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Abstract

As a reliable indicator of visual gaze direction, head pose implies a person’s visual atten-

tion and interest. Therefore, head pose information extracted from face images serves as

important input in many applications. In this thesis, a coarse-to-fine head pose estimation

method is proposed, by decomposing the original pose space in a hierarchical structure.

The estimation begins with a coarse step to identify a subspace that encompasses a set of

head pose candidates. Then a subsequent fine estimation is conducted within the subspace,

generating a refined result. Besides, to eliminate irrelevant information within a face im-

age, we propose to detect Region of Interest (ROI) by exploring importance degree of image

points. Furthermore, we build an application of analyzing TV viewers’ behaviors from video

recordings, by integrating face detection, face tracking and head pose estimation. Based on

head pose and face motion, a viewer’s behavior is identified to be focused or unfocused.

Keywords: Head pose; coarse-to-fine estimation; hierarchical structure; region of interest;

TV viewers’ behaviors
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Chapter 1

Introduction

With the rapid development of computer technologies and an exploding growth of digital

images, computer vision continues to be one of the most active fields of research. In this

field, human face images gain great interest. The fundamental face related topic is face

detection which aims to identify face locations from digital images. Besides, there is lots of

work devoted to further extract high-level information from detected faces. One important

branch is our focus in this thesis—head pose estimation.

On top of the question "where is the person" concerned in face detection, head pose

estimation addresses a new question—"where does the person look?", based on the funda-

mental assumption that head pose is highly correlated with the direction of visual gaze [62].

Determining the direction of the visual field, a person’s gaze direction is reflected from his

eyes. However, directly estimating gaze direction from narrow eye regions in a face image

suffers from the sheer difficulty of eye detection.

Fortunately, the tough problem can be solved in a different way. Physiological inves-

tigations reveal that gaze direction is indicated by the orientation of a human head, i.e.,

head pose [38]. Head pose can be estimated from the face image, which contains much

richer information than merely eye regions. Consequently, estimating a person’s head pose

provides a reliable approximation of his visual gaze.

Given a face image captured under the view of a camera, head pose estimation is the pro-

cess of figuring out the person’s head orientation relative to the camera; in a more rigorous

sense, the orientation is strictly relative to a real world coordinate system, which requires

the knowledge of camera parameters [49]. However, in most cases, camera calibration is

undesired, and the orientation strictly in a camera view is needed. Therefore, head pose

relative to the camera is our concern in this thesis.

Head pose can be viewed as a type of body language, providing nonverbal communication

cues. Besides, the directional information conveyed by the head pose encapsulates multiple

meanings. According to [60], the direction reflects a person’s Visual Focus of Attention
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(VFOA), implying his interest with respect to a visual target and reaction to a visual

stimuli.

Based on the aforementioned findings, the most obvious application of head pose esti-

mation is building a hands-free interface. For instance, knowledge of a person’s head pose

may directly control a device designed for disabled people, or act as a replacement of the

mouse in human-computer interaction [45]. Head pose estimation can also be applied in

human behavior understanding, such as monitoring drivers’ attention and analyzing incli-

nation of passers-by to an outdoor advertisement [48, 60]. Another possible application

is social behavior modeling. Apart from verbal communication, analyzing head pose of a

group of people is a good way of understanding interaction between them [1]. Furthermore,

head pose can be used to understand the real world in augmented reality [4].

In aforementioned applications, videos are the most commonly used inputs, which are

composed of a number of consecutive frames. To extract head pose information over time,

such an application is built on an integration of the following tasks:

1. Face detection: to detect face locations

2. Face tracking: to track faces in the subsequent frames

3. Head pose estimation: to determine head pose from faces using head pose estimation

method

4. Head pose analysis: to interpret head pose information

Among them, the first three tasks create a head pose estimation system, aimed at extracting

head pose information from video recordings.

The first step in building an application is face detection, which is also a prerequisite

for estimating head pose on static images. Introduced by face detection, one inherent

difficulty for head pose estimation is that the detected faces would contain unnecessary

and even distractive information in terms of head pose, the most common of which is the

background information in the marginal area and hair appearing on the forehead. Other

distraction might be accessories such as eyeglasses. Another major difficulty for estimating

head pose comes from variations irrelevant to head pose among individuals, such as facial

expression, skin color and appearance. Besides, images may be captured under different

lighting conditions subject to various environments. Also a common issue in computer

vision field—image noise remains a problem in head pose estimation.

Considering aforementioned difficulties, head pose estimation is a challenging and per-

plexing task. Our work is motivated by the urge to improve the performance of head pose

estimation in order to enhance applications based on head pose. Particularly, we are inter-

ested in an application in which head pose is used to analyze TV viewers’ behaviors. A TV

viewer’s head pose relative to the TV screen implies whether the person is watching TV

or not. Therefore analyzing a viewer’s head pose gives a deep understanding about how

engaged the person is with the TV programme.

2



1.1 Contribution

This thesis provides a detailed study of estimating head pose. We describe existing head

pose estimation methods and head pose estimation systems. We then propose a coarse-to-

fine head pose estimation method. We also conduct an experiment, and apply the proposed

head pose estimation method to analyze TV viewers’ behaviors. The result is very helpful

in marketing research.

A summary of our contributions is given as follows.

Firstly, we divide the pose space which contains all the pose configurations into a number

of subspaces and thereby decompose the original pose space in a hierarchical structure.

Secondly, based on the hierarchical pose space structure, we propose a two-step es-

timation mechanism—coarse-to-fine estimation. Unlike traditional methods that directly

conduct estimation in the original pose space, our method begins with a coarse estimation

which identifies a unique subspace that encompasses a set of candidate head pose configu-

rations. The subsequent step makes a refined estimation in the subspace and generates the

final estimation result.

Thirdly, to eliminate irrelevant information within a face image, we propose a ROI

detection module by exploring importance degree of different image points and iteratively

selecting the most important ones.

Fourthly, we use the proposed method to analyze TV viewers’ behaviors. This kind of

analyses can provide useful information for some applications such as marketing research.

For example, it can be used to study the effectiveness of ads in TV broadcasting. To get

stable face locations in a sequence of frames, face tracking is based on weighted Kanade–

Lucas–Tomasi (KLT) algorithm. Besides, to eliminate invalid tracking results caused by

occlusion, we propose a consistency checking module. Furthermore, by selecting a base

frame, a TV viewer’s behavior is determined from the relative head pose change and face

motion.

1.2 Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 describes the head pose basics, and

then provides an overview of prior work in head pose estimation area and related techniques

in head pose estimation method. Our proposed coarse-to-fine head pose estimation method

is presented in Chapter 3, including general ideas and details about hierarchical represen-

tation of the pose space, coarse-to-fine estimation, and detection of ROI. In Chapter 4, we

elaborate on analyzing TV viewers’ behaviors from video recordings. Chapter 5 presents

performance of coarse-to-fine estimation method. Additionally, performance of TV viewers’

behavior analysis is given in this chapter. Finally, Chapter 6 concludes the thesis.
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Chapter 2

Background

In this chapter, we first describe basics of head pose (Chapter 2.1). Then we give an

overview of previous research on head pose estimation methods. We further divide existing

methods into three categories, followed by an introduction of relevant work and analysis

of the performance of methods in each category (Chapter 2.2). After that, we give an

overview of prior studies on head pose estimation systems (Chapter 2.3). Finally we present

preliminaries of our proposed head pose estimation method (Chapter 2.4).

2.1 Head Pose Basics

Generally speaking, head pose denotes the orientation of a person’s head. In computer

vision field, head pose can be interpreted in various ways. Semantically, head pose may

be coarsely characterized by a few discrete orientations, such as frontal view, half profile

and profile [70]. However, to better depict the orientation of a head, researchers are more

interested in quantitative result, thus angular measurement is usually applied to describe

the head pose [49].

Given a 3D face model shown in Figure 2.1a, head pose is measured by Euler angles in

three degrees of freedom, specified by:

• Yaw: generated from rotation along x axis

• Tilt: generated from rotation along y axis

• Roll: generated from rotation along z axis

Figure 2.1a shows the three angles correspond to rotations with respect to three orthog-

onal axes. By projecting the 3D model onto a 2D plane, simulated 2D face images generated

from three kinds of rotations are illustrated in Figure 2.1b. From Figure 2.1b, roll corre-

sponds to rotation within the 2D plane defined by the face image, while yaw and tilt both

correspond to rotations out of that plane. Compared to in-plane rotation, out-of-plane

rotation is more difficult to estimate due to the nonlinear image transformation.

4



In general, movement of a human head can be decomposed into the three rotations.

Under normal circumstances, the in-plane head rotation is insignificant, while out-of-plane

head rotations take place for most of the time. As a consequence, yaw and tilt are the two

most important elements in determining a person’s head pose. In this thesis, regardless of

minor change in roll angle, head pose is described in terms of yaw and tilt. Therefore, by

figuring out yaw and tilt, a person’s head pose can be identified.

Yaw

Roll

Tilt

Y

X

Z

(a)

Roll
Tilt

Yaw

(b)

Figure 2.1: (a) Three angles in the 3D coordinate system; (b) 2D Face images generated by
three kinds of rotations.

5



2.2 Overview of Head Pose Estimation Methods

The goal of head pose estimation is to determine head pose from face images. Generally

speaking, a head pose estimation method is supposed to have the following properties [49]:

• It is person-independent.

• It is effective and robust.

• It runs fast in order to enhance real-time applications.

Learning a head pose estimation method usually relies on a head pose image database

as the training set. A head pose image database consists of face images for different people

with all possible pose configurations in the designated pose space, and corresponding ground

truth denoting yaw and tilt in degrees. Besides, for a head pose estimation method, its

related database should follow its requirement for the format of input face images.

The reason why there are various image formats with respond to different methods lies

in the fact that each head pose estimation method implicitly depends on a specific hardware

layout. For instance, images used in some work are acquired by stereo cameras, in order

to describe 3D information of facial parts. Examples of stereo image based methods can

be found in [21, 36], where a Kinect sensor is employed to obtain the depth data. Also

Seemann et al. [57] claimed that depth information acquired by MEGA-D stereo camera

improves estimation accuracy and robustness of the system.

Some other existing methods [5, 47, 55] adopt images captured by several cameras at

different locations as inputs and estimate head pose by fusing features of these images.

According to [55], a delicate multi-camera system covers a much larger space than a single

camera. In addition, cross-camera correspondence makes head pose estimation reliable and

robust [5].

Although methods relying on images obtained by a stereo camera or multiple cameras

can achieve excellent performance, accessibility and feasibility of the hardware setup must

be taken into account. In general, it is a perplexing task to build a multi-camera system.

Besides, despite the fact that stereo cameras are becoming increasingly available, people

show more inclination to convenient and portable devices, such as smart phones. In ad-

dition, many applications based on head pose are designed for surveillance purpose, using

videos recorded by a regular RGB camera. Therefore, we are more interested in head pose

estimation methods with monocular 2D images as inputs. Also, to guarantee a wide range

of applications, we prefer required resolution of images to be moderate.

Existing head pose estimation methods with our designated setting can be divided into

several categories. Based on the machine learning technique employed in a method, there

are classification based, regression based, and hybrid methods [29]. The main difference lies

in determining the pose space to be discrete or continuous. Usually, classification based

methods achieve higher accuracy, while regression based methods generate error within a

smaller range. Based on the strategy on how to deal with face images, current head pose

6



estimation methods can be mainly divided into the following three categories: geometric

based methods, model based methods, and appearance based methods [69].

2.2.1 Geometric Based Methods

Geometric based methods depend on interpreting facial geometry. For a face image, by

locating a set of facial features, such as eyes, nose and mouth, head pose is inferred from

the positional information of facial features (Figure 2.2a).

For example, head pose estimation methods proposed in [56, 64] are built with the help

of face and facial feature detection method developed by Viola and Jones [65]. Based on

detected nose, eyes and mouth parts within a face image, head pose is determined from the

geometric configuration. In a more complicated way, a regression model is trained in [11]

in order to precisely locate feature points. After that, another regression model is trained

to estimate head pose from the feature layout (Figure 2.2b).

(a) (b)

Figure 2.2: (a) Facial features (shown in color regions) in head pose estimation task [64];
(b) Head pose estimation based on geometric layout of facial (blue) points [11].

Geometric based methods put special requirement on the training set. That is, for

images in the training set, ground truth not only consists of corresponding yaw and tilt

angles, but also contains coordinates of designated facial features. Such coordinates for

training images are usually collected manually, to avoid error introduced in facial feature

detection.

Performance of geometric based methods is affected by the feature detector to a large

degree. In this sense, absolute visibility of required facial features is a basic requirement.

As a result, occlusion caused by hair or accessories (e.g., glasses) may give rise to huge

error in head pose estimation result. Moreover, resolution of the inputs directly affects the

performance of feature detector and geometric based methods. For low-resolution images

with the lack of clear details, geometric based methods show little possibility of achieving

good performance.
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2.2.2 Model Based Methods

The basis of model based methods is building distinctive models corresponding to face

images under different poses. Model based methods can be viewed as template matching

methods: by fitting models to a face image, the best match could be found; the matched

model is then used to describe the face image and determine the head pose.

Active Shape Model (ASM) [9] and Active Appearance Model (AAM) [8] are two rep-

resentative models, widely used in analyzing face images. ASM is formed by facial feature

points. The feature points not only include pixels around facial organs, but also consist of

edge pixels depicting the face contour. Then a shape model is generated by concatenating

the points as a whole. AAM is evolved from ASM. Besides the use of shape constraint

exploited in ASM, AAM also takes the advantage of texture information of an image. In

[34], given a face image, totally 58 feature points are extracted by pre-learned ASMs (Figure

2.3a). In [33], Ishikawa demonstrated the effectiveness of AAM. Based on extracted feature

points, a feature vector is generated. After that, by learning the mapping from feature

space to pose space, head pose for the face image is estimated.

In addition to ASM/AAM based methods, there exists other work devoted to building

a more effective face model. In [71], several face models are trained by considering face and

landmark detection along with pose estimation as a unified problem. The unified models

prove to be more accurate than AAM.

Unfortunately, similar to geometric based methods, model based methods are limited by

their requirements for the size and resolution of input face images. Such methods perform

well for face images with high resolution, whereas for low-resolution images, most probably

these methods would not work. Additionally, it usually takes a long time to run a model

based method, which can be a restriction for real-time applications.

Fig.4  Facial Feature Localization Results in Active Shape Model  (a) (b)

Figure 2.3: (a) Facial feature (green) points detected by ASMs [34]; (b) One of the unified
face models built in [71].
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2.2.3 Appearance Based Methods

Unlike methods of the aforementioned two categories, appearance based methods extract

none of the isolated facial parts. On the contrary, appearance based head pose estimation

is carried out by extracting features from the entire face image.

Consequently, extracting an effective feature vector to represent the face image is a

critical step. The feature vector is also denoted as image descriptor. A feature vector

in head pose estimation task is supposed to emphasize pose variation, and suppress other

variations irrelevant to pose, e.g., identity, expression, lighting [41]. Existing methods of this

category propose the use of many different image features. The simplest one is normalized

pixel value, used in [29, 42]; gradient based features, such as localized gradient orientation

[48], histogram of oriented gradients [18, 68] and covariance of oriented gradients [17],

are considered to be effective in emphasizing facial contours; there are more complicated

features, such as Scale-Invariant Feature Transform (SIFT) features [30] and Gabor feature

[41, 51].

In appearance based methods, commonly used machine learning algorithms include k-

nearest neighbors (k-NN) [17, 69, 41], support vector machine [48, 29], neural network

[66, 61] and random forest [40, 35].

With a discriminative image descriptor and an effective machine learning technique,

appearance based methods show great advantages in the following aspects: (1) by treating

an image as a whole, appearance based methods can avoid the tough tasks of facial point

locating and modeling; (2) appearance based methods work well even for low-resolution

images; (3) appearance based methods run fast and can be applied to real-time applications.

2.3 Overview of Head Pose Estimation Systems

As stated in Chapter 1, a head pose estimation system is designed to extract head pose

information from video recordings. Face detection, face tracking and head pose estimation

are three main components in a head pose estimation system. In this section, previous work

in building a head pose estimation system is reviewed from the three aspects.

To initialize a system, face detection is firstly conducted to detect all the possible face

locations from a given frame. In [6], face detection relies on human detection results, i.e., a

person’s head is located from the detected human body. In this system, people are under the

surveillance of an overhead camera, and face images are of small size. In this sense, directly

conducting face detection is difficult, while human detection provides reliable face locations.

In other work [32, 54], a camera is aimed to capture people’s head movements, therefore

face detection is directly conducted on captured images. Face detection methods used in

these systems include Viola-Jones method [65], skin color based method, and elliptical edge

detection method [3]. Making use of the elliptical shape of faces, elliptical edge detection

detects face contour from edge pixels.
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Face tracking is a key component in a continuous head pose estimation system, with

the purpose of estimating instantaneous face locations. Huang et al. [32] used a Kalman

filter to track faces under the assumption of constant velocity, with the upper-left corner

coordinates and the size of the face as state vectors. Ren et al. [54] exploited color informa-

tion to facilitate face tracking by searching the neighborhood area of previous face location.

Ishikawa [33] explored the use of AAM model to track a face along with its feature points.

To cope with the occlusion problem in multi-person tracking, Smith et al. [60] developed a

Bayesian network to jointly track a person’s body and face.

Based on face tracking results, head pose estimation is carried out on frames containing

faces, by utilizing the developed estimation method. Appearance based method is adopted

in [54], assisted by k-NN in the feature space. In [2], head pose is determined by randomised

ferns built with Histogram of Oriented Gradients (HOG) and color based image feature. In

[32], a hidden Markov model is developed to estimate head pose.

2.4 Preliminaries

Considering pros and cons of aforementioned three categories of methods, we propose an

appearance based head pose estimation method. In addition, in order to achieve high

accuracy, classification based machine learning techniques are used in our proposed method.

In the following part, we discuss candidate face detection algorithms. Then we present image

descriptors and machine learning techniques employed in our proposed head pose estimation

method.

2.4.1 Face detection

Head pose information is extracted from face images. Therefore, face detection is a pre-

requisite for head pose estimation. The most commonly used face detection algorithm is

developed by Paul Viola and Michael Jones [65], thus denoted as Viola-Jones algorithm.

To detect whether a human face exists or not, face detection can be viewed as a binary

classification task. In Viola-Jones algorithm, images are represented by Haar-like features

(Appendix A.1), in which calculating the sum of pixels within rectangle areas is universally

involved, hence integral image representation (Appendix A.2) is introduced to reduce the

computational cost. Based on Haar-like image features, Adaptive Boosting (AdaBoost)

(Appendix A.3) is employed to build a number of classifiers. Finally, the classifiers are

combined sequentially and form a cascade detector.

Another typical method for finding face locations is based on skin pixel detection, mak-

ing use of color difference between skin and non-skin pixels [7]. From a huge set containing

amounts of pixels of two types, two RGB histograms are created to model the color dis-

tributions. Denoting the skin-pixel histogram as H and the non-skin one as h, the skin

likelihood for a pixel with intensity (r, g, b) is computed by log (H(r, g, b)/h(r, g, b)). By
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setting a threshold of the skin likelihood, skin pixels in an image can be detected. On

top of the skin detection performed on individual pixels, face locations are detected by

connected-component labeling (Appendix B).

In general, Viola-Jones algorithm can achieve reliable detection results in terms of faces

within a certain pose range. However, for faces under poses out of the range, Viola-Jones

algorithm would most probably fail. In comparison, the color-based skin detection method

can avoid the suffering from pose variation and occlusion, while its disadvantage comes from

the sensitivity to lighting conditions. Also, it only applies to color images.

2.4.2 Image Descriptors

Before presenting details of candidate image descriptors, it is noteworthy that there exists

a basic understanding that a person’s head pose is closely associated with geometry charac-

teristics of the face image [17], which explains why there are plentiful geometric based head

pose estimation methods. For appearance based methods, the name stems from the fact

that the whole image rather than isolated facial part acts as input. From our knowledge,

appearance based methods still rely on extracting features that emphasize geometry struc-

ture of a face image. For example, prior work [17, 48, 68] has proved that gradient based

features reflect directional change in pixel intensity.

Gabor Feature

Generated from Gabor filters which are designed in terms of orientation and location, Gabor

feature is believed to convey more orientational and spatial information than gradients. In

addition, Daugman [13] claimed that image interpretation in mammalian visual cortex

can be explained by Gabor function. Consequently, Gabor based image representation is

speculated to accord with human visual understanding [44].

Gabor Filter Gabor feature is based on a set of 2D Gabor filters [12], which can be

expressed by

ϕΠ(fu,θv,m,n)(x, y) =
f2

u

πγη
exp(−(

f2
u

γ2
x2

r +
f2

u

η2
y2

r)) exp(j2πfuxr) (2.1)

xr = (x − xc) cos θv + (y − yc) sin θv (2.2)

yr = −(x − xc) sin θv + (y − yc) cos θv (2.3)

fu =
fmax√

2u
, θv =

v

V
π (2.4)

where x ∈ [xc − m+1
2 , xc + m+1

2 ], and x ∈ N∗; y ∈ [yc − n+1
2 , yc + n+1

2 ], and y ∈ N∗; u =

0, ..., U − 1, and v = 0, ..., V − 1.
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In the above formulas, exp(−(f2
u

γ2 x2
r + f2

u

η2 y2
r)) is a 2D elliptical Gaussian; exp(j2πfuxr)

is a plane wave with frequency fu, which is usually viewed as modulation for the Gaussian

part; (xc, yc) is the center of the filter; θv is the counterclockwise rotation of the filter,

intuitively expressed by the angle between Gaussian’s major axis and the horizontal line;

(xr, yr) is a pair of spatial coordinates after rotation; fmax denotes the highest frequency;

m and n denote the size of Gabor filter along two dimensions; π, γ, η are all constants;

j =
√

−1.

Equations 2.1 to 2.3 indicate that a 2D Gabor filter is designed with several parameters—

orientation, spatial frequency and spatial coordinates. With adjustable parameters in Equa-

tion 2.4, a filter bank, i.e., a Gabor filter array of size U × V , is generated (U and V are

related to the number of filters), and each filter has its own orientational and frequency

emphasis. Denis Gabor [25] proved that a 2D Gabor filter is an optimal solution to preserve

spatial as well as frequency information. Another remarkable point is that a Gabor filter

is defined by a complex function. Researchers are usually interested in its real part and

magnitude.

Gabor Image For a 2D image, its Gabor image is the convolution result with a 2D Gabor

filter, given by

G(x, y) = I(x, y) ∗ ϕ(x, y) (2.5)

where I is the input image, usually in grayscale format; ϕ is a Gabor filter from Equation

2.1; G is the output Gabor image. In this thesis, ∗ denotes convolution operation. Since

the filter ϕ is defined by a complex function, convolution result G is also complex, with the

same size as image I.

A Gabor image G reveals the features of image I under a specific orientation and fre-

quency. Therefore, by means of a Gabor filter bank, an array of Gabor images provides

an extensive measurement of the original image and extracts information from different

perspectives.

Gabor Feature To generate a representation of an image, an image descriptor is formed

by Gabor image, denoted as Gabor feature.

The procedure of generating Gabor feature is described below. Since Gabor images

encapsulate orientational and spatial information, there is no need to further process them.

From a Gabor image G, a 1D column vector v is generated by reshaping its magnitude, i.e.,

|G|. Considering uniqueness of each Gabor image in an image array, Gabor feature f is a

concatenation of the individual column vectors generated by all the Gabor images.

With an original image I of size W × H and a Gabor image array of size U × V , Gabor

feature is of dimension U · V · W · H. Considering curse of dimensionality for most machine

learning techniques, Gabor images are downsampled to size Wd × Hd. As a consequence,

the dimensionality of Gabor feature is U · V · Wd · Hd.
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In conclusion, rooted from Gabor filter, Gabor feature shows its advantages in the follow-

ing aspects: (1) gathering information regarding both space and frequency; (2) generating

a great variety of image representation; (3) orientation selective and according with head

pose estimation purpose.

Histogram of Oriented Gradients

HOG has gained a wide application in computer vision field. Proposed by Navneet Dalal

and Bill Triggs in [10], HOG was originally designed for human detection. Later, HOG

demonstrates its effectiveness in many computer vision tasks, such as texture classification

[46], digit classification [19] and face analysis related tasks [14, 52].

As a gradient based feature, HOG is achieved by calculating distribution of gradient

orientations. Firstly, an image is divided into multiple cells. Denote I as the original

image, and C as a cell. For a cell, two gradient images, Cx and Cy, respectively along

horizontal and vertical directions are calculated. Cx and Cy are obtained from convolution,

expressed by Cx = C ∗ Dx, and Cy = C ∗ Dy, where Dx = [−1, 0, 1], and Dy = [−1, 0, 1]T .

Based on Cx and Cy, magnitudes of the gradients are defined by |G| =
√

C2
x + C2

y , and

orientations of gradients are calculated with θ = arctan Cy

Cx
.

Distribution of orientations is generated by casting gradient value for each pixel to a

histogram, weighted by the magnitude. After that, local normalization for the histogram

is carried out, to alleviate illumination and contrast change in an image. Finally, HOG

feature of image I is generated from the normalized histogram.

HOG emphasizes the gradient and orientation information, which is significant in de-

scribing shape and geometrical information. Prior work [18, 68] showed that HOG reflects

pose variation and serves as an effective image descriptor in head pose estimation task.

2.4.3 Machine Learning Techniques

Random Forest

Random forest algorithm is a reliable tool in multi-class classification and regression tasks.

Prior study uncovers its powerfulness with laboratory data [40, 35]. Besides, random forest

algorithm shows its effectiveness in the industrial world. One representative example is the

application of random forests to the development of Kinect by Microsoft company [59].

A random forest is a representative example of ensemble methods. Ensemble methods

are built on a group of base estimators, and each estimator relies on a subset of the original

training set. Finally, base estimators are integrated to be an ensemble. Since our proposed

method is classification based, in the following part, we focus on the ensemble of classifiers.

In general, there are two families of ensemble methods: boosting methods and averaging

methods [24]. In boosting methods, base classifiers are learned successively and iteratively.

Each classifier relies on a weighted training set in order to focus on poorly classified instances
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in previous iteration. Therefore, each classifier is dependent on its precursors. Finally, a

boosted classifier is generated from a sequence of weak classifiers. On the contrary, averaging

methods build base classifiers independently, and the training set of each base classifier is

generated from the original training set through bootstrap sampling (Appendix C). In

classification tasks, outcomes of base classifiers are averaged to generate the final result.

Random forests are typical averaging methods. A random forest is an ensemble by

integrating multiple decision trees, with randomness coming from the construction of each

tree. In a tree scheme, each instance is considered as a set of attribute-value pairs. A

decision tree is a directed graph, where a non-leaf node specifies a decision function on

the attributes, its descending branch represents a possible outcome, and each leaf node

represents a unique class. Sending an instance down to a decision tree, a final classification

result is reached through a number of decision rules. A simple example of a decision tree

classifier is illustrated in Figure 2.4.

x1   

x2 c1

>10<=10

c2
x3

>0<=0

c3 c4

>0<=0

Figure 2.4: An example of a binary decision tree. Each instance has three attributes
(x1, x2, x3). Each non-leaf node represents a decision function, labeled by the attribute to
be tested, and its descending edge denotes the test result. Four leaf nodes indicate four
class labels.

A predominate method of decision tree learning is recursive partitioning. Sending all

the training instances to the root node, a decision tree is grown from up to down. Partition

of instances means splitting of nodes, and the splitting proceeds in a recursive way until

reaching a stopping criterion. At last, the training instances are partitioned into multiple

subsets, each corresponding to a leaf node and a distinct class label. To build a minimal

tree that fits the training set, the attribute that best partitions the instances is selected at

each splitting node. Well known metrics for splitting measurement include Gini impurity

and information gain.
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In a random forest, decision trees are learned in parallel, as shown in Figure 2.5. Each

tree relies on a bootstrapped set from the original set. Besides, to choose the best attribute

in node splitting, a subset of candidate attributes is randomly selected. Both bootstrap

sampling and attribute selection introduce diversity among decision trees and randomness

in a forest. In classification tasks, output of the forest is the majority vote of the outcomes

generated by decision trees. Empirically, compared to a single decision tree, a random forest

tends to achieve better performance and show less inclination of overfitting.

Bootstrap 

sampling

T1 T2
Tt-1 Tt...T2

D

D1 D2 Dt-1 Dt

F

Figure 2.5: General structure of a random forest with totally t decision trees. D is the
original training set; derived from D through bootstrap sampling, Di is a training set for
ith tree, where i ∈ [1, t]. By integrating all the individual trees, a forest F is generated.

Support Vector Machine

Support Vector Machine is a machine learning model which can be used in both classification

and regression tasks [53]. For clarity, in this thesis, Support Vector Machine (SVM) denotes

a tool specifically for building a classifier, while Support Vector Regression (SVR) is designed

for regression.

A binary SVM classifier is described below. Suppose there is a set of training instances

belonging to two classes, represented as D = {(x1, y1), ..., (xN , yN )}, where xi represents

ith instance, yi ∈ {−1, 1} indicating its label, and i ∈ [1, N ]. SVM works by constructing a

hyperplane to separate the two classes. Testing instances are then classified based on which

side of the hyperplane they fall into.

Mathematically, a hyperplane can be expressed as wT x + b = 0, where w is a normal

vector to the hyperplane, and b is the bias. In many cases, training instances are not linearly
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separable. One solution is mapping the instances to a higher-dimensional space where they

can be linearly separated. Denoting φ as the mapping function, the hyperplane is then

represented by wT φ(x) + b = 0. To efficiently perform the classification, kernel function is

then introduced, defined by K(xi, xj) ≡ φ(xi)
T φ(xj).

There may be many hyperplanes that can separate instances from different classes, while

the best one maximizes the margin, which denotes the distance between the hyperplane and

the nearest instances of each class, as illustrated by Figure 2.6. SVM finds the best solution

by solving a quadratic optimization problem, illustrated by

min
w,b,ε

1

2
wT w + C

N
∑

i=1

εi (2.6)

subject to

yi(w
T φ(xi) + b) ≥ 1 − εi (2.7)

εi ≥ 0 (2.8)

where C is a regularization parameter, which trades off maximizing the margin and fitting

the training instances; εi is a slack variable in soft margin, which controls the sensitivity to

outliers.

Figure 2.6: Maximum-margin hyperplane (the solid line) and the margin with distance s.
Squares and circles represent instances of two classes.

In many classification tasks, there exist more than two distinct classes. A common

solution is breaking down the problem into several binary classification tasks, in a one-vs-

rest, or one-vs-one strategy.

In one-vs-rest, a classifier is built in terms of one class, with instances belonging to that

class labeled as positive training data and all the rest instances as negative data. Given a

testing instance, besides the estimated class label, each classifier also generates a confidence
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score representing the classification possibility. The label that corresponds to a highest

score is the final classification result.

In one-vs-one, each classifier is built to distinguish two classes. Classification for an

unlabeled instance relies on a voting scheme, i.e., the class with the highest number of

positive predictions by binary classifiers is the final classification result.

Comparison of the two strategies has been conducted by Hsu and Lin [31]. They claim

that two strategies achieve similar performance. In addition, training procedure of one-vs-

rest is more complex and hence takes a huge time, while one-vs-one requires a much shorter

training time and demonstrates more feasibility.
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Chapter 3

Coarse-to-Fine Head Pose

Estimation

In this thesis, we propose a coarse-to-fine method to estimate head pose described by yaw

and tilt. By defining a frontal face to be with 0◦ yaw and 0◦ tilt, we are interested in

yaw and tilt spanning within the range (−90◦, 90◦), considering the fact that valid face

part would be missing from the image under a pose out of the range. For an input face

image, our method does not calculate the angles directly. Instead, we compare with the

labelled images from a database to determine the angles. In addition, we discretize the pose

space, therefore there are a finite number of head pose configurations, indicating head pose

estimation is a classification task.

As an instance of supervised learning, classification requires training images to be an-

notated with labels. The label of a human face image is from the person’s head pose. If

yaw and tilt are estimated separately, two independent classifiers are trained, with yaw and

tilt as the image label respectively. In the testing phase, two classifiers separately generate

estimated yaw and tilt. In coarse-to-fine method, instead of estimating yaw and tilt in a

separate way, we consider yaw and tilt as a whole and conduct combined estimation, given

the fact that head pose is co-determined by both of them. Hence, for a face image, its label

is represented by the vector (yaw,tilt), which acts as the standard format for an image label

in the following part of this thesis.

The following part of this chapter presents coarse-to-fine method in detail. Chapter

3.1 describes the coarse-to-fine estimation mechanism. Chapter 3.2 presents ROI detection

module. Finally, coarse-to-fine method is summarized in chapter 3.3.

3.1 Coarse-to-Fine Estimation

Rather than directly performing classification in the pose space, we propose a two-step

estimation mechanism, i.e., coarse-to-fine estimation. An underlying assumption of coarse-
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to-fine estimation is the clustering in the original pose space, following the principle that

neighboring angles are clustered together and form a subspace.

Figure 3.1 illustrates the clustering results. Original yaw space is divided into several

subspaces, expressed as

Y = {y1, y2, . . . , yM } (3.1)

Similarly, division of tilt space is given by

T = {t1, t2, . . . , tN} (3.2)

where Y and T respectively denote the original yaw space and tilt space; yi (i ∈ [1, M ])

represents the yaw subspace, and tj (j ∈ [1, N ]) represents the tilt subspace; M and N

represent the number of subspaces for yaw and tilt. Since we employ combined estimation

of yaw and tilt, pose configurations across the subspaces come from Cartesian product of

Y and T , described by

Y ⊗ T = {(yi, tj) | yi ∈ Y and tj ∈ T, ∀i = 1, ..., M, j = 1, ..., N} (3.3)

where ⊗ denotes Cartesian product operation.

y1 yM...

original yaw space

(a)

t1 tN...

original tilt space

(b)

Figure 3.1: Pose space division from clustering

With deep insight into each yaw subspace, yi is a set consisting of mi elements from the

original yaw space:

yi = {yi1, yi2, . . . , yimi
} (3.4)

Similarly, each tilt subspace tj has nj unique elements:

tj = {tj1, tj2, . . . , tjnj
} (3.5)
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Cartesian product of yi and tj is denoted as

yi ⊗ tj = {(yip, tjq) | yip ∈ yi and tjq ∈ tj, ∀p = 1, ..., mi, q = 1, ..., nj} (3.6)

From the clustering process, the original pose space can be decomposed in a hierarchical

structure, as illustrated in Figure 3.2. Starting with a node which represents a set of all the

pose configurations in the original space, the structure consists of three layers. In particular,

the clustering process gives rise to the second layer, where each node can be viewed as a

subset in the pose space. Eventually, in the third layer, all the pose configurations are

separated.

...

... ... ... ...

 1st layer

 2nd layer

 3rd layer

Figure 3.2: Hierarchical decomposition of the pose space. The first layer represents a set of
original pose configurations; each node in the second layer represents (yi, tj); each node in
the third layer represents (yip, tjq), with i ∈ [1, M ], j ∈ [1, N ], p ∈ [1, mi], q ∈ [1, nj ].

Based on the hierarchical representation of pose configurations, a two-step estimation

mechanism—coarse-to-fine estimation is proposed. Specifically, coarse estimation identifies

a unique path from the first layer to the second layer, and fine estimation further extends

the path to the last layer.

In the training phase, training images are clustered into several isolated groups, based

on yaw and tilt angles given as the ground truth. Each group corresponds to a unique

(yi, tj). Images from a group share the same group Id and generate a unique class. Then a

classifier is trained to distinguish these classes. After that, images within the same group

are annotated with distinct within-group Ids and form multiple subclasses. Images in each

subclass correspond to a unique (yip, tjq), and therefore cannot be further partitioned. To

discriminate these subclasses, a classifier is trained using images within the group as training

instances. It is apparent that in each group, a classifier is needed. Ultimately, a unique

vector (group Id, within-group Id) denotes a unique pose configuration in the original pose

space.

In the testing phase, for an input image, its group Id is firstly estimated, identifying a

specific node in the second layer based on Figure 3.2. In other words, the first estimation

step outputs a coarse estimation result and specifies a set of candidate pose configurations.

Therefore, the classifier in the first step is called coarse classifier. Afterwards, within-group

20



Id of the input image is estimated. Compared to the first estimation step, the second

step generates a refined result. Correspondingly, the classifier in the second step is called

fine classifier. Overall, the two-step estimation mechanism is denoted as coarse-to-fine

estimation. Finally, from two estimation steps, a unique vector (group Id, within-group Id)

is generated, from which the label of the input image can be inferred.

In this thesis, training and testing phases in terms of the coarse classifier are denoted as

the coarse stage, while training and testing in terms of a fine classifier are denoted as the

fine stage. A general framework of coarse-to-fine estimation is illustrated in Figure 3.3.

The reason for employing a two-step estimation mechanism is that there are usually too

many labels in a head pose estimation task. According to Equations 3.1 to 3.6, there are

totally
∑M

i=1 mi yaw angles, and
∑N

j=1 nj tilt angles. Since we employ combined estimation,

the number of unique labels is (
∑M

i=1 mi) · (
∑N

j=1 nj). Direct estimation in the original

pose space requires training a classifier to discriminate these classes. On the contrary, in

the coarse-to-fine estimation mechanism, distinct classes are much fewer. In the coarse

stage, the number of distinct classes is M · N ; in the fine stage, the number of classes is

mi · nj . Hence, coarse-to-fine estimation can greatly reduce the complexity of each classifier

and improve its performance. Furthermore, compared to independent estimation of yaw

and tilt, coarse-to-fine method can prevent some unlikely combinations of the two, thereby

enhancing the overall performance.

Next, we conduct a detailed analysis of coarse classifier (Chapter 3.1.1) and fine clas-

sifiers (Chapter 3.1.2). Each part is presented from two aspects—image descriptor and

machine learning technique.

3.1.1 Coarse Classifier

Gabor Feature

In both training and testing phases, generating image descriptors is always the first step.

In terms of coarse classifier, Gabor feature is employed to represent the images. As stated

in Chapter 2.4.2, Gabor feature is sensitive to orientation, due to a Gabor filter bank and a

Gabor image array. Figure 3.4 illustrates real parts and magnitudes of a Gabor filter bank

of size 5 × 8. As shown in Figure 3.4a, Gabor filters display various orientations. Besides,

filters in each column show an increasing scale.

Generated by a Gabor filter bank shown in Figure 3.4 and a face image in Figure 3.5, a

Gabor image array is illustrated in Figure 3.6, which indicates that each filter has its own

focus in representing an image. Generally speaking, a filter with a large scale highlights

the overall contour and suppresses personal characteristics. On the contrary, a filter with a

small scale puts more weight on local details and responds well to difference in orientation,

making facial components stand out.
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Training 

Images

Clustering

Training 

phase

Group Id
Coarse 

Classifier

 1st group:

 Within-group Id

 Gth group:

 Within-group Id

1st Fine Classifier

Gth Fine Classifier

Testing 

phase

Testing 

Images

Coarse 

Classifier

jth Fine Classifier

...

...

Group Id

Estimation

  Within-group Id

Estimation

Estimated 

Head pose

Figure 3.3: General framework of coarse-to-fine estimation. In the training phase, G denotes
the number of distinct groups; based on Equations 3.1 to 3.3, G is equal to M · N . In the
testing phase, from the estimated group Id, jth fine classifier is selected. Each rounded box
represents data and each rectangular box represents process.
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(a)

(b)

Figure 3.4: (a) Real parts of Gabor filters; (b) Magnitudes of Gabor filters. Based on
Equations 2.1 to 2.4, parameters for the filter array are set as follows: fmax = 0.25, γ =
η =

√
2, m = n = 25, and, U = 5, V = 8.

Figure 3.5: An example face image
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(a)

(b)

Figure 3.6: (a) Real parts of Gabor images; (b) Magnitudes of Gabor images.
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Random Forest

With Gabor feature as the image descriptor and group Id as the image label, a coarse

classifier is trained to discriminate groups. Random forest algorithm is employed in the

training phase, considering its capability to handle large amounts of data and effectiveness

demonstrated in many other work.

In growing each decision tree, information gain is the metric for selecting the best

attribute in node splitting, expressed as

Ia
n = Entropy(parent) − AverageEntropy(children) (3.7)

= H(Sn) −
∑

k∈[L,R]

(|Sk
n|/|Sn|)H(Sk

n) (3.8)

where n is the node to be split, a is an attribute under measurement, and k represents child

of n. H represents entropy. For a set S composed of multiple instances, H(S) is calculated

by
∑ −p log2 p, with p representing the probability of a class. Sn is a set at n, while SL

n and

SR
n respectively represent the left and right subsets; | · |denotes the number of instances in

a set.

At a node to be split, information gain measures how well an attribute would partition

the instances by an expected entropy reduction. High information gain means less impurity

in partitioned instances. Thus the attribute which maximizes information gain is selected

as the best one.

3.1.2 Fine Classifier

Histogram of Oriented Gradients

On top of the coarse stage in which classification of different groups is achieved, training a

fine classifier is aimed to further classify instances within a group. In each group, distinct

labels cover a small range of the original pose space, implying high similarity among classes

in the fine stage. As a result, extracting image descriptors to emphasize the pose variation

among different classes is significant.

From a detailed description in Chapter 2.4.2, HOG is computed by extracting orien-

tation information, which is critical in describing the head pose. Orientation information

incorporated in HOG is illustrated in Figure 3.7. In addition, HOG shows invariance to

illumination change. Therefore, HOG is used to represent images in the fine stage.

Support Vector Machine

The machine learning technique in training a fine classifier is a multi-class SVM with one-

versus-one strategy, given the fact that there are usually more than two distinct classes

within a group.
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Figure 3.7: Orientation information in HOG. Within the face image from Figure 3.5, green
lines indicate orientation generated from gradients. For each cell, there are totally 9 bins
for orientation distribution.

3.2 ROI Detection

Points in a detected face take on various degrees of importance in terms of estimating head

pose, based on the following considerations:

• irrelevant and distractive information introduced in the face detection part (discussed

in Chapter 1)

• tight correlation between head pose and geometrical characteristics of the face image

(discussed in Chapter 2.4.2)

Therefore, in head pose estimation task, we want to eliminate undesired information

and focus on the area containing the most important image points rather than the whole

image. To this end, we propose a ROI detection module, and head pose is estimated from

ROI within a face image through coarse-to-fine estimation (Figure 3.8).

Coarse 

Estimation

ROI Detection
Fine 

Estimation

Input Face Image

Gabor Feature 

Representation

HOG Feature 

Representation

Output Head Pose

Figure 3.8: Combination of ROI detection and coarse-to-fine estimation

In the ROI detection module, the most important image points, i.e., keypoints, are

firstly selected from the face image. ROI is then generated from locations of the keypoints.

Keypoint selection is achieved with the help of a sequence of random forests. In building a

forest, each variable corresponds to a distinct dimension in the feature space. In addition
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to classifying instances, a random forest provides a measurement of variable importance.

Based on variable importance score, variable selection is conducted in an iterative strategy.

After that, indexes of the selected variables are used to locate keypoints in an image.

3.2.1 Variable Importance Measurement

In a random forest, the most commonly used metric for evaluating variable importance is

called permutation importance [27], generated by out-of-bag data.

Chapter 2.4.3 discusses that the training set of a decision tree in the forest is a boot-

strapped set of the original training set. Out-of-bag data for each decision tree consists of

instances in the original set but absent from the bootstrapped set. Importance score for

a given variable j is then calculated from accuracy decrease generated by out-of-bag data.

In detail, for each tree, its out-of-bag instances are firstly sent down, generating a classifi-

cation accuracy. After that, the values of variable j in out-of-bag instances are randomly

permuted, and out-of-bag instances after permutation are then classified by the decision

tree, generating a new accuracy and a decrease compared to the original one. Finally, the

mean accuracy decrease over all the decision trees in a forest is the importance score for

variable j.

Repeating the above process for each variable, importance scores for all the variables

are generated. Generally speaking, a variable with a higher score is considered to be more

important. It is the fundamental assumption in variable selection.

3.2.2 Variable Selection

Given image descriptors of dimension L, the most important L∗ variables are to be selected.

Obviously, 0 < L∗ < L.

Inspired by earlier work conducted by Díaz-Uriarte et al. [15], variable selection involves

variable importance score ranking and an iterative variable introduction. Initially, through

the random forest from the coarse stage, importance scores for totally L variables are

computed and ranked from high to low. Variable introduction proceeds as follows. Given

a defined percentage p (0 < p < 1), variables with the first ⌊p ∗ L⌋ importance scores are

selected, while the remaining ones are discarded. If the length of selected variables is greater

than L∗, a new random forest based on image descriptors with selected variables is built,

followed by a new iteration of variable introduction. The procedure repeats until the length

of selected variables is equal to L∗. Algorithm 1 summarizes the variable selection process.

Instead of directly selecting the first L∗ variables in the initial step, iterative variable

introduction selects the important variables in a gradual fashion. As a result, selected

variables are sifted by a sequence of random forests and are thereby more convincing.
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Algorithm 1 Variable Selection

while the length of selected variables is greater than L∗ do

build a random forest based on descriptors with current variables;
compute variable importance scores;
rank the scores from high to low;
keep variables with the first p percentage scores and discard the rest;
record indexes of the selected variables in the original image descriptor.

end while

return A sequence of selected variables with length L∗

3.2.3 Keypoint Selection

In variable selection, indexes of the selected variables are recorded simultaneously, acting

as indicators of keypoint locations within the face image.

The process of locating keypoints is shown in Figure 3.9. In the coarse stage, the

image descriptor for representing a face image is generated by concatenating pixels from

magnitudes of Gabor images. As a result, making use of indexes of the selected variables in

the image descriptor, critical points within the Gabor images are firstly traced. Then the

locations of critical points within the Gabor images are used to get keypoint locations in

the original image. Since a face image generates a Gabor image array, critical points within

different Gabor images may overlap, hence generating keypoints in the original face image

with multiple weights.

Locating critical points in Gabor images 

Locating keypoints in original image 

Indexes of 

selected variables

Variable Selection

Figure 3.9: Procedure of locating keypoints in the original image

3.2.4 ROI Detection

Given the selected keypoints in a face image, a minimum rectangle incorporating all the

keypoints is generated. Meanwhile, the other one is formed by keypoints with multiple

weights. An example is illustrated in Figure 3.10.

From Figure 3.10, we can make the following conclusions: (1) keypoints are mostly

distributed in the face part; (2) quite a number of keypoints are assigned with multiple

weights; (3) the blue rectangle excludes the background and hair, which are irrelevant to a
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Figure 3.10: Keypoints in an example face image. Solid green circles represent selected
keypoints, and red squares represent keypoints with multiple weights; the yellow rectangle
and the blue one are generated by green circles and red squares respectively.

person’s head pose. To eliminate undesired information within a face image, we define ROI

as the region generated by keypoints with multiple weights.

(a) (b)

Figure 3.11: (a) a sample frame from Boston University dataset [37], where a person is
wearing a 3D magnetic tracker to collect ground truth for head pose; (b) the red rectangle
indicating the detected face by Viola-Jones algorithm [65], and the blue rectangle indicating
the detected ROI.

3.3 Summary

In summary, we propose a coarse-to-fine head pose estimation method, by breaking down

the perplexing estimation task into two progressive steps. Moreover, ROI detection achieves

the goal of eliminating irrelevant information and focusing on the significant part within a

face image.

29



Chapter 4

TV Viewers’ Behavior Analysis

In this chapter, we apply the proposed coarse-to-fine head pose estimation method to ana-

lyze TV viewers’ behaviors, which are under surveillance by a RGB camera mounted on top

of the TV screen. This kind of analyses is useful for some applications, such as marketing

research. For example, it can be used to study the effectiveness of ads in TV broadcasting.

We design our application to be robust, reflected in the following aspects:

• applicable for both single-person and multi-person scenarios;

• no restriction for people’s movement.

Under the fundamental assumption that head pose can be used to infer the visual

attention, a TV viewer’s head pose change over time reflects his inclination to the TV

programme. Thus our application relies on extracting TV viewers’ head pose information

from video recordings. Processing video data needs integrate multiple tasks. Figure 4.1

illustrates the flowchart of analyzing TV viewers’ behaviors.

Face Detection

Face Tracking
Head pose 

Estimation

Behavior 

Analysis

Input

 Video Recording

Figure 4.1: Flowchart of analyzing TV viewers’ behaviors

Four components are contained in the application: (1) initially detecting face locations

and assigning face Ids; (2) tracking faces in subsequent frames; (3) estimating head poses

from face locations in each frame; (4) analyzing TV viewers’ behaviors. Among the four

components, face detection is introduced in Chapter 2.4.1, and head pose estimation relies

on coarse-to-fine estimation method presented in Chapter 3. Thus in the following part, we

focus on face tracking and behavior analysis.
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4.1 Face Tracking

Given the face detection result, the goal of face tracking is to find face trajectories through

a number of frames. Stably and accurately tracked faces are crucial to the following head

pose estimation step. Besides, face tracking is expected to be efficient in order to build

a real-time application. From our knowledge, the KLT algorithm is well known for its

competitive performance and efficiency. Therefore, KLT is employed in our application to

conduct face tracking.

The first step in the KLT algorithm is extracting feature points from the initial posi-

tion. Under the assumption that brightness constancy and small appearance change exist

between two adjacent frames of a video [67], KLT finds the feature point correspondence

across frames. In our application, in order to emphasize stable feature points in the face

area, face tracking is achieved by a weighting function of feature points. Furthermore, to

eliminate invalid tracking result caused by occlusion, we propose a consistency checking

module following each tracking process.

4.1.1 Feature Point Detection

In order to be tracked reliably, feature points should have richly structured neighborhood.

Proposed by Tomasi and Kanade in [63], feature points are image corners which have strong

gradients in at least two directions. To find image corners, a structure matrix G is defined

by

G =

∫∫

W

[

I2
x IxIy

IxIy I2
y

]

dxdy (4.1)

where Ix and Iy are gradients of image I, given by Ix = ∂I(x, y)/∂x, and Iy = ∂I(x, y)/∂y;

W is the size of an image window.

Eigen decomposition of G is used to analyze the local pattern within the window. Gen-

erally speaking, two small eigenvalues of G indicate a homogenous pattern; a big eigenvalue

and a small one imply an unidirectional pattern, i.e., an edge; two large eigenvalues indi-

cate a corner. By defining the threshold of the minimum eigenvalue, corner points can be

detected in their local windows.

4.1.2 Feature Point Tracking

Consider a corner point (x, y) in image I. The goal of tracking is to find the location

(x + vx, y + vy) in image J such that I(x, y) and J(x + vx, y + vy) are matched. The vector

(vx, vy) is called the velocity at (x, y), denoted by v. Similar to feature detection, KLT

defines the matching in a local window. An error function ε in terms of v is expressed by

ε(v) = ε(vx, vy) =

∫∫

W
[I(x, y) − J(x + vx, y + vy)]dxdy (4.2)
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By taking Taylor expansion of J(x + vx, y + vy) and then differentiating ε with respect to

v, the optimal v is obtained.

vopt = G−1(

∫∫

W
((I(x, y) − J(x, y))[Ix, Iy]T )dxdy) (4.3)

Equation 4.3 can generate reliable tracking result when there is small pixel motion

between I and J . To allow large motion between them, pyramid representation of images

is employed, and feature point tracking is carried out from the lowest resolution level up to

the original one (Figure 4.2). An additional step in KLT tracking is verifying the tracked

points [58]. By checking the local window similarity, incorrectly tracked points are dropped.

Lowest resolution level

Original resolution level Pixel motion 

between frames

Figure 4.2: Image Pyramid in KLT tracking

4.1.3 Face Tracking

In face tracking, feature points are detected from the initial face location, and outputs of

KLT are velocities of tracked feature points. To describe the motion of a face between two

adjacent frames, an intuitive idea is averaging all the velocities in order to reflect a general

moving trend. In our application, instead of treating feature points equally, face motion

is calculated by a weighted average of point velocities. Mathematically, the motion vector

between two adjacent frames is defined by

MV (fi, fi+1) =
n

∑

j=1

w1v1 + w2v2 + ... + wnvn (4.4)

where fi and fi+1 represent the previous frame and the current frame respectively; n denotes

the number of tracked feature points; for jth (j ∈ [1, n]) point, vj represents the estimated

velocity , and wj represents the weight; MV is the motion vector from fi to fi+1. The
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weight assigned to a feature point is given by

gj =
1

σ
√

2π
exp(−(xj − xc)

2 + (yj − yc)
2

2σ2
) (4.5)

wj = gj

/

∑n

j=1
gj (4.6)

where (xj , yj) is the coordinate of the feature point, and (xc, yc) is the coordinate of the

centroid of all the feature points, given by xc = 1
n

∑n
i=1 xj, yc = 1

n

∑n
i=1 yj; σ is the standard

deviation; gj represents an initial Gaussian weight; after normalization, wj represents the

weight assigned to jth feature points.

Based on Equations 4.5 and 4.6, the weight of a feature point is associated with the

point location. A feature point closer to the centroid is considered to be more stable in

representing a face, thus assigned with more weight. On the contrary, the peripheral point

is considered to be unstable in face tracking, therefore with less weight. Figure 4.3 illustrates

the weights of feature points in a face.

Compared to simply averaging the feature point velocities, the weighting function is

able to improve consistency and accuracy in face tracking. Finally, from the face location

in fi and the estimated motion vector, the face location in fi+1 can be identified. Examples

of tracking results can be found in Figure 4.4.

Equation 4.4 defines the trajectory for a single face. In multi-person scenarios, faces of

different people are tracked in parallel. Occlusion between people may occur in multi-face

tracking, making part of or the whole face invisible. As a result, the tracked face might

be an invalid input in terms of head pose estimation. Some examples of invalid tracking

results caused by occlusion are shown in Figure 4.5.

When occlusion happens, the consistency between two adjacent frames is broken. Only a

small number of feature points would be tracked and their spatial layout might be disrupted.

In addition, the tracked face contains only part of the original face area. To detect and

then eliminate invalid tracking results, we propose to check consistency after conducting

face tracking from fi to fi+1. Three criteria for identifying a valid tracking result are defined

from different points of view, listed as follows:

1. the ratio between the number of feature points in fi+1 and fi is above a threshold;

2. the difference between the sum of pairwise distances of tracked points in fi+1 and fi

is within a range;

3. the difference between joint color and texture histogram of faces in fi+1 and fi is

within a range.

The first two criteria are based on feature points, and the third one is aimed to check

the global feature of the tracked face, represented by color and texture histogram. On one

hand, color histogram describes color distribution of face pixels. On the other hand, texture

histogram reveals the intensity variation and incorporates the spatial information which is
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Figure 4.3: (a) Face and feature points within a sample frame from Boston University
dataset [37]. The red rectangle indicates the detected face, and solid green circles represent
its feature points by KLT; (b) Weights of feature points. Coordinates of feature points are
defined in the x-y plane, and the feature weights are shown on the z axis. The red star
marks the feature point with the maximum weight, and the black rectangle corresponds to
the centroid of all the feature points.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Comparison of tracking results with and without weighting function. Solid
green circles represent tracked feature points; red rectangles indicate tracked faces using
the weighting function; blue rectangles indicate tracked faces by treating feature points
equally. Red rectangles capture the face motion more accurately, while blue rectangles are
more affected by peripheral feature points.
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(a)

(b)
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(c)

(d)

Figure 4.5: Illustration of invalid tracking results by occlusion. In (a), three faces are
detected and assigned with unique face Ids; In (b), (c) and (d), the face with 1st Id is
occluded, thus generating invalid detection results.
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absent in color histogram. In our application, color information is from RGB space, and

texture information is captured by LBP (Appendix D.1).

By checking the three criteria (Appendix D.2), we determine if the tracking from fi

to fi+1 is valid or not. The valid tracking result is kept and subsequent tracking goes on,

while the invalid tracking result is deleted. After deleting intermediate tracking result, face

re-detection is needed in order to detect the subsequent face locations. In summary, the

flowchart of face tracking across frames is illustrated in Figure 4.6.

Face Tracking

Frame i

Frame i+1

Checking 

consistency

Face Tracking

Frame i+2

MV

MV

Yes

No

Deleting

...

Figure 4.6: Flowchart of face tracking across frames
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4.2 Behavior Analysis

Given face locations in each frame, our goal is to analyze TV viewers’ behaviors. In this

thesis, TV viewers’ behaviors are divided into two classes, described by focused and un-

focused respectively. With a camera mounted on top of the TV screen, frontal faces are

captured when viewers are looking at the TV screen. On the contrary, non-frontal faces

indicate viewers are distracted and unfocused.

Head pose information extracted from faces is a reliable resource in behavior analysis,

and significant head pose change implies a nonnegligible head movement. We initially

select a base frame in which the viewers are assumed to be looking at the TV screen. In the

following frame sequences, head pose is estimated, and relative head pose change compared

to the base frame is calculated. By setting a change threshold, unfocused viewers can be

identified.

For each person in the scene, the video recording reflects the continuous pattern of head

movement. However, coarse-to-fine estimation method works in a discretized pose space,

thus incapable of detecting delicate head pose change. In addition, coarse-to-fine estimation

method applies to face images under head poses within a range. Nevertheless, there is no

restriction for a person’s head movement. In order to identify a person’s behavior even

when his face is gradually out of view, we make use of the motion vector of the face to

capture the head movement.

Based on Equation 4.4, motion vector from the base frame to the current one is calcu-

lated by

MV (fs, fc) =
c−1
∑

i=s

MV (fi, fi+1) (4.7)

where fs and fc denote the base frame and current frame respectively (c > s); MV denotes

the motion vector; MV (fi, fi+1) (s ≤ i ≤ c − 1) is generated during face tracking process.

From Equation 4.7, MV (fs, fc) can be viewed as an accumulated motion vector between

adjacent frames. Generally speaking, a small MV (fs, fc) implies a stable head movement,

while a large one indicates a considerable head pose change (Figure 4.7).

Finally, based on head pose change and MV (fs, fc), a TV viewer’s behavior is identified.

A viewer′s behavior =















unfocused
if |yawc − yaws| ≥ T1, or |tiltc − tilts| ≥ T2,

or MV (fs, fc) ≥ T3

focused otherwise

(4.8)

where yaws and tilts represent yaw and tilt estimated from base frame fs; yawc and tiltc

represent yaw and tilt estimated from current frame fc; T1, T2 and T3 are threshold values.
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(a)

(b)
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(c)

(d)

Figure 4.7: Face motion vector generated by head movement. (a) is the base frame, and
the yellow rectangle indicates a detected face; in (b), (c) and (d), the yellow rectangles
indicate face tracking results, with MV (fa, fb) equal to (-1.0432, 1.1565), MV (fa, fc) equal
to (-1.3023, 9.8469), MV (fa, fd) equal to (-2.3196, 19.0051). Significant head pose change
happens in (c) and (d).
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4.3 Summary

Our application is designed for analyzing TV viewers’ behaviors and measuring their atten-

tion. Given the initial face detection results, the weighted KLT algorithm and consistency

checking module generate stable face locations from the frame sequences and simultaneously

output motion vectors to describe head movement. After that, head pose information is ex-

tracted by coarse-to-fine method. Finally, by selecting a base frame, TV viewer’s behaviors

are determined from relative head pose change and the face motion vector.
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Chapter 5

Experimental Results

To demonstrate the superiority of coarse-to-fine head pose estimation method, we conduct

experiments on CAS-PEAL-R1 face database [26] and Pointing’04 head pose image database

[28], and then compare with state-of-the-art methods. After that, we test the application

of analyzing TV viewers’ behaviors, using eight videos from Boston University dataset [37]

and two videos recorded by ourselves.

5.1 Performance of Coarse-to-fine estimation method

In this section, we give an introduction of comparison methods, followed by metrics for

evaluating head pose estimation performance. After that, experimental results on two

databases are presented.

5.1.1 Comparison Methods

Image descriptor and machine learning technique are critical elements for a head pose

estimation method, therefore comparison methods are described from the two aspects.

Proposed in [29], Locally Adjusted Robust Regressor (LARR) makes use of concatenated

raw pixels of an image as the image descriptor. Given a test image, two pre-trained SVRs

separately generate yaw and tilt estimation. Afterwards, a set of pairs (yaw, tilt) closest to

the initial estimation under Euclidean distance are selected from the original pose space.

Based on the selected configurations, a SVM is trained to locally adjust the estimation for

the test image.

The second comparison method, denoted as DenseSIFT method, was proposed in [30].

It forms a dense representation of an image, by extracting SIFT descriptors at image grid

points. In DenseSIFT method, pose configurations are divided into several bins. A multi-

class SVM is firstly employed to generate an initial estimation. Then a SVR is applied to

get a refined result.
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Li et al. [39] proposed a pixel-based method. For a face image, its corresponding

binary image is generated by determining each pixel to be a skin pixel or not, and then

divided into multiple blocks. Energy for each block is defined as the average pixel intensity,

through which a Block Energy Map (BEM) is created. In this method, image descriptor is

a feature vector concatenating energies for all blocks. To find a better learning technique,

two regression method are tested, i.e., SVR and Gaussian Process Regression (GPR). The

authors claimed GPR-based BEM yields better results.

Proposed in [51], the last comparison method makes use of Subclass Discriminant Anal-

ysis (SDA), thus it is called SDA-based method. Clustering process is first applied, and

each group is further divided into several classes. Then the division serves as a preliminary

step to learn a subspace based on SDA. By projecting original data into the subspace,

classification is conducted by nearest neighbor searching.

The reason why we choose these four methods are listed as follows. Firstly, all of them

except the third one share similar ideas as coarse-to-fine method in some sense. Both LARR

and DenseSIFT methods obtain a refined estimation by searching a local neighborhood of

initial results, and SDA-based method employs the same division idea as ours. Secondly,

these papers are from recent years. The third one was published in 2014, and it employs

GPR-based regression technique, which is popular and promising in recent studies.

5.1.2 Evaluation Metrics

To quantitatively evaluate the performance of different methods, we use the following met-

rics.

• Mean Absolute Error (MAE) [40]:

MAE =
1

N

N
∑

i=1

ei (5.1)

=
1

N

N
∑

i=1

|gi − ri| (5.2)

where gi is the ground truth for image i, and ri is the estimated result; |gi − ri|
generates absolute error ei for image i. N is the total number of testing images.

• Accuracy [17]:

Accuracy =
n

N
× 100% (5.3)

where n denotes the number of testing images for which absolute error is equal to 0,

and N is the total number of testing images.
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• Cumulative Error Distribution (CED) [71]:

CED(E) =
Ne≤E

N
(5.4)

where Ne≤E is the number of testing images for which the absolute error e is no higher

than E degrees; N is the total number of testing images.

Among three metrics, the first two are commonly used. Higher accuracy and lower mean

absolute error indicate a better performance. Nevertheless, for some methods, such as

regression based methods, the accuracy is usually 0, while the absolute error may be mostly

within a small range. Therefore, to evaluate the performance from another point of view,

cumulative error distribution is introduced. It can be viewed a function of E, and the

output CED(E) indicates the fraction of testing samples for which the absolute error is

within the range [0, E]. In general, for a fixed error range E, a larger value of CED implies

a better result.

5.1.3 CAS-PEAL-R1 Face Database

CAS-PEAL-R1 face database [26] consists of large amounts of grayscale images. Faces under

different head poses are captured by a camera system consisting of nine digital cameras.

Totally, images for 1042 people are contained in the database. For each person, there are

totally 21 head poses, with seven yaw angles (ranging from −45◦ to 45◦ with 15◦ interval)

and three tilt angles (−30◦, 0◦, and 30◦). Figure 5.1 shows a set of images for a person.

Figure 5.1: Example images from CAS-PEAL-R1 database. Each row corresponds to the
same tilt angle and each column corresponds to the same yaw angle.

Considering the huge size of CAS-PEAL-R1 face database, we select a subset consisting

of images of 90 people. Then we randomly choose images of 72 people as training instances,

and the remaining images of 18 people as testing instances. This way of data division

guarantees there is no overlap between training data and testing data, which is an important

factor to test generality of a method.

To get face locations, we crop the face parts manually rather than making use of face

detection algorithm, based on the following considerations. Firstly, all the images are in
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grayscale, thus they are not valid inputs for color-based skin detection method [7]; secondly,

Viola-Jones algorithm [65] cannot detect faces under certain poses; thirdly, the manual

cropping introduces little noise and generates standard face images. For images shown in

Figure 5.1, cropped face parts are illustrated in Figure 5.2.

Figure 5.2: Cropped face parts of example images from CAS-PEAL-R1 database

Head pose estimation is conducted on the cropped face images. In coarse-to-fine esti-

mation, yaw space is divided into three subspaces, i.e., {{−45, −30}, {−15, 0, 15}, {30, 45}};

three subspaces form the tilt space, i.e., {{−30}, {0}, {30}}. Through combined estimation

of yaw and tilt, nine distinct group Ids are generated (Table 5.1). Meanwhile, each group is

composed of several subclasses, for instance, two distinct within-group Ids are generated in

the first group (Table 5.2). Finally, the label of an image corresponds to a vector (group Id,

within-group Id), such as, vector (1, 2) indicates the estimation for (yaw,tilt) is (−30, −30).

Table 5.1: Group Ids generated in CAS-PEAL-R1 database

Tilt
Yaw {−45, −30} {−15, 0, 15} {30, 45}

{−30} 1 2 3

{0} 4 5 6

{30} 7 8 9

Table 5.2: Within-group Ids of the first group

Tilt
Yaw −45 −30

−30 1 2

Parameter selection in coarse-to-fine estimation method is given below. All the face

images are resized to 64× 64. In the coarse stage, the Gabor filter array is of size 5× 8, and

Gabor images are resized to 16 × 16; a random forest is built in coarse classifier training,

with totally 300 decision trees. In the fine stage, to compute HOG descriptor, images are

divided into cells of size 8× 8, and Radial Basis Function (RBF) kernel is used in the SVM.

For the coarse-to-fine estimation method, the coarse estimation step achieves an ac-

curacy of 94.44%. Among the 378 testing instances, the error introduced in the coarse
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estimation is shown in Figure 5.3. It can be seen that in each error case, the estimation re-

sult is a group with neighboring angles to the ground truth, indicating the coarse estimation

guarantees the error within a small range.
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 2 
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7,(−30,−45),(−30)

8,(−30,−45),(+0)

9,(−30,−45),(+30)

Figure 5.3: Error in the coarse estimation step for CAS-PEAL-R1 database. Each node is in
the format of "groupId, (yaw candidates), (tilt candidates)"; each directed line connects
the estimation to the ground truth, annotated with the number of occurrence.

The final result generated by coarse-to-fine method along with results by comparison

methods are given below. Since head pose is determined by yaw and tilt, performance in

terms of the sum of the two is the most convincing.

Table 5.3: Comparison of accuracy and MAE on CAS-PEAL-R1 database

Method Accuracy (%) MAE (◦)

LARR 83.33 4.0079

DenseSIFT 0 11.8619

BEM+SVR 1 N/A N/A

BEM+GPR 2 N/A N/A

SDA 88.36 2.1429

Coarse-to-fine 90.21 1.9048
1 BEM based method relies on color images as in-

puts, thus BEM+SVR is not applicable for CAS-
PEAL-R1 database.

2 For the same reason, BEM+GPR is not applica-
ble for CAS-PEAL-R1 database.
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Table 5.3 lists the accuracy and MAE in terms of the sum of yaw and tilt generated

by different methods, and the best results are shown in bold. Table 5.3 shows that coarse-

to-fine estimation method outperforms all the comparison methods. Besides, CED curves

for different methods are illustrated in Figure 5.4. Coarse-to-fine method achieves the best

performance, scoring 90.21% with 0◦ absolute error tolerance (i.e., accuracy), 98.00% with

15◦ tolerance, and 99.74% with 30◦ tolerance.
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Figure 5.4: CED curves in terms of the sum of yaw and tilt on CAS-PEAL-R1 database

Furthermore, we compare the performance of different methods in terms of yaw and tilt

separately. Table 5.4 lists the accuracy and MAE generated by different methods in yaw

and tilt, and Figure 5.5 illustrates the CED curves. Table 5.4 and Figure 5.5 indicate that

coarse-to-fine estimation method is always superior in evaluating yaw and tilt separately.

Table 5.4: Accuracy and MAE of yaw and tilt on CAS-PEAL-R1 database

Method
Accuracy (%) MAE (◦)
yaw tilt yaw tilt

LARR 89.42 92.06 1.6270 2.3810

DenseSIFT 0 0 3.9873 7.8746

BEM+SVR N/A N/A N/A N/A

BEM+GPR N/A N/A N/A N/A

SDA 89.95 97.88 1.5079 0.6379

Coarse-to-fine 92.59 97.35 1.1111 0.7937
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Figure 5.5: CED curves in terms of yaw (a) and tilt (b) on CAS-PEAL-R1 database
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5.1.4 Pointing’04 Head Pose Image Database

Pointing’04 database [28] consists of face images of totally 15 people. In this database,

people have various skin colors, and some of them wear glasses. For each person, there are

13 yaw angles {−90◦, −75◦, −60◦, −45◦, −30◦, −15◦, 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦} and 9 tilt

angles {−90◦, −60◦, −30◦, −15◦, 0◦, 15◦, 30◦, 60◦, 90◦}. For images with tilt angles −90◦ and

90◦, yaw angle is 0◦. As a result, the number of distinct head poses is 7 · 13 + 2 · 1 = 93.

Face part is invisible for images with tilt angles −90◦ and 90◦, therefore, we focus on the

remaining 91 poses.

For images in Pointing’04 database, color-based skin detection method [7] is employed

to detect face locations. Figure 5.6 shows examples of face detection results.

(a) (0◦

, 0◦) (b) (15◦

, −60◦) (c) (−60◦

, 30◦) (d) (45◦

, 15◦) (e) (15◦

, 30◦)

Figure 5.6: Example images from pointing’04 database with red rectangles indicating the
detected faces. Each image is annotated with (yaw,tilt).

Based on detected faces, head pose estimation is conducted using leave-one-out strategy.

That is, images of 14 people act as training instances, while images of the remaining person

act as testing instances. Each time we select one person as the testing person, thus totally

15 experiments are conducted. Performance of a head pose estimation method is evaluated

from the average of all the experiments.

Implementation details of coarse-to-fine estimation method is as follows. Group Ids

generated from the clustering process are listed in Table 5.5, and parameters in the coarse

stage and fine stage are the same as in CAS-PEAL-R1 database.

Table 5.5: Group Ids in Pointing’04 database

Tilt
Yaw {−90, −75} {−60, −45, −30} {−15, 0, 15} {30, 45, 60} {75, 90}

{−60, −30} 1 2 3 4 5

{−15, 0, 15} 6 7 8 9 10

{30, 60} 11 12 13 14 15

For coarse-to-fine estimation method, the average accuracy of coarse estimation step

is 69.13%. Figure 5.7 shows the error introduced during the coarse estimation, in which

182 images of the 9th person act as testing instances. Similar to CAS-PEAL-R1 database,

coarse estimation guarantees estimation results close to the ground truth.
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Figure 5.7: Error in the coarse estimation step for Pointing’04 database. Each node is in
the format of "groupId, (yaw candidates), (tilt candidates)"; each directed line connects
the estimation to the ground truth, annotated with the number of occurrence.

For different methods, accuracy and MAE in terms of the sum of yaw and tilt are listed

in Table 5.6. It can be seen that coarse-to-fine estimation method works best.

Table 5.6: Comparison of accuracy and MAE on Pointing’04 database

Method Accuracy (%) MAE (◦)

LARR 23.43 22.5300

DenseSIFT 1 0 26.8837

BEM+SVR 2 0 27.7223

BEM+GPR 3 0 25.5657

SDA 27.52 17.8996

Coarse-to-fine 33.32 15.8766
1 DenseSIFT method are regression based, thus

generating zero accuracy.
2 BEM+SVR relies on a SVR regression model,

generating zero accuracy.
3 BEM+GPR relies on a GPR regression model.
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Figure 5.8 shows CED curves in terms of the sum of yaw and tilt. From Figure 5.8,

coarse-to-fine estimation method scores 33.32% when no error is allowed, 74.93% within 15◦

error tolerance, and 92.01% within 30◦ tolerance, which means the majority of estimation

results is within 30◦ error range.
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Figure 5.8: CED curves in terms of the sum of yaw and tilt on Pointing’04 database

The performance of different methods in estimating yaw and tilt separately is shown in

Table 5.7 and Figure 5.9. It can be seen that coarse-to-fine estimation method outperforms

the others in estimating yaw and tilt in a separate way.

Table 5.7: Accuracy and MAE of yaw and tilt on Pointing’04 database

Method
Accuracy (%) MAE (◦)
yaw tilt yaw tilt

LARR 49.70 45.95 10.6019 11.9281

DenseSIFT 0 0 12.8514 14.0323

BEM+SVR 0 0 14.8506 12.8717

BEM+GPR 0 0 12.7292 12.8366

SDA 50.85 56.74 8.6239 9.2757

Coarse-to-fine 58.44 59.89 7.4925 8.3841

Compared to CAS-PEAL-R1 face database, pointing’04 head pose image database con-

tains fewer images. Besides, face detection on pointing’04 database introduces more noise.

As a consequence, head pose estimation on Pointing’04 database is a more challenging task.

In this sense, coarse-to-fine estimation method demonstrates its robustness.
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Figure 5.9: CED curves in terms of yaw (a) and tilt (b) on Pointing’04 database
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5.2 Performance of analyzing TV viewers’ behaviors

5.2.1 Boston University Dataset

Boston university dataset [37] consists of 45 videos. Each video is digitized at 30 frames

per second (FPS), consisting of 200 frames at a resolution of 320 × 240 (size of the face in

each frame is around 90 × 90). In a video, only one person is monitored.

In our experiment, we select 8 videos as testing sequences. The first step is generating

the ground truth, by manually labeling a TV viewer’s behavior in each frame as focused

or unfocused. After that, the viewer’s behavior is analyzed by the pre-built application.

In head pose estimation task, faces are resized to 64 × 64, which is the same as the size

of images used to train the estimation method. Besides, resized faces also guarantee our

method is robust to the distance between a person and the camera. Figure 5.10 shows some

results of behavior analysis. Table 5.8 shows the accuracy for all the test sequences. Using

a laptop computer with Intel(R) Core(TM) i5-3230M CPU @2.60GHz and 4.0GB memory,

the average speed is 0.2386 seconds/frame.

Table 5.8: Accuracy for test sequences from Boston university dataset

Sequence jam5 jam6 jim7 jim9 llm5 llm8 ssm5 ssm9

Accuracy (%) 97.5 89 88 92.5 93.5 98 84 85.5

5.2.2 Videos recorded by ourselves

For the purpose of testing multi-person scenarios, two videos are recorded by ourselves. In

each video, four people are watching a live hockey game displaying in a projector. Besides,

people can move freely, check their smart phones and talk with their neighbors. By man-

ually annotating people’s behaviors to get the ground truth, representative video clips are

extracted and tested using our application. Figures 5.11 and 5.12 show some results for the

two video recordings. Table 5.10 lists the accuracy for the two videos.

Table 5.9: Properties of the two videos recorded on our own

Sequence FPS No.of frames Resolution Rough size of a face

Video1 29 27949 720 × 486 20 × 20

Video2 6 19755 640 × 480 35 × 35

Table 5.10: Accuracy for the two videos recorded on our own

Sequence Video1 Video2

Accuracy (%) 63.33 74.5
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.10: Results of TV viewers’ behavior analysis on Boston university dataset. The
first four frames are from sequence ’jim9’, and (a) is the base frame; the last four frames
are from ’ssm5’, with (e) as the base frame.
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(a)

(b)
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(c)

(d)

Figure 5.11: Results of TV viewers’ behavior analysis on Video1 (New People coming into
the view are detected by face detection, while when people leave the view, feature points
used to track the people would be no longer tracked)
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(a)

(b)

(c)

Figure 5.12: Results of TV viewers’ behavior analysis on Video2
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Chapter 6

Conclusion and Future Work

In this thesis, we present a characterization study of existing head pose estimation methods

and propose a coarse-to-fine head pose estimation method. In addition, we apply our

method to analyze TV viewers’ behaviors.

We first investigate various inputs required by different estimation methods and ana-

lyze the feasibility of different set-ups. We then focus on estimation methods with wide

applicability. Based on the strategy of how to extract information face images, head pose

estimation methods are divided into three categories. By analyzing the pros and cons of

methods of three categories, we propose a coarse-to-fine estimation method by extracting

information from the entire face image.

A two-step estimation mechanism is proposed in our method. Through clustering pro-

cess, the original pose space can be decomposed in a hierarchical structure with three layers.

Correspondingly, two estimation steps can be viewed as the process of identifying paths be-

tween neighboring layers.

Additionally, ROI detection module is proposed in our method, based on the finding

that image points implicitly take on different degrees of importance in head pose estimation

task. By exploring importance degree of image points, ROI is detected by incorporating

the most important points within an image.

Finally, we build an application of interpreting TV viewers’ behaviors by integrating a

sequence of tasks. In face tracking, a weighting function of feature points detected by KLT

and consistency checking module generate reliable and stable tracking results. To deal with

continuous head pose change in a video sequence, we identify a viewer’s behavior from head

pose change measurement and face motion vector.

Current problems and suggestions for future work are listed below.

1. Coarse-to-fine estimation method relies on classification based machine learning tech-

nique. To enhance video-based applications, a regression model on continuous pose

space is needed.
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2. In coarse estimation, Gabor filter is employed to extract the feature vectors of input

images. The orientation of a Gabor filter is defined within X-Y plane (based on Figure

2.1). To better reveal image features in terms of the yaw and tilt, a 3D filter projected

onto X-Z and Y-Z planes would be a better choice.

3. In the application of analyzing TV viewers’ behaviors, face detection, face tracking

and head pose estimation are isolated tasks. To achieve a better performance in a

more efficient way, one solution is to build a unified model for the three tasks.

4. In our application, behavior of each TV viewer is analyzed independently. In multi-

person scenarios, behaviors of multiple viewers can be interpreted jointly, in order to

understand the interaction between them.
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Appendix A

Viola-Jones Face Detection

A.1 Haar-like Features

For an image, its Haar-like features are intensity difference between rectangular regions
that have similar shape with Haar wavelet. In Viola-Jones face detection algorithm [65],
there are three kinds of Haar-like features: two-rectangle feature, three-rectangle feature
and four-rectangle feature, illustrated in Figure A.1.

Figure A.1: Rectangular regions within an image for Haar-like features [65]

The rectangle feature for an image is calculated by

f =
∑

i∈W

I(i) −
∑

j∈G

I(j) (A.1)

where I is the original 2D image; i and j denote image pixels; W represents the while
rectangle regions, and G represents the gray rectangle regions.
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A.2 Integral Image

To reduce the computational cost of calculating Haar-like features, the integral image is
introduced:

ii(x, y) =
∑

x∗≤x, y∗≤y

I(x∗, y∗) (A.2)

where I is the original image; (x, y) and (x∗, y∗) represent pixel coordinates; ii is the integral
image.

Equation A.2 indicates the intensity of the integral image ii at (x, y) is the sum of pixels in
upper left regions from the original image. Based on the integral image, the sum of pixels
within rectangles of the original image can be rapidly computed.

A B

DC

Figure A.2: Calculating the sum of pixels within a rectangle by the integral image. The
sum of pixels within the gray rectangle can be computed by ii(A) + ii(D) − ii(B) − ii(C),
where ii is the integral image, and A, B, C, D are four vertices of the gray rectangle.

A.3 AdaBoost

Given Haar-like features and a training set, AdaBoost is used to build classifiers.

Proposed by Freund and Schapire [23], AdaBoost is a typical boosting method. The
weighted training set is employed in AdaBoost, and the weights keep changing during the
training process. Initially, uniform weights are assigned to instances in the training set. In
each iteration, a classifier is learned by the training set in current state. For the trained
classifier, some instances are well classified while some are not. To improve accuracy of the
classifier successively, in next iteration, more attention should be paid to the misclassified
instances. To this end, the training set is updated by assigning more weight to misclassified
instances and less weight to correctly classified ones. Finally, a boosted classifier is gener-
ated by combining classifiers trained in different iterations, and the weight of each classifier
is proportional to its classification accuracy [16].
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In conclusion, AdaBoost builds a strong classifier from a sequence of weak classifiers. The
general procedure of AdaBoost is summarized below.

Algorithm 2 A general procedure for AdaBoost

Denote Tr as the training set and k as the number of iterations.
Training:

Initialize uniform weight for training instances from Tr.
for i = 1 to k do

train classifier Ci by weighted set Tr;
make classifications on training data ;
update weights for training instances.

end for

return A boosted classifier
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Appendix B

Connected-component Labeling

In binary image analysis, the goal of connected-component labeling is to generate a labeled
image, in which each pixel is assigned with a unique label and pixels with the same label
belong to a connected region [22].

Within a binary image, labeling the connected component of a given pixel is based on
checking the values of its neighbors. Usually, 8-connected pixels are used to represent the
neighbors of a pixel. For a pixel at (x, y), 8 pixels at coordinates (x ± 1, y), (x, y ± 1),
(x ± 1, y ± 1) and (x ± 1, y ∓ 1) are its neighbors. Connected components are neighbors that
share the same value with the pixel at (x, y).

(x-1,y) (x+1,y)(x,y)

(x-1,y+1) (x+1,y+1)(x,y+1)

(x-1,y-1) (x+1,y-1)(x,y-1)

Figure B.1: 8-connected neighbor pixels. For the center pixel (x, y), its neighbors are
represented by the gray rectangles, from the horizontal, vertical and diagonal directions.
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Appendix C

Bootstrap Sampling

In averaging methods, each base classifier relies on a training set, generated from the original
training set through bootstrap sampling [20].

The principle of bootstrap sampling is described below. Denote T as the original training
set of size N , and T ∗ as the training set for a base classifier. In averaging methods, T ∗ is
of the same size as T . Bootstrap sampling is the random sampling with replacement. That
is, each instance in T ∗ is drawn from the whole set T randomly, and a set of N instances
requires N independent sampling processes.

Through bootstrap sampling, some instances from original set T may appear in T ∗ more
than once, while some instances belonging to T may be absent in T ∗. A simple example is
illustrated in Figure C.1.

D1  D2  D3  D4  D5  D6  D7  D8  D9  D10 the original set

a bootstrapped set D3  D6  D1  D4  D9  D2  D9  D1  D5  D10 

Figure C.1: An example of bootstrap sampling result, with Di representing the ith instance,
and i = 1, ..., 10.

It is easy to understand that each bootstrapped set T ∗ is correlated with the original set
T to some extent. MacKinnon gives a mathematical proof in [43]. For T and T ∗ of size
N , in each sampling, the probability of ignoring a specific instance is 1 − 1/N . Since each
sampling process is independent, the probability of ignoring an instance for N times is
(1 − 1/N)N . As N → ∞, (1 − 1/N)N → 1/e ≈ 0.3679, indicating that the probability of
missing a specific instance in T ∗ is 0.3679. In turn, the probability of its presence in T ∗

is 0.6321. In other words, a bootstrapped set T ∗ contains 63.21% of the original training
instances.
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Appendix D

Consistency checking

D.1 LBP

LBP [50] is a texture descriptor extracted from gray images. By measuring the difference
between a pixel and its neighborhood, LBP is defined by

LBPP,R(xc, yc) =
∑P −1

p=0
s(gp − gc)2

p (D.1)

where (xc, yc) is the coordinate of a pixel with gray value gc; totally P pixels are spaced on
the circle with center (xc, yc) and radius R, and gp (p ∈ [1, P ]) denotes the gray value. The
function s(x) is given by

s(x) =

{

1 x ≥ 0
0 x < 0

(D.2)

Figure D.1: Different sets of P and R values in LBP. (a) P = 4, R = 1; (b) P = 8, R = 2;
(c) P = 12, R = 2.5.
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D.2 Flowchart of consistency checking

Through consistency checking, a tracking result is determined to be valid or invalid. Denote
c1, c2 and c3 as the three criteria presented in Chapter 4.1.3. Figure D.2 illustrates the
flowchart of consistency checking.

Tracking result

C1

C2 C3

C3 valid invalid

valid invalid

valid

Yes No

Yes No

Yes

Yes No

No

Figure D.2: Flowchart of consistency checking module
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