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RÉSUMÉ.A définir par la commande\resume{...}
ABSTRACT.An original Reinforcement Learning (RL) methodology is proposed for the design of
multi-agent systems. In the realistic setting of situated agents with local perception, the task of
automatically building a coordinated system is of crucial importance. To that end, we design
simple reactive agents in a decentralized way as independent learners. But to cope with the
difficulties inherent to RL used in that framework, we have developed an incremental learning
algorithm where agents face a sequence of progressively more complex tasks. We illustrate this
general framework by computer experiments where agentshaveto coordinate to reach a global
goal.

MOTS-CLÉS :A définir par la commande\motsles{...}
KEYWORDS:Reinforcement Learning, Multi-Agent Systems, Partially Observable Markov Deci-
sion Processes, Shaping, Policy-Gradient

1. This work has been conducted in part in NICTA’s Canberra laboratory.

Published in AAMASJ - 2007, pages 1 à 1



2 Published in AAMASJ - 2007

Abbreviations used in this document :

– RL - Reinforcement Learning

– MAS- Multi-Agent System

– MDP -Markov Decision Process

– POMDP -Partially Observable Markov Decision Process

1. Introduction

The problem of automating the design of a Multi-Agent System(MAS) is at the
heart of much research. It is an important issue mostly related to a crucial question :
how to link theglobal description of a task with agents whose behaviours depend on
a necessarilypartial andlocal view of this task.

This design problem is all the more tricky as “reactive” and “cooperative” MAS
are considered, since these systems rely on interactions among—often many—
agents in order to produce a complex collective behaviour relying in particular on
self-organisation phenomena. The main difficulty comes from the fact that self-
organisation is a process that is not well understood and noteasy to control. Thus,
the only solution for the designer is often to undergo a tedious task of tuning the para-
meters of the reactive behaviours so as to obtain the desiredcollective behaviour. On
the other hand, the greatest advantage of these systems is the simplicity of the agents,
which eases their design.

Reinforcement Learning (RL) ( , ) is a common approach to decision-making
under uncertainty. It is also an appealing tool to tackle theautomation of MAS design
( , ) in a decentralised manner. This is the approach adopted in the present paper, in
which independent learners try to achieve a common goal. Ourinterest is to see each
agent learn locally how to optimise a global performance. There are many advantages
to this approach :

– Because we employ Reinforcement Learning, a simple scalarsignal evaluating
the system behaviour (the reward) is sufficient to learn. It is not necessary to have a
teacher knowing the problem’s solution beforehand.

– The decentralised framework often makes the task faced by each agent of a reac-
tive MAS rather simple. In many cases, it is easier for each agent to learn its local
reactive behaviour than to try learning the system’s collective behaviour. This is a way
to avoid an important pitfall of RL : a combinatorial explosion is all the more probable
that the problem is complex.

Moreover, Reinforcement Learning methods are based on the mathematical formalism
of Markov Decision Processes(MDP) that details the assumptions to be satisfied for
an algorithm to converge. This mathematical framework alsogives a formalism for
the study of a MAS’s collective behaviour.
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The use of Reinforcement Learning in a decentralised fashion for Multi-Agent
Systems causes some difficulties. Indeed, our approach is not in the precise framework
of MDPs (because of the multi-agent partially observable setting), which leads to the
loss of the usual guarantees that the algorithm converges toan optimal behaviour. This
is due to the fact that each agent is constrained to a local andpartial view of the system
and, as a consequence, generally does not know the system’s global state1.

Common model-free learning algorithms are for exampleQ-learning and Sarsa (
). Under the Markov assumption, they efficiently find a globally optimal deterministic
policy (one such policy exists in this case). Yet, because each of our learners is facing
a non-Markovian problem (due to a decision made with insufficient information), we
have to use direct policy search algorithms instead, looking for an—at least—locally
optimalstochasticpolicy.

Based on such a classical RL technique to find stochastic policies, our proposition
is then to make use of adecentralised incrementallearning algorithm :

– The learning isdecentralisedbecause the group’s behaviour evolves through the
independent learning processes of each agent.

– By incremental, we mean that agents are progressively pitted against harder and
harder tasks so as to progressively learn a more complex behaviour.

Another way in which our approach could be called incremental is that initially lear-
ning is performed with very few agents, so as to minimise coordination and cross-
work actions, and then the resulting basic behaviours are exported to learning tasks
with more and more agents. Eventually, behaviours can be further refined by lear-
ning in these more demanding environments. Thus, the originality of our approach is
twofold : learning is decentralised and incremental.

Note : In a broader sense, incremental RL is generally referred to asshaping(Sec-
tion 4.2 comes back to this subject).

In this paper, we present our incremental (shaping) method for learning in a multi-
agent system and an experiment on which we tested our methodology. Section 2 dis-
cusses related work, Section 3 brings some background knowledge, Section 4 des-
cribes the approach we follow, and Section 5 describes the experiments conducted to
test the viability of our approach and the results obtained.A discussion of our work
follows in Section 6, highlighted by some comparisons with other similar works. Fu-
ture directions and conclusive remarks end the paper in Section 7.

1. Note that most other studies make the opposite assumption of a total perception by each
agent.



4 Published in AAMASJ - 2007

2. Related Work

2.1. On explicit coordination

Boutilier ( ) has studied the problem of coordination from a theoretical point of
view, using Multi-agent Markov Decision Processes (MMDP).In his framework, each
agent can compute a globally optimal policy where only coordination problems are to
be solved, i.e. when the optimal joint action is not unique. As he points out, such a co-
ordination can be reached using social laws, communicationor a learning mechanism.
A major drawback of this planning framework is that it requires not only a global
perception, but also the ability to recognise other agents,which is rarely the case in a
reactive MAS.

Modelling/Recognising Other Agents —

Even without Boutilier’s strong hypotheses, the ability torecognise other agents
can be useful to understand their behaviours (learn their policies or determine their
goals). Taking this information into account to choose an action may help improving
the coordination and global cooperation. Yet, the other agent’s model must be accurate
since, as shown by Hu and Wellman ( ), a bad model may be worse than no model.
Historically, the modelling of other agents has mainly beenused in competitive situa-
tions, other agents being viewed as opponents ( , ). Works often consider game theory
and the simple prisoners dilemma ( ).

Communication —

Communication could also be used to solve the problem of explicit coordination.
But attention must be paid to the fact that communication in itself has a cost ( ) : it is a
new resource to manage. Moreover, communication may have animportant impact on
the complexity of decision-making ( ). An important aspect of communication is the
question of its content : intended actions, utility of actions, belief state, perceptions... ?
A possible direction for tackling this question is that of learning (or “agreeing on”) the
interpretation of messages that have no prior common meaning ( , ).

2.2. Reward Definition

Individual Viewpoints —

It is very important to remember that defining the reward function is a crucial
but difficult phase. A first point is that a “truly” autonomousagent should not rely
on external help to receive reinforcement signals, but on aninternal mapping from
observations and actions to a scalar reward.2 This is similar to the viewpoint adopted
by Fernández and Parker ( ), where the team tries to maximise the accumulated reward

2. But an agent learning in “controlled conditions” could getits reward from a third party, which
is not our choice.
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of all teammates despite the lack of communication. On the contrary, much research
on multi-agent frameworks relies on complete observability and, as such, a common
global reward function may be used by each agent, ensuring that they work toward a
common objective.

Multi-Agent Credit Assignment Problem —

In all cases, as we mentioned in Section 3.3, the multi-agentcredit assignment
problem (how to define individual reward functions when considering a global—
cooperative—task) remains difficult, as can be observed in Tumer and Wolpert’s work
on this topic (COllective INtelligence ( )). The main results obtained only concern si-
tuations where agents can be organised in sub-groups working on totally independent
problems.

Modifying the Reward Function —

The reward function can be modified to efficiently guide the learning agent. This
has been applied in Matarić’s work with multi-robots systems ( ), where she takes the
option of adapting the reward function and the agents’ actions and perceptions to use
a simple reinforcement algorithm. The reward is not a binaryprocess (no reward / big
reward at goal) but uses a “progress estimator”, i.e. a smoother reward adapted to give
very frequent hints to each individual agent. This method requires an important work
from the human designer and is strongly task-dependent. Another example is that of
Stone and Veloso’s work on simulated robotic soccer ( ), where they also choose to
define a reward function giving an estimate of the team’s progress.

The definition of a reward function—and how to use it—is an important problem
that should always be kept in mind in multi-agent Reinforcement Learning. Moreover,
theoretical advances are still required in the multi-agentframework, so as to ensure
that individual reinforcement signals appropriately leadto an intended global goal.

2.3. Learning Algorithm

Partial Observability –

In a partially observable setting, well informed decisionscan be made using past
observations to disambiguate the current situation.

One approach is that of computing a probability distribution over states (what gives
a “belief state”) ( ). But this requires knowing the underlying model of the system and
can be computationally very expensive. Furthermore, in oursetting, the underlying
MDP changes when the complexity of the problem increases. This would make it
very difficult to reuse any knowledge. Another approach consists in defining a policy
on a sequence of past observations ( , ), which is as scalable as the “instant” policy we
are using. The main difficulty is that learning consumes muchmore time and memory
when considering past observations.
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To our knowledge, most practical experiments in multi-agent settings have only
involved policies depending only on the immediate observation ( , , ). In this case,
direct policy search (looking for stochastic policies) hashad more success than dy-
namic programming (producing a deterministic policy) whenboth types of algorithm
have been compared, as done by Salustowicz et al. ( ) or as we experienced ourselves
usingQ-learning in earlier experiments. Work by Peshkin et al. ( ) and Baxter et al. (
) also make use of a direct policy search in multi-agent settings.
A particular case of RL based on current observation is that of TPOT-RL ( ), which
seems specific to problems like the robot soccer it has been designed for. Indeed, it
considers that the next state is not accessible when the ballis being passed to ano-
ther player for example. As a consequence, a classical update usingV (s′) to compute
Q(s, a)—if the transition is(s, a) → s′—is not possible, hence the idea of using a
Monte-Carlo sampling to evaluate the expected future reward.

Multi-Agent Aspect –

In a multi-agent setting, better results logically requirethe agent to reason about
other agents’ reasoning ( ). But this requires knowledge about this other agent’s beha-
viour, while we have seen in Sec. 2.1 that it is not convenientto distinguish agents and
that it would again lead to computationally expensive algorithms.

Architecture –

In some challenging applications of Reinforcement Learning, a monolithic archi-
tecture seems often insufficient to tackle the complexity ofthe environment. A good
way to go can be to decompose the problem according to different levels of abstraction
(from low-level controllers to high-level strategies). This is quite common in robotics,
with examples in foraging ( ), robotic soccer ( , ). In this domain, different questions
arise as : ’What should the various levels be ?’ and ’Can they be automatically defined
( ) ?’ We do not make use of a hierarchical architecture, so as to focus on our proposed
shaping methodology.

2.4. Automated Shaping

Existing work in the field of shaping ( , , ) shows how efficient shaping can be,
and gives some theoretical results on how a problem can be modified without altering
the solution. Yet, how to modify a problem so that it is easierto solve remains an open
question. It is probable that if one knows how to modify the problem, one probably
knows a lot about the solution. Two experiments using rewardshaping in a multi-agent
application have been mentioned in Sec. 2.2 ( , ).

Asada’s completely observable model ( ) made it possible to automate the defini-
tion of the agent’s training. It was possible to evaluate thedistance to the goal thanks
to an ordering of perceptions. In the case of factored perceptions (a perception being
described by a vector of variables), an interesting direction could be to analyse the
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frequency of changes in the variables, as done by Hengst ( ) todiscover hierarchy in
Markov Decision Processes.

3. Background

In this section, we first describe the precise problem of Multi-Agent System de-
sign we want to address. We then present Reinforcement Learning, focusing on the
details which are of interest to our work. Lastly, we explainwhich particular difficul-
ties are met due to the use of RL in a MAS. This will lead to the original methodology
proposed in Section 4.

3.1. Designing Multi-Agent Systems

We are interested in automating the design of cooperative Multi-Agent Systems by
having each individual agent learn its own behaviour. As mentioned earlier, we have
decided to work with very simple reactive agents for complexity reasons. Besides, it
allows us to concentrate on the learning aspect of the design.

Among many possible choices, our agents can be characterised as :

– reactive: Agents have “reflex” behaviours, act based on current observation only
(memoryless behaviour).

– situated with local perception : Even if “partial” observations are a disadvan-
tage when learning, their “local” aspect is of benefit as it limits the risk of combinato-
rial explosion (only a few elements are perceived).

– possibly heterogeneous: Although they may have the same abilities for percep-
tion and action, each agent can acquire a different behaviour from the others, as agents
learn individually in the adopted learning process.

– cooperative: All agents share the same goal and theywill have to coordinate to
reach it.

Agents may have other characteristics (such as communication skills), yet we do not
have any preferences on them, as they do not play any crucial role in our approach.

The question raised is then the following : given a global task (i.e. a task that a
priori requires a global view of the system in order to be solved), how to design –
independently and in decentralised way– the individual behaviours of agents having a
local and partial view of their environment? For the reasonsmentioned in the introduc-
tion (formalism, top-down approach with no supervision), we propose to tackle this
problem through Reinforcement Learning (interested readers can find an introduction
to Reinforcement Learning written by Sutton and Barto ( )).
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3.2. Reinforcement Learning

3.2.1. Markov Decision Processes

We first consider theideal theoretic framework for Reinforcement Learning, that
is to say Markov Decision Processes ( , ).

Let 〈S,A, T , r〉 be a Markov Decision Process (MDP) whereS is a finite set of
statesandA a finite set ofactions. This process is Markov since state transitions
are ruled by thetransition function T : S × A × S → [0, 1] with T (s, a, s′) =
Pr(St+1 = s′|At = a, St = s) (Figure 1 presents MDPs as a graphical model).r

is a mapping fromS × A to R that defines thereward gained by the system after
each state transition. An actionpolicy π is a mapping from states to distributions
over actions (π : S → Π(A), with Π(A) a probability distribution over actions).
The problem is then to find a policy optimising a performance measure based on the
reward, namedutility and denotedV . Typically, the utility can be the sum of rewards
to a finite horizon, the weighted sum of this reward on an infinite horizon (

∑∞

t=0 γtrt

whereγ ∈ [0, 1)), or the average reward gained during a transition.

St−1

At−1

St

At

St+1

Figure 1. Graphical Model of an MDP. Dotted arrows indicate that an action is cho-
sen depending on a state. Everything here is observable (indicated by the grey back-
ground), but rewards are not represented (to keep the figure simple).

In this paper, onlymodel freeRL ( , ) is considered : agents look for optimal poli-
cies with no knowledge of the system’s model (T andr). If a model could be computed
(when the dynamics of the system are known), multi-agent problems usually lead to
huge state spaces (size exponential in the number of agents). The general principle
of model-free RL algorithms is to have the learning agent evolve in its environment
and gather results of experiments (in statest, actionat may lead to statest+1 with
rewardrt). Through stochastic approximation methods, the agent canthen directly
learn (usingQ-learning ( ) or Sarsa ( ) for example) a value function on eachof its
states and deduce an optimal deterministic policy (whereasgeneral policies may be
stochastic), the Markov property being a guarantee that there is no local optimum in
this process and that one deterministic optimal policy exists.
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3.2.2. Partially Observable MDPs

In our framework, agents only deal with partial observations. Therefore, they do
not have access to a complete state of the system and are rather facing a Partially Ob-
servable Markov Decision Process (POMDP). Such a POMDP is defined by adding to
the〈S,A, T , r〉 tuple a finite setΩ of possible observations, and an observation func-
tionO linking states to the observations they may cause :O(s, o) = Pr(Ot = o|St =
s) (see Figure 2). Besides, in our model-free problem, an agenthas no knowledge of
the underlying MDP (S, T and thereforeO).

St−1

Ot−1

At−1

St

Ot

At

St+1

Figure 2. Graphical Model of a POMDP (see also Figure 1). In the case of aPOMDP,
states are hidden (represented by a white background). Note: the choice of action
depends on the current observation only.

What an agent experiences is then only linked to observations instead of
states. As a result, the process(Ot) obtained is not necessarily Markov anymore
(Pr(Ot|Ot−1) 6= Pr(Ot|Ot−1, Ot−2, . . . )), and there may not be a deterministic
policy among the optimal solutions. This requires looking for stochastic policies of
the form :π : Ω −→ Π(A). The dynamic programming algorithms we mentioned for
MDPs are not suitable in this new framework (since the Markovproperty is not sa-
tisfied), but may be replaced by policy search algorithms as –for example– the online
policy-gradient we have used (based on Baxter et al. ( , )). Early experiments have also
been performed withQ-learning, showing that looking for a stochastic policy leads to
better results, and turning a deterministic policy in a stochastic one using a soft-max
is no satisfying solution.

This choice of a policy-gradient is not so usual, as it often appears to be sufficient
to use dynamic programming algorithms, which are an easy pick in many cases. Yet
policy-gradients are not only more appropriate in theory (optimising in the space of
stochastic policies), but appear in recent works as very promising in problems invol-
ving function approximation techniques ( , ) and in probabilistic planning ( ). In both
cases, policy-gradients make it possible to optimise a policy in a large state-action
space by using either function approximation methods or a carefully chosen control-
ler.

Learning is all the more difficult under these new conditions, as there may now
be local optima into which an agent can permanently fall. Interested readers may also
refer to papers by Littman et al. ( ) and Singh et al. ( ) to learnabout the use of
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MDP algorithms in partially observable settings, and by Jaakkola et al. ( ) for another
algorithm that could be used instead of the mentioned onlinepolicy-gradient.

3.3. RL and MAS

As pointed out by Boutilier ( ), the evolution of a Multi-Agent System can be mo-
delled as an MDP if considered from an external point of view :depending on the
global system state, there is ajoint action to choose (the set of all agents’ indivi-
dual actions). Indeed, most theoretical works on Reinforcement Learning in MAS are
grounded on this formalism, as can be observed from thoroughreviews by Stone and
Veloso ( ) and Shoham et al. ( ) (the work by Gmytrasiewicz and Doshi ( ) gives a
counter-example).

Yet, such an approach appears not to be reasonable for practical applications. The
reason for this is twofold :

– The global state space will grow exponentially and will shortly be unmanageable
(this is already often the case in simpler mono-agent settings).

– Realistic perceptions are generally limited to a local view of an agent’s environ-
ment.

Our motivation to deal with these two limitations is the mainargument for working in
a decentralised and partially observable framework.

Unfortunately, as shown by Bernstein et al. ( ), solving the problem in a non-
centralised way when the agents only have a partial perception of the system’s state is
NEXP-complete, i.e. there is provably no polynomial algorithm to solve the problem.
The additional complexity of our problem –compared to the classical MDP setting– is
due to three major difficulties being faced :

1) Partial observability. As already mentioned, each agent’s perception is local,
which makes them uninformed of the global state of the problem. As such, the pro-
blem at hand belongs to the class ofpartially observedMarkov decision models (see
Section 3.2.2).

2) Non-stationary transitions. Reactive agents with a local view of the environ-
ment cannot use joint actions to solve the problem. In fact, other agents are hardly pre-
dictable elements of the environment : as agents learn theirpolicies simultaneously (in
our work), each agent lives in an environment with non-stationary transitions (other
agents are part of the agent’s environment).

3) Multi-Agent Credit Assignment3. In a Multi-Agent problem, an important
difficulty is to reward agents appropriately. Intuitively,an agent whose decisions have
not contributed to a recent success of the group should not get any reinforcement
signal. Yet, if an MDP point of view is adopted -all agents getting identical rewards-

3. Not to be confused with thetemporal(mono-agent) credit assignment problem : which past
decision should be reinforced because of the present reward?
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an agent may “understand” which decisions are really usefulas only some of them
regularly lead to successes.

In our framework, reinforcement signals are internal to theagent, depending on
its immediate observations. Thus, we face the problem of defining individual reward
functions that correctly represent a common group objective (a question raised in more
details in the COllective INtelligence approach ( , )).

Note that in practice, e.g. in traffic control, local rewardsmake learning often ea-
sier, even if they may not lead to an optimal controller.

Classical stationary Partially Observed Markov Decision Processes are nearly im-
possible to solve when there are more than a hundred states ( ). The combination of
the first two problems (i.e non-stationarity and partial observations) makes the pro-
blem non-solvable without using approximations. The multi-agent credit assignment
issue is a rather independent question compared to non-stationarity and partial obser-
vations. We simply assume in this paper that the reward functions employed appro-
priately leads to a cooperative system.

4. Shaping : incremental reinforcement learning

As there are no exact algorithms looking for optimal behaviours for the class of
agents we consider, we will use approximation methods. Evenif the learning condi-
tions are worse than those of a POMDP (see Section 3.3), we have decided to make use
of an algorithm suited to this partially observable mono-agent situation. Each agent
will use a gradient descent RL algorithm (or policy-gradient) ( , ) suitable for on-line
learning in a model-free POMDP, though it is not designed foruse in our multi-agent
framework.

After a brief description of this policy-gradient algorithm, we will focus on the
main point of this paper : the use of a shaping method to designMulti-Agent Systems.
This presentation is done by first introducing the general idea behind shaping and then
detailing how this approach is here adapted to a MAS.

4.1. Local learning algorithm used

As stated earlier,eachagent uses its own policy-gradient algorithm to learn its
policy (Q-learning was tried in early experiments, but was found to beunstable, most
likely as it was looking for deterministic policies in a non-Markovian framework).
We use an on-line version of the algorithm (presented here inits usualmono-agent
setting).

As proposed by Baxter et al. ( , ), a policyπ depends on a set of parameters
Θ. This leads to an expected utilityV (πΘ) = V (Θ). The policy-gradient leads to
obtaining a locally optimal policy by findingΘ∗ that makes the gradient equal to
zero :∇V (Θ∗) = 0.
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The set of parameters we choose isΘ = {θ(o, a), o ∈ Ω, a ∈ A}, with θ(o, a) a
real valued parameter. The policy is defined by the probabilities of taking actiona in
stateo as :

πΘ(o, a) =
eθ(o,a)

∑
b∈A

eθ(o,b)

Although this algorithm is theoretically not suited to MAS,cooperating agents
prove to simultaneously evolve toward coordinated behaviours. Some readers may
also be interested in the fact that such an algorithm may be used to learn controllers
for several cooperating agents in a centralised way : to thatend, each agentAj has to
be described by a subsetΘj of parameters linking its observations to its actions ( , , ).

4.2. Incremental RL : Shaping

To speed up learning and improve the efficiency of resulting behaviours (mainly by
avoiding being stuck in low local optima), we propose applying a progressive learning
method. This approach, inspired by works in psychology ( , ) (Randløv and Alstrøm (
) give an historical introduction), has been employed successfully in mono-agent RL,
but only in completely observable MDPs ( , ).

The main idea is to ease the learning task by turning the problem the agent is
facing into a simpler problem, and then progressively coming back to the original
one. In fact, as far as Markov Decision Processes are concerned, a problem may be
modified in various ways, as :

– The reward function may be redefined ( , , ). This is even done intuitively in
some cases by rewarding the agent when it goestoward its goal while a reward when
the goal is reached should be sufficient. Note that this may behazardous (agent going
back and forth to accumulate reward), but there are some theoretical guarantees ( ).

– The physics of the system may be altered ( ). This corresponds to modifying the
MDP’s transition function. A simple example is that of adding training wheels to a
bike, and then progressively raising them ( ).

Whereas very appealing, the idea of shaping is not so easily applied : it may be
difficult to determine what is a “simpler” problem. As noticed in Laud’s PhD thesis (
), shaping is generally a way to bring prior knowledge to a learning agent. In a way, it
often turns Reinforcement Learning into a slightly supervised learning.

In a third shaping approach (although its author does not mention shaping) an
algorithm can successfully find “simpler” problems by itself. In this work by Asada (
), the learning agent is helped by being first confronted by states “close” to the goal
to achieve, and then being progressively put in more and morecomplex situations (far
from this goal). The result is to help the spreading of rewards in the value function
(or Q-values). In this particular approach, and if a model is known (transition and
reward functionsT andr), the definition of the training used with the agent may be
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automated, since states close to rewarded transitions can be identified. This makes it
effectively possible to determine what is a “simpler” problem.

This third type of shaping is not completely orthogonal to reward-based shaping.
It relies indeed on a progress estimator (since it uses startstates close to the goal), and
using a progress estimator is and ideal way to shape a reward function. Yet they can
lead to different behaviours : reward-based shaping won’t be efficient in a maze, since
the distance to the goal is often a bad progress estimator, while Asada’s shaping acts
more as a backward search as it starts from the goal. Transition-based shaping is often
difficult to implement and to benefit from : in the mountain-car problem ( ), starting
from a flat mountain and progressively raising it does not help, as there is a critical
point where the policy has to switch from moving directly to the goal to moving back
and forth to get momentum.

This comparison between these three shaping approaches ledus to prefer Asada’s
method. But different contexts would lead to different choices. A second, and stronger,
argument is that it naturally extends to our shaping approach for Multi-agent Systems
as described hereafter.

Note : the term “shaping” sometimes appears to refer to design methods mixing engi-
neering and automatic design algorithms (as reinforcementlearning and evolutionary
algorithms) ( ). This is slightly different from the terminology used in our context.

4.3. Shaping for Multi-Agent Systems

To speed up learning and reduce the problems of complexity and credit assign-
ment4, we propose a methodology for shaping in a multi-agent setting. A first step
follows the same idea as in Asada’s work, and a second one is based on a growing
MAS.

Growing Task Complexity

Incremental learning is possible along the complexity dimension of the problem.
Agents are pitted against harder and harder tasks. First tasks are “near” (in term of
number of actions) positive reinforcement positions, thenfurther and further away.
While the learning progresses, agents have more and more freedom of action and can
explore their environment further ahead.

To be more precise, astepconsists in all agents making one move simultaneously.
Then, we define atrial as a sequence ofn steps beginning in a given situation (close
to the goal at the beginning). Thistrial must be repeated sufficiently (N times) to be
useful. This succession oftrials will be called anexperimentfor our agents. The trainer
has to define a sequence of progressiveexperimentsto help learning. Algorithm 1 gives

4. Mono-agent credit assignment problem mentioned in a previous footnote.
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a more formal presentation of the process, which will also beusefully illustrated in our
experiments (Section 5.2).

Algorithm 1 Complexity shaping
Require: A systemΣ consisting of a setA of agents and an environment.

A trainingT .
1: for all experimentE of the trainingT do
2: e = trial defined inE by :
3: ⋆ s0 initial state of the system
4: ⋆ n number of steps to accomplish froms0

5: N = number of timese has to be repeated
6: for all trial i ∈ [1..N ] do
7: Put system in states0

8: for all stepj ∈ [1..n] do
9: for all agentα ∈ A do

10: Giveα its perceptionsoα
t

11: Let α learn from its last experience
12: Ask α for its decisionaα

t

13: end for
14: Simulate system’s evolution :Σt → Σt+1

15: t← t + 1
16: end for
17: end for
18: end for
19: repeat
20: [ lines 9 to 15 ]
21: until stopping criterion of the learning algorithm verified
Ensure: Policies of agents inA.

Growing MAS

This phase is more specific to the conception of Multi-Agent Systems. It consists of
learning with a reduced number of agents, and then multiplying them. This is simply
done by cloning the first agents obtained, and then letting them all learn again. But
one should not forget that all agents always learn their own behaviours, clones may
therefore evolve in different ways.

Simultaneously, we also add other objects in the environment, which –from an
agent’s point of view– will increase the complexity of learning in a similar fashion as
adding other agents. Indeed, if the goal remains the same, more objects are interacting
while the agent only perceives few of them. An important remark at this stage is that
the agents’ internal architecture must be adapted to a variable number of objects/agents
in the environment. This problem has been answered in our experimentation with
a rather simple method based on the notion of local perceptions (see the problem
description in Section 5.1 for more details). This shows once again how important
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locality is in Multi-Agent Systems, even if this restricts each agent’s knowledge about
the world.

Note : the question of designing such ascalableagent (able to handle a variable
number of perceptions and motivations) also led to other developments ( ) that fall out
of the scope of the present paper (see discussion in Section 6).

5. Experimenting with shaping

An application of the shaping method presented in the previous section is given
in the experiments described here. After a short description of the problem, we give
the details of the experiments conducted, which separatelyanalyse both aspects of the
shaping used (growing complexity and growing MAS), and alsostudy the influence
of a MAS of variable size.

5.1. Problem description

The task chosen involves agents (either yellow or blue) in a grid world whose goal
is to push light green cubes against dark green ones5. When two agents coordinate
their movements to attain this goal –pushingtogethera pair of cubes– both cubes
temporarily disappear to randomly reappear elsewhere on the grid. Simultaneously,
agents responsible for this fusion receive a positive reward. The agent’s objective is
then to merge pairs of cubes as often as possible, not just foraging.

Agents’ description

– actions: Agents only have four possible actionscorresponding to moving North,
East, South and West (they always try to move). Agents can push other agents and
other cubes, which makes the consequences of their actions stochastic. Indeed, when
several agents are influencing a cube’s movement (for example), only one –randomly
chosen– influence will have a real effect.

– perceptions: As shown in Figure 3, an agent’s perceptionsare made up of the
following information :

- dir(oa) : direction of nearest agent of the opposite colour(N-E-S-W),

- dir(l)/dir(d) : direction of nearest light cube (and dark cube)(N-NE-E-SE-S-SW-W-NW),

- near(l)/near(d) : is there a light cube (dark cube) in one of the eight
nearest positions(true|false).

Combining these, there exists a maximum of1024 observations (some combinations
of perceptions are not possible). We reduce this number to256 by using symmetries

5. From an agent’s point of view, light and dark green cubes cubes are interchangeable.
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of the problem. This number is small compared to the15 249 024 states of the8 × 8
totally observed centralised problem, and also it isindependent of the world’s size.

light
green

dark
green blue

yellow

agent dir(cl) dir(cd) dir(oa) near(cl) near(cd)
yellow S E SE no no
blue W NW NW no yes

cl : light cube - cd : dark cube - oa : other agent

Figure 3. perceptions’ examples(two agents in a simple world)

– reward : The rewardfunction we have chosen eases the credit-assignment pro-
blem. When an agent takes part in the fusion of two cubes, it gets a reward (+5), while
the reward is zero the rest of the time. Indeed, an agent knowswhen it has taken part
in such a fusion as this corresponds to the event of seeing a pair of aligned blocks
disappearing when the agent moves in their direction. A “global” reward would not be
very consistent with agents having only local information.
There is no guarantee that this local reward function leads to a complete cooperation,
as would be the case with a global one. Only experiments can easily confirm/infirm
the choice we made.

We conclude by some remarks about the simulation itself. To focus on the learning
problem, we have implemented simple mechanisms to avoid some unrelated problems.
For example, cubes cannot go on border cells of the grid, neither by being pushed, nor
when reappearing on the grid (this could otherwise lead to blockings, with cubes that
could not be moved away from the border).
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5.2. The 2-agent and 2-cube case

5.2.1. Reduced problem

The first step in our incremental learning scheme is to use a small sized world
with a minimal number of agents and objects : one agent and onecube of each colour.
Then, beginning with positive reinforcement situations, the agents will face harder and
harder problems.

5.2.2. Progressive task

For our problem, there is only one situation that leads to a positive reward. This
situation is thus the starting point in the shaping process Agents face a sequence of
tasks to learn before ending in a standard8 × 8 environment where they keep on
learning.

Table 1 shows a sequence ofexperimentswe used to help our agents in theirtrai-
ning. Thestarting configurationof the first trial , on a6 × 3 world, needs only one
move to reach the goal, each agent pushing toward the cubes. However, they have up
to 6steps(the duration of atrial ) to reach it (so they can explore different moves), and
they can try this 150 times (duration of thisexperiment).

Tableau 1.The sequence of experiments we used for incremental learning.
Starting configuration n (moves) N (trials)

6 150

6 100

10 150

20 150

20 150

100 15

100 15
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In order to estimate the efficiency of our approach, a standard learning (from
scratch) is compared to the incremental learning (shaping)proposed. By “from scrat-
ch”, we mean the use of the same policy-gradient algorithm, but always starting with a
blank policy i.e., with no prior knowledge. In both cases, wecount the number of cube
merges accomplished during 1000 time steps to evaluate the quality of the agents’ po-
licies, these agents being put in an8 × 8 environment once the training has ended
(when there is one). We will now observe and analyse the results obtained.

Results

Figure 4 shows the evolutions in the pair of agents’ efficiency with and without
using shaping (average of 10 independent simulations). Thecurve representing the
efficiency of learning after a period of assisted training only begins after the 12000
time steps of this training (Table 1).
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Figure 4. 2 agents, 2 cubes : learning from scratch vs. shaping

In both cases, agents tend toward behaviours allowing about90 merges each 1000
time steps (on average, two cubes are merged every 11 time steps). On the other hand,
once the training time has elapsed, the convergence toward very good performance
is achieved notably faster than through “standard” learning. If agents do not learn
everything through the script that guides them during earlytimes, at least do they
benefit from it to efficiently learn their policies.
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Designing the Sequence of Experiments

The sequence of experiments should provide problems of growing complexity.
Here, it is rather easy to design appropriate starting situations, since it suffices to
move agents away from the blocks and blocks away from each other. Because there is a
positive reward only in one state, an increasing distance tothis state (in the state space)
corresponds generally to an increasing complexity. We further discuss the problem of
designing this sequence in Sec. 6.5.

5.3. More agents and more cubes

We now consider the use of more agents and more cubes. As done previously,
learning with shaping will be compared with standard learning (without shaping). But
we will begin by considering the efficiency of the policies learned in the previous
experiments (with 2 agents and 2 cubes, which will be denoted2a2c) when they are
reused in more populous worlds.

Note : Here, agents that do not start learning from scratch (either to simply reuse
policies or to improve them) have their policies initialised with policies learned in
2a2c.

5.3.1. Results : simple reuse of policies

In this part of our work, the first interest was to check the efficiency of different
numbers of agents having to deal with different numbers of cubes (taking the same
number of agents (or cubes) of each colour). So, we first use agents whose fixed be-
haviours have been learned in the2a2c case (as illustrated on Figure 5), i.e. which
are not supposed to be very efficient with more cubes. Nevertheless, this gives them
enough good reactions to have some good results.

Several tests were carried out with 2, 4, 6, 8 or 10 cubes and 2,4, 8, 16 or 20
agents (always in a world of size10 × 10). We used series of 1000 consecutive time
steps, these series beginning in random configurations. Andas blocking situations
could sometimes occur, 100 such series were made in each casein order to compute
an average efficiency.

Table 2-a gives the average efficiency in each of the 25 situations (the efficiency is
the number of merges made in 1000 steps). These results can becompared with those
from Table 2-b that measure the efficiency of agents having a completely random be-
haviour but placed in the same environments. It then clearlyappears that behaviours
learned by agents having to handle 2 cubes are still efficientin more complex envi-
ronments. Through these results, a trend seems to take shape: except for 2 cubes, a
growing number of agents improves the results up to the pointwhere agents cramp
each other and bring too many coordination problems.

For a given number of agents, and with a growing number of cubes, there seem to
be a threshold beyond which additional cubes lead to a deterioration of the group’s per-
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Figure 5. Replicating behaviours from2 to n agents.
Policies are simply copied from the two original agents intotheir “clones”.

Tableau 2.Agents’ mean efficiencies (number of merges in 1000 steps)
a. Reuse of2a2c agents b. Random agents

cubes agents
↓ 2 4 8 16 20
2 40.4 30.0 20.0 12.7 11.0
4 7.6 17.1 17.5 13.9 12.9
6 3.4 11.2 14.7 15.7 16.5
8 1.9 8.6 13.5 15.9 18.0
10 1.6 6.7 11.0 17.7 20.6

cubes agents
↓ 2 4 8 16 20
2 0 0 0.1 0.3 0.4
4 0 0.1 0.2 1.2 1.8
6 0 0 0.5 1.9 3.6
8 0.1 0.2 1.0 4.1 6.0
10 0.1 0.3 1.1 6.1 7.3

formance. A more qualitative analysis of observed behaviours has shown that agents
remain stuck in sequences of oscillatory movements. Because of their partial percep-
tions and of their lack of communications, agents seem to have difficulties working
together on a same subset of cubes and constantly hesitate between two options that
alternatively appear to be of interest.

5.3.2. Results : Incremental learning along the number of agents

Rather than just reusing behaviours learned for a 2 agents and 2 cubes situation
in more cluttered environments, the second phase of our methodology –as defined in
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Section 4.3– consists in using such behaviours as a startingpoint to adapt agents to
new situations by continuing the reinforcement learning.

To assess this process, we compare the learning curve when the agents are initially
novices (starting from scratch) to that when the agents are endowed with2a2c policies.
Figures 6 a, b, c and d show the results in four distinct situations.

The learning for novice agents is difficult, especially in situations a and b because
the size of their environment (larger than the environment used in Section 5.2) leads to
scarcer non-zero rewards. In fact, in cases a and b, novice agents do not learn anything
and their behaviours are the same as randomly moving agents.Indeed, in each case,
novice agents evaluated at timet = 0 are simply random agents having spent1 000
time steps in the environment. With more agents, even noviceagents can learn, as
the frequency of rewarded events is higher. This is an interesting phenomenon since,
otherwise, more agents makes learning harder. It can be related to difficulties encoun-
tered when learning to solve planning problems : a reward being provided only when a
goal is reached, a bigger state space leads to infrequent rewards and therefore a harder
learning task.

Coming back to the initial problem in this study, these experiments clearly confirm
that agents having some experience from a problem of the samekind have a much
faster progression than beginners. In case a, the efficiencylevel is even optimal from
the beginning (which is not surprising as the conditions arenearly the same as in
the initial learning problem). In addition to an improved learning rate, the maximum
efficiency reached by the agents through shaping is by far better than performances
obtained when learning from scratch. The reason for this is that agents in a noisy
environment (noise here due to a large number of objects/agents) find it difficult to
learn that they should sometime go on the other side of a pair of cubes, whereas this
knowledge is present in2a2c behaviours and can then be reused.

6. Discussion

6.1. On explicit coordination

Our experiments show that this work could benefit from explicitly addressing co-
ordination problems. In particular, it is often the case that two agents, when placed
in a world with more than two cubes, are not able to coordinateso as to push the
same pair of cubes. Moreover, when too many agents are present, they easily work
at cross-purposes. Making appropriate decisions would require taking into account
many more agents and objects than each agent can through their limited perceptions.
Instead, agents act often in an inconsistent manner (nearlyrandomly) because they are
not “paying attention” to most aspects of their current situation but act greedily.
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Other Agents’ Modelling and Communication —

Considering both other agents’ modelling and communication, it is important to
notice how computationally expensive these approaches canbe, as they often lead to
huge growths of state-action spaces : in one case agents try to guess what others will be
doing, and in the other case agents have to decide when and what to communicate (new
actions) and have to incorporate received communications in augmented perceptions.
Moreover, the work presented in this paper focused on reactive agents, whereas these
approaches are quite “high-level” (imply more cognitive agents).

6.2. Reward Definition

Reward Shaping —

Modifying the reward function to help learning—as described in Section 2.2 and as
encountered in Matarić’s work ( )—is known asreward shaping. As a shaping process,
it shares some similarities with the “progressive training” part of our approach, but
Mataríc’s experiments can hardly be compared with ours as this realrobotic problem
involves rather high-level macro-actions : each macro-action is a complete behaviour,
which would correspond to a sequence of actions in our case. Moreover, interactions
between robots are not strong in the foraging task. There is no coordination problem
to solve.

To come back to the other example of Stone and Veloso’s work onsimulated ro-
botic soccer ( ), it could be interesting to try our “cloning”approach on robotic soccer
(starting with a2×2 game for example), but a major difference that could make things
more difficult is that the soccer-playing agents will probably end up having different
roles, each being assigned a specific position.

6.3. Scalable Architecture and Multiple Motivations

An important aspect of our method is that it requires agents whose internal archi-
tecture is adapted to a variable number of objects or agents in their environment.

In our experiments, this constraint is satisfied by designing a perception process
always selecting the same number of visible objects (the closest ones). This prevents
from taking into account more than two objects and one agent simultaneously, and
makes it impossible to have a different behaviour dependingon which agent is consi-
dered. Moreover, as the visible agent may be different from one time step to another,
it does not seem appropriate to make decisions based on a sequence of observations.

We have tried to address this issue by working on decision making when multiple
motivations are faced. Because the Multi-Agent Systems considered are reactive and
with local perceptions, each agent is often facing multipleparallel motivations, and has
thus to make a choice in a “multi-criteria” problem. In our block-merging example,
limiting the perceptions ensures that only one motivation is faced. But work on “ac-
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tion selection” ( ) could be a way to address this particular problem. We conducted
some work in a mono-agent framework, obtaining an agent ableto find which basic
behaviours it should use ( , ). Applying our method in a multi-agent framework still
needs to be done.

6.4. Learning Algorithm

For the reasons mentioned in Section 2.3, we have decided to use a reinforcement
learning algorithm mapping the immediate observation to a probability distribution
over actions. Some experiments with more classical algorithms (Q-learning) produ-
cing a deterministic policy have shown that this is not a viable solution in our toy pro-
blem : the ambiguity on current situation leads agents to looping behaviours (agents
pushing their blocks and turning around them). Let us recallthat both the partial ob-
servability and the multi-agent setting are reasons for deterministic policies to fail.

6.5. Automated Shaping

Coming back to the shaping process proposed in this paper, itappears to be mainly
constrained by the need to decompose the problem at hand intoless and less complex
tasks (Section 4.3). The problem is partially made easier inour example as the star-
ting points of this decomposition are rare positive reward situations (the reward being
null most of the time). Yet, it remains difficult because of the partial observations.
Moreover, our shaping method relies on cloning agents, which is obviously limited
to settings with relatively homogeneous Multi-Agent Systems (with a few types of
agents). This assumption seems reasonable in many domains.

Also, considering multi-agent systems, our approach involving cloning agents
raises issues regarding task/role allocation : is it easy for agent to specialise for a
particular role with this type of shaping ? If the cloning process is creating copies of
the same policy, further learning can lead to a differentiation. But task/role allocation
does not necessarily imply having agents with heterogeneous policies. If agents with
identical policies have different perceptions or internalstates, they can choose to take
on different roles. But this view is quite different from most research on task alloca-
tion ( ), where tasks are explicitly defined, appropriate behaviours are known for each
task, and the problem is for the agents to decide who will perform which task.

7. Conclusion

In this paper, we have addressed the problem of automatically designing Multi-
Agent Systems made of reactive and cooperating agents, eachacting as an independent
learner. We propose the use of Reinforcement Learning algorithms so that each agent
individually adapts its local behaviour in order to achievea global task. Up to now,
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this learning problem has no theoretical solution because of its decentralised aspect
and because of the partial perceptions of the learning agents.

To get around this difficulty, we have emphasised the use of anincremental lear-
ning (shaping) scheme where more and more agents are faced with harder and harder
problems. This method is quite generic as it can be adapted toany task without adap-
ting the agents to the particular problem at hand. Its applicability is mainly limited
by the agents’ architecture, i.e., how they handle perceptions. It is indeed required to
be able to re-use a learned policy in a new setting with more objects. This is feasible
with reactive agents using simple sensors (as in our experiments). It could be exten-
ded to more complex action-selection architectures based on a combination of simple
behaviours ( ).

We have tested our approach on a simulated environment whereagents have to
coordinate in order to reach a shared goal : the fusion of different coloured cubes.
The experiments support our framework as they show the efficiency of incremental
learning. Incremental learning leads to better learning rates than unassisted learning
from scratch. Furthermore, it is more efficient to learn a more complex task after an
initial stage of incremental learning than learning directly this more complex task from
scratch : this shaping helps overcoming local optima.

Still, there is room for improvement. We have discussed several ways to overcome
these limitations, like using communication for addressing explicit coordination or
modelling other agents to better adapt to their behaviours.Defining individual reward
functions representing a common goal also remains a crucialissue. Yet, the main
improvement regarding our shaping approach would be to automate the definition of
training phases in our progressive learning (maybe by analysing perceptions as done
in some recent works ( )).

Furthermore, this work was a good opportunity to use a direct(stochastic) policy
search algorithm in cooperative agents with local perceptions. It also made it possible
to observe some phenomena in such a multi-agent learning setting : the main one being
that a large number of agents induces more interactions and thus a faster learning, but
not necessarily with the best behaviour since the incremental process is able to produce
better behaviours.
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