine learning
techniques for feature selection and classification of anomalies
are described in Section III and Section IV, respectively. We
conclude with Section V.

II. UNDERSTANDING BGP DATA

The datasets examined in this paper consist of BGP update
messages collected by the Réseaux IP Européens (RIPE) under
the Routing Information Service (RIS) project [10]. The RIPE
and Route Views [11] BGP update messages are available to
the research community in the multi-threaded routing toolkit
(MRT) binary format [12]. The Internet Engineering Task
Force (IETF) introduced MRT to export routing protocol
messages, state changes, and content of the routing information
base (RIB). We filter the collected traffic for BGP update
messages during the time period when the Internet experienced
anomalies. In this paper, we consider three well-known worms:
Slammer, Nimda, and Code Red I. Their details are listed in
Table I.

The Structured Query Language (SQL) Slammer worm
attacked Microsoft SQL servers on January 25, 2003 [13]. The



TABLE I. DESCRIPTION OF THE BGP DATASETS.

Class Date Duration (h)

Slammer Anomaly January 25, 2003 16
Nimda Anomaly September 18, 2001 59
Code Red I Anomaly July 19, 2001 10

Slammer worm is a code that generates random IP addresses
and replicates itself by sending 376 bytes of code to the those
IP addresses. If the destination IP address is a Microsoft SQL
server or a user’s PC with the Microsoft SQL Server Data
Engine (MSDE) installed, the server becomes infected and
begins infecting other servers. As a result, the update messages
consume most of the routers’ bandwidth, which in turn slows
down the routers and in some cases causes the routers to crash.
The Nimda worm [14] was released on September 18, 2001.
It propagates fast through email messages, web browsers, and
file systems. Viewing the email message triggers the worm
payload. The worm modifies the content of the web document
file in the infected hosts and copies itself in all local host
directories. The Code Red I worm attacked Microsoft Internet
Information Services (IIS) web servers on July 19, 2001 [15].
The worm affected approximately half a million IP addresses
a day. It takes advantage of vulnerability in the IIS indexing
software. It triggers a buffer overflow in the infected hosts by
writing to the buffers without checking their limits.

The BGP protocol generates four types of messages: open,
update, keepalive, and notification [16]. The extracted features,
shown in Table II, are categorized into volume and AS-path
features. The AS-PATH is a BGP update message attribute that
enables the protocol to select the best path for routing packets.
If a feature is derived from the AS-PATH attribute only, it is
categorized as an AS-path feature. Otherwise, it is categorized
as a volume feature. The AS-PATH attribute in a BGP update
message indicates a path that a packet may traverse to reach
its destination. There are three types of features: continuous,
categorical, and binary.

The BGP features are sampled every minute during a five-
day period: the peak day of an anomaly, two days prior,
and two days after the anomaly. This sampling yields 7,200
samples for each anomalous event, where 5,760 samples are
considered regular (non-anomalous) and 1,440 samples are
considered anomalous. Hence, the minority of samples belongs
to anomaly classes and, therefore, BGP anomaly datasets are
imbalanced.

A dataset is imbalanced when at least one class is rep-
resented by a smaller number of training samples compared
to other classes. Most classification algorithms minimize the
number of incorrectly predicted class labels while ignoring
the difference between types of misclassification by assuming
that all misclassification errors have equal costs. As a result,
a classifier that is trained using an imbalanced dataset may
successfully classify the majority class with a good accuracy
while it may be unable to accurately classify the minority class.
The assumption that all misclassification types are equally
costly is not valid in many application domains. In the case of
BGP anomaly detection, incorrectly classifying an anomalous
sample is more costly than incorrect classification of a regular
sample. Various approaches have been proposed to achieve
accurate classification results when dealing with imbalanced

TABLE II. EXTRACTED FEATURES FROM BGP UPDATE MESSAGES.
NLRI: NETWORK LAYER REACHABILITY INFORMATION; IGP: INTERIOR

GATEWAY PROTOCOL; EGP: EXTERIOR GATEWAY PROTOCOL.

Feature Definition Type Category

1 Number of announcements continuous volume
2 Number of withdrawals continuous volume
3 Number of announced NLRI prefixes continuous volume
4 Number of withdrawn NLRI prefixes continuous volume
5 Average AS-PATH length categorical AS-path
6 Maximum AS-PATH length categorical AS-path
7 Average unique AS-PATH length continuous AS-path
8 Number of duplicate announcements continuous volume
9 Number of duplicate withdrawals continuous volume
10 Number of implicit withdrawals continuous volume
11 Average edit distance categorical AS-path
12 Maximum edit distance categorical AS-path
13 Inter-arrival time continuous volume

14–24 Maximum edit distance = n,
where n = (7, ..., 17)

binary AS-path

25–33 Maximum AS-path length = n,
where n = (7, ..., 15)

binary AS-path

34 Number of IGP packets continuous volume
35 Number of EGP packets continuous volume
36 Number of incomplete packets continuous volume
37 Packet size (B) continuous volume

datasets. Examples include assigning a weight to each class
or learning from one class (recognition-based) rather than two
classes (discrimination-based) [17]. Weighted Support Vector
Machines (SVMs) [18] assign distinct weights to data samples
so that the training algorithm learns the decision surface
according to the relative importance of data points in the
training dataset. Fuzzy Support Vector Machines [19] is a
version of weighted SVMs that applies a fuzzy membership
to each input sample and reformulates the SVMs so that input
points make different contributions to the learning of decision
surface.

III. FEATURE SELECTION

A BGP anomaly detector may be implemented as a ma-
chine learning model that learns how to change its inter-
nal structure based on the external feedback [20]. Machine
learning models learn to classify data points using a feature
matrix. The matrix rows correspond to the data points while
its columns correspond to the feature values. Even though
machine learning may provide general models to classify
anomalies, it may easily misclassify test data points due to
the redundancy or noise contained in datasets. By providing
a sufficient number of related features, machine learning
models may overcome this deficiency and may help build a
generalized model to classify data with small error rates [21],
[22]. Many classification techniques have been implemented to
detect anomalies [1], [20], [23]. Their goal is to maximize the
accuracy of detecting targeted BGP anomalies. Performance
of anomaly classifiers is closely related to feature selection
algorithms [24]. We use decision tree and fuzzy rough set
methods to select relevant features from BGP datasets.

A. Decision Tree Algorithm

Decision tree learning is a method commonly used in data
mining. The goal is to create a model that predicts the value of
a target variable based on several input variables. Each element
in the classification domain is called a class. In a decision or a
classification tree, each internal (non-leaf) node is labeled with



an input feature. The tree branches are labeled with possible
feature values. Each leaf node is labeled with a class or a
class probability distribution [25]. A top-down approach is
commonly used for constructing decision trees. At every step,
an appropriate variable is chosen to best split the set of items.
The quality measure may be the homogeneity of the target
variable within subsets. It is applied to each candidate subset.
The combined results measure the split quality [26], [27].

We use the C5 [28] software tool to generate decision
tree for both feature selections and anomaly classifications.
The C5 decision tree algorithm relies on the information gain
measure. The continuous attribute values are discretized. The
most important feature is iteratively used to split the sample
space until a certain proportion of samples associated with
the leaf node has the identical target attribute value. For
each training dataset, a set of rules used for classification is
extracted from the constructed decision tree.

B. Fuzzy Rough Sets

Fuzzy sets [29] as well as the more recently introduced
rough sets [7], [30]–[32] have greatly affected the way we
currently represent and compute with imperfect information.
They have fostered broad research communities and influenced
a variety of application areas. The fuzzy concept and fuzzy
knowledge are more prevalent in practice because the theory
of rough sets employs the symbolic features. Based on the
equivalence relations, traditional rough set approaches only
handle symbolic features, which greatly limits their application
to problems where the feature values are continuous. Fur-
thermore, rough sets are unable to describe the uncertainty
of fuzziness. To solve these issues, fuzzy rough sets are
introduced as an extension of the rough sets. Seminal research
activities on fuzzy rough sets theory flourished during the
1990’s and early 2000’s. The concept of fuzzy rough sets
originated from defining a fuzzy set within a family of fuzzy
sets. It deals with the approximation of fuzzy sets in a fuzzy
approximation space defined by a fuzzy similarity relation R
or by a fuzzy partition.

In the fuzzy rough sets approach, the concepts of decision
system, equivalence relation, and the set approximations are
redefined as fuzzy decision system, fuzzy similarity relation,
and approximation operators, respectively [33]. In this ap-
proach, the fuzzy similarity relation and lower approximations
are computed by the min operators. The similarity relation
Sim(C) is an n×n matrix that describes similarities between
any two samples. The lower approximations are m n-tuples.

Algorithm 1 [34] provides the procedure for computing
the fuzzy discernibility matrix that is used to generate the
attribute reduction. The inputs are: the information system I
consisting of a set of conditional attributes C and decision
attributes D; the universe U ; and the partition of U based
on decision attribute set D denoted by U/D that contains
l classes. The output is the constructed discernibility matrix
denoted by MD(U,C). Its element Cij denotes the set of
attributes that distinguishes samples xi and xj .

In Step 1 of Algorithm 1, the similarity Rk (xi, xj) of
every pair of samples xi and xj for each attribute Ck is
the minimum attribute value of the two samples. In Step
2, the fuzzy similarity relation Sim(C) of every pair of

Algorithm 1: Constructing the discernibility matrix
based on fuzzy rough sets. λi = Sim(C) ∗

(
[xi]D(xi)

)
and λj = Sim(C) ∗

(
[xj ]D(xj)

)
.

Input: Information system I = (U,C ∪D)
Universe U = {x1, x2, . . . , xn}
Partition U/D = {D1, D2, . . . , Dl}

Output: Discernibility matrix MD(U,C)
1 begin
2 Step 1:
3 for each fuzzy attribute Ck do
4 if Ck(xi) 6= Ck(xj) then
5 Rk(xi, xj) = min{Ck(xi), Ck(xj)}
6 end
7 else
8 Rk(xi, xj) = 1
9 end

10 end
11 Step 2: Compute fuzzy similarity relation Sim(C)
12 Sim(C)(xi, xj) = min{Rk(xi, xj) | k = 1, . . . ,m}

and i, j = 1, . . . , n
13 Step 3: Compute fuzzy R-lower
14 Sim(C) ∗ (Dk) approximation for every Dk ∈ U/D
15 Step 4: Construct the discernibility matrix MD(U,C)
16 if λi > λj then
17 Cij = {R : 1−R(xi, xj) ≥ λi}
18 end
19 else
20 Cij = ∅
21 end
22 end

samples is constructed by computing the minimum of all
attributes. The lower approximation R-lower of each class Dk

(k = 1, . . . , l) in the partition U/D is computed in Step 3.
The R-lower approximation of Sim(C) ∗ (Dk) contains k n-
tuples, indicating the membership of each sample that belongs
to the decision class Dk. Let Subij(R) denote the ith element
of the jth n-tuple in Sim(C)∗ (Dk). It is computed for every
xk ∈ U as:

Subij(R) =

{
1 if xk ∈ Dj

1− Sim(xk, xi) if xi ∈ Dj
. (1)

Finally, in Step 4, the fuzzy discernibility matrix MD(U,C)
for every pair of samples is computed as the matrix of the set
of attributes. This matrix helps distinguish between pairs of
samples.

In Algorithm 2 [34], the attribute reduction is generated
based on the discernibility matrix obtained in Step 4 of Algo-
rithm 1. CoreD(C) is the set of singletons in the discernibility
matrix MD(U,C). It is the most important set of attributes
because only these attributes may differentiate between pairs
of samples. The attribute reduction is initialized as CoreD(C)
and then used to find the minimum set of attributes that main-
tains the discernibility property. The reduction is computed in
the same manner as in the case of classical rough sets.

C. Datasets and Selected Features

We apply the decision tree algorithm for feature selection.
We combine pairs of Slammer, Nimda, and Code Red I to form



Algorithm 2: Attribute reduction based on fuzzy rough
sets.

Input: Information system I = (U,C ∪D)
Universe U = {x1, x2, . . . , xn}
Partition U/D = {D1, D2, . . . , Dl}

Output: REDD(C)
1 begin
2 Step 1: Calculate discernibility matrix MD(U,C) using

Algorithm 1
3 Step 2: Compute CoreD(C): Choose the singletons in

MD(U,C)
4 Step 3:
5 let REDD(C)=CoreD(C)
6 Step 4:
7 for each Cij do
8 if REDD(C) ∪ Cij 6= ∅ then
9 let Cij = ∅

10 end
11 end
12 Step 5:
13 for each Cij do
14 if ∃ Cij = ∅ then
15 go to Step 6
16 end
17 else
18 Stop
19 end
20 end
21 Step 6:
22 REDD(C) = REDD(C) ∪ Cij

23 end

TABLE III. DECISION TREE ALGORITHM: THREE DATASETS AND
SELECTED FEATURES.

Dataset Training data Selected features

Dataset 1 Slammer + Nimda 1–21, 23–29, 34–37
Dataset 2 Slammer + Code Red I 1–22, 24–29, 34–37
Dataset 3 Code Red I + Nimda 1–29, 34–37

the training datasets. These datasets used for feature selection
are consistent with the data used in the classification stage.
The selected features are shown in Table III. Based on the
outcome of the decision tree algorithm, either four (30, 31,
32, 33) or five (22, 30, 31, 32, 33) features are removed in the
constructed trees. The main reason for removal is that features
are numerical and some are used repeatedly. Fewer features
could be selected either based on the number of leaf nodes with
the largest correct classified samples or based on the number
of rules with maximum sample coverage. The features that
appear in the selected rules are considered to be important
and, therefore, are preserved.

Applying fuzzy rough sets to select features using combi-
nation of datasets to form various training datasets [20] may
cause the selected features to be unsuitable for classifiers and
may lead to a high computational load. Hence, we individually
use Slammer, Nimda, or Code Red I as the training datasets
for feature selection. The computational complexity of the
fuzzy rough algorithm is O(n2m), where n is the number
of samples and m is the number of features. Hence, fuzzy

TABLE IV. FUZZY ROUGH SETS ALGORITHM: THREE DATASETS AND
SELECTED FEATURES FROM THE SET OF 37 FEATURES.

Dataset Training data Selected features

Dataset 4 Slammer 1, 3–6, 9, 10, 13–32, 35
Dataset 5 Nimda 1, 3–4, 8–10, 12, 14–32, 35, 36
Dataset 6 Code Red I 3–4, 8–10, 12, 14–32, 35, 36

rough algorithms are rather slow when the number of samples
is large. Therefore, we use Algorithm 2 for attribute reduction.
Selected features using the fuzzy rough set method are listed
in Table IV.

1) Slammer: A set of 28 is selected while features {2, 7,
8, 11, 12, 33, 34, 36, 37} are removed.

2) Nimda: A set of 28 features is selected while features
{2, 5, 6, 7, 11, 13, 33, 34, 37} are removed.

3) Code Red I: A set of 27 features is selected while
features {1, 2, 5, 6, 7, 11, 13, 33, 34, 37} are removed.

Results show that most features (27 or 28 in total) are
preserved after selection and only 9 or 10 features are removed.
A plausible explanation may be that the min operator in the
fuzzy rough sets algorithm causes the information loss. While
the selected features are different for examined datasets, the
reduced sets have a common set of features {3, 4, 9, 10, 14–32,
35}. The removed sets of features also have common elements
{2, 7, 11, 33, 34, 37} and, hence, these features are considered
to be redundant for all datasets. Even though the classification
accuracy may be improved by performing feature reduction
using fuzzy rough sets, the computational load of the algorithm
for feature selection is rather high. Hence, this approach is not
suitable in cases with large number of samples and attributes.
In comparison, the decision tree algorithm is faster and may
achieve acceptable classification accuracy.

IV. ANOMALY CLASSIFIERS

A. Decision Tree Algorithm

The decision tree algorithm is one of the most successful
techniques for supervised classification learning [6]. A decision
or a classification tree is a directed tree where the root is the
source sample set and each internal (non-leaf) node is labeled
with an input feature to perform a test. Branches emanating
from a node are labeled with all possible values of a feature.
Each leaf of the tree is labeled with a class or a probability
distribution over the classes. A tree may be “learned” by
splitting the source set into subsets based on an attribute value
test. This process is repeated on each derived subset in a
recursive manner called recursive partitioning. The recursion is
completed when the subset at a node contains all values of the
target variable or when the splitting no longer adds value to
the predictions. After a decision tree is learned, each path from
the root node (source set) to a leaf node may be transformed
into a decision rule. Therefore, a set of rules may be obtained
by a trained decision tree, which may be used for classifying
unseen samples.

Training and testing accuracies Acctrain and Acctest are
shown in Table V. The higher accuracies for the first two
training datasets may be due to the distinct distributions of
training and testing data.



TABLE V. DECISION TREE ALGORITHM: PERFORMANCE.

Dataset Testing data Acctrain Acctest
Training
time (s)

Dataset 1 Code Red I 90.7 78.8 1.8
Dataset 2 Nimda 92.3 72.8 2.1
Dataset 3 Slammer 87.1 23.8 2.3

Fig. 1. Neural network architecture of the ELM method.

B. Extreme Learning Machine Algorithm

Huang et al., [8] first proposed the extreme learning
machine where the weights connecting the input and hidden
layers with the bias terms are initialized randomly while the
weights connecting the hidden and output layers are analyti-
cally determined. Therefore, the learning speed of the method
is faster than the traditional gradient descent-based method.
Research results indicate that ELM may learn faster than
SVMs by a factor of thousands. Hence, the ELM algorithm
is suitable for applications that require fast response and
for real-time predications. Incremental extreme learning and
weighted extreme learning machines are variants of ELM.
Weighted ELM [35] is proposed to deal with imbalanced data
by assigning a relatively larger weight for the input data arising
from a minority class.

In this paper, we use the ELM algorithm [36] whose neural
network architecture is shown in Fig. 1, where [x1, x2, . . . , xd]
is the input vector; d is the feature dimension; f(.) is the
activation function; W is the weight vector connecting the
inputs to hidden units; [y1, y2, . . . , yd] is the output vector;
and β is the weigh vector connecting the hidden and the output
units.

The three datasets used to verify ELM’s performance are
shown in Table III. The classification error rate Acc(Dtest) for
a trained model using the test dataset Dtest is calculated as:

Acc(Dtest) =
Nacc

Ntest
, (2)

where Nacc is the number of correct classifications defined by
the trained model while Ntest is the total number of samples
in the test dataset. The optimal parameter NH is the number
of hidden units. It is selected by a five-fold cross validation for
each training dataset. The best testing accuracy was achieved
by choosing 195 hidden units for each dataset. The input

TABLE VI. PERFORMANCE OF THE ELM ALGORITHM ON DATASETS
WITH 37 AND 17 FEATURES.

No. of
features

Dataset Acctrain Acctest

Average
training
time (s)

Dataset 1 83.57 ± 0.11 80.01 ± 0.07 2.3043
37 Dataset 2 83.53 ± 0.12 79.75 ± 0.08 2.2756

Dataset 3 80.82 ± 0.09 21.65 ± 1.93 2.2747
Dataset 1 84.50 ± 0.07 79.91 ± 0.01 1.9268

17 Dataset 2 84.43 ± 0.12 79.53 ± 0.10 1.5928
Dataset 3 83.06 ± 0.07 51.56 ± 16.38 1.8882

TABLE VII. PERFORMANCE OF FUZZY ROUGH SETS WITH ELM
ALGORITHM.

No. of
features

Dataset Acctrain Acctest

28 Dataset 4 83.08 ± 0.11 80.03 ± 0.06

28 (from 37) Dataset 5 83.08 ± 0.09 79.78 ± 0.07

27 Dataset 6 80.05 ± 0.00 81.00 ± 1.41

9 Dataset 4 84.59 ± 0.07 80.00 ± 0.05

9 (from 17) Dataset 5 84.25 ± 0.11 79.79 ± 0.12

8 Dataset 6 83.38 ± 0.04 49.24 ± 12.90

vectors of the training datasets are mapped onto [−1, 1] as:

x
(p)
i = 2

x
(p)
i − ximin

ximax
− ximin

− 1, (3)

where x(p)i is the ith feature of the pth sample while ximin

and ximax
are the minimum and maximum values of the ith

feature of the training sample, respectively.

The training and testing accuracies of ELM for the three
datasets with 37 features are shown in Table VI (top). For
each dataset, 100 trials were repeated. The binary features 14–
33 (shown in Table II) are then removed to form a set of
17 features. Performance of the ELM algorithm is shown in
Table VI (bottom).

The results obtained by combining fuzzy rough sets and
the ELM algorithm with various subsets of features are shown
in Table VII. We use fuzzy rough sets to select features from
the original set of 37 or 17 features and then use ELM to
perform classification. The testing accuracy is higher than in
the case of using the decision tree algorithm.

The experimental results indicate that ELM achieves sat-
isfactory performance when applied on Dataset 1 (Slammer +
Nimda) used to test Code Red I and Dataset 2 (Slammer +
Code Red I) used to test Nimda. However, it performs poorly
on Dataset 3 (Nimda + Code Red I) used to test Slammer. ELM
obtains similar results when used with the three datasets with
either 37 or with 17 features, as shown in Table VI. In both
cases, the accuracy is very low for Dataset 3. However, using
fuzzy rough sets with ELM may improve this accuracy, as
observed by comparing Table VI and Table VII. BGP datasets
may be imbalanced because they predominantly contain regu-
lar samples rather than anomalies. Hence, weighted ELM may
be used to deal with the data imbalance by assigning larger
weights to samples in the minority (anomaly class), which may
improve the classification accuracy.



V. CONCLUSION

In this paper, we investigated BGP anomalies and proposed
techniques for their detection. We described methods based on
decision tree and fuzzy rough sets for feature selection and
attribute reduction. They select a subset of features important
for classification. We then used the decision tree and ELM
to classify Internet anomalies and conducted experiments on
datasets with various number features. Performance of clas-
sifiers greatly depended on the employed datasets. Combi-
nations of the three datasets (Slammer, Nimda, and Code
Red I) resulted in different testing accuracies. When the
testing accuracy of the classifiers was low, feature selection
algorithms were used to improve the performance of classifiers.
For smaller datasets, performance of the ELM classifier was
improved by using fuzzy rough sets for feature selection.
Both decision tree and ELM are relatively fast classifiers with
satisfactory accuracy and may be used for online classification.

Datasets used in this paper are examples of known anoma-
lies that proved useful for developing anomaly detection algo-
rithms. Establishing benchmarks to be used for comparisons of
anomaly classification, detection, and prediction tools remains
an open research problem.
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