
Split: a flexible and efficient algorithm
to vector-descriptor product∗

Ricardo M. Czekster
PUCRS

Av. Ipiranga, 6681
Porto Alegre - Brazil

90619-900
rmelo@inf.pucrs.br

Paulo Fernandes
PUCRS–CNPq

Av. Ipiranga, 6681
Porto Alegre - Brazil

90619-900
paulo.fernandes@pucrs.br

Jean-Marc Vincent
Laboratoire LIG

Project MESCAL
51, Av. Jean Kuntzmann

38330 Montbonnot, France
Jean-Marc.Vincent@imag.fr

Thais Webber
†

PUCRS
Av. Ipiranga, 6681

Porto Alegre - Brazil
90619-900

twebber@inf.pucrs.br

ABSTRACT
Many Markovian stochastic structured modeling formalisms like

Petri nets, automata networks and process algebra represent the in-
finitesimal generator of the underlying Markov chain as a descrip-
tor instead of a traditional sparse matrix. A descriptor is a com-
pact and structured storage based on a sum of tensor (Kronecker)
products of small matrices that can be handled by many algorithms
allowing affordable stationary and transient solutions even for very
large Markovian models. One of the most efficient algorithms used
to compute iterative solutions of descriptors is the Shuffle algorithm
which is used to perform the multiplication by a probability vector.
In this paper we propose an alternative algorithm called Split, since
it offers a flexible solution between the pure sparse matrix approach
and the Shuffle algorithm using a hybrid solution. The Split algo-
rithm puts the Shuffle approach in perspective by presenting a faster
execution time for many cases and at least the same efficiency for
the worst cases. The Split algorithm is applied to solve two SAN
models based on real problems showing the practical contribution
of this paper.

Keywords
Performance Evaluation, Numerical Methods, Tensor Algebra,

Kronecker Products

∗This work is partially supported by the brazilian government
(CAPES), FINEP project STGSD grant nb. 4284/05 and SMS
Project (France). Authors Ricardo M. Czekster and Thais Webber
are invited by the Project MESCAL-INRIA.
†Corresponding author. The order of authors is merely alphabeti-
cal.

1. INTRODUCTION
Modeling large complex systems always requires a structured

description. The state space explosion itself exists only because
we can describe a very large system, i.e., a system with a huge
state space, by describing a structure simple enough to be under-
stood by us, humans. Therefore, it is admissible to rely on a struc-
tured description to all problems sufficiently large to be called that
way. This is evident observing a stochastic Petri net (SPN) [1] or a
stochastic automata network (SAN) [24], and even when you look
deeply how large straightforward Markov chains are defined, e.g.,
the balls and buckets concept in MARCA [25]. Using a less proce-
dural approach, process algebras [19] or graph grammars [14] also
use a structured, and very modular, description.

One interesting option to keep the structured characteristics of a
continuous-time Markovian model into its internal representation
is to employ tensor (Kronecker) algebra to store the infinitesimal
generator of a given model. The basic principle that recommends
the use of tensor representation for infinitesimal generators is to
take advantage of all the structural information already used in the
original description of the model. Such principle appears since the
first definitions of stochastic automata networks [24], but recently
it has also been used in other stochastic formalisms [12, 19]. In all
those references, the term descriptor is used to refer to a tensor rep-
resented infinitesimal generator. The reader interested in detailed
information about tensor algebra can found basic concepts of Clas-
sical and Generalized Tensor Algebra in [2, 11, 16].

The use of tensor representations for the infinitesimal generator,
however, is not always helpful. It undeniably reduces the memory
requirements [22, 5], but it often increases the CPU time needed
to achieve stationary or transient solution. One of the major prob-
lems with structured representations is the insertion of unreachable
states, but to cope with that, very efficient approaches deal with the
determination of reachable set [10, 23]. It remains an open prob-
lem the efficient solution of large and complex models where all,
or almost all, states are reachable.

The numerical algorithms known to compute the exact solution
of large reachable state space, non-product form, Kronecker rep-
resented models are usually iterative and they are based on the
vector-descriptor product. This operation can be done by using
clever data structures, e.g., matrix diagrams [21], or using a sum

of tensor product of standard matrix structures [16].
Despite the algorithmic differences, both approaches can be sum-

marized in finding an efficient way to multiply a (usually huge)
vector by a non-trivial structure. Old stochastic Petri net solutions
[1] translate the model representation into a singular sparse matrix.
Obviously, this sparse approach cannot be employed to deal with
really large models (e.g.more than 500 thousand states), since it
usually requires the storage of a too large sparse matrix (e.g.more
than 4 million nonzero elements). The usual stochastic automata
network (SAN) solution, called Shuffle algorithm, deals with per-
mutations of matrices and tensors [16] and it can be applied to vir-
tually any structured model. Unfortunately, the Shuffle algorithm
suffers with a high CPU cost for many practical cases.

The challenging problem for the numerical solution of structured
huge Markov models is to speedup the basic operation of most in-
terative solutions, the vector-descriptor product. This operation
corresponds to the product of a probability vector υ, as big as the
product state space, by a descriptor Q. The structure of Q is the
ordinary sum of N + 2E tensor products of N matrices, where N
is the number of automata, and E is the number of synchronizing
events in the model. Therefore, by a simple distributive property,
vector-descriptor product algorithms can be viewed in a simpler
format as a sum of products of the a vector υ by a tensor product
term composed by N matrices:

N+2E
X

j=1

υ ×

"

N
O

i=1

Q
(i)
j

#!

(1)

The reader interested in further details about the descriptor struc-
ture can find extensive material in [15].

There are many possible approaches to cope with such problems,
varying from hybrid solutions between simulation and numerical
analysis [7] to alternative storage structures [23, 8]. The focus on
this paper proposition is on pure numerical manipulation bringing
together the advantages of a straightforward sparse matrix approach
[26] and the Shuffle algorithm [16]. A similar solution, called Slice
algorithm, was proposed in [17] where a nearly sparse approach
was applied. One of the main contributions of the Split algorithm
to this domain is the introduction of a flexible approach, since it
allows a tailored solution to each tensor product term that may be
more time efficient and less memory demanding than any other ap-
proaches. In fact, the extreme options of the Split algorithm are at
least as time efficient as the sparse approach, or as memory-efficient
as the Shuffle algorithm.

This paper is organized as follows. Section 2 present the pure
sparse algorithm which is theoretically the more time-efficient ap-
proach. Section 3 presents the Shuffle algorithm which is the more
memory-efficient approach. Section 4 presents the intermediate
Slice algorithm in order to introduce the central contribution of this
paper. Section 5 presents the core of this paper which is the Split
algorithm and few variants. Section 6 presents some numerical re-
sults comparing the application of the Split algorithm compared to
the other options to some families of SAN models. Finally, the
conclusion emphasizes this paper contributions and draws possible
future works to evolve the Split algorithm.

2. TIME-EFFICIENT ALGORITHM
The more intuitive method to solve the problem, called Sparse

algorithm, aims to consider the tensor product term as a unique
sparse matrix, multiplying it by a product space sized probability
vector. Considering a tensor product term of N matrices Q(i), each
one of order ni , and with nzi nonzero elements, the Sparse algo-
rithm generates element by element one large matrix Q resulting

of ⊗N
i=1Q

(i). Then the corresponding elements of vector υ, also
with size

QN
i=1 ni, are multiplied using a traditional algorithm to

the vector-sparse matrix product.
Defining θ(1 . . . N) as the set of all possible combinations of

nonzero elements of the matrices from Q(1) to Q(N), the cardi-
nality of θ(1 . . . N), and consequently the number of nonzero el-
ements in Q, is given by:

QN
i=1 nzi. Additionally, the Sparse al-

gorithm needs the information of the size of the state space corre-
sponding to all matrices after the k-th matrix of the tensor product,
called nrightk , and numerically defined by

QN
i=k+1 ni. Further

in this paper, it will be also used the analogous concept of nleftk
which is numerically equal to

Qk−1
i=1 ni.

Algorithm 1 Sparse Algorithm - Υ = υ ×⊗N
i=1Q

(i)

1: Υ = 0
2: for all i1, . . . , iN , j1, . . . , jN ∈ θ(1 . . . N) do
3: e = 1
4: basein = baseout = 0
5: for all k = 1, 2, . . . , N do
6: e = e × q

(k)

(ik,jk)

7: basein = basein + (ik × nrightk)
8: baseout = baseout + (jk × nrightk)
9: end for

10: Υ[baseout] = Υ[baseout] + υ[basein] × e
11: end for

One possible implementation of the sparse algorithm is presented
above. The number of floating point multiplications for this imple-
mentation is:

N ×
N
Y

i=1

nzi (2)

However, in this version, all nonzero elements of Q are generated
during the algorithm execution. Such elements generation repre-
sents (N −1)×

QN
i=1 nzi multiplications that could be avoided by

generating one (usually huge) sparse matrix to store these
QN

i=1 nzi

nonzero elements. It would eliminate rows 3 and 6 from the Sparse
algorithm and reduce the number of floating point multiplications
to just:

N
Y

i=1

nzi (3)

This option allows the Sparse algorithm to be very time-efficient,
but potentially very memory demanding due to the storage of a,
potentially huge, sparse matrix Q.

Another interesting approach to the sparse algorithm is to keep
the nonzero elements inside the algorithm, but factorizing previous
calculations [8]. Note that all combinations of elements of each ma-
trix of the tensor product have multiplications in common, i.e., the
combinations can be generated considering their partial results re-
ferred to the others. Such solution reduces the complexity in terms
of number of multiplications applying an algorithm to exploit levels
of factoring reusing previous calculations. This approach is, never-
theless, very sensitive to the number of functional elements in the
tensor product term and may not produce good results. Anyway,
the worst case scenario of this variant can bring back the number of
required multiplications to those stated in Equation 2, and the best
case (no functional elements at all) will give:

N
X

i=1

i
Y

j=1

ni

!

+

N
Y

i=1

nzi (4)

For the purpose of comparisons in this paper, the sparse approach
to be considered will be the more time-efficient version, i.e., the
variant with the previous generation and storage of nonzero ele-
ments of Q. Such variant demands the smaller number of floating
point multiplications (Equation 3), but demands the storage of a
sparse matrix with

QN
i=1 nzi nonzero elements.

3. MEMORY-EFFICIENT ALGORITHM
The basic principle of the Shuffle method is the application of

the decomposition of a tensor product in the ordinary product of
normal factors property [16]:

Q(1) ⊗ Q(2) ⊗ . . . ⊗ Q(N−1) ⊗ Q(N) =

(Q(1) ⊗ In2 ⊗ . . . ⊗ InN−1 ⊗ InN) ×
(In1 ⊗ Q(2) ⊗ . . . ⊗ InN−1 ⊗ InN) ×
. . .

(In1 ⊗ In2 ⊗ . . . ⊗ Q(N−1) ⊗ InN) ×
(In1 ⊗ In2 ⊗ . . . ⊗ InN−1 ⊗ Q(N))

(5)

Hence, the Shuffle algorithm consists in multiplying successively
a vector by each normal factor. More precisely, vector υ is multi-
plied by the first normal factor, then the resulting vector is multi-
plied by the next one, and so on, until the last. These multiplica-
tions are done using small vectors called zin and zout in the Algo-
rithm 2. These small vectors store the values of υ to multiply by
the ith matrix of the normal factor, and store the result, respectively.
Their size are given for the value nrighti of the related matrix. Fi-
nally, vector Υ stores the results.

Algorithm 2 Shuffle Algorithm - Υ = υ ×⊗N
i=1Q

(i)

1: for all i = 1, 2, . . . , N do
2: base = 0
3: for all m = 0, 1, 2, . . . , nlefti − 1 do
4: for all j = 0, 1, 2, . . . , nrighti − 1 do
5: index = base + j
6: for all l = 0, 1, 2, . . . , ni − 1 do
7: zin[l] = υ[index]
8: index = index + nrighti

9: end for
10: multiply zout = zin × Q(i)

11: index = base + j
12: for all l = 0, 1, 2, . . . , ni − 1 do
13: υ[index] = zout[l]
14: index = index + nrighti

15: end for
16: end for
17: base = base + (nrighti × ni)
18: end for
19: end for
20: Υ = υ

The multiplication of the last normal factor (InleftN ⊗Q(N)) for
example, requires the multiplication of contiguous slices of vector
υ, because the zin vectors are easily located in the product state
space, and this normal factor corresponds to Q(N) matrices in the
diagonal blocks. A more complicated process to locate the zin
and zout vectors is required to multiply the other normal factors
(I nlefti ⊗Q(i)⊗I nrighti), i.e., the normal factors where the most
inner blocks are diagonal matrices. Considering the first normal
factor (Q(1)⊗ Inright1), i.e., the normal factor composed by (n1)

2

blocks containing diagonal matrices with the same element of ma-
trix Q(1), can be treated by assembling the zin vectors picking vec-
tor elements with a nright1 interval.

Generalizing this process for all normal factors, the multiplica-
tion of a vector υ by the ith normal factor consists in shuffling
the elements of υ in order to assemble nlefti × nrighti vec-
tors of size ni and multiply them by matrix Q(i). Thus, assum-
ing that matrix Q(i) is stored as a sparse matrix, the number of
operations needed to multiply a vector by the ith normal factor is:
nlefti × nrighti × nzi, where nzi corresponds to the number
of nonzero elements of the ith matrix of the tensor product term
(Q(i)).

Considering the number of multiplications to all normal factors
of a tensor product term, the Shuffle computational cost to perform
the basic operation (multiplication of a vector by a tensor product)
is given by [16]:

N
X

i=1

nlefti × nrighti × nzi =

N
Y

i=1

ni ×
N
X

i=1

nzi

ni
(6)

Another feature of Shuffle algorithm is the optimization for func-
tional elements, i.e., the use of generalized tensor algebra proper-
ties and matrices reordering that were already studied in [16]. All
those optimizations are very important to reduce the overhead of
evaluating functional elements, but such considerations are out of
the scope of this paper.

4. HYBRID METHODS
Preliminary studies originated the Slice algorithm [17] which is

a first approach that takes advantage of the Additive Decomposition
property and the decomposition of a tensor product into an ordinary
product of normal factors, the basis of a Shuffle-like algorithm. The
Additive decomposition property is quite simple and it states that
any tensor product can be decomposed into an ordinary sum of hy-
persparse matrices [8], and for this property the matrices have all
elements but one equal to zero. Assuming q̂(i1,...,iN−1,j1,...,jN)

the hypersparse matrix of order
QN

i=1 ni composed by only one
nonzero element which is in position i1, . . . , iN , j1, . . . , jN and it
is equal to

QN
k=1 q

(k)
ik,jk

, the additive decomposition property can
be stated as:

Q(1) ⊗ Q(2) ⊗ . . . ⊗ Q(N−1) ⊗ Q(N) =
Pn1

i1=1 . . .
PnN

iN =1

Pn1
j1=1 . . .

PnN
jN =1

“

q̂
(1)

(i1,j1) ⊗ . . . ⊗ q̂
(N)

(iN ,jN)

”

(7)

where q̂
(k)

(i,j) is a hypersparse matrix of order nk in which the ele-

ment in row i and column j is q
(k)
i,j .

The Algorithm 3 proposes the use of this property decomposing
the first N − 1 matrices of each tensor product, then performing
the shuffling operation with the last matrix, for each possible q̂

(k)

(i,j)

special matrix of the term. The new factor created is called Ad-
ditive Unitary Normal Factor (AUNF). It is clear that the nonzero
elements generation follows the principles of the Sparse algorithm,
and also can use any optimization technique [9]. For each nonzero
element e, it picks a slice of the vector υ (named as υin), accord-
ing to the row position of e, and multiply all elements of υin by
element e. The resulting vector υin is multiplied by the last matrix
Q(N) accumulating the result υout in the positions of vector Υ cor-
responding to the column position of element e. The computational
cost in multiplications is given by:

N−1
Y

i=1

nzi

!

× [(N − 2) + (nN) + (nzN)] (8)

σ Tensor Product Term Algorithm
σ
↓

0 Q(1) ⊗ Q(2) ⊗ . . . ⊗ Q(N−3) ⊗ Q(N−2) ⊗ Q(N−1) ⊗ Q(N) Shuffle

shuffle
σ
↓

1 Q(1) ⊗ Q(2) ⊗ . . . ⊗ Q(N−3) ⊗ Q(N−2) ⊗ Q(N−1) ⊗ Q(N)

sparse shuffle
σ
↓

2 Q(1) ⊗ Q(2) ⊗ . . . ⊗ Q(N−3) ⊗ Q(N−2) ⊗ Q(N−1) ⊗ Q(N)

sparse shuffle
...

...
σ
↓

N-2 Q(1) ⊗ Q(2) ⊗ . . . ⊗ Q(N−3) ⊗ Q(N−2) ⊗ Q(N−1) ⊗ Q(N)

sparse shuffle
σ
↓

N-1 Q(1) ⊗ Q(2) ⊗ . . . ⊗ Q(N−3) ⊗ Q(N−2) ⊗ Q(N−1) ⊗ Q(N) Slice

sparse shuffle
σ
↓

N Q(1) ⊗ Q(2) ⊗ . . . ⊗ Q(N−3) ⊗ Q(N−2) ⊗ Q(N−1) ⊗ Q(N) Sparse

sparse

Table 1: Split approach as a generalization of traditional algorithms

Algorithm 3 Slice Algorithm - Υ = υ ×⊗N
i=1Q

(i)

1: for all i1, . . . , iN−1, j1, . . . , jN−1 ∈ θ(1 . . . N − 1) do
2: e = 1
3: basein = baseout = 0
4: for all k = 1, 2, . . . , N − 1 do
5: e = e × q

(k)

(ik,jk)

6: basein = basein + (i(k−1) × nright(k−1))
7: baseout = baseout + (j(k−1) × nright(k−1))
8: end for
9: for all l = 0, 1, 2, . . . , nN − 1 do

10: υin[l] = υ[basein + l] × e
11: end for
12: multiply υout = υ′

in × Q(N)

13: for all l = 0, 1, 2, . . . , nN − 1 do
14: Υ[baseout + l] = Υ[baseout + l] + υout[l]
15: end for
16: end for

where
QN−1

i=1 nzi is the number of AUNF to be generated. For each
one, we have (N−2) multiplications needed to its generation (con-
sidering the total of (N − 1) matrices in the tensor product). This
scalar is multiplied by the vector nN times, and then the Shuffle is
done with the last matrix costing nzN multiplications.

More details of the Slice algorithm can be found in [17], and even
though as a preliminary version of an hybrid numerical method, the
Slice algorithm has shown better overall performance than the tra-
ditional Shuffle algorithm for some practical SAN examples [18].
But due to its fixed structure, it is not adequate for all models.
However, it already takes advantage of the Additive Decomposition
property, as a better way to perform the vector-descriptor product
in parallel implementations, due the independence among the nor-
mal factors generated. The reader interested in parallel versions of
solvers for Markovian models may consult [6] and [4].

5. SPLIT ALGORITHM

SAN models of practical applications are naturally sparse, the
local part of a descriptor is intrinsically very sparse due to the ten-
sor sum structure. The synchronizing events are mostly used to
describe exceptional behaviors, therefore it lets this part of the de-
scriptor also quite sparse. Hence, following the Slice algorithm
guidelines, each tensor product of matrices can be partitioned in
two different groups: the first one with the more sparse matri-
ces; and the second one with the matrices with a larger number
of nonzero elements. A Sparse-like approach could be applied to
the first group of K matrices generating AUNF, as Slice does with
the first N − 1 matrices. Each one of those AUNF should be ten-
sorly multiplied by the second group of matrices using a Shuffle-
like approach (Slice deals only with the last matrix in this part).
Considering that, the idea is to split the tensor terms in two sets of
matrices treating them in two different ways, with a certain degree
of dependence. Due to this, the novel algorithm called Split is also
a generalization for Slice algorithm, because it follows the idea of
having distinct parts to treat.

Table 1 presents the general idea of the Split algorithm graphi-
cally. It is important to notice that the index of the matrix chosen for
delimiting the end of the first set is assigned to the cut-parameter
σ separating the first K matrices. It is possible to observe that the
Sparse (σ = N), the Slice (σ = N − 1) and the Shuffle (σ = 0)
methods are also particular cases of the Split algorithm, i.e., they
are also possibilities of spliting in a tensor term composed by N
matrices.

Algorithm 4 defines formally the steps of the Split approach. It
consists in the computation of the element e of each AUNF by mul-
tiplying one nonzero element of each matrix of the first set of ma-
trices (from Q(1) to Q(σ)). According to the elements row indexes
used to generate element e, a contiguous slice of input vector υ
is taken (υin). Vector υin of size nrightσ (corresponding to the
product of the order of all matrices after the cut-parameter σ of the
tensor product term) is multiplied by element e. The resulting vec-
tor (υ′

in) is used as input vector to the Shuffle-like multiplication
by the tensor product of the matrices in the second set of matrices
(from Q(σ+1) to Q(N)), due to this there is a kind of dependency

between both sets.

Algorithm 4 Split Algorithm - Υ = υ ×⊗N
i=1Q

(i)

1: Υ = 0
2: for all i1, . . . , iσ, j1, . . . , jσ ∈ θ(1 . . . σ) do
3: e = 1
4: basein = baseout = 0
5: for all k = 1, 2, . . . , σ do
6: e = e × q

(k)

(ik,jk)

7: basein = basein + ((ik − 1) × nright(k−1))
8: baseout = baseout + ((jk − 1) × nright(k−1))
9: end for

10: for all l = 0, 1, 2, . . . , nrightσ − 1 do
11: υin[l] = υ[basein + l] × e
12: end for
13: for all i = σ + 1, . . . , N do
14: base = 0
15: for all m = 0, 1, 2, . . . , nlefti − 1 do
16: for all j = 0, 1, 2, . . . , nlefti

nleftσ
− 1 do

17: index = base + j
18: for all l = 0, 1, 2, . . . , ni − 1 do
19: zin[l] = υin[index]
20: index = index + nrighti

21: end for
22: multiply zout = zin × Q(i)

23: index = base + j
24: for all l = 0, 1, 2, . . . , ni − 1 do
25: υin[index] = zout[l]
26: index = index + nrighti

27: end for
28: end for
29: base = base + (nrighti × ni)
30: end for
31: end for
32: for all l = 0, 1, 2, . . . , nrightσ − 1 do
33: Υ[baseout + l] = Υ[baseout + l] + υin[l]
34: end for
35: end for

The computational cost in number of multiplications (Equation 9)
for the Split algorithm is computed taking into account the num-
ber of multiplications performed to generate the nonzero element
of each AUNF (σ − 1), plus the number of multiplications of the
scalar by each position value of the vector υin . There is also the
cost to multiply the values in the input vector υ′

in by the tensor
product of matrices in the Shuffle-like part.

σ
Y

i=1

nzi

!

2

4(σ − 1) +

0

@

N
Y

i=σ+1

ni

1

A+

0

@

N
Y

i=σ+1

ni ×
N
X

i=σ+1

nzi

ni

1

A

3

5

(9)
In practical implementations of vector-descriptor multiplication

algorithms, improvements can be done to speedup the execution.
These optimizations can change significantly the theoretical com-
putational cost presented in the Equation 9.

Regarding the Shuffle algorithm, there is an optimization on the
way of handling identity matrices. Those matrices do not need to
generate normal factors, since being identity matrices, they gener-
ate a normal factor that is also an (huge) identity matrix itself. The
computational cost is clearly reduced in the Shuffle algorithm ex-
ecution when using this solution. It corresponds to transform the
number of floating point multiplications equation for the Shuffle

algorithm (Equation 6) to:

N
Y

i=1

ni ×
N
X

i=1
iffQ(i) 6=Id

nzi

ni
(10)

This improvement suggests the same skipping-identities opti-
mization to the Shuffle-like part (matrices Q(σ+1) to Q(N)) of the
Split algorithm (4) identifying if the matrix indexed by variable i
of the algorithm (Q(i)) is not an identity matrix, adding to the cost
nzi
ni

multiplications only for these ones. Analougously to Shuffle
algorithm, Equation 9 will be rewritten changing the shuffle-part
cost accordingly to σ. The resulting number of floating point mul-
tiplications for the Split algorithm will be:

σ
Y

i=1

nzi

!

2

6

6

6

4

(σ − 1) +

0

@

N
Y

i=σ+1

ni

1

A+

0

B

B

B

@

N
Y

i=σ+1

ni ×
N
X

i=σ+1
iffQ(i) 6=Id

nzi

ni

1

C

C

C

A

3

7

7

7

5

(11)
Usually the tensor product terms of a SAN model are very sparse

(a few thousands nonzero elements). The only cases where a more
significant number of nonzero elements is found are those when we
are dealing with a tensor product term with many identity matrices.
It is important to recall that to each AUNF scalar e is computed as
the product of one single element of each matrix. The second opti-
mization is the precomputation of these nonzero elements and their
storage consequently, that for pure sparse solving approaches, this
optimization was already largely studied [9]. It results in a reduc-
tion of the Split algorithm computational cost similar to that one
presented in Section 2 regarding the computation of nonzero ele-
ments. Hence, the final definition of the number of floating point
multiplications for the Split algorithm is no longer defined by Equa-
tion 11, but as:

σ
Y

i=1

nzi

!

2

6

6

6

4

0

@

N
Y

i=σ+1

ni

1

A+

0

B

B

B

@

N
Y

i=σ+1

ni ×
N
X

i=σ+1
iffQ(i) 6=Id

nzi

ni

1

C

C

C

A

3

7

7

7

5

(12)

Note that it is not surprising if for very sparse tensor products the
best Split option was the pure Sparse approach which, obviously,
is much more effective if the nonzero elements do not have to be
recomputed at each vector multiplication but it means that we need
to store a possibly huge matrix. Therefore, the Split choice must
also balance the computational cost in terms of multiplications and
memory needs.

6. NUMERICAL RESULTS
The experiments results were collected running a prototype of

traditional methods and the new one, the Split algorithm, on a 3.2
GHz Intel Xeon under Linux operating system with 4 GBytes of
memory. The prototype was compiled using g++ compiler with
optimizations (−O3). The methods were executed for practical ex-
amples of SAN models [13, 3], running all tensor product terms in
all possible cut-parameters, collecting outputs for at least 100 runs.
The results were obtained in time intervals with 95% of confidence.

The presented results for Split algorithm executions are the col-
lection of the best execution times obtained given the confidence
interval. It also considers different cut-parameters σ to each tensor
product term in the descriptor. However, we consider a fix order of
automata and no automata permutations were considered. In such
way, it is possible to say that the Split results presented here tend
to force the trade-off between time and memory efficiency towards
time savings. It would be absurd to take the oposite decision, since

I(1)

T (1)

I(2)

T (2)R(2)

I(3)

T (3)R(3)

MN (1) MN (2) MN (3)

t1

r2,3 r3,4

g1,2

g1,2 t2 r2,3 t3

I(4)

T (4)R(4)

I(6)

R(6)

I(5)

T (5)R(5)

MN (4) MN (6)MN (5)

t5

r4,5 r5,6

t5r4,5 r5,6r3,4 t4

Type Event Rate Type Event Rate
loc t1, . . . , t4 µ syn r2,3 f2,3

syn t5 µ syn r3,4 f3,4

syn g1,2 f1,2 syn r4,5 f4,5

syn r5,6 f5,6

f1,2 = [((st MN (3) ! = T (3)) && (st MN (4) ! = T (4)))] ∗ λ

f2,3 = [((st MN (1) ! = T (1)) && (st MN (4) ! = T (4)) && (st MN (5) ! = T (5)))] ∗ λ

f3,4 = [((st MN (1) ! = T (1)) && (st MN (2) ! = T (2)) && (st MN (5) ! = T (5)) && (st MN (6) ! = T (6)))] ∗ λ

f4,5 = [((st MN (2) ! = T (2)) && (st MN (3) ! = T (3)) && (st MN (6) ! = T (6)))] ∗ λ

f5,6 = [((st MN (3) ! = T (3)) && (st MN (4) ! = T (4)))] ∗ λ

Figure 1: Ad Hoc WSN SAN Model (6 nodes)

Shuffle Split Sparse
N PSS time (s) size (Kb) fpm (Eq. 10) time (s) size (Kb) fpm (Eq. 12) time (s) size (Kb) fpm (Eq. 3)
6 324 0.00075 1.52 7,344 0.00013 5.30 1,798 0.00025 18.93 1,114
8 2,916 0.00633 2.25 93,312 0.00071 103.22 14,332 0.00163 219.88 13,928

10 26,244 0.07454 2.99 1,084,752 0.01307 170.11 185,364 0.01520 2,510.61 160,488
12 236,196 0.87020 3.72 11,967,264 0.18774 1,461.79 2,230,740 0.20951 27,513.35 1,760,616
14 2,125,760 9.35304 4.46 127,545,900 1.75147 13,536.58 22,674,856 2.07020 292,060.08 18,691,560
16 19,131,900 96.44355 5.19 1,326,477,700 17.99368 118,103.25 235,251,512 21.02443 3,028,726.82 193,838,184

Table 2: Ad Hoc WSN Model Results

forcing Split to save memory would result in practically the same
efficiency as the Shuffle algorithm, which already gives the more
memory-efficient solution.

6.1 Ad Hoc WSN model
The SAN model in the Figure 1 represents a chain of mobile

nodes in a Wireless Sensor Network (Ad Hoc WSN model) running
over the 802.11 standard for ad hoc networks. This model [13] re-
sembles the ad hoc forwarding experiment presented in [20] using
SAN. The chain of N nodes modeled, have the first node MN (1)

(Source automaton) that generates packets as fast as the standard
allows. The packets are forwarded through the chain by the Relay
automata called MN (i), where the variable i is among the value 2
and (N − 1), to the last node MN (N) (Sink automaton).

This SAN model family generically has (N − 2) local events
and N synchronizing events among N automata. The Descriptor
Q for these models is formed by a set of [(N − 2) + 2N] tensor
product terms. The numerical results were obtained for this model
extending the number of automata and, consequently, the number
of tensor product terms.

Table 2 shows the results for the three methods, Shuffle, Split and
Sparse, divided each in three columns representing time in seconds
(per iteration), size in Kb and the computational cost in floating
point multiplications (fpm). The column PSS stands for the product
state space

QN
i=1 ni, which is the cartesian product of the automata

orders (the size of the probability vector). As the number of nodes
in the mobile chain increases (N = 6, 8, 10, 12, 14, 16), so does
the time to solve as well as the memory needed. Since Shuffle is
memory-efficient, it is slower than the other two methods. These
methods, on the contrary, are much more memory consuming, to
pay for the time efficiency.

For small models (N < 12 nodes) the time and memory effi-
ciency are reasonable enough to be dealt regardless of algorithm
in virtually any machine. It demands few more the 2 Mbytes in
the sparse approach and it takes less than 100 miliseconds per it-
eration for all algorithms. However, even in this small examples
we notice the quite impressive memory efficiency of the Shuffle al-
gorithm that keeps the memory needs insignificant even for quite

large models.
The remarkable result in Table 2 is the better time efficiency that

beats even the sparse approach. Although, for each tensor product,
sparse approach could be faster for most cases, terms with many
identity matrices could have a better time efficiency in Shuffle or
Split algorithms. Since a SAN model is composed of many tensor
product terms, Split will be the best option in product terms where
the sparse approach could be faster, but too memory demanding.

This is clearly the case of the largest model (N = 16) where
Split is around 3 seconds faster than Sparse with a memory need
of little more than 100 Mbytes, rather than 3 Gbytes needed by
the sparse solution, i.e., Split takes for this case almost 30 times
less memory and still improves the time efficiency compared to
Sparse. It is important to observe, as well, that this model has a
considerable product state space of more than 19 million states.
Such large model could be nearly intractable if a time and memory
efficient solution is not found.

It is also noticeable, that the number of floating point multi-
plications computed to each algorithm is not relevant to indicate
a better performance in time. This phenomenon, obviously need
more observation, but approximatively, we dare to say that other
indications like other floating point operations and maybe alloca-
tions/desallocations may have considerable influence on the per-
formance of the algorithms.

6.2 Master-Slave Parallel Model
This SAN model in the Figure 2 refers to an evaluation of the

master-slave parallel implementation of the Propagation algorithm
considering assynchronous communication [3], indicating to paral-
lel program developers what are the possible execution bottlenecks
before the implementation. This model contains one Master au-
tomaton, one huge Buffer automaton, and S automata Slave(i),
where i = 1 . . . S.

The total number of automata is generically given by (S + 2),
having S local events and (3S − 3) synchronizing events. The
Descriptor Q in this case, is formed by a set of (7S − 8) tensor
terms. This model was extended to run for different numbers of
slaves (S = 3, 4, 5, 6, 7, 8, 10, 12) and the buffer is of forty po-

Master

up down

Rxc(g1)

c(g2) s1..sS

ITx

Tx

Buffer

...

c

c

c

down

down

down

K − 1

0

K

down

r1..rS

r1..rS

r1..rS

.

Event Rate
up λ

down µ
c σ
si δ
ri α
pi γ

g1 = (nb[Slave(1)..Slave(S)]I == 0) g2 = (nb[Slave(1)..Slave(S)]I > 0)

Slave(1)

down

r1(π)

up
s1

p1

Pr

Tx

I

down

r1(1 − π)

down

Slave(S)

down

rS(π)

up
sS

pS

Pr

Tx

I

down

rS(1 − π)

down

Slave(i)

down

ri(π)

up
si

pi

Pr

Tx

I

down

ri(1 − π)

down

Figure 2: Master-Slave Parallel SAN Model

Shuffle Split Sparse
S PSS time (s) size (Kb) fpm (Eq. 10) time (s) size (Kb) fpm (Eq. 12) time (s) size (Kb) fpm (Eq. 3)
3 3,321 0.00932 11.19 128,385 0.00174 175.11 37,902 0.00257 381.07 23,672
4 9,963 0.02884 14.23 497,097 0.00711 508.61 116,780 0.00869 1,435.29 90,948
5 29,889 0.09830 16.63 1,797,228 0.02231 1,447.69 399,036 0.02537 5,229.25 333,608
6 89,667 0.35073 20.31 6,488,829 0.09305 3,183.29 1,742,271 0.10873 18,531.62 1,184,724
7 269,001 1.31777 23.35 22,488,916 0.37132 9,446.93 6,555,978 0.40385 64,222.72 4,108,760
8 807,003 4.58053 26.43 76,534,019 1.23928 28,236.07 23,037,480 1.34866 231,315.37 14,802,495
10 7,263,030 50.07517 32.43 847,176,190 12.92194 240,596.27 246,651,139 13.90858 2,363,273.71 151,247,442
12 65,367,200 535.28774 38.54 9,137,063,300 135.94263 2,282,495.12 2,787,370,431 147.59428 26,195,236.61 1,676,492,676

Table 3: Master-Slave Parallel Model Results

sitions (K = 40). Table 3 shows the results for all these model
extensions.

The results are consistent with those obtained in previous sec-
tion. Split once again demonstrate a better time efficiency. In fact,
it presents, in general, results a little faster than the sparse approach,
i.e., roughly around 10% faster in the large models.

However, the memory savings obtained in these second set of
examples seem less impressive than those obtained for the Ad Hoc
WSN models. Split still gives a considerable reduction for the huge
last example (S = 12) bringing the memory needs from nearly in-
tractable 26 Gbytes in sparse approach to large, but tractable 2.2
Gbytes. Once again, it is important to keep in mind that we are
dealing with a model with a 65 million states, and then some sig-
nificant amount of memory and time is expected to achieve a sta-
tionary or transient solution.

One interesting point is to observe how inadequate the number
of floating point multiplication is to predict how fast an algorithm
will execute. We still can observe this phenomenon and, as said
before, a deeper analysis has to be done.

7. CONCLUSION
The main contribution of this paper is the proposition of a flexi-

ble hybrid vector-descriptor algorithm. Applying the proposed al-
gorithm to SAN models of real problems verifies the good trade-off
between memory and time efficiency of the Split algorithm when
compared to traditional Sparse and Shuffle approaches. Consider-
ing that we need many iterations to calculate the final probability
vector, the memory and time spent tradeoffs surely should be evalu-
ated and balanced, maybe according to the available time and com-
putational resources. Nevertheless, it is also shown that the Split
algorithm is flexible enough to deliver in extreme cases at least the
same time efficiency as the sparse approach, or, alternatively, the
same memory efficiency as the shuffle approach.

Since tensor terms can be formed differently due the different
structured models we deal with, the performance can also be very

dependent on the choice of matrices placed in each group. The ten-
sor product terms that do not have too many identity matrices, or
no identities at all, can be multiplied in a sparse fashion. However,
Shuffle deals better with terms containing many identities because
it simply jumps the execution for the next matrix to multiply. Our
experience with structured models suggests that these tensor prod-
uct terms, with a reasonable number of identity matrices, are the
most commonly encountered ones, but if the memory available is
not a problem, it is better to treat them in a sparse manner as much
as possible.

A clearly open problem is the choice of division point in each
tensor term (choice of cut-parameter σ) and, even more important,
the choice of order for terms. However, the research for an heuris-
tic to automatically choose the best order of matrices and the cut-
parameter, for each tensor product is considerable research chal-
lenge. This is not a trivial task, due to the tensor product term
formation and intrinsic matrices details such as order, total nonzero
elements and computational cost in multiplications. These param-
eters opens the possibility of a thorough analysis of the related the-
oretical computational cost. Another aspect to be considered is the
fact that we can have a tradeoff between memory usage and time
spent, i.e., if one have lots of memory and wants performance, the
cut-parameter could be more easily shifted to use the sparse ap-
proach, while if memory is limited the cut-parameter should allow
more weight in shuffle-like part.

Additionally, the proposed Split algorithm could be enhanced
with considerations about the impact of functional elements (with
their particular dependencies) in the descriptor. A similar work
about these functional dependency changed completely the perfor-
mance of the Shuffle algorithm [16]. It is only natural to estimate
that similar gains with functional dependencies analysis and pos-
sible automata permutations could benefit the Split algorithm as
well.

Finally, it is also possible to foresee an even more complex anal-
ysis that considers not only a sequential version of the Split algo-

rithm, but also parallel implementations. For the sequential ver-
sion, memory and time efficiency are dealt as a single demand, but
parallel implementations should consider the amount of memory
needed, volume of data exchanged and processing demands to be
as evenly as possible distributed among parallel machines. Obvi-
ously, this further analysis is much more deep and complex since
neither the number of floating point multiplications, nor any other
known index for that matter, seems to be a good estimation of pro-
cessing time (see the previous section remarks). Nevertheless, it
still seems an interesting field of future research.

These future works give hope that Split algorithm can be subject
of considerable improvements in a near future. Despite that, an
easy and not very thorough analysis of the presented examples, and
consequent choice of automata order and cut-parameter σ, shows
quite impressive gains of processing time for the Split sequencial
implementation compared to Shuffle approach without paying the
very high memory costs of the Sparse approach. At least these
results lets say that the Split algorithm already is a better choice for
practical vector-descriptor products.

8. REFERENCES
[1] M. Ajmone-Marsan, G. Conte, and G. Balbo. A Class of

Generalized Stochastic Petri Nets for the Performance
Evaluation of Multiprocessor Systems. ACM Transactions on
Computer Systems, 2(2):93–122, 1984.

[2] V. Amoia, G. D. Micheli, and M. Santomauro.
Computer-Oriented Formulation of Transition-Rate Matrices
via Kronecker Algebra. IEEE Transactions on Reliability,
R-30(2):123–132, 1981.

[3] L. Baldo, L. Brenner, L. G. Fernandes, P. Fernandes, and
A. Sales. Performance Models for Master/Slave Parallel
Programs. Electronic Notes In Theoretical Computer
Science, 128(4):101–121, April 2005.

[4] L. Baldo, L. G. Fernandes, P. Roisenberg, P. Velho, and
T. Webber. Parallel PEPS Tool Performance Analysis using
Stochastic Automata Networks. In M. Donelutto,
D. Laforenza, and M. Vanneschi, editors, Euro-Par 2004
International Conference on Parallel Processing, volume
3149 of Lecture Notes in Computer Science, pages 214–219,
Pisa, Italy, August/September 2004. Springer-Verlag
Heidelberg.

[5] L. Brenner, P. Fernandes, and A. Sales. The Need for and the
Advantages of Generalized Tensor Algebra for Kronecker
Structured Representations. International Journal of
Simulation: Systems, Science & Technology, 6(3-4):52–60,
February 2005.

[6] P. Buchholz. A distributed numerical/simulative algorithm
for the analysis of large continuous time markov chains. In
PADS ’97: Proceedings of the eleventh Workshop on Parallel
and Distributed Simulation, pages 4–11, Washington, DC,
USA, 1997.

[7] P. Buchholz. A new approach combining simulation and
randomization for the analysis of large continuous time
Markov Chains. ACM Trans. Model. Comput. Simul.,
8(2):194–222, 1998.

[8] P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper.
Complexity of memory-efficient Kronecker operations with
applications to the solution of Markov models. INFORMS
Journal on Computing, 13(3):203–222, 2000.

[9] P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper.
Complexity of memory-efficient kronecker operations with
applications to the solution of markov models. INFORMS J.

on Computing, 12(3):203–222, 2000.
[10] P. Buchholz and P. Kemper. Hierarchical reachability graph

generation for Petri nets. Formal Methods in Systems Design,
21(3):281–315, 2002.

[11] M. Davio. Kronecker Products and Shuffle Algebra. IEEE
Transactions on Computers, C-30(2):116–125, 1981.

[12] S. Donatelli. Superposed generalized stochastic Petri nets:
definition and efficient solution. In R. Valette, editor,
Proceedings of the 15th International Conference on
Applications and Theory of Petri Nets, pages 258–277.
Springer-Verlag Heidelberg, 1994.

[13] F. L. Dotti, P. Fernandes, A. Sales, and O. M. Santos.
Modular Analytical Performance Models for Ad Hoc
Wireless Networks. In 3rd International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks, pages 164–173, Trentino, Italy, April 2005. IEEE
Press.

[14] F. L. Dotti and L. Ribeiro. Specification of Mobile Code
Systems using Graph Grammars. In Formal Methods for
Open Object-Based Distributed Systems IV, pages 45–63,
Stanford, USA, 2000. Kluwer Academic Publishers.

[15] P. Fernandes. Mï£¡hodes numï£¡iques pour la solution de
sustï£¡es Markoviens ï£¡grand espace d’ï£¡ats. PhD thesis,
Institut National Polytechnique de Grenoble, France, 1998.

[16] P. Fernandes, B. Plateau, and W. J. Stewart. Efficient
descriptor - Vector multiplication in Stochastic Automata
Networks. Journal of the ACM, 45(3):381–414, 1998.

[17] P. Fernandes, R. Presotto, A. Sales, and T. Webber. An
Alternative Algorithm to Multiply a Vector by a Kronecker
Represented Descriptor. In 21st UK Performance
Engineering Workshop, pages 57–67, Newcastle, UK, June
2005.

[18] P. Fernandes, R. Presotto, A. Sales, and T. Webber. An
Alternative Algorithm to Multiply a Vector by a Kronecker
Represented Descriptor. Technical Report TR 047, PUCRS,
Porto Alegre, 2005. http://www.inf.pucrs.br/tr/tr047.pdf.

[19] J. Hillston and L. Kloul. An Efficient Kronecker
Representation for PEPA models. In L. de Alfaro and
S. Gilmore, editors, Proceedings of the first joint
PAPM-PROBMIV Workshop), pages 120–135, Aachen,
Germany, September 2001. Springer-Verlag Heidelberg.

[20] J. Li, C. Blake, D. S. J. D. Couto, H. I. Lee, and R. Morris.
Capacity of Ad Hoc Wireless Networks. In 7th Annual
International Conference on Mobile Computing and
Networking, pages 61–69, Rome, Italy, July 2001. ACM
Press.

[21] A. S. Miner. Efficient solution of GSPNs using Canonical
Matrix Diagrams. In 9th International Workshop on Petri
Nets and Performance Models (PNPM’01), pages 101–110,
Aachen, Germany, September 2001. IEEE Computer Society
Press.

[22] A. S. Miner and G. Ciardo. A data structure for the efficient
Kronecker solution of GSPNs. In Proceedings of the 8th

International Workshop on Petri Nets and Performance
Models, pages 22–31, Zaragoza, Spain, September 1999.

[23] A. S. Miner and G. Ciardo. Efficient Reachability Set
Generation and Storage Using Decision Diagrams. In
Proceedings of the 20th International Conference on
Applications and Theory of Petri Nets, volume 1639 of
LNCS, pages 6–25, Williamsburg, VA, USA, June 1999.
Springer-Verlag Heidelberg.

[24] B. Plateau and K. Atif. Stochastic Automata Networks for

modelling parallel systems. IEEE Transactions on Software
Engineering, 17(10):1093–1108, 1991.

[25] W. J. Stewart. MARCA: Markov chain analyzer. A software
package for Markov modeling, pages 37–62. Numerical
Solution of Markov Chains. M. Dekker Inc., New York,
1991.

[26] W. J. Stewart. Introduction to the numerical solution of
Markov chains. Princeton University Press, 1994.

———————————————————————-

