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Global-scale attacks like worms and botnets are increasing in frequency, severity and
sophistication, making it critical to detect outbursts at routers/gateways instead of end
hosts. In this paper, leveraging data streaming techniques such as the reversible sketch,
we design HiFIND, a High-speed Flow-level Intrusion Detection system. In contrast to
existing intrusion detection systems, HiFIND: (i) is scalable to flow-level detection on
high-speed networks; (ii) is DoS resilient; (iii) can distinguish SYN flooding and various
port scans (mostly for worm propagation) for effective mitigation; (iv) enables aggregate
detection over multiple routers/gateways; and (v) separates anomalies to limit false posi-
tives in detection. Both theoretical analysis and evaluation with several router traces show
that HiFIND achieves these properties. To the best of our knowledge, HiFIND is the first
online DoS resilient flow-level intrusion detection system for high-speed networks (e.g.
0C192), even for the worst-case traffic of 40-byte-packet streams with each packet forming

Keywords:

Network monitoring

Network-level security and protection
Intrusion detection

Statistical detection

Data streaming

Attack resilience

a flow.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Traffic anomalies and attacks are commonplace in to-
day’s networks, and identifying them rapidly and accu-
rately is critical for operators of large networks. With the
rapid growth of network bandwidth and fast emergence
of new attacks, viruses and worms, existing network intru-
sion detection systems (IDS) [1-4] are insufficient due to
lack of the following features.

1.1. First, scalability to high-speed networks

Most existing IDSes reside on a single host, only exam-
ining application-level [1] and system-level [2] logs, as
such detailed information can identify attacks on individ-
ual machines. However, today’s fast propagating viruses/
worms (e.g., SQL Slammer worm) can infect most of the
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vulnerable machines in the Internet within 10 min [5] or
even less than 30 s with some highly virulent techniques
[6,7]. Thus, it is crucial to identify such outbreaks in their
early phases, which can only be achieved by detection at
high-speed routers instead of at end hosts [8]. Further,
the edge network and even the backbone are suggested
as good vantage points for worm containment [9]. Worm
detection on those high-speed networks is a crucial prere-
quisite for containment. However, the existing schemes are
not scalable to the link speeds and number of flows for
high-speed networks.

Given a high-speed router, e.g., an 0C-192 link
(10 Gbps), each 40-byte TCP packet only has 32 ns to pro-
ceed [10]. For data recording in high-speed network IDSes,
it is difficult for software-based approaches to keep up
with the link speed. Thus, the recording part of high-speed
IDSes has to be hardware implementable, and the follow-
ing three performance features are strongly desirable: (1)
a small amount of memory usage (to be implemented in
SRAM); (2) a small number of memory accesses per-packet
[11,12]; and (3) scalability to a large key space size. The

Netw. (2009), doi:10.1016/j.comnet.2009.10.016

Please cite this article in press as: Z. Li et al., HiFIND: A high-speed flow-level intrusion detection approach with DoS resiliency, Comput.



http://dx.doi.org/10.1016/j.comnet.2009.10.016
mailto:lizc@cs.northwestern.edu
mailto:ygao@cs.northwestern.edu
mailto:ygao@cs.northwestern.edu
mailto:ychen@cs.northwestern.edu
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet
http://dx.doi.org/10.1016/j.comnet.2009.10.016

2 Z. Li et al. / Computer Networks xxx (2009) XxX—Xxx

last constraint is especially important for the coming dec-
ade: IPv6 with its 128 bit IP address is being adopted, espe-
cially in Asia. Thus, the system should scale to a key space
of 2% or 22°5. Meanwhile, other features are strong con-
straints which exclude many possible designs.

1.2. Second, attack resiliency

To bypass detection by an IDS, attackers can execute de-
nial-of-service (DoS) attacks, or fool the IDS to raise many
false positives so that real attack alerts are ignored. Thus,
the attack resiliency of an IDS itself is very important.
However, existing IDSes often keep per-flow states for
detection, which is vulnerable for DoS attacks.

1.3. Third, attack root cause analysis for mitigation

Accurate attack mitigation usually requires IDSes to
pinpoint the attack type and attack flows. To this end, we
need to detect intrusions at the flow-level instead of based
on the overall traffic [13,14]. Furthermore, we want to dif-
ferentiate different types of attacks because mitigation
schemes vary with the types of attacks. For example, for
SYN flooding, attackers often spoof their IPs, but we can
start the SYN defender [15], and/or change the IP address
of the given domain name for the victim machines to alle-
viate the DoS effects. On the other hand, for port scans, we
will use an ingress filter to block the traffic from the attack-
ers’ IPs.

1.4. Fourth, aggregated detection over multiple vantage
points

Most existing network IDSes assume detection is on a
single-router or gateway. However, as multi-homing, load
balancing based routing, and policy routing become preva-
lent, asymmetric routing appears, and ingress and egress
traffic go through different routers. Even for a connection
between a certain source and destination, the packets
may traverse different paths due to per-packet load bal-
ancing of routers which use a round-robin method to
determine which path each packet takes to the destination
[16,17]. Thus, observation from a single vantage point is of-
ten incomplete and affects detection accuracy. Meanwhile,
it is very hard to copy all traffic from one-router to other
routers/IDSes due to the huge volume of data.

1.5. Fifth, separating anomalies from intrusions for false
positive reduction

To detect unknown attacks and polymorphic worms,
statistics-based instead of signature-based intrusion detec-
tions have been adopted widely. However, many network
element faults, e.g., congestion/failures, router misconfigu-
rations, and polluted DNS entries, can lead to traffic anom-
alies which will be detected as attacks.

To meet the requirements above, we propose a new
paradigm called DoS resilient High-speed Flow-level INtru-
sion Detection, HiFIND [18] leveraging recent work on data
streaming computation and in particular, sketches [19,20].
Sketches are a kind of compact data streaming data struc-

ture which record traffic for given keys and are capable of
reporting heavy traffic keys. Sketches are also linear,
meaning we can take linear combinations of multiple
sketches. (for details please refer to Section 3). Essentially,
we want to detect as many attacks as possible. As the first
step towards this ambitious goal, we aim to detect various
port scans (port scans are an important way to detect
large-scale worm propagation and botnet probing) and
TCP SYN flooding. This will serve as an essential building
block for the high-speed IDSes. Our goal is to identify and
distinguish the port scans and SYN flooding in real-time
on high-speed networks, and to obtain the attacks’ key
characteristics for mitigation. Note that while each of these
attacks seems relatively easy to detect separately, or in an
offline setting, it is in fact very hard to detect a mixture of
attacks online at flow-level for high-speed networks. To
the best of our knowledge, HiFIND is the first DoS resilient
high-speed flow-level intrusion detection approach for
port scans and TCP SYN flooding for high-speed networks
(like 10s of Gigabit links, e.g., 0C192), even for the
worst-case traffic of 40-byte-packet streams with each
packet forming a flow.

To this end, we leverage and improve sketches, an effi-
cient tool for data streaming computation, to record flow-
level traffic as the basis for statistical intrusion detection.
Although proposed in [19,20], sketches have not been ap-
plied to building IDSes for the following reasons:

e Sketches can only record certain aggregated metrics for
some given keys. For each flow, there are numerous pos-
sible keys: source/destination IP addresses, source/des-
tination ports, source/destination prefixes, protocols,
etc., and any of these combinations. Since, it is not feasi-
ble to try all possible combinations of the metrics, given
the threat model, what would be the minimal set of
metrics for monitoring?

o Existing sketches are all one-dimensional, i.e., they can
only record the values for a specific metric. However,
various forms of attacks are often hard to identify with
such single dimensional information. For example, both
horizontal scans and un-spoofed SYN flooding exhibit a
large number of unsuccessful connections aggregated
with the (source IP, destination port) pair. However, it
is difficult to differentiate these different kinds of
attacks unless the distribution of the attacks on the des-
tination IPs are also considered.

In this paper, we address these two challenges and
build the HiFIND prototype system to meet the five
requirements mentioned before. We make the following
contributions:

o We analyze the attributes in TCP/IP headers and select
an optimal small set of metrics for flow-level sketch-
based traffic monitoring and intrusion detection. Based
on that, we build the HiFIND prototype which is DoS
resilient and can provide high-speed flow-level intru-
sion detection online as demonstrated by both analytical
and experimental results.

e To analyze the attack root cause for mitigation, we
design efficient two-dimensional (2D) sketches to dis-
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tinguish different types of attacks. Both analytical and
empirical results show the effectiveness of the 2D
sketches.

o We aggregate the compact sketches from multiple van-
tage points (e.g., routers) to detect intrusion in the face
of asymmetric routing and multi-path routing caused
by per-packet load balancing of routers. To the best of
our knowledge, HiFIND is the first system that can work
in such environments.

o For false positive reduction, we propose several heuris-
tics to separate SYN floodings from network/server con-
gestions and misconfigurations (e.g., polluted DNS
entries).

As shown in Fig. 1, HiFIND detection systems can be
implemented as black boxes attached to high-speed rou-
ters (edge network routers or backbone routers) of ISPs
without affecting the normal operation of the routers.

Detection on edge networks is particularly critical, pow-
erful and efficient (without deploying IDSes on all the edge
hosts), according to a recent research agenda for large-
scale malicious code by DARPA [8].

For evaluation, we first test the router traffic traces col-
lected at Lawrence Berkeley National Labs. We then apply
HiFIND for on-site detection at the Northwestern University
(NU) edge routers: we record each minute of traffic with
reversible sketches on the fly. At the end of each minute,
we use the recorded sketches for online detection. In partic-
ular, the one day experiment data consist of 239M network
flows of 1.8TB total traffic. We validate the SYN flooding and
port scans detected, and find the HiFIND system is highly
accurate. The 2D sketches successfully separate the SYN
flooding from port scans, and the heuristics effectively re-
duce false positives of SYN flooding. The evaluation demon-
strates that HiFIND significantly outperforms existing
approaches like Threshold Random Walk (TRW) [21], TRW
with approximate caches (TRW-AC) [22], and Change-Point
Monitoring (CPM) [13,14]. Compared with statistical detec-
tion on complete flow-level data logs, we have almost the
same detection accuracy, but use much less memory.

The HiFIND system runs in real-time, and requires a
small number of memory accesses per-packet. With a Pen-

HIiFIND
system

HiFIND
system

(a) (b)

tium Xeon 3.2 GHz machine and normal DRAM memory,
we record 239M flows with one reversible sketch in
20.6s, i.e.,, 11.6M insertions/second. For the worst-case
scenario with all 40-byte packets, this translates to around
3.7 Gbps. Our prototype single FPGA board for reversible
sketches can achieve a throughput of over 16 Gbps for all
40-byte-packet streams. For the NU on-site experiments
over a total of 1430 min, HiFIND on average uses only
0.34 s to detect intrusions for each minute of traffic, and
the standard deviation is 0.64 s.

The organization of this paper is as follows. First, we
survey related work in Section 2. In Section 3, we introduce
the sketches and reversible sketches as the basis for high-
speed network monitoring. We then introduce the HiFIND
architecture, discuss the threat model and flow-level
detection design in Section 4. The two-dimensional
sketches are presented in Section 5, and evaluation meth-
odology and results are in Section 6. Finally, we show the
potential limitations of HiFIND in Section 7 and conclude
in Section 8.

2. Related work on intrusion detection systems

Although some vendors claim to have multi-gigabit sta-
tistical IDSes (e.g., Arbor Networks’ Peakflow Traffic [23]
and Symantec’s Manhunt [24]), they usually refer to aver-
age traffic conditions and use packet sampling [25,26]
which has two shortcomings. First, sampling is not scal-
able, especially after aggregation; there are up to 2% flows
defined by source and destination IP addresses. Second,
long-lived traffic flows, increasingly prevalent for peer-
to-peer applications, will be split up if the time between
sampled packets exceeds the flow timeout [25]. In con-
trast, HiFIND records every packet in the traffic summary,
and targets worst-case performance of tens of gigabits,
when all the packets are small, e.g., 40-byte-packet
streams as in TCP SYN flooding attacks.

Wagner et al. design a scan detection tool for VPN gate-
way [27], but scalability is not a major concern. In contrast,
we target the network gateway with high bandwidth and
focus on scalability and attack resilience. Gross et al. devel-
op a distributed alert correlation scheme called Selecticast

(©)

Fig. 1. Attaching the HiFIND systems to high-speed routers. (a) original configuration, (b) distributed configuration for which each port is monitored
separately, and (c) aggregate configuration for which a splitter is used to aggregate the traffic from all the ports.
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[28]. On the other hand, we mainly design a single detec-
tion sensor.

Many network IDSs like Bro [3] and Snort [4] check
packet payload for virus/worm signatures. However, such
schemes are not scalable for high-speed network links. Re-
cent work has proposed detecting large-scale attacks, like
DosS attacks, port scans, etc., based on the statistical traffic
patterns. They can roughly be classified into two catego-
ries: detecting based on the overall traffic [29,13,14,30]
and flow-level detection [3,4,21].

With the first approach, even when we can detect the
attack, we still do not have any flow or port knowledge
for mitigation. Moreover, attacks can be easily buried in
the background network traffic. Thus, such detection
schemes tend to be inaccurate; for example, CPM [13,14]
will detect port scans as SYN floodings as verified in Sec-
tion 6. For the second approach, such schemes usually need
to maintain a per-flow table (e.g., a per-source-IP table for
TRW [21]) for detection, which is not scalable and thus
provides a vulnerability to DoS attacks with randomly
spoofed IP addresses, especially on high-speed networks.
TRW was recently improved by limiting its memory con-
sumption with approximate caches (TRW-AC) [22]. How-
ever, spoofed DoS attacks will still cause collisions in
TRW-AC, and leave the real port scans undetected.!

The existing schemes can detect specific types of at-
tacks, but will perform poorly when facing a mixture of at-
tacks as in the real world. People may attempt to combine
TRW-AC and CPM to detect both scans and SYN flooding
attacks. However, each of these two approaches can work
properly only when the other one works well, which is a
chicken-and-egg problem. TRW and TRW-AC are vulnera-
ble to spoofed DoS attacks, such as SYN flooding, unless
CPM can detect DoS attacks accurately and remove them
from the traffic. However, with port scans in the traffic,
CPM will always detect these port scans as SYN floodings.
As a result, this combination cannot work.

Table 1 shows the high-level functionality comparison
of our approach to the other methods. Backscatter detects
the SYN flooding attacks by testing the uniform distribu-
tion of destination IPs to which the same source (potential
victim) sends SYN/ACK [29]. Thus, it is another flow-level
scheme and can only detect spoofed DoS attacks when
the source IP addresses are randomly spoofed. We use this
for validating the SYN flooding detected by HiFIND.

There is a significant amount of prior work on efficient
and online heavy hitter detection [31,32,12,33-35]. How-
ever, these approaches are limited in their applicability
to online intrusion detection in that: (1) they lack the abil-
ity to differentiate different types of attacks; (2) they can-
not work with Time Series Analysis based detection
algorithms; and (3) they cannot be applied to asymmetric
routing environments.

Venkataraman et al. propose efficient algorithms to de-
tect superspreaders, sources that connect to a large num-

1 As the authors mentioned in [22], when the connection cache size of 1
million entries reaches about 20% full, each new scan attempt has a 20%
chance of not being recorded because it aliases with an already-established
connection. Actually, during spoofed DoS attacks, such collisions can
become even worse.

Table 1
Functionality comparison of five approaches.

Approaches Spoofed  Non-spoofed Horizontal Vertical

DoS DoS scan scan
HiFIND Yes Yes Yes Yes
TRW (AC) No No Yes Yes (TRW-

AC)

CPM Yes, but with high FP No No

with port scans
Backscatter Yes No No No
Superspreader No No Yes No

ber of distinct destinations [36]. They can detect
horizontal scans and worm propagation, but may have
high false positives with P2P traffic where a single host
may connect to many peers for download. Also, their ap-
proach cannot differentiate different types of attacks. PCF
was recently proposed for scalable network detection
[37]. It uses data structures similar to the original sketch,
and is not reversible. So even when attacks are detected,
the attacker or victim is still unknown, making mitigation
impossible. Similar to the approaches discussed before,
they do not differentiate among various attacks.

For intrusion classification, Lakhina et al. recently
examine the traffic feature distribution with entropy, for
all OD flows between a pair of point of presence (POPs)
[38]. Their scheme, however, cannot give the key of culprit
flows for mitigation even when spotting anomalies. Simi-
larly, other recent works [39,40] use traffic feature distri-
butions or patterns to classify network flows for anomaly
detection, but their methods require the complete flow ta-
bles which are often unavailable for high-speed networks
of 10 s of Gigabits.

3. Background on sketches for high-speed network
monitoring

3.1. k-ary Sketch

There are two key primitives in the analysis of a live
network traffic stream: heavy hitter detection and heavy
change detection. The former finds flows that constitute
more than a given threshold fraction of the total traffic
stream. The latter detects flows whose size changes signif-
icantly from one stream to another. There is a significant
amount of prior work on efficient and online heavy hitter
detection [12,33-35]. Efficient online heavy change detec-
tion, however, remains a challenging problem of significant
interest because it is more general and powerful than hea-
vy hitter detection. “Change” is a concept that ranges over
a gamut from simple absolute or relative changes, to linear
transformation changes.

The sketch, a recently proposed data structure, has pro-
ven to be useful in many data stream computation applica-
tions [41]. We have designed, implemented and evaluated
a variant of the sketch, namely the k-ary sketch [42], and
described how to detect heavy changes in massive data
streams with small memory consumption, constant up-
date/query complexity, and accurate estimation guaran-
tees [42]. The k-ary sketch is similar to the count sketch
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[43], however, the most common operations on k-ary
sketch are more efficient than the corresponding opera-
tions defined on count sketches [44].

For most statistical approaches, we can model the net-
work traffic as a stream of {key,value} pairs. The key can
be IP addresses, port numbers, etc. The value can be any
accumulatable feature, such as packet number and traffic
volume. For instance, we can parse the network traffic
based on this model to count the packet number of every
unique source IP address. The k-ary sketch provides the
functionality to archive this calculation with low cost.
The k-ary sketch has three basic functions: UPDATE, ESTI-
MATE and COMBINE. Among them, UPDATE is used most
frequently and has the most stringent real-time require-
ment. Table 2 shows the definition of these functions. Sup-
pose there is a sketch with a source IP as the key and packet
size as the value. As shown in Fig. 2, when a 68-byte-packet
with source IP 10.0.0.5 arrives, the UPDATE function will
increase the values of buckets mapped by the source IP
10.0.0.5 in the sketch data structure by 68. The ESTIMATE
function will return an unbiased estimation of the value
(total traffic volume) given a source IP and a sketch. The
COMBINE function can linearly combine several sketches
into a single one. The key feature of the COMBINE function
is to support aggregate queries over multiple data streams,
i.e., to find the top heavy hitters and their keys from the
linear combination of multiple data streams, for temporal
and/or spatial aggregation. With sketches, we can record
hundreds of millions of flows with only a few hundred
kilobytes of memory. See [42] for more details.

3.2. Reversible k-ary Sketch

Although the original sketches have good linear proper-
ties and can accurately estimate the value for any given
key, they have one major drawback: they are not reversible.
A sketch cannot efficiently report the set of all keys that
have large values estimated in the sketch. This means that
to output all the keys whose value is larger than some
threshold, we would have to know which keys to query.
One possible solution is to exhaustively test all possible
keys. Unfortunately, this option is not scalable. Another
solution, similar to other heavy hitter approaches, is to up-
date and query each {key,value} pair. For every pair, after
updating, we can query the value to see whether the value
of the key is larger than some threshold, then decide
whether to output the key. This requires us to do recording
and heavy key inference at the same time, and we cannot

Table 2
Function of sketches (S-Sketch, »-Value, y-Key, Y-Set of keys, t-Threshold).

K buckets / hash table

H hash tables, .
each has

different hash

functions -

10.0.0.5 68

-
Streaming data -

Fig. 2. A sample k-ary sketch structure and its UPDATE operation for a
sample input stream with an item (10.0.0.5 68). The key is 10.0.0.5 and
the value is 68.

take advantage of the linearity of sketches to combine
them together.

To address these problems, in our previous work we
propose a novel framework for efficiently reversing
sketches [19,20], which allows us to have separate stages
for update, combine and inference. The basic idea is to hash
intelligently by modifying the input keys and/or hashing
functions so that we can recover the keys with large esti-
mated values, without sacrificing detection accuracy. We
also use a second verifier sketch with 2-universal hash
functions to reduce false positives. In fact, we obtain ana-
lytical bounds on the false positives with this scheme. In
addition to the three basic functions of sketches, reversible
sketches also support the INFERENCE function, which will
return the keys whose values are larger than a given
threshold. Given the example before, we may want to
get all source IPs whose total traffic volume is larger than
1MB in a certain time period. We just need to record the
traffic of that period with reversible sketches, and call
the INFERENCE function to give the list of all such source
IPs. Compared with original k-ary sketches, we only add
negligible extra memory consumption (4-8 kB) and few
(4-8) additional memory accesses per-packet for the UP-
DATE function, but we achieve an efficient and accurate
INFERENCE function. The other two functions are un-
changed. For more details, please refer to our paper [20].

4. Architecture of the HiFIND system
4.1. System architecture

Fig. 3 shows the architecture of the HiFIND system.
First, we record the network traffic with sketches using
the UPDATE function in each router. Based on linearity of
the sketches, we summarize the sketches over multiple

Functions Descriptions k-ary sketch Reversible sketch
UPDATE(S,y, v) Update the corresponding values of the given key into the sketch in the v i
monitoring module
v = ESTIMATE Reconstruct the signal series for statistical detection for a given key in Vv Vv
S.y) the anomaly detection module
S = COMBINE Compute the linear combination of multiple sketches S = 3}, ¢, - Si v v
(c1,S51,-, Ck, Sk) (c; is coefficient) to aggregate signals in the anomaly detection module
Y=INFERENCE Return the keys whose values are larger than the threshold in the v
(S,t) anomaly detection module
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routers into an aggregate sketch, and apply different time
series analysis methods for aggregate sketches to obtain
the forecast sketches for change detection by the COMBINE
function. The forecast time series analysis method, e.g.,
EWMA (exponentially weighted moving average) and
Holt-Winter algorithm [45], can help remove noise. By
subtracting the forecast sketch from the current one, we
obtain the forecast error sketches. Intuitively, a large fore-
cast error implies there is an anomaly, thus the forecast er-
ror is the key metric for detection in our system. Moreover,
we aggregate the 2D sketches in the same way and adopt
them to further distinguish different types of attacks. We
also apply other false positive reduction techniques as dis-
cussed in Section 4.5. Finally, we use the key characteris-
tics of the culprit flows revealed by the reversible
sketches to mitigate the attacks. Note that the streaming
data recording process needs to be done continuously in
real-time, while the detection process can be run in the
background executing only once every interval (e.g., every
second or minute) with more memory (DRAM).

As discussed in Section 1, due to multi-homing and per-
packet load balancing features in routers, asymmetric rout-
ing and multi-path routing (where there are multiple rout-
ing paths between a pair of source and destination)
emerged. However, many existing flow-level intrusion
detection approaches have to keep the connection states
(e.g., SYN and SYN/ACK) for both directions of a TCP con-
nection. Therefore, they can only obtain one-way informa-
tion with asymmetric routing, and will cause high false
positives. To deal with asymmetric routing, some work
proposes to use one-way traffic like {SYN, FIN} pairs to de-
tect attacks [13,14]. However, such approaches can be eas-
ily bypassed if the attackers send a FIN packet for each SYN
packet.

Thus, to deal with asymmetric routing, for many exist-
ing IDS systems, we have to transport all the packet traces
or all connection states from one router to the other. Obvi-
ously this is very expensive. Moreover, if the link is con-
gested when an attack happens, transmission of this data
can be very slow. For example, TRW and TRW-AC [21,22]
need the state table to determine how to process the next
packet. It is almost impossible for them to record the traffic
in several state tables in different locations, and then only
transmit the state tables to some central site and combine

H
Sketches from H

| other routers E i
|

H

1

these tables for detection. They have to collect and com-
bine all packet-level traces to a centralized location for
aggregated detection, which as analyzed before is very
expensive and is not realistic.

Furthermore, some routers may use per-packet load
balancing so that packets of the same flow may even tra-
verse different paths. For instance, Fig. 4 shows a campus
network topology where there are three edge routers,
and each of them is connected to tens of different depart-
ment and institute networks. Due to asymmetric routing,
the incoming SYN packets and outgoing SYN/ACK packets
for Department 1 go through different routers. Further-
more, the Department 1 router enables per-packet load
balancing, so the SYN/ACK packets go through different
edge routers. Detection can be executed on each depart-
ment router, but it requires deployment of IDSes on tens
or hundreds of different routers. On the other hand, none
of the three edge routers has complete traffic information
for any of the department subnet.

In contrast, for HiFIND, we summarize the traffic infor-
mation with compact sketches at each edge router, and de-
liver them quickly to some central site. Then, with the
linearity of the sketches, we can aggregate the sketches
by applying the COMBINE function and the resulting
sketch has all the traffic information as if all the traffic
went through the same router.

Next, we will introduce the threat model considered in
our prototype as well as the detection algorithms and time
series analysis method used. After that, we present the
heuristics for separating anomalies from attacks and ana-
lyze the DoS resilience of the HiFIND system.

4.2. The threat model

Ultimately, we want to detect as many different types of
attacks as possible. As a first step, we focus on detecting
the two most popular intrusions: TCP SYN flooding (DoS)
attack and port scan/worm propagation. We focus on TCP
flooding here because it is reported that more than 90%
of DoS attacks are TCP SYN flooding attacks [13,14]. Actu-
ally, our work also can be easily extended to detect UDP
or ICMP flooding from multiple sources by using the num-
ber of packets or traffic volume as the value stored in
sketches.
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Fig. 3. HiFIND system architecture.
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Fig. 4. Sample network topology with asymmetric routing and multi-
path routing.

Scans are probably the most common type of intrusion.
Most of them are caused by either worm propagation or
botnet sweeps. According to statistics data by CERT [46],
most existing worms are TCP worms. TCP worm propaga-
tion starts with massive TCP connection requests, i.e., port
scans. Our system detects generic port scans. Thus, it can
detect propagation for both known and unknown worms.
Port scan is also a key technique employed for botnet
recruitment [47].

Based on source/destination IP and the port number
combinations, there are three well-known types of scans:
horizontal scan, vertical scan, and block scan [48,49] as illus-
trated in Fig. 5.

Unlike DoS attacks, for port scans, the attacker needs to
use a real source IP address, since he/she needs to see the
result of the scan in order to know what ports are actually
open [49,48]. Although the “idle scan” allows completely
blind scans, it is based on predictable IP-ID sequence num-
bers and recent versions of operating systems, such as
OpenBSD, Solaris and Linux, which have made the IP-ID se-
quences less predictable and rendered the attack obsolete
[50]. Among the three types of scans in Fig. 5, horizontal
scans are the most common type of scan, which scans a gi-
ven port on IP addresses in some range of interest. The port
number is often unique because it reflects what the vulner-
ability attackers (or the virus/worm) try to exploit. A verti-
cal scan is a scan of some or all ports on a single host. The
attacker is interested in this particular host, and wishes to
characterize its active services to find which exploits to at-
tempt [49]. The third type of scan, a block scan, is a combi-
nation of horizontal and vertical scans over numerous

y
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Fig. 5. Three types of scans.

services on numerous hosts [49]. Block scan is not very
common in practice, thus we focus on horizontal and ver-
tical scans.

It is crucial to distinguish SYN flooding, horizontal scans
and vertical scans because network administrators need to
apply different mitigation schemes for different attacks.
For SYN flooding, we can start the SYN defender [15], SYN
proxy, and/or SYN cookies [51] for the particular victim ma-
chines to alleviate the DoS effects. For port scans, we can
use an ingress filter to block the traffic from the attacker’s
IP. For horizontal scans, we can also pay particular atten-
tion to popular port numbers scanned by attackers, and
block scanned port numbers which are not common ser-
vices. For vertical scans, we can quarantine the victim ma-
chine for further inspection, or block all the scan traffic
towards the victims if necessary.

4.3. Sketch-based detection algorithm

The challenge is to detect and differentiate attacks
above scalably and accurately, and to get the key charac-
teristics (e.g., source IPs for scans) of such attacks in order
to mitigate them efficiently.

We denote the key of a sketch as X, the feature value re-
corded as V, and the reversible sketch as RS (X, V). We also
denote the number of SYN packets as #SYN, and the num-
ber of SYN/ACK packets as #SYN/ACK. Since normally we
only extract fields in the IP header, the possible fields we
can use are shown in Table 3.

Here, we only consider the attacks in TCP protocol, i.e.,
the TCP SYN flooding attacks and TCP port scans. Normally,
attackers can choose source ports arbitrarily, so Sport is
not a good metric for attack detection. For the other three
fields, we can consider all the possible combinations of
them, but the key (SIP,DIP,Dport) can only help detect
non-spoofed SYN flooding, so we do not use it in the detec-
tion process. Table 5 shows the other combinations and
their uniqueness. Here, we define the uniqueness of a key
as the capability of differentiating between different types
of attacks, which is measured by the types of attacks that
the key metric is related to and can help detect. For exam-
ple, the count of unsuccessful connections aggregated by
{s1P} can be used to detect non-spoofed SYN flooding at-
tacks (we count it as 0.5), horizontal scans and vertical
scans, so its value of uniqueness is 2.5. The best key would
ideally correspond to only one type of attack. Normally a
key can be related to several types of attacks, so we need
to use more than one dimension to differentiate these at-
tacks as shown in Section 5.

From Table 5 we can tell that the combinations of two
fields have better uniqueness than single fields, so we
use the three combinations of two fields as keys for the

Table 3

The fields in IP header used in detection.
The destination IP DIP
The source IP SIP
The destination port Dport
The source port Sport
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reversible sketches. Our detection has the following three
steps:

Step 1 We use RS({DIP,Dport},#SYN-#SYN/ACK) to
detect SYN flooding attacks because it usually
targets a certain service as characterized by the
Dport on a small set of machine(s). The value
of #SYN-#SYN/ACK means that for each incom-
ing SYN packet, we will update the sketch by
incrementing one, while for each outgoing SYN/
ACK packet, the sketch will be updated by decre-
menting one. In fact, similar structures can be
applied to detect any partial completion attacks
[37]. The reversible sketch can further provide
the victim IP and port number for mitigation as
in Section 4.2. We denote this set of DIPs as
FLOODING_DIP SET.

Step 2 We use RS({SIP,DIP},#SYN-#SYN/ACK) to
detect any intruder trying to attack a particular
IP address. The detected attacks can be non-
spoofed SYN flooding attacks or vertical scans.
For each ({sip,DIP} entry, if DIP €
FLOODING_DIP_SET, we put the SIP into the
FLOODING SIP_SET for the next step; otherwise
the {S1P,DIP} is the attacker’s IP and victim IP
of a vertical scan.

Step 3 We use RS({SIP,Dport},#SYN-#SYN/ACK) to
detect any source IP which causes a large num-
ber of uncompleted connections to a particular
destination port. For each {S1P,Dport} entry, if
SIP € FLOODINGSIPSET, it is a non-spoofed
SYN flooding; otherwise, it is a horizontal scan.

As a whole, we need three reversible sketches to record
the traffic characteristics. The classification rules are in Ta-
ble 4. We then use time series analysis in Section 4.4 and
detect intrusions when there is a big forecast error. After
the detection, we use the heuristics described in Section 4.5
and 2D sketches in Section 5 to reduce the false positives.

4.4. Forecast with time series analysis methods

Here we apply both EWMA and the Holt-Winter algo-
rithm as the forecast models to do change detection. By de-
fault, we use #SYN-#SYN/ACK as the forecast value in
these time series analysis methods below in our system.

4.4.1. Holt-Winter forecasting algorithm

Holt-Winter Forecasting relies on the premise that the
observed time series can be decomposed into three com-
ponents: a baseline, a linear trend, and a seasonal effect.
The algorithm assumes that each component evolves over

Table 4
Different attacks are detected in different reversible sketches.

Attack types {DIP,Dport} {s1P,DIP} {s1P,Dport}
SYN flooding Yes Yes Yes
Vertical scans No Yes No
Horizontal scans No No Yes

time. This is modeled by applying exponential smoothing
to incrementally update the components.

For each client, we define y, as the #SYN-#SYN/ACK in
time interval t. Given that attack is a relatively fast process,
we use a minute interval for detection. The prediction of y
in the next time interval t + 1 is the sum of the three com-
ponents: yi1 = d¢ + by + Cey1m-

The update formulae for the three components, or coef-
ficients a, b, c are:

e Baseline (“intercept”): ar = o(y; — Ct-m) + (1 — a)(@r_1+
be_1).

e Linear Trend (“slope”): b = (ar — ar_1) + (1 — B)br_1.

e Seasonal Trend:c; = y(y, — a) + (1 — 9)Cr_m.

In our system, we respectively use COMBINE (o,y,—
Ct-m,1 —0o,a; 1+ bt 1), COMBINE (B,a;r—a;1,1—B,b1)
and COMBINE (y,y, — a;,1 — 7, ¢r—m) to implement baseline,
linear trend and seasonal trend. Following the guidelines in
[45], we set «, 8 and y all to 0.1. We use the INFERENCE
function to output the set of keys whose forecast error,
e =Y, —y:, is larger than some given threshold for
detection.

4.4.2. EWMA

We denote My(t) as the current #SYN-#SYN/ACK at the
time interval t, and M,(t) as the forecasted #SYN-#SYN/
ACK at the time interval t, we have

OCM()(t* 1) + (1 70()Mf(t7 1) t> 27

Mo (1) t=2. @

M0~ {
In HiFIND, we use COMBINE (o, So(t —1),1 — o, Sp(t — 1))
for implementation, where So(t) and S¢(t) are the current
sketch and the forecast sketch at the time interval ¢,
respectively. The difference between the forecasted value
and the actual value is then used for detection. That is,
we use the INFERENCE function to output the set of keys
whose forecast error, e; = Mo(t) — M(t), is larger than
some given threshold.

4.5. Reducing false positives for SYN flooding detection

While port scans are relatively easy to identify with the
algorithms above, there can be a number of factors other
than SYN flooding that may cause a particular destination
IP and port with a large number of unacknowledged SYNs.
For instance, flash crowds, network/server congestions/
failures, and even polluted or outdated DNS entries may
cause a large number of SYNs without SYN/ACK at the edge
routers. These may cause high false positives in our detec-
tion scheme. For the flash crowds, it is difficult, if not
impossible, to differentiate it from the SYN flooding attacks
without payload information as discussed in [52]. Thus we
aim at reducing the false positives caused by the other two
behaviors listed above.

4.5.1. Filters to reduce false positives caused by bursty
network/server congestions/failures

We believe a real SYN flooding should deny service to a
certain degree, e.g., the number of successful connections
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Table 5
The uniqueness of different types of keys.

Types of SYN Horizontal Vertical Uniqueness
Keys flooding scan scan

{s1P,Dport} Non-spoofed Yes No 1.5
{DIP,Dport} Yes No No 1
{s1P,DIP} Non-spoofed No Yes 1.5

{s1P} Non-spoofed  Yes Yes 2.5

{p1P} Yes No Yes 2

{Dport} Yes Yes No 2

is less than the unsuccessful ones, in other words,
Ak~ > 1. Moreover, the typical TCP SYN flooding
attacks observed in the Internet last for a certain period,
such as 10 min [29,14], while most network congestions/
failures are bursty, which may only last a few seconds or
minutes. Based on these two observations, we introduce
two filters to reduce the false positives of SYN flooding
detection. The first one is X A7HAK > 1, and the second
one is lifetime > Threshold; (e.g., 10 min). The system
administrators can adjust their threshold to get the trade-
off between sensitivity and the number of alerts.

To implement the first filter, we add an original sketch
0S({DIP,Dport},SYN) to record the number of SYNs for
each {DIP,Dport} at each time interval. When a SYN
flooding suspect is detected, we estimate the number of

its SYNs from the original sketch. Then, based on

#SYN—#SYN/ACK #SYN—#SYN/ACK _ 1 .
TISIN/ACK 1 = —aN > We use the equiva

lent condition to decide whether the attack should be
filtered.

To implement the second filter, we put any SYN flood-
ing suspect key into a suspect array of counters. Then, for
each subsequent interval, we query the #SYN and #SYN-
#SYN /ACK value from the related sketches, and increment
the counter if the above inequality holds.

4.5.2. Filter to reduce the false positives caused by
misconfigurations or related problems

Usually, a SYN flooding attack will be launched towards
some server which provides certain (popular) services.
However, we find that some victims of detected SYN flood-
ing are non-existing IPs or some hosts without any services
on the ports being flooded. Moreover, the size of packets is
small, so they are not bandwidth consumption attacks.
Such anomalies look more like mistakes than real attacks.
These may be caused by misconfigurations. For example,
some administrators may misconfigure the DNS entry for
a popular server as a non-existing IP or some IP which does
not run the particular service. Some automatic connection
software may then keep trying to connect to that server.
Another possibility is that a DNS entry is updated, but
the TTLs for the DNS entries are set/misconfigured to be
very long, so the clients may still try to connect to the
old IP which may not have the service open anymore.

When evaluating HiFIND with the LBL and NU data as
discussed in Section 6, we do find several such scenarios.
For instance, in the LBL data, we find there is a SYN flood-
ing like anomaly towards a certain IP with large #SYN-
#SYN/ACK. The anomaly lasts for 3 h, but there are no good
connections towards that IP during the day, before or after

the anomaly. Thus, this is unlikely to be a real SYN flooding
attack. Based on such observations, we can design another
false positive reduction heuristic by filtering those anoma-
lies for which the victim does not have any response to
SYN requests during the recent 24 h period. Due to the lin-
earity of sketches, we can add up the sketches in the past
24 h, and then estimate the number of SYN/ACK for the
suspect {DIP,Dport}. If the number is less than a given
threshold, e.g. 100, it will not be considered as an attack.
Note that we already have sketches to record #SYN and
#SYN-#SYN/ACK, so no extra sketches are needed to re-
cord SYN/ACK for this monitoring phase.

4.6. DosS resilience analysis

As we mentioned before the TRW is vulnerable to
spoofed IP attack. The attacker can send a lot of SYN pack-
ets with spoofed source IP address and random destination
IP address (within the edge network). This will cause the
TRW to use too much memory and possibly crash, since
the TRW needs to keep states for each source IP address.
The TRW-AC uses an AC table with fixed memory to im-
prove the scalability of the TRW, so the attack cannot crash
the TRW-AC. However, as mention in the TRW-AC paper
[22] itself, the more source spoofed packets, the more col-
lisions occur in the AC table. Hence, this makes the TRW-
AC suffer high false negatives. For example, in their paper,
they use the connection cache size of 1 million entries, and
the Deonn = 10 min.? If the attacker periodically sends 1 mil-
lion IP spoofed packets in 10 min (1667 packets/s, 533 kb/s
for 40 bytes SYN packets), he can fully pollute the connec-
tion cache with half-open connections so that none of the
real attack can be detected.

The HiFIND system is resilient to such attacks. If an at-
tacker sends the source spoofed SYN packets to a fixed des-
tination, our system will treat this as a SYN Flooding attack
to the particular IP address. If the attacker sends the source
spoofed packets to random destinations within the edge
network, the SYN count will be evenly distributed in the
buckets of each of the hash tables in sketches. Even if there
is a real attack, the SYN count for that attack is still suffi-
ciently significant to be detected.

One possible attack is to introduce false positives or
false negatives by creating collisions in the hash tables of
sketches. To create collisions, the attacker needs to reverse
engineer all the hash functions of sketches and search
exhaustively offline. Section 4.6.1 shows such reverse engi-
neering is impossible unless they can compromise the Hi-
FIND system and obtain the intermediate execution
results. Even if they can somehow get the hash functions,
or they exhaustively try all attack keys (e.g., IPs) for an on-
line search assuming that they can get the detection re-
sults, the probability of having a collision in sketch is
very small (see Section 4.6.2). Finally, even if the attacker
can somehow create collisions for sketches, when we mon-
itor both ingress and egress traffic for detection, they can at
most create some false positives, but not false negatives

2 The TRW-AC uses a background process to remove any connection idle
for more than Dcop, min.
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(Section 4.6.3). Overall, it is extremely difficult to attack
the HiFIND system.

4.6.1. Reverse engineering of hash functions is very difficult

In general, if attackers know the input to a hash func-
tion and the hashed value output, it is possible to reverse
engineer the hash function. However, in HiFIND, although
attackers may possibly know the detection result, it is very
difficult for them to infer the hash functions because the
direct hash output of each hash function is unknown and
is impossible to infer.

Essentially, sketches are composed of multiple hash ta-
bles, each with different hash functions. There are some
parameters determining the hash functions. Given any
key, the estimated value from the sketch is the median of
the estimated value from all the hash tables. Thus the esti-
mated value does not have any correlation to the buckets
(i.e., the direct hash output) of each hash table in which
the value of such key is stored. Thus we cannot infer the
output value of hash functions, let alone the hash function
themselves. So, unless attackers can observe the internal
states of algorithm execution, it is impossible for them to
reverse engineer the hash functions used in sketches.

Moreover, the parameters are all generated randomly
when the HiFIND system starts, and can be reset and thus
change all the hash functions when we restart the system.

4.6.2. The possibility of finding collisions through exhaustive
search is very low

In this subsection, we show that regardless of online or
offline search, the probability of finding collisions in
sketches is very small. Typically we use H = 6 hash func-
tions in both reversible sketches and original sketches. To
make a collision, the attacker needs to make two keys col-
lide in at least H — r hash functions, where typically r = 1.
Given each hash function has at least 2'? buckets, and all
the hash functions are independent, the probability of a
collision of two random keys will be P = Z{:(,(Z_ i>
s"71(1 = S), where S =-L. For H=6,r = 1, the possibility

212°
isP=52x10""8.

4.6.3. Attacks are limited even with collisions

In this subsection we analyze what attackers can do,
even if they can create collisions. In the HiFIND system,
we monitor both ingress and egress traffic for detection.
Unless the attacker has already compromised some inter-
nal machines in the victim network, the attacker can only
control one-way traffic. For example, the attacker can only
send more SYN packets but cannot make HiFIND receive
more SYN/ACK packets which have to come from the vic-
tim network. That is, he can only increase the count of
#SYN-#SYN/ACK in sketches but cannot decrease it. Thus,
he can only create false positives by using collisions, but
cannot create false negatives to hide attacks.

As mentioned in Section 3.2, for a reversible sketch, we
always use another original sketch for false positive reduc-
tion. The attacker must create collisions for both sketches
to create a false positive, which is even harder.

5. Intrusion classification with two-dimensional sketch

It is crucial to distinguish different types of attack to
take the most effective mitigation scheme. However, one
major challenge for intrusion detection is that the traffic
anomalies are often multidimensional i.e., they can only
be identified when we examine traffic with specific combi-
nations of IP addresses, port numbers, and protocols. For
example, if the port distribution of a particular attack is
unknown, it becomes very hard to distinguish non-IP-
Spoofing SYN flooding attacks from vertical scans because
both of them will exhibit a single (or a small number) of
source IPs sending a large number of un-responded SYN
packets to the destination IP. The key difference lies in
whether the attacker sends to a small number, e.g., one
or two, of the ports (SYN flooding) or many different ports
(vertical scan) on the destination. In other words, there is a
bi-modal distribution for the number of unique ports vis-
ited when there are a large number of un-responded SYN
packets from one source to one destination. One mode cor-
responds to the SYN flooding, and the other, vertical scans.
This bi-modal assumption is verified with real network
traffic in Section 5.1. Thus, it is essential to know the port
distribution, given a specific source IP and destination IP
pair {SIP,DIP}, to distinguish between these two attacks.
However, existing sketches are all of single dimension. To
address this challenge, we design a novel two-dimensional
(2D) k-ary sketch and apply it for intrusion classification in
Section 5.2.

5.1. Verification of the bi-modal distribution for SYN flooding
Vs. port scans

We tested the bi-modal assumption with one-month
edge router traffic from Northwestern University (NU)
and Fermi Lab. With samples of two-hour NU data and
one-day Fermi data, Fig. 6 shows the distribution of the
number of attacks with respect to the number of unique
ports visited when there is more than 50 un-responded
SYNs in a 1-minute interval from one source to one desti-
nation. There is a clear bi-modal distribution to distinguish
SYN flooding attacks from vertical scans. The former usu-
ally have the number of ports visited at less than three.
Similarly, there is also a bi-modal distribution between
SYN flooding attacks and horizontal scans. SYN flooding at-
tacks have a very small number of destination IPs, while
horizontal scans have a much larger amount. Fig. 7 shows
the distribution of the number of attacks with respect to
the number of unique destination IP addresses visited
when there are more than 100 un-responded SYNs in a
1-min interval from one source IP to one destination port.
Note that in the graph for NU, there is only one mode be-
cause there is no SYN flooding attack in the 2 h NU traffic.

Theoretically, in the worst-case, the attackers can create
an attack with a port distribution just in between of the
typical distributions of vertical scans and SYN flooding. In
such an attack, the attackers send large number of SYN
packets to multiple ports. The attack can be viewed as ver-
tical scans or SYN flooding or even both. Our approach will
fail to differentiate such extreme cases, such cases will be

Netw. (2009), doi:10.1016/j.comnet.2009.10.016

Please cite this article in press as: Z. Li et al., HiFIND: A high-speed flow-level intrusion detection approach with DoS resiliency, Comput.



http://dx.doi.org/10.1016/j.comnet.2009.10.016

Z. Li et al. / Computer Networks xxx (2009) Xxx—Xxxx 11

50 T
NU
40
30

20

Number of flows

0 1
20 40 60 80 100

Number of different PORT

-
~

Férmi Lab ‘

=
o N

Number of flows

oON b O

0 200 400 600 800 1000 1200
Number of different PORT

Fig. 6. The distribution of the number of attacks with respect to the number of unique ports visited when there are more than 50 un-responded SYNs in 1-

min interval between one {SIP,DIP} pair.

very hard for manual analysis as well. Although we might
not be able to differentiate such cases, our system still can
detect such attacks and label them as “undecided”. In
practice, we believe such attacks are unlikely to happen,
since they cannot help attackers to fully avoid detection
and make the intended attacks less efficient.

5.2. Two-dimensional sketch design and intrusion
classification

For the 2D k-ary sketch, instead of using H independent
one-dimensional hash tables, we use H independent 2D
hash tables (matrices), as shown in Fig. 8. Let K and K|, de-
note the number of buckets for each dimension, respec-
tively. For each 2D hash matrix, we hash two groups of
fields into it. Consider the previous example of separating
SYN flooding attacks from vertical scans. The x dimension
represents the {SIP,DIP}, and the y dimension corre-
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sponds to Dport. For each packet, we locate its corre-
sponding entry in the matrix by two independent hash
mappings as shown in Fig. 9, and update the bucket in
the same manner as for reversible sketches in Section 4.3.
Similarly, we can update all H matrices for data stream
recording.

In the detection stage, after finding an attack by using
reversible sketch or any other method (i.e., the {S1P,DIP}
is known), we can use the column of buckets in the hash
matrix selected by the {S1P,DIP} to infer the distribution
of Dport and pinpoint the type of attack, e.g., a SYN flood-
ing or a vertical scan. The algorithm is as follows. For each
2D hash matrix, the {SIP,DIP} pair selects a column of
buckets. We define B to be the total sum of all buckets in
the column. We then obtain the sum S, of the top p buckets
with the largest values (e.g., 5 out of 64). If S, > ¢ x B for
some ¢ < 1, e.g.,, 0.8, then we regard it as a SYN flooding.
If the majority of the H hash matrices of the 2D sketch
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Fig. 7. The distribution of the number of attacks with respect to the number of unique destination IPs visited when there are more than 100 un-responded

SYNs in 1-min interval with one SIP,Dport pair.
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Fig. 8. Diagram of the two-dimensional k-ary sketch.
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h,(80) +1

Packet {2.3.0.5, 9.7.2.3, 80,SYN}

>

h,(2.3.0.5,9.7.2.3)

Fig. 9. An example of UPDATE operation for two-dimensional sketch.

imply it is a SYN flooding, we conclude it is a SYN flooding
attack; otherwise we conclude it is a vertical scan. Simi-
larly, we can differentiate horizontal scans from the SYN
flooding attacks.

5.3. Accuracy analysis

An important issue with using the bi-modal distribution
to separate SYN flooding attacks versus vertical scan at-
tacks is the possibility of misclassification. The concern is
that a vertical scan attack could be hashed among the K,
buckets of a given column in a hash matrix such that a
large number of attacked ports hash to just a single bucket,
while the remaining attacked ports are spread out among
many different buckets. Such a clumping would cause the
detection algorithm to report a SYN flooding attack rather
than the correct vertical scan attack (note that the reverse
problem of misclassification should not be an issue). Alter-
natively, it is possible that a key of a SYN flooding attack
and a key of vertical scan attack happen to hash to the
same column. In such a case, since the hash table can only
return SYN flooding or vertical scan for the given column, it
will be wrong. To address these issues, we first bound the
probability of the first type of misclassification assuming
that the given column has been hit by only one type of at-
tack. We will then bound the likelihood of such a column
being hit by two separate attacks to get a final bound on
the probability of a misclassification.

To bound the probability of the first type of misclassifi-
cation, we use the Generalized Increment-Decrement Coun-
ter Model [37]. If one SYN packet hashes to the bucket
(counter), the counter increases by one; if one SYN/ACK
packet hashes to the counter, the counter decreases by
one. At the end of a sufficiently large amount of time T
called a measurement interval, e.g., 1 min, the counter
should accumulate all the packets hashed to it to get the
outcome value N. Now, for all normal traffic, there will
be an equal number of SYN’s and SYN/ACK’s, thus contrib-
uting a total of zero to the hash matrix.> Now, consider a
column of the hash matrix that is hashed to by one single
vertical scan key. We will assume that a vertical scan sends
exactly 1 SYN to B different ports.

Lemma 1. Given a column of a hash matrix whose total
SYN value comes from a single vertical scan key, thze

=24

probability of misclassification is Pr[S, > ¢B] < Kye75,

where § :%(d) —%).

3 This is not always true, but given a large enough measurement window
and high volume traffic, it is approximately true.

Proof. Let X; be a random variable denoting the total traf-
fic in bucket i of a given column. As each X; is a binomial
variable with mean %, from the Chernoff bound we get that

Pr[X,- > % + 5} < e#. For the largest X;, X, We thus get
Pr[X,,m > %er‘] < Kye#. Further, we know that if the

sum of the top p buckets S, exceeds p<%+5>, then by
the pigeon hole principle at least one X; must exceed

%+ é, which yields Pr [5,, > %’eré] < Kye#. By setting
14

= g (¢ - K%) we get the desired inequality. O

Having bounded the possibility of misclassification
assuming only one attack for a given bucket, we now con-
sider the probability of actually getting this scenario. Let f
and v denote the total number of SYN flood attacks and
vertical scan attacks within a measurement interval T,
respectively. First, we will bound the probability of mis-
classifying a vertical scan. For a given key that constitutes
a vertical scan, the key will be correctly categorized in any
given hash matrix according to Lemma 1 unless a SYN
flood attack key j also hashes to the same bucket (multiple
vertical scans in a single bucket will still register as a ver-
tical scan). Combining the probability of such a collision
with Lemma 1 yields the following lemma.

Lemma 2. The probability that a given hash matrix h
correctly classifies a vertical scan key k is Plcorrecty] >

Ky
Lemma 1.

f 2 .
S= (KX*1> (1 — error), where error:Kye2T2 as stated in

Proof. The probability of one or more of the f SYN flood
f

keys hashing to a single given bucket is (%) . Combining

this event with Lemma 1 yields the result. O

We now use this lemma to derive the probability of fail-
ure that takes the majority result of the H hash tables.

Theorem 3. Given a key k of a vertical scan, the majority of
the H hash matrices will classify k as a vertical scan attack
i )Sr(l — )" where

f . .
S= (K;(:1> (1 — error) where error is as stated in Lemma 1.

with probability at least Zf:@ﬂ(

Proof. The result follows from observing that the total
number of correct hash matrices is a binomial variable. [

Theorem 4. Given a key k of a SYN flooding, the majority of
the H hash matrices will classify k as a SYN flooding attack

with probability at least Zi’:LﬂH<H>Sr(1 — S where
Fev 2 r
s= (%Y -

Proof. The number of correct hash matrices is a binomial
variable, so it is sufficient to show that the probability of
successful classification for any given matrix is at least
S. O
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As an example of the bounds provided by Theorems 3
and 4, consider the following typical values. For H =5,
p=>5,4=0.8K,=4096,K, =64 (these configurations
are also adopted in the evaluation of Section 6),
B =200,f =5, and v =5, we get that a vertical scan will
be detected with probability at least 99.9956% and a SYN
attack will be classified correctly with probability at least
99.99999%. Note that the larger B is, the larger these prob-
abilities are. We can achieve similar misclassification
bounds for reporting a horizontal scan as a SYN flooding
and vice versa.

6. Evaluation
6.1. Evaluation methodology

In this section, we evaluate HiFIND with both simula-
tion and on-site experiment.

e We use the router traffic traces collected at the Law-
rence Berkeley National Laboratory (LBL) for simulation.
The one-day trace consists of about 900M netflow
records. Unfortunately, the sampling rate is unknown.

e We apply HiFIND for on-site detection at the Northwest-
ern University (NU, which has several Class B networks)
edge routers. The router exports netflow data continu-
ously which is recorded with sketches of HiFIND on the
fly. At the end of each minute, HiFIND detects intrusions
online as shown in Fig. 3. We also record the complete
netflow records for detection comparison. The one day
experiment in May 2005 consists of 239M netflow
records. The total traffic is 1.8TB. The average packet rate
is 37 k/s and the peak packetrateis 79 k/s. The flows were
constructed from packet sampling at a 1:1 rate.

Unless denoted otherwise, the default time interval for
constructing the time series for detection is 1 min.

The data recording part of the HiFIND system consists of?:
(1) three reversible sketches (RS), one for {STP, Dport}, one
for {DI1P, Dport}, and the other for {SIP,DIP},(2)one origi-
nal sketch (OS) for {DIP,Dport},and(3)two 2D sketches for
{s1P,Dport} x {DIP}and {SIP,DIP} x {Dport}. Forall the
RSand 2D sketches we update #SYN-#SYN/ACK as the value,
and only for the OS, we use #SYN as the value.

The following parameters are chosen based on system-
atic study as in [20,42]. We adopt 6 stages for each RS and
0S, and 5 stages for each 2D sketch in our system. We use
2'2 buckets for each stage in 48-bit RS, 2'° buckets for each
stage in the 64-bit RS, and 2'* buckets for all their verifica-
tion sketches. 2'* buckets are applied for each stage in OS.
We also use 2'* x 64 buckets for each stage of the 2D
sketches. Therefore, the total memory is 13.2 MB.

Both NU and LBL have a large amount of traffic, so we
set the detection threshold to be one scan per second for
both horizontal and vertical scans, and one un-responded
SYN packet per second for SYN flooding attacks. The
thresholds can be adjusted by network administrators.

The evaluation metrics include detection accuracy (in
terms of the true positive and false positive percentages),
execution speed, the amount of memory access per-packet,

and the amount of memory used in the recording stage. To
evaluate the accuracy of the HiFIND system, we take the
following steps. First, we solely evaluate the error intro-
duced by the sketches, which is very small as shown in
Section 6.2. Second, we compare the HiFIND system with
two existing network intrusion detection approaches for
both single-router detection and aggregated detection in
Section 6.3 and find that HiFIND significantly outperforms
others. Thirdly, we manually validate the attacks we de-
tected in Section 6.4. Regarding online performance, in
Section 6.5, we demonstrate the small memory consump-
tion, small number of memory accesses per-packet and
high-speed of the HiFIND system.

We implement both EWMA and non-seasonal Holt-
Winter time series analysis algorithms in the HiFIND sys-
tem. The two methods give very similar results for the
one day NU data and the LBL data. We thus use EWMA
as the default method to show all evaluation results.

6.2. Sketches highly accurate in recording traffic for detection

Table 6 shows the three phases of our detection results.
We first detect attacks using reversible sketches with algo-
rithms described in Section 4.3. The results are shown as
“Raw results” (“Phase 1”) in Table 6. 2D sketches reduce
the false positives for port scans introduced by SYN flood-
ing attacks (“Phase 2”) of Table 6. The heuristics in Sec-
tion 4.5 reduce false positives of SYN flooding attacks
(“Phase 3”).

To evaluate the errors introduced by sketches, we com-
pare the results obtained from the same detection algo-
rithm but with two different types of traffic recording:
(1) sketches; (2) accurate flow table to hold per-flow infor-
mation (we call it non-sketch method). We find that we
detect exactly the same attacks for the two configurations
with very different amounts of memory (see memory con-
sumption discussion in Section 6.5). This shows sketches
are highly accurate in recording the traffic for detection.

6.3. HiFIND outperforms other existing network IDSes

6.3.1. Detection over a single-router

We compare the HiFIND with other state-of-the-art
network intrusion detection approaches as introduced in
Section 2: the TRW [21] for port scan detection and the
CPM [13,14] for SYN flooding detection.

Table 6
Detection results under three phases.

Traces Attack Phase 1: Raw False positive reduction
type results
Phase 2: Port Phase 3:
scan Flooding
NU SYN 157 157 32
flooding
Hscan 988 936 936
Vscan 73 19 19
LBL SYN 35 35 0
flooding
Hscan 736 699 699
Vscan 40 1 1
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Table 7
Horizontal scans detection comparison of HiFIND and TRW aggregated by
source IP.

Data TRW HiFIND Overlap number
NU 497 512 488
LBL 695 699 692

For TRW experiments, we choose similar parameters as
those mentioned in their paper, Pp =0.99,Pr = 0.01,
01 = 0.2 and 0y = 0.8. We then apply the TRW method on
NU data and LBL data with a 1 min time interval, and the
same threshold as we set in our system previously. After
obtaining the TRW results, we filter out the repeated alerts
from the original reports and get the final result, as well as
what we do in our HiFIND system. Table 7 shows the com-
parison results of our methods with TRW for horizontal
scan detection. In TRW, the horizontal scans from the same
source IP but to different ports are counted as only one at-
tack. Thus, we aggregate the horizontal scans detected by
HiFIND with the source IP address. We observe that the
scans detected by these two methods have very good over-
lap, except for a few special cases. There are a small num-
ber of horizontal scans detected by HiFIND but not TRW
due to the following reasons. Some attacks have both suc-
cessful connection attempts and unsuccessful connection
attempts. TRW gives each attempt different weights and
multiplies them together for detection. If the product value
is higher than a certain threshold, it will be identified as a
port scan. In some cases, although the number of unsuc-
cessful connections is fairly large, more than 500, they still
have several successful connections, such as 100-150.
TRW is not sensitive to this kind of abnormal behavior. In
fact, we should consider these behaviors as abnormal ones,
or at least suspicious ones.

Meanwhile, there are a very small number of scans de-
tected by TRW but not HiFIND. They are caused by some
scenarios as follows. The attackers scan multiple hosts,
and for different hosts, they scan at different ports. When
aggregated by either {SIP,DIP} or {SIP,Dport}, the num-
ber of scans is relatively small and less than our threshold.
But TRW aggregates the scan by source IP and counts the
number of unique destination IP’s for detection, and thus
will detect such behavior. We are not aware of any worms
using such scans for propagation. It seems more like a com-
bination of multiple small scans. Since the number of scans
to each port and the number of scans to each host are
small, the overall effect of such scans is still relatively
small, i.e., not a major attack. It is part of our future work
to further investigate such problems.

From the results above, we find the TRW and the Hi-
FIND have a good overlap, however, under the worst-case
the HiFIND system is resilient to DoS attacks, while the
TRW will run out of memory. The detailed analysis is de-
scribed in Section 6.5.1. Moreover, in practice HiFIND is
hardware implementable for online data recording, so that
it can be deployed on high-speed networks.

Next, we compared our method with CPM for SYN
flooding attack detection. The results are shown in Table 8.
Note that CPM detection is based on overall traffic, but not

Table 8
TCP SYN flooding detection comparison of HiFIND and CPM.

Data CPM HiFIND Overlap number
NU 1422 1427 1422
LBL 1426 0 0

on each flow, so it can only report for each interval
whether there is an attack or not. For a fair comparison,
we also count the number of intervals that SYN flooding at-
tacks detected by HiFIND span on (not the real number of
attacks) and include them in Table 8.

In the LBL traces, there is no SYN flooding, but a very
large number of scans. As discussed before, CPM cannot
differentiate them, so it treats all the scans as SYN flooding
producing a large number of false positives. On the other
hand, CPM and HiFIND have very similar results for the
NU data because the port scans are mixed with SYN flood-
ing for each interval, and thus the port scans do not cause
any false positives for CPM. Meanwhile, there is a small
number of intervals in which SYN flooding is buried in
the rest of the normal traffic, which have large numbers
of normal SYN and SYN/ACK packets from the traffic of
other hosts, and thus for the total traffic *GFHAE <1,
meaning CPM cannot detect them.

6.3.2. Aggregated detection over multiple routers

In this section, we consider the network topology of
Fig. 4 discussed in Section 4 and evaluate the performance
of HiFIND and TRW under such scenarios. To simulate
asymmetric routing and multi-path routing caused by
per-packet load balancing on routers, we split the packet-
level traffic from a Northwestern University edge router
into three routers randomly, for both inbound and out-
bound packets. For each packet, we randomly select an
edge router to deliver, i.e., for any single connection, the
incoming SYN packet and the outgoing SYN/ACK packet
have 2/3 probability to go through different routers.

For HiFIND, we obtain the same results as those when
the traffic goes through the same router, i.e., the results
in Section 6.3.1. In comparison, we apply TRW to the data
on each router for detection. Thus we get three sets of re-
sults. We put them together and remove the redundant
alerts as the final results. In the previous single-router
experiments, we set the alert threshold as 60 for TRW,
and find 497 horizontal scans. For the multi-path experi-
ments, we run two experiments with different thresholds.
We first keep the same threshold 60 in each router, and we
obtain 461 alerts in the final results. Compared to one-rou-
ter experiments of TRW, there are 36 false negatives in this
result. Then, considering that each router may only get 1/3
of the attack and response traffic, we reduce the threshold
to 20 correspondingly. In this case, TRW reports 578 hori-
zontal scans, which has 81 false positives and no false
negatives.

6.4. Detected intrusions successfully validated

In the previous section, we compare the HiFIND with
other statistical detection methods. But, it does not show
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whether the attacks detected are the real ones. In this sec-
tion we manually examine a certain number of attacks for
validation.

6.4.1. SYN flooding

We validate our SYN flooding detection results with
backscatter [29] because the Anderson-Darling A2 unifor-
mity test in backscatter is a very strong one and can hardly
reach the significance level 0.05 if they are not uniformly
distributed. However, backscatter has one limitation: it
only checks the reply traffic from the victim, and assumes
that each attack packet is replied to the victim, which is
not valid in many cases (observed from our netflow data
as well). Furthermore, in our evaluation, we only detect
incoming attacks. Thus, we tweak backscatter a bit, to
check the incoming SYN traffic, and test the uniform distri-
bution of the source IPs if they are all towards the same
destination IP and the total number of such source IPs
are large enough. Among the 32 SYN floodings detected,
there are 21 matched with backscatter results. For the
other 11 attacks, three have uniformity values very close
to the threshold, Anderson-Darling A2 test with signifi-
cance level 0.05 [29]. Another three have IP’s spoofed in
some regular manner. For instance, one has the IP address
spoofed as: 1.0.0.%, 1.0.1.%, 1.0.255.%, 2.0.0.%, etc.. But the
distribution of such addresses does not satisfy the unifor-
mity test. The remaining five attacks are hard to validate
with only packet headers. But nowadays many DoS attacks
are launched with botnet using un-spoofed IP’s because
ISPs tend to drop randomly spoofed packets through in-
gress filtering.

6.4.2. Horizontal scans

We manually validate horizontal scans, in particular,
the top 10 and bottom 10 attacks in terms of their change
difference. Table 9 shows the top 10 horizontal scans for
the NU experiment, whose #SYN-#SYN/ACK change count
ranges from 24,000 to 60,000. Table 10 shows the bottom
10 horizontal scans, whose #SYN-#SYN/ACK change count
ranges from 60 to 64. Table 11 and Table 12 demonstrate
the top 10 and bottom 10 horizontal scans for the LBL
trace. Through this evaluation table, we find that they are
all possible attacks, including MSBlast worm (Nachi), SQL-
Snake worms, SSH scans, etc.. There are even some un-
known worm scans detected by us, and also confirmed in
the Dshield [53], the largest worldwide intrusion log
repository.

Table 9
Top 10 of Horizontal scans in NU experiment.

Anonymized SIP Dport #Unique DIP Cause

204.10.110.38 1433 56275 SQLSnake scan
5.4.247.103 1433 54788 SQLSnake scan
15.38.124.150 1433 46586 SQLSnake scan
5.64.27.226 1433 45981 SQLSnake scan
109.132.101.199 22 45014 Scan SSH
95.30.62.202 3306 25964 MySQL Bot scans
162.39.147.51 6101 24741 Unknown scan
15.192.50.153 4899 23687 Rahack worm
15.82.184.106 4899 19794 Rahack worm
5.55.96.69 1433 19217 SQLSnake scan

Table 10
Bottom 10 of horizontal scan in NU experiment.

Anonymized SIP Dport #Unique DIP Cause
98.198.251.168 135 64

Nachi or MSBlast worm

3.66.52.227 445 64 Sasser and Korgo worm
20.128.114.246 445 64 Sasser and Korgo worm
2.0.28.90 139 64 NetBIOS scan

91.115.92.212 445 64 Sasser and Korgo worm
98.198.0.101 135 64 Nachi or MSBlast worm

162.8.171.169 139 62
82.203.230.86 135 62
165.5.42.10 5554 62
189.75.216.218 139 62

NetBIOS scan
Nachi or MSBlast worm
Sasser worm
NetBIOS scan

Table 11
Top 10 Horizontal scans in the LBL trace.

Anonymized SIP Dport #unique DIP Cause

352841 1433 16014 SQLSnake scan
251293 21 10360 FTP scan
199707 80 7893 HTTP scan
295205 80 7536 HTTP scan
346376 80 6980 HTTP scan
347333 80 6935 HTTP scan
312475 21 5892 FTP scan
447394 1433 5875 SQLSnake scan
285091 4000 5775 SkyDance worm
227176 554 5660 RTSCP scan

6.4.3. Vertical scans

We also manually validate vertical scans for both the
LBL trace and the NU experiment. In the LBL trace, we
found one vertical scan. It scanned some well-known ser-
vice ports, such as HTTPS(81), HTTP-
Proxy(8000,8001,8081).

In the NU experiment, we found in total 19 vertical
scans. We manually checked the top 5 and bottom 5 verti-
cal scans in terms of the ports they scanned. We found the
vertical scans are mostly interested in the well known ser-
vice ports and Trojan/BackDoor ports, for the well know
services ports, most of them scanned: HTTP(80), FTP(21),
RTSP(554), Cache(3128) etc.. Moreover, most attacks are
also interested in Trojan/BackDoor ports, for example,
WinHole(808,1082), Slapper(1978), SubSeven 2.1(7000),
Tini(7777), OpwinTRojan(10,000), etc.. All these character-
istics drive us to believe that these vertical scans are real
scans.

6.5. Evaluation results for online performance constraints

6.5.1. Small memory consumption

It is very important to have small memory consumption
for online traffic recording over high-speed links, to make
use of the fast SRAM and for potential implementation in
specialized hardware e.g., FPGA or ASIC. In our experi-
ments, we only use a total memory of 13.2 MB for traffic
recording. Note that such settings work well for a large
range of link speeds, as we tried on different network
traces. Sketch can report heavy changes and heavy hitters
with the statistical accuracy bounds given in [42,19].
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Table 12
Bottom 10 Horizontal scans in the LBL trace.

Anonymized SIP Dport #Unique DIP Cause

191136 135 67 Nachi or MSBlast worm
4698 135 67 Nachi or MSBlast worm
432940 135 66 Nachi or MSBlast worm
219400 135 66 Nachi or MSBlast worm
253855 135 66 Nachi or MSBlast worm
445247 135 66 Nachi or MSBlast worm
81248 135 66 Nachi or MSBlast worm
218603 135 64 Nachi or MSBlast worm
98802 135 64 Nachi or MSBlast worm
208650 139 26 NetBIOS scan

On the other hand, if hash tables are used to record
every flow, much larger memory is required as shown in
Table 13. We consider the worst-case traffic of all-40-
byte-packet streams with 100% utilization of the link
capacity. There is a spoofed SYN flooding attack with a dif-
ferent source IP (and maybe even different destination IP)
for each packet. For the method without sketch, it needs at
least three hash tables corresponding to the three revers-
ible sketches in our detection methods. For each packet,
at least a new entry will be added to both the {S1P,DIP}
table and the {SIP,Dport} table. Every entry of the hash
table needs 6-8 bytes to store the key (e.g., SIP and DIP)
and another 4 bytes to store the value. For example, when
the bandwidth is 2.5 Gbps, for 1 s, the total memory con-
sumption is (2.5G/(8 x 40)) x (12 +10) = 171.875 MB.
For TRW, for each {S1P,DIP} pair, it maintains a likelihood
ratio which is updated based on observed SYN and SYN/
ACK. Thus, for the example above, the total memory con-
sumption is (2.5G/(8 x 40)) x 12 =93.75 MB. Thus, both
of the methods will run out of memory very quickly in
these scenarios.

6.5.2. Small memory access per-packet for online monitoring

There are 15 memory accesses per-packet for 48 bit
reversible sketches and 16 per-packet for 64-bit reversible
sketches (see [20] for details). For each two-dimensional
sketch, we only need 5 memory accesses per-packet, one
for each 2D hash matrix. Thus, when recording these
sketches in parallel or in pipeline, the HiFIND system has
a very small number of memory accesses per-packet and
is capable of online monitoring.

6.5.3. Traffic monitoring and intrusion detection with high
speeds

The HiFIND system is composed of the three reversible
sketches and two 2D sketches. The speed of 2D sketches is
much faster than that of the reversible sketches. Thus, the

speed is dominated by the latter. For a real HiFIND system,
we will implement it in hardware so that multiple sketches
can be updated in parallel. With our prototype single FPGA
board implementation, we are able to sustain 16.2 Gbps
throughput for recording all-40-byte packet streams (the
worst-case) with a reversible sketch.

We can also use multi-processors to record multiple
sketches simultaneously in software. With a Pentium Xeon
3.2 GHz machine with normal DRAM memory, we record
239M items (1.8TB, 1-day NUIT data) with one reversible
sketch in 20.6 s, i.e.,, 11M insertions/s. For the worst-case
scenario with all-40-byte packets, this translates to around
3.7 Gbps. These results are obtained from code that is not
fully optimized and from a machine that is not dedicated
to this process. If we update the three reversible sketches
serially, we can still archive 3.8M insertions/s.

For the on-site NU experiments covering a total of
1430 min, the HiFIND system used 0.34s on average to
perform detection for each one-minute interval, and the
standard deviation is 0.64 s. The maximum detection time
(for which the interval contains the largest number of at-
tacks) is 12.91 s, which is still far less than 1 min.

In order to show the scalability of HiFIND, we further do
some stress experiments. We compress the NU data by the
factor of 60, and detect the top 100 anomalies in each
interval. The HiFIND system used 35.61s on average in
detection for each interval. The maximum detection time
is 46.90 s.

7. Potential limitations of the HiFIND system

There are roughly two types of stealthy attacks: small
rate attacks and slow ramping attacks. Depending on the
detection threshold, HiIFIND may not be very sensitive to
stealthy scans for small rate attacks. On the other hand,
small rate attacks in general are not very interesting for
high-speed network gateways/routers because a low
detection threshold tends to produce large volumes of scan
alerts and will overwhelm network administrators. Such
attacks usually also have limited effects. To deal with
them, we can potentially combine the HiFIND system with
existing network and host-based detection schemes, like
TRW which is more sensitive to detect stealthy scans. We
deploy the HiFIND system at edge routers of an edge net-
work to detect most serious attacks while for some subnets
or servers which require more secure protection, we apply
TRW to detect stealthy scans.

For the “slow ramping” attack, attackers gradually in-
crease the attack rate so that no significant request pattern
changes are exhibited. Here we can aggregate the traffic at
a coarser time interval, e.g. hourly, daily, so the traffic

Table 13
Memory comparison (bytes).
Methods 2.5 Gbps 10 Gbps
1s 1 min 5 min 1s 1 min 5 min
HiFIND with sketch 13.2M 13.2M
HiFIND with complete info 171.875M 10.3G 51.6G 687.5M 41.25G 206G
TRW 93.75M 5.63G 28G 375M 22.5G 112.5G
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changes become obvious and will be detected. The com-
pact storage size and the linearity of sketch fully support
such an aggregated detection scheme.

8. Conclusion

It is crucial to detect the outburst of global-scale attacks
at high-speed routers/gateways. In this paper, we propose,
implement and evaluate a DoS resilient High-speed Flow-
level Intrusion Detection system, HiFIND, leveraging recent
data streaming techniques such as reversible sketches. We
analyze the TCP/IP headers and select an optimal small set
of metrics for monitoring and detection. In addition, we
design efficient 2D sketches to distinguish different types
of attacks for effective mitigation. We further aggregate
the compact sketches recorded over multiple edge routers
to deal with the emerging asymmetric routing and multi-
path routing enabled by the per-packet load balancing of
routers. Experiments with several router traces show that
HiFIND is highly accurate, efficient, uses very small mem-
ory, and can effectively detect multiple types of attacks
simultaneously.
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