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Abstract: Design of diagnosis systems is a complex task thatinvolves many different steps.
Full understanding of all different parts of the design procedure requires deep knowledge on
theory from a wide variety of subjects. Thus, to encourage the use of results from diagnosis
research it is highly desirable to have software support in the design process. This paper
describes ongoing work for determining an architecture forsuch a toolbox. The paper also
describes software solutions in the toolbox. In industry aswell as in universities, Matlab
is probably the most widespread tool used by control engineers. Therefore the toolbox is
primarily based upon Matlab but also some computer algebraic tools such as Mathematica
and Maple are used.Copyright c© 2006 IFAC.
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1. INTRODUCTION

Design of diagnosis systems is a complex task that in-
volves many different steps. Full understanding of all
different parts of the design procedure requires deep
knowledge on theory from a wide variety of subjects.
Thus, to encourage the use of results from diagnosis
research it is highly desirable to have software support
in the design process. This paper describes ongoing
work for determining an architecture for such a tool-
box and also software solutions to support a diagnosis
systems engineer. The work has been carried out partly
as a collaboration between Linköping University and
Scania CV.

2. USING THE TOOLBOX IN THE DESIGN
PROCESS

The process of designing a diagnosis system contains
several steps. Important steps are the following:

• Importing and converting models.
• Isolability and detectability analysis.
• Selection of submodels to be used in residual

generator design.
• Residual generator design.

• Threshold, possibly adaptive, design for the
residual generators.

• Selection of which diagnostic tests to use for
optimal fault isolation performance.

When using the toolbox to design a diagnosis system,
the first step is to import the model. Models can be de-
scribed in many ways: Simulink models, linear state-
space or DAE-models in the Matlab control toolbox
format. For all these model descriptions, the toolbox
has support for handling information of how different
faults affect the process. Several fault types can be
handled such as parameter faults and additive faults.
This topic is briefly discussed in Section 4.

When the model is loaded, there is a possibility to an-
alyze fault isolability and fault detectability properties
of the model. Depending on the model description,
different tools are available. If the model is linear, an-
alytical and exact methods are available. If the model
is nonlinear, structural and simulation based methods
are available. This is discussed in Sections 3 and 5

The next step is to select submodels to be used in
the design of residual generators. Here, the user can
specify different fault scenarios, for which the residual
design should be based upon. This includes to decide
which faults that should be decoupled in each residual.



Fig. 1. Screen dump of one window in the user inter-
face.

As an alternative, the toolbox includes an automatic
design method which tries to decouple faults in every
possible way. This method is based on structural anal-
ysis. After this step, a set of submodels is obtained.
Section 3 addresses this topic.

Next, residual generators can be designed for each of
the submodels. Here the user can choose between a
number of methods: linear decoupling via null-space
operations, nonlinear parity relations, and nonlinear
observers. The toolbox also has support for generation
of C-code for the residual generators. This is essential
both for the final implementation but also to speed up
the analyses done in the next step. Residual generator
design is covered in Section 6.

The residual generators need to be supplemented with
filtering, normalization, and thresholds. Doing this, a
diagnostic test is obtained. In this respect the toolbox
has support for analyzing the performance of diag-
nostic tests, including how different design parame-
ters such as thresholds affect the performance of the
diagnostic tests. This part of the toolbox is further
described in [2].

The result of the previous steps is a set of diagnostic
tests. This set can be quite large and contain many
redundant or superfluous tests that are not needed to
obtain the diagnosis performance requested. Therefore
the toolbox contains as a next step an algorithm for
picking out a subset of all diagnostic tests. This is
done by estimating the performance of different tests
with either Monte-Carlo simulations or, if available,
measured data. The goal is that this subset should
fulfill a specified isolation requirement, but at the
same time, minimize the on-line computational burden
needed to compute the residuals. Also this part of the
toolbox is further described in [2].

To illustrate the user interface of the toolbox, Figure 1
contains a screen dump of one of the windows. The

main purpose of this window is to set up the analysis
of residual generator performance.

3. REDUNDANCY ANALYSIS

In model based diagnosis, the diagnosis system con-
struction is based on a model of the technical system
to be diagnosed. In order to achieve fault isolation, a
common strategy is to pick out submodels with redun-
dancy and to test these separately against measured
signals, [3,13,14]. To cope with large differential alge-
braic models, a systematic structural approach is here
used to find these submodels. The basic ideas of how
to do this and the software tool are briefly described
next.

3.1 Background and basic definitions

The structure of a model includes which variables that
are included in each equation. Consider for example
the dynamic system

e1 : ẋ = −2x + u

e2 : y1 = ẋ
e3 : y2 = x

(1)

whereu, y1, andy2 are known, andx is an unknown
variable. One structural representation of (1) is the
following:

equationunknown known
x u y1 y2

e1 X X

e2 X X
e3 X X

(2)

In this representation anX denotes that the variable,
or any of its time-derivatives, appear in the equation.
This approach has been used in for example [6,8,9,12].
There are other structural representations of dynami-
cal systems, see e.g. [3], which are also supported by
the toolbox. However, for the remainder of this paper,
this representation is used.

Redundancy is needed for computing parity relations
and residual generators and this motivates the follow-
ing definition.

Definition 1.(Structurally Overdetermined). A setM

of equations isstructurally overdeterminedif M has
more equations than unknowns.

The SO sets of equations should be regarded, in the
generic case, as the sets of equations containing re-
dundancy. To localize the faults in the model and to
obtain good fault isolation small overdetermined sets
are important.

Definition 2.(Minimal Structurally Overdetermined).
A structurally overdetermined set is aminimal struc-
turally overdetermined(MSO) set if no proper subset
is a structurally overdetermined set.
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Fig. 2. Example Simulink model

The MSO sets in the structural representation of (1)
shown in (2) are{e1, e2}, {e1, e3}, and{e2, e3}. The
corresponding parity relations areẏ1 + 2y1 − u̇ = 0,
ẏ2 + 2y2 − u = 0, andẏ2 − y1 = 0 respectively.

3.2 Software

In this section we present the algorithms that can be
used to find all MSO sets in a model. The input to
the algorithms can be a Simulink model, analytical
equations, or a structural model like (2). Starting with
a Simulink model of the system, the first step in the
design procedure is to extract analytical equations
from the model file.

To give an example of an input Simulink file consider
the model in Figure 2. This is a Simulink model
of the system (1).To Workspace -blocks tagged
with the lettersSensor are treated as known sensor
signals andFrom Workspace -blocks tagged with
the lettersActuator are treated as known actuator
signals. The Simulink file containing the model in
Figure 2 is parsed and transformed into the following
analytical system of equations:

e1 Actuator From Workspace : a1 = u
e2 Sum : a2 = a1 + a4
e3 Integrator : a3 = Integrator(a2)
e4 Gain : a4 = -2 * a3
e5 Sensor To Workspace1 : y1 = a2
e6 Sensor To Workspace2 : y2 = a3

Each Simulink block is transformed into a model
equation and connections correspond to unknown
variables. Note that this model contains more equa-
tions and unknowns than necessary. The algorithms
facilitates reduction techniques that can be used to re-
duce the size of the model. However, here we proceed
without this reduction.

The next step is to extract the structural information
from the model equations, i.e. to identify which vari-
ables that are included in each equation. For the ex-
ample, the structural model obtained by the algorithm
is

equations unknown known
a1 a2 a3 a4 u y1 y2

e1 X X
e2 X X X
e3 X X
e4 X X
e5 X X
e6 X X
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Fig. 3. The Simulink model of (3).

Finally, all MSO sets in the structural model is found
using the algorithm presented in [9]. In this case the
MSO sets are{e1, e2, e3, e4, e5}, {e1, e2, e3, e4, e6},
and{e3, e5, e6}.

The software described in this section has been ap-
plied to an engine model with 126 equations and 122
unknowns. The model contained 1419 MSO sets and
the execution time for all the steps was approximately
10 seconds on a PC with a 1 GHz processor. For more
details about the model see [9].

4. MODELING FOR FAULT DIAGNOSIS IN
SIMULINK

When modeling faults in Simulink, information about
fault behavior must be included. For example, con-
sider the equationy = u wherey is a sensor signal and
u is an actuator signal. Assume now that the sensor has
three possible fault modes: a constant bias fault (B), a
short circuit fault (SC) and an unknown fault (UF ).
Let Ω denote the set of all behavioral modes of the
sensor, i.e.Ω = {NF,B, SC,UF} whereNF de-
notes the no fault mode. This model may be written
as:

Ass. Equation
NF y = u

B y = u + b
SC y = 0

ḃ = 0

(3)

where Ass. is the behavioral mode assumption.

When using the toolbox, model (3) is in Simulink
represented as in Figure 3. This solution uses a sub-
system block BM-C1 to connect the equations to their
corresponding behavioral mode. Subsystems defining
behavioral modes are tagged with the letters BM in the
beginning of their names. The interpretation of the UK
tagged constant block is thatb is an unknown constant.

5. FAULT ISOLATION

Structural analysis is a powerful tool for early deter-
mination of detectability/isolability possibilities. This
is important both to evaluate if the number and place-
ment of sensors is adequate in order to meet diagnosis
specifications.

Even though the structural information is very coarse,
useful insights can be gained by analyzing the struc-
ture. This is also one of the strengths, since useful



information can efficiently be obtained early in the de-
velopment process before much work has been spent
on obtaining detailed analytical models.

To evaluate possible isolability properties of the
model, fault sensitivity of all possible parity relations
need to be studied. Under some technical model as-
sumptions [10], not included here, the isolability prop-
erties of a system can be determined by only consid-
ering the fault sensitivities of all MSO sets.

The fault isolability analysis, performed by the soft-
ware, will be illustrated on the model in Figure 2.
Assume that the actuator, the gain block, and the
two sensors can fail. The corresponding fault modes
are abbreviatedA, G, S1, and S2 and the no-fault
mode is denoted byNF . Multiple faults can be han-
dled [11], but for brevity only single faults are consid-
ered. By including the behavioral mode information
in the Simulink model the computed fault incidence
matrix for the MSO sets is

NF A G S1 S2
{e1, e2, e3, e4, e5} 0 X X X 0
{e1, e2, e3, e4, e6} 0 X X 0 X

{e3, e5, e6} 0 0 0 X X

In a noisy and uncertain environment we have to
threshold the residuals such that the probability for
false-alarm is low. Thus, conclusions about faults can
only be drawn when a residual is larger than its associ-
ated threshold. When residuals are below thresholds,
no conclusion can be drawn in a sound way. This
means that for exampleS2 mayinvalidate the two last
MSO sets. Thus, a large enough fault of the typeS2
will be isolated asS2. However, no matter how large,
a fault of the typeA can not be separated fromG. The
output of the algorithm is a fault isolability matrix,
which summarizes isolability properties of the model.
The isolability matrix for the example is

NF A G S1 S2
NF X X X X X
A 0 X X 0 0
G 0 X X 0 0
S1 0 0 0 X 0
S2 0 0 0 0 X

where anX in position (i, j) means that behavioral
modei can be interpreted as behavioral modej, i.e.
behavioral modei can not be isolated from behavioral
modej.

6. DESIGN OF RESIDUAL GENERATORS

After an initial redundancy analysis has been made
and a subset of equations, with redundancy, has been
selected it is time for residual generator design.

There exists many methods for residual generator de-
sign with their respective advantages and disadvan-
tages. Two approaches, common within the FDI com-
munity, are

• Designs based on parity relations.

• Observer based designs.

If the submodel is linear, design is easy and complete
solutions are available regardless of the model struc-
ture. An algorithm and software support for this case
are discussed further in Section 6.2. For the case of
non-linear dynamic models the choice of method is
more involved and is discussed next in Section 6.1.

Next is a more detailed look on software support for
designs based on parity relations.

6.1 Parity relation based designs

The objective of this section is to describe how, in
the toolbox, a residual generator is designed for each
MSO set. To illustrate this, the example introduced
in Section 3.1 will be used. The equations in the ex-
ample are linear and the approach presented later in
Section 6.2 can be applied. However, we will present
a method that is applicable also to non-linear dynamic
systems. The basic idea in this approach is to consider
signals and their time-derivatives as separate indepen-
dent variables and use algebraic elimination to obtain
a parity relation. To do this elimination we need more
equations and these can be obtained by differentiation.

We illustrate the method using the MSO set{e1, e2}
in (2). For example the set{ė1, e2, ė2} contains the
unknown variables{ẋ, ẍ} and has the following struc-
ture:

equationunknown known
ẋ ẍ u̇ y1 ẏ1

ė1 X X X
e2 X X

ė2 X X

(4)

This is an MSO model and algebraic elimination can
be used to obtain the parity relation

2 y1 + ẏ1 − u̇ = 0 (5)

In this part of the software, the input is an MSO
set of differential equations. Structural methods are
used to decide which equations to differentiate and
how many times. The theory for general non-linear
differential algebraic equations is presented in [8]. Af-
ter that, standard elimination tools e.g. Gröbner basis
theory, can be used to obtain the parity relation. Such
algorithms are readily available in standard computer
algebra software, like Mathematica and Maple, and
the toolbox contains an interface to these packages.
When performing the analytical elimination, the order
of which variables are eliminated can greatly influence
the complexity of the elimination problem.Structural
heuristics are implemented to choose elimination or-
ders that correspond to as low elimination trees as pos-
sible [4]. The approach described above uses algebraic
elimination tools, but also differential algebraic tools
are available, see e.g. [15].

Another approach, related to the approaches outlined
above, is to find a matching in the bi-partite graph that
represents the structure of the MSO. This matching



represents a causality assignment, i.e. a way to com-
pute a residual. Software has been developed using
this approach to automatically, for a class of MSO
models, generate Simulink implementations of the
residual generators. This approach is also closely con-
nected with the approach outlined in the structural
analysis parts of the book [3].

6.2 Linear Residual Generation

The aim of this section is to outline how the toolbox
handles a complete design procedure for any type of
linear model. This means that not only state-space
models or descriptor models should be considered but
a more general class of models. The motivation for
this is that modern physically based object-oriented
modeling tools like for example Dymola, produce
models that are not on any specific form and with no
causality, i.e. it is not determined by the model which
signals that are inputs and which that are outputs. This
fits well with the diagnosis problem where signals
rather are separated into known and unknown signals.
The objective is to be able to use such models directly,
without any need for additional transformations.

The presentation below is entirely for time-continuous
systems, but the approach works also for time-discrete
systems with only small changes. The approach is
based on the theory of polynomial matrices, see e.g.[7]
for a thorough description of the theory. The toolbox
uses a software package for dealing with polynomial
matrices in Matlab [1].

The class of models considered is general linear mod-
els in the form

H(p)x + L(p)z + F (p)f = 0 (6)

wherex(t) ∈ R
n, z(t) ∈ R

nz , and f(t) ∈ R
nf .

The matricesH(p), L(p), andF (p) are polynomial
matrices in the differentiation operatorp. The vectorx
contains all unknown signals, such as internal system
states, unknown inputs such as disturbances, and pos-
sibly also faults that are to be decoupled. The vectorz

contains all known signals such as control signals
and measured signals, and the vectorf contains the
fault-signals corresponding to faults that need to be
detected. The equations (6) may be an MSO set, but
can also be a larger set of equations.

The only assumption imposed on the matrices describ-
ing the model (6) is that[H(s) L(s)] has full row
rank. This is a reasonable assumption since it means
that there are no linear dependencies in the model
equations whenf = 0.

The above model structure is directly applicable to
e.g. state-space and descriptor models where matrices
H(p), L(p), andF (p) then become

H(p) =

[

C Dd

−(pE − A) Bd

]

, L(p) =

[

−I Du

0 Bu

]

, F (p) =

[

Df

Bf

]

(7)

The objective is now to outline a design procedure,
and software implementation, that finds all residual

generators for a given system and also provides the
required fault sensitivity in the residual.

To illustrate the design procedure, let the rows of
NH(s) form an irreducible polynomial basis for the
left null-space of the matrixH(s). If we let f = 0
and multiply (6) from the left withNH(p), we obtain
the expressionNH(p)L(p)z = 0. In this equation
the influence of the unknown signalsx has been de-
coupled. Thus, by picking one row inNH(p)L(p),
or a linear combination of rows specified by a row
vector γ(p), we obtain a so called parity relation
γ(p)NH(p)L(p)z = 0. By adding stable dynamics
d(p) of sufficiently high order we obtain a residual
generator with transfer operator

R(p) = d−1(p)γ(p)NH(p)L(p) (8)

which can be realized by an explicit state-space de-
scription. This is our basic idea of how residual gen-
erators can be constructed for models in the form (6).
To achieve the required fault sensitivity, the vectorγ
need to be chosen with some care.

It is straightforward to prove that expression (8) can be
used to formany residual generator for a controllable
system. For non-controllable systems additional care
has to be taken to parameterize all residual generators
and the general case is treated in detail in [5].

It is of course important that the residual generator
is not only insensitive to unknown inputs but also
sensitive to the faults we wish to detect. An intuitive
result, also from [5], on fault detectability is

Theorem 1.Fault i is detectable in (6) if and only if
Rank [H(s) Fi(s)] > RankH(s).

A design procedure can now be outlined as:

1. Form matricesH(p), L(p), F (p) and compute
Q(s) = NH(s)L(s).

2. Determine if all faults are detectable using The-
orem 1 and then chooseγ such that the residual
has required fault sensitivity properties.

3. Choose a stable polynomiald(s) with degree
higher thanγQ(s) and form the residual gener-
ator R(p) according to (8). This expression can
easily be written in state-space form for direct
implementation.

Design and analysis of residual generators is in the
toolbox performed in Matlab using functions from
the Polynomial Toolbox [1] which are well suited for
residual generator design. It will show that the main
design steps are standard operations from polynomial
theory and thus all operations rely on well tested
and thoroughly analyzed algorithms. Numerical issues
are often of concern when polynomial algorithms are
considered and numerical motives for the approach
is discussed in [5]. The code excerpts shown below
illustrates the main steps of the implementation.

Before we start the design, we may want to check if
the design goal is at all achievable, i.e. if all faults are



detectable. Using the simple rank condition in Theo-
rem 1 for each fault respectively, it can be checked if
they are detectable. A detectability test is done with
the commands

1 >> rank([H F(:,1)]) > rank(H)

whereF(:,1) is the column ofF (p) corresponding
to the fault we wish to analyze. The command will
return 1 if the fault is detectable and0 otherwise.
When fault detectability is ensured, the residual gener-
ator can be designed, following the design procedure
above, with the following set of simple commands:

1 >> Nh = null(H’)’;
2 >> Q = Nh* L;
3 >> gamma = 1; s0 = -3;
4 >> q = deg(gamma * Q); d = (s-s0)ˆq;
5 >> % Compute state-space form of R(s)
6 >> [A,B,C,D] = lmf2ss(gamma * Q,d);

If the model (6) is a minimal over determined sub-
system, the left null-space of matrixH(s) will have
dimension1. This further means that the choice of
parameterγ disappears, i.e. can always be set to1
as in the example session above. In the example ses-
sion, all poles of the residual generator are placed in
s = s0 = −3.

7. SUMMARY

Design of diagnosis systems is a complex task that in-
volves many different steps. Full understanding of all
different parts of the design procedure requires deep
knowledge on theory from a wide variety of subjects.
This paper has briefly described a toolbox as a support
for the whole design procedure of a diagnosis system.
Software solutions include significant parts that are
based on structural analysis but also analytical design
methods and evaluation based on measured data. The
structural analysis is used in several parts of the design
process, e.g. in the fault isolability and detectability
analysis and also in the residual generator design pro-
cess.

In industry as well as in universities, Matlab is prob-
ably the most widespread tool used by control engi-
neers. Therefore the toolbox is primarily based upon
Matlab but also some computer algebraic tools such
as Mathematica and Maple are used.
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