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Abstract: Design of diagnosis systems is a complex taskitivatves many different steps.
Full understanding of all different parts of the design gahare requires deep knowledge on
theory from a wide variety of subjects. Thus, to encourageuse of results from diagnosis
research it is highly desirable to have software supporhédesign process. This paper
describes ongoing work for determining an architecturesfarh a toolbox. The paper also
describes software solutions in the toolbox. In industryvadl as in universities, Matlab
is probably the most widespread tool used by control engiekherefore the toolbox is
primarily based upon Matlab but also some computer algeltoails such as Mathematica
and Maple are use@opyright(©) 2006 IFAC
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1. INTRODUCTION e Threshold, possibly adaptive, design for the
residual generators.
Design of diagnosis systems is a complex task thatin- e Selection of which diagnostic tests to use for
volves many different steps. Full understanding of all optimal fault isolation performance.
different parts of the design procedure requires deep,

knowledge on theory from a wide variety of SUbJECtSZ the first step is to import the model. Models can be de-

gnly PP space or DAE-models in the Matlab control toolbox

in the design process. This paper describes ONYoING mat. For all these model descriptions, the toolbox

\t’)\/grka:]o(; gétoeggﬁmg?ea:o?rfgggigu;e fogiugg.: trc:gg.shas support for handling information of how different
X W utl upp 1agnosISe. ts affect the process. Several fault types can be

systems enginger. The work h.as peen cgrriegl out IOarﬂyhandled such as parameter faults and additive faults.
as a collaboration between Ligging University and This topic is briefly discussed in Section 4

When using the toolbox to design a diagnosis system,

Scania CV.
When the model is loaded, there is a possibility to an-
alyze fault isolability and fault detectability propesie
2 USING THE TOOLBOX IN THE DESIGN of the model. Depending on the model description,

PROCESS different tools are available. If the model is linear, an-
alytical and exact methods are available. If the model
— . . . is nonlinear, structural and simulation based methods
The process of designing a diagnosis system contains . ST . .
o are available. This is discussed in Sections 3 and 5
several steps. Important steps are the following:
The next step is to select submodels to be used in
the design of residual generators. Here, the user can
specify different fault scenarios, for which the residual
design should be based upon. This includes to decide
which faults that should be decoupled in each residual.

Importing and converting models.

Isolability and detectability analysis.

e Selection of submodels to be used in residual
generator design.

Residual generator design.
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3.1 Background and basic definitions

Fig. 1. Screen dump of one window in the user inter-

face. The structure of a model includes which variables that

are included in each equation. Consider for example

the dynamic system
As an alternative, the toolbox includes an automatic

design method which tries to decouple faults in every €:% = -2x+u

possible way. This method is based on structural anal- €2:y1 =T @)

ysis. After this step, a set of submodels is obtained. €3:y2 =72

Section 3 addresses this topic. whereu, y1, andys are known, and: is an unknown

Next, residual generators can be designed for each O]yariab_le..One structural representation of (1) is the
following:

the submodels. Here the user can choose between a

number of methods: linear decoupling via null-space equationunknown known

operations, nonlinear parity relations, and nonlinear T U Y1 Y2

observers. The toolbox also has support for generation ey X X (2)

of C-code for the residual generators. This is essential e X X

both for the final implementation but also to speed up es3 X X

the analyses done in the next step. Residual generato

A . . [n this representation aX denotes that the variable,
design is covered in Section 6.

or any of its time-derivatives, appear in the equation.
The residual generators need to be supplemented withlhis approach has been used in for example [6,8,9,12].
filtering, normalization, and thresholds. Doing this, a There are other structural representations of dynami-
diagnostic test is obtained. In this respect the toolbox cal systems, see e.qg. [3], which are also supported by
has support for analyzing the performance of diag- the toolbox. However, for the remainder of this paper,
nostic tests, including how different design parame- this representation is used.

ters such as thresholds affect the performance of th
diagnostic tests. This part of the toolbox is further
described in [2].

The result of the previous steps is a set of diagnostic
tests. This set can be quite large and contain manyDefinition 1.(Structurally Overdetermined). A séf
redundant or superfluous tests that are not needed t®f equations istructurally overdetermined M has
obtain the diagnosis performance requested. Thereforenore equations than unknowns.

the toolbox contains as a next step an algorithm for
picking out a subset of all diagnostic tests. This is
done by estimating the performance of different tests
with either Monte-Carlo simulations or, if available,

measured data. The goal is that this subset shoul
fulfill a specified isolation requirement, but at the

same time, minimize the on-line computational burden
needed to compute the residuals. Also this part of the
toolbox is further described in [2].

eRedundancy is needed for computing parity relations
and residual generators and this motivates the follow-
ing definition.

The SO sets of equations should be regarded, in the
generic case, as the sets of equations containing re-
Odundancy. To localize the faults in the model and to
obtain good fault isolation small overdetermined sets
are important.

Definition 2.(Minimal Structurally Overdetermined).
A structurally overdetermined set isnainimal struc-
To illustrate the user interface of the toolbox, Figure 1 turally overdeterminedMSO) set if no proper subset
contains a screen dump of one of the windows. Theis a structurally overdetermined set.
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Fig. 2. Example Simulink model

The MSO sets in the structural representation of (1)

shown in (2) areles, ea}, {e1,e3}, and{es, es}. The
corresponding parity relations age + 2y; — @ = 0,
72 + 2y2 — u = 0, andyg — y; = 0 respectively.

3.2 Software

In this section we present the algorithms that can be

used to find all MSO sets in a model. The input to
the algorithms can be a Simulink model, analytical
equations, or a structural model like (2). Starting with
a Simulink model of the system, the first step in the

u 7 NF
Actuator @—» B
— v |
SC
Sensor
F2 Jur
UK F1

BM C1

Fig. 3. The Simulink model of (3).

Finally, all MSO sets in the structural model is found
using the algorithm presented in [9]. In this case the
MSO sets ardle;, ea,e3,¢e4,e5}, {€1,€2,€3,€4,€6},
and{eg, és, 66}.

The software described in this section has been ap-
plied to an engine model with 126 equations and 122
unknowns. The model contained 1419 MSO sets and
the execution time for all the steps was approximately
10 seconds on a PC with a 1 GHz processor. For more
details about the model see [9].

4. MODELING FOR FAULT DIAGNOSIS IN
SIMULINK

When modeling faults in Simulink, information about

design procedure is to extract analytical equations fault behavior must be included. For example, con-

from the model file.

To give an example of an input Simulink file consider
the model in Figure 2. This is a Simulink model
of the system (1).To Workspace -blocks tagged
with the lettersSensor are treated as known sensor
signals and=rom Workspace -blocks tagged with
the lettersActuator  are treated as known actuator
signals. The Simulink file containing the model in
Figure 2 is parsed and transformed into the following
analytical system of equations:

sider the equatiop = u wherey is a sensor signal and

w is an actuator signal. Assume now that the sensor has
three possible fault modes: a constant bias fabijt &
short circuit fault §C) and an unknown faultl{ F).

Let ©2 denote the set of all behavioral modes of the
sensor, i.eQ) = {NF,B,SC,UF} where NF de-
notes the no fault mode. This model may be written

as:
Ass. Equation

el Actuator From Workspace : al = u NE y=u

e2 Sum a2 = al + a4 B y=u+b (3
e3 Integrator : a3 = Integrator(a2) SC y=0

e4 Gain a4 =-2 « a3 b=0

e5 Sensor To Workspacel tyl = a2 . . .

e6 Sensor To Workspace2 D y2 = a3 where Ass. is the behavioral mode assumption.

Each Simulink block is transformed into a model When using the toolbox, model (3) is in Simulink
equation and connections correspond to unknownrepresented as in Figure 3. This solution uses a sub-
variables. Note that this model contains more equa-System block BM-C1 to connect the equations to their
tions and unknowns than necessary. The algorithmscorresponding behavioral mode. Subsystems defining
facilitates reduction techniques that can be used to re-behavioral modes are tagged with the letters BM in the
duce the size of the model. However, here we proceedbeginning of their names. The interpretation of the UK
without this reduction. tagged constant block is thiats an unknown constant.

The next step is to extract the structural information
from the model equations, i.e. to identify which vari-
ables that are included in each equation. For the ex-

ample, the structural model obtained by the algorithm

5. FAULT ISOLATION

is
equations unknown Known St_ruct_ural analysis is_ a powerf_u_l tool fo_r _e_arly deter-
mination of detectability/isolability possibilities. T

G 42 43 @4 ] Y Y1 Y2 is important both to evaluate if the number and place-

Zl ;(( X X X ment of sensors is adequate in order to meet diagnosis
9 P

o <X specifications.
e4 X X Even though the structural information is very coarse,
es X X useful insights can be gained by analyzing the struc-
e X X ture. This is also one of the strengths, since useful




information can efficiently be obtained early inthe de- e Observer based designs.
velopment process before much work has been spen?

on obtaining detailed analytical models. f the submodel is linear, design is easy and complete

solutions are available regardless of the model struc-
To evaluate possible isolability properties of the ture. An algorithm and software support for this case
model, fault sensitivity of all possible parity relations are discussed further in Section 6.2. For the case of
need to be studied. Under some technical model as-non-linear dynamic models the choice of method is
sumptions [10], notincluded here, the isolability prop- more involved and is discussed next in Section 6.1.

erties of a system can be determined by only consid-

ering the fault sensitivities of all MSO sets. Next is a more detailed look on software support for

designs based on parity relations.
The fault isolability analysis, performed by the soft-
ware, will be illustrated on the model in Figure 2.
Assume that the actuator, the gain block, and the
two sensors can fail. The corresponding fault modes
are abbreviated4, G, S1, and S2 and the no-fault
mode is denoted by F'. Multiple faults can be han-
dled [11], but for brevity only single faults are consid-
ered. By including the behavioral mode information
in the Simulink model the computed fault incidence
matrix for the MSO sets is

6.1 Parity relation based designs

The objective of this section is to describe how, in
the toolbox, a residual generator is designed for each
MSO set. To illustrate this, the example introduced
in Section 3.1 will be used. The equations in the ex-
ample are linear and the approach presented later in
Section 6.2 can be applied. However, we will present

‘ NF A G 51 52 a method that is applicable also to non-linear dynamic
{e1,e2,e3eq5es1 | 0 X X X 0 systems. The basic idea in this approach is to consider
{ei,e2,e5,e45661 | O X X 0 X signals and their time-derivatives as separate indepen-
{es.es,e6} 0 0 0 X X dent variables and use algebraic elimination to obtain

In a noisy and uncertain environment we have to & Parity relation. To do this elimination we need more
threshold the residuals such that the probability for equations and these can be obtained by differentiation.

false-alarm is low. Thus, conclusions about faults can we jllustrate the method using the MSO get, e, }

only be drawn when a residual is larger than its associ-j, (2). For example the seft¢y, e2,é2} contains the
ated threshold. When residuals are below thresholds,;nknown variableg:, #} and has the following struc-

no conclusion can be drawn in a sound way. This {re:

means that for examplg2 mayinvalidate the two last equatiojunknown known

MSO sets. Thus, a large enough fault of the ty§® 71 i ‘ U Y1

will be isolated asS2. However, no matter how large, e | X X X (4)
a fault of the typed can not be separated froth The es |X X

output of the algorithm is a fault isolability matrix, é9 X X

which summarizes isolability properties of the model.
The isolability matrix for the example is

INF A G S1 52

This is an MSO model and algebraic elimination can
be used to obtain the parity relation

NF| X X X X X 21+ —u=0 ®)

A 0 X X 0 0 In this part of the software, the input is an MSO
G 0 X X 0 O set of differential equations. Structural methods are
S1 0 0 0 X O used to decide which equations to differentiate and
S2 0 0 0 0 X how many times. The theory for general non-linear

differential algebraic equations is presented in [8]. Af-
ter that, standard elimination tools e.g.0Bner basis
theory, can be used to obtain the parity relation. Such
algorithms are readily available in standard computer
algebra software, like Mathematica and Maple, and
the toolbox contains an interface to these packages.
When performing the analytical elimination, the order
of which variables are eliminated can greatly influence

After an initial redundancy analysis has been madethe gomplexny of the elimination problem.StrugturaI
heuristics are implemented to choose elimination or-

and a subset of equations, with redundancy, has been L
e : . ders that correspond to as low elimination trees as pos-
selected it is time for residual generator design.

sible [4]. The approach described above uses algebraic
There exists many methods for residual generator de-elimination tools, but also differential algebraic tools
sign with their respective advantages and disadvan-are available, see e.g. [15].

tages. Two approaches, common within the FDI com-
munity, are

where anX in position (i, j) means that behavioral
modei can be interpreted as behavioral mggde.e.
behavioral mode can not be isolated from behavioral
mode;.

6. DESIGN OF RESIDUAL GENERATORS

Another approach, related to the approaches outlined
above, is to find a matching in the bi-partite graph that
e Designs based on parity relations. represents the structure of the MSO. This matching



represents a causality assignment, i.e. a way to com-generators for a given system and also provides the
pute a residual. Software has been developed usingequired fault sensitivity in the residual.

this approach to automatically, for a class of MSO
models, generate Simulink implementations of the
residual generators. This approach is also closely con
nected with the approach outlined in the structural
analysis parts of the book [3].

To illustrate the design procedure, let the rows of
Ny (s) form an irreducible polynomial basis for the
left null-space of the matri¥{(s). If we let f = 0
and multiply (6) from the left withV (p), we obtain
the expressionVy(p)L(p)z = 0. In this equation
the influence of the unknown signaishas been de-
coupled. Thus, by picking one row Vg (p)L(p),

or a linear combination of rows specified by a row
vector v(p), we obtain a so called parity relation
v(p)Nu(p)L(p)z = 0. By adding stable dynamics
d(p) of sufficiently high order we obtain a residual
enerator with transfer operator

6.2 Linear Residual Generation

The aim of this section is to outline how the toolbox
handles a complete design procedure for any type of
linear model. This means that not only state-space
models or descriptor models should be considered but?
a more general class of _models. The m_otivati_on for R(p) = d~*(p)v(p)Nu (p)L(p) (8)

this is that modern physically based object-oriented

modeling tools like for example Dymola, produce Which can be realized by an explicit state-space de-
models that are not on any specific form and with no scription. This is our basic idea of how residual gen-
causality, i.e. it is not determined by the model which erators can be constructed for models in the form (6).
signals that are inputs and which that are outputs. ThisTo achieve the required fault sensitivity, the vector
fits well with the diagnosis problem where signals need to be chosen with some care.

rar']cherbgre .sep'arated Ingl) known andrl]mkn(;w\llnds.lgnalls.lt is straightforward to prove that expression (8) can be
The objective is to be able to use such models directly, ,,q0 1 formany residual generator for a controllable

without any need for additional transformations. system. For non-controllable systems additional care

The presentation below is entirely for time-continuous has to be taken to parameterize all residual generators
systems, but the approach works also for time-discreteand the general case is treated in detail in [5].

systems with only small changes. The approach is
based on the theory of polynomial matrices, see e.g.[7]
for a thorough description of the theory. The toolbox

uses a software package for dealing with polynomial
matrices in Matlab [1].

The class of models considered is general linear mod-Theorem 1.Faulti is detectable in (6) if and only if

It is of course important that the residual generator
is not only insensitive to unknown inputs but also
sensitive to the faults we wish to detect. An intuitive
result, also from [5], on fault detectability is

els in the form Rank [H (s) F;(s)] > Rank H(s).
H(p)z + L(p)z + F(p)f =0 (6) . _
wherez(t) € R", =(t) € R™, and f(t) € R"/ A design procedure can now be outlined as:
The matricesH (p), L(p), and F'(p) are polynomial 1. Form matricesH (p), L(p), F(p) and compute
matrices in the differentiation operatarThe vector: Q(s) = Nu(s)L(s).

contains all unknown signals, such as internal system 2. Determine if all faults are detectable using The-
states, unknown inputs such as disturbances, and pos-  orem 1 and then choosesuch that the residual

sibly also faults that are to be decoupled. The vegtor has required fault sensitivity properties.
contains all known signals such as control signals 3. Choose a stable polynomidls) with degree
and measured signals, and the vecforontains the higher thany@(s) and form the residual gener-
fault-signals corresponding to faults that need to be ator R(p) according to (8). This expression can
detected. The equations (6) may be an MSO set, but easily be written in state-space form for direct
can also be a larger set of equations. implementation.

The only assumption imposed on the matrices describ-Design and analysis of residual generators is in the
ing the model (6) is thatH (s) L(s)] has full row toolbox performed in Matlab using functions from

rank. This is a reasonable assumption since it meanghe Polynomial Toolbox [1] which are well suited for

that there are no linear dependencies in the modelresidual generator design. It will show that the main

equations wherf = 0. design steps are standard operations from polynomial
theory and thus all operations rely on well tested
gnd thoroughly analyzed algorithms. Numerical issues
are often of concern when polynomial algorithms are
considered and numerical motives for the approach
c Dd} Lip) = {*I Du} F(p) = |:Df:| is discussed in [5]. The code excerpts shown below

1) = | , | ; . .
—(pE—~A) Ba 0 Bu 1(3’71') illustrates the main steps of the implementation.

The objective is now to outline a design procedure, Before we start the design, we may want to check if
and software implementation, that finds all residual the design goal is at all achievable, i.e. if all faults are

The above model structure is directly applicable to
e.g. state-space and descriptor models where matrice
H(p), L(p), andF (p) then become
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detectable. Using the simple rank condition in Theo- [3]
rem 1 for each fault respectively, it can be checked if
they are detectable. A detectability test is done with
the commands [4]

>> rank([H F(:,1)]) > rank(H)

whereF(;,1) is the column ofF'(p) corresponding  [5]
to the fault we wish to analyze. The command will
return 1 if the fault is detectable and otherwise.
When fault detectability is ensured, the residual gener-
ator can be designed, following the design procedure
above, with the following set of simple commands:

[6]

>> Nh = null(H)’;

>> Q = NhL;

>> gamma = 1; sO = -3;

>> q = deg(gammax*Q); d = (s-s0)q;

>> 9% Compute state-space form of R(S) [7]
>> [A,B,C,D] = Imf2ss(gamma  *Q,d);

(8]
If the model (6) is a minimal over determined sub-
system, the left null-space of matré{(s) will have
dimension1. This further means that the choice of
parametery disappears, i.e. can always be setlto

as in the example session above. In the example ses[9]
sion, all poles of the residual generator are placed in

s =59 = —3.
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neers. Therefore the toolbox is primarily based upon
Matlab but also some computer algebraic tools such
as Mathematica and Maple are used.

8. REFERENCES

[1] The Polynomial Toolbox 2.5Polyx, Czech Re-
public. URL: http://www.polyx.com, 2001.

matic design of detection tests in complex dy-
namic systems. IrProceedings of 16th IFAC
World Congress, Pragud’rague, Czech Repub-
lic, 2005.

[13] B. Pulido and C. Alonso. Possible conflicts,

ARRs, and conflicts. In M. Stumptner and
F. Wotawa, editorsRroceedings DX-2002ages
122-127, Semmering, Austria, 2002.

[14] L. Trave-Massugs, T. Escobet, and R. Milne.

Model-based diagnosability and sensor place-
ment. application to a frame 6 gas turbine subsys-
tem. In D. T. Dupre’ S. Mcilraith, editoi>X01
twelfth international workshop on principles of
diagnosis pages 205-212, 2001.

[2] G. Arrhenius and H. Einarsson. Automatic de- [15] A. D. Wittkopf. Algorithms and Implementations

sign of diagnosis systems, optimizing isolation
and computational load. Master’s thesis, Uppsala
University, 2005.

for Differential Elimination PhD thesis, Simon
Fraser University, Burnaby, British Columbia,
Canada, 2004.



