
Extending Software Engineering Research Outside the

Digital Box

Barry Boehm
University of Southern California

Center for Systems and Software Engineering
 941 W. 37th Place, SAL Room 328

 Los Angeles, CA 90089-0781
+1-213-740-8163

boehm@usc.edu

ABSTRACT

Since software is developed to run on computers, there is a

tendency to focus computer science and software engineering on

how best to get software to run on computers. But, engineering is

different from science: the Webster definition of “engineering” is

“the application of science and mathematics by which the

properties of matter and the sources of energy in nature are made

useful to people.” Thus, it would follow that the responsibility of

software engineering and its research would include the utility to

people of the software and the software-reliant artifacts they use,

beyond thinking within purely digital boxes. This position paper

addresses two perspectives on the future of software engineering

when viewed in this broader context.

1. INFRASTRUCTURE, APPLICATIONS

AND USER PROGRAMMING
Figure 1 shows a 1995 attempt to characterize future software

engineering practice and associated software cost estimation needs

as a step in scoping the COCOMO II software cost model [Boehm

et al., 1995]. Subsequent research [Scaffidi-Shaw-Myers, 2005]

indicated that the trends and quantities were not too far off base,

and were continuing to proportionally increase.

With respect to the future of software engineering research, the

main concern with respect to the figure and trends is that all the

sectors are critical to how well software serves human needs, but

that most software engineering research is focused on the

Infrastructure sector. Research on Infrastructure software is

important, but is largely unrepresentative of Applications software

is several key ways:

 Its users are largely programmers, and its research tends

to produce programmer-friendly capabilities, whereas

Applications software largely needs to be

nonprogrammer-friendly.

End-User Programming

(55M performers in US in year 2005)

Application

Generators and

Composition Aids

(0.6M)

Application

Composition

(0.7M)

System Integration

(0.7M)

Infrastructure

(0.75M)

Figure 1. Future Software Practices Marketplace Model

 Much of infrastructure software can be developed using

an open-source approach. This is because its

developers are its users, unlike for applications

software. This has been a major boon to empirical

software engineering research, as it has created a large

corpus of easily-accessible software artifacts and

histories for empirical analysis. However, the degree to

which the resulting research is representative of

applications software is open to question. For example,

open source software deals largely with context-free,

dimensionless data, whereas many applications interface

problems come from data dimension mismatches and

domain assumption mismatches.

 Infrastructure software generally treats each byte,

packet, record, pixel, and transaction as equally

important, whereas in most software applications, 20%

of the transactions account for 80% of the application’s

value, and value-neutral capabilities tend not to be cost-

effective.

A key need for future software engineering research is to establish

a better balance between infrastructure and applications software

research. Also, user-programming research needs more emphasis:

analysis of spreadsheet applications generally show that about half

of them contain defects serious enough to cause corporate

problems if encountered. Some research and a series of ICSE

workshops focused on creating the equivalent of seat belts and air

bags for user programmers has been started, but more is needed.

2. INTEGRATING SOFTWARE,

HARDWARE, HUMAN FACTORS, AND

SYSTEMS ENGINEERING
Many applications-area projects involve the need to integrate

software with hardware devices and human controls. Left to

themselves to determine the system architecture, the hardware or

human factors personnel will often make commitments that

severely complicate the software engineering function. A good

example is the choice of best-of-breed hardware components or

user applications with incompatible COTS products or user

interfaces. Research is needed on integrated software-hardware-

human factors system definition and design that involves software

engineers in both the research and the use of the resulting

methods, processes, and tools.

A valuable perspective on the mismatches between traditional

hardware-oriented systems engineering architectural structures

and modern software architectural structures has been provided in

[Maier, 2006]. First, traditional hardware-driven systems

engineering methods functionally decompose the systems

architecture into one-to-many “part-of” or “owned-by”

relationships. This means that much of the software is fragmented

into part-of children of numerous scattered hardware components,

while modern software methods organize system capabilities as

layers of many-to-many service-oriented relationships. This

makes for slow and cumbersome software adaptation to change,

and difficulties in creating high-assurance systems.

Second, hardware interfaces tend to be static: sensor data flows

down a wire, and the sensor-system interface can be represented

by its message content, indicating the data’s form, format, units of

measure, precision, frequency, etc. In a software-intensive, net-

centric world, interfaces are much more dynamic: a sensor

entering a network must go through a number of protocols to

register its presence, perform security handshakes, publish and

subscribe, etc. When these interface aspects are neglected (as they

frequently are), many later integration problems will cause project

overruns and operational shortfalls.

Third, hardware relations are assumed to be static and subject to

static functional-physical allocation: if the engines on one wing

fail, an engine cannot migrate from the other wing to rebalance

the propulsion. But in software, modules frequently migrate from

one processor to another to compensate for processor failures or

processing overloads.

 Thus, a hardware-first approach to system architecting is likely to

cause significant problems. The table below provides

perspectives on why software-first or human-factors-first

approaches are similarly unlikely to succeed, and why concurrent

hardware-software-human-factors approaches and bridging

personnel capabilities are needed. It summarizes some of the key

differences between the phenomena, economics and mental

models involved in hardware, software, and human factors

engineering.

The major sources of life cycle cost in most hardware-intensive

systems are during development and manufacturing, particularly

for systems having large production runs. For software-intensive

systems, manufacturing costs are essentially zero, and except for

short-life software applications, about 70% of the life cycle cost

goes into post-development maintenance and upgrades [Lientz-

Swanson, 1980]. For human-intensive systems, the major costs

are in staffing and training, particularly for safety-critical systems

requiring continuous 24/7 operators.

As indicated in rows 2 and 3 of the table, particularly for widely-

dispersed hardware such as ships, automobiles or medical

equipment, making hardware changes can be extremely time-

consuming and expensive. As a result, many hardware

deficiencies are handled via software or human workarounds that

save money overall but shift the life-cycle costs toward the

software and human parts of the system.

As can be seen when buying hardware such as cars or TVs, there

is some choice of options, but they are generally limited. It is

much easier to tailor software or human procedures to different

Difference Area Hardware Software Human Factors

Major Life-cycle Cost
Source

Development, manufacturing Life-cycle evolution Training and operations
labor

Ease of Changes Generally difficult Good within architectural
framework

Very good, but people-
dependent

Nature of Changes Manual, labor-intensive,
expensive

Electronic, inexpensive Need personnel retraining,
can be expensive

User-tailorability Generally difficult, limited
options

Technically easy; mission-
driven

Technically easy; mission-
driven

Indivisibility Inflexible lower limit Flexible lower limit Smaller increments easier
to introduce

Underlying Science Physics, chemistry, continuous
mathematics

Discrete mathematics,
linguistics

Behavioral sciences

Testing By test organization; much
analytic continuity

By test organization; little
analytic continuity

By users

classes of people or purposes. It is also much easier to

incrementally deliver useful subsets of most software and human

systems, while core hardware capabilities tend to be indivisible:

delivering a car without braking or steering capabilities is

infeasible.

The science underlying most of hardware engineering involves

physics, chemistry, and continuous mathematics. This often leads

to implicit assumptions about continuity, repeatability, and

conservation of properties (mass, energy, momentum) that may be

true for hardware but not true for software or human counterparts.

An example is in testing. A hardware test engineer can generally

count on covering a parameter space by sampling, under the

assumption that the responses will be a continuous function of the

input parameters. A software test engineer will have many

discrete inputs, for which a successful test run provides no

assurance that the neighboring test run will succeed. And for

humans, usage testing needs to be done by the users and not test

engineers.

The main point here is that for the future of software engineering

research, there needs to be a balance between pure-software

research and research which involves software engineering

researchers with their hardware, human factors, and systems

engineering counterparts in creating ways to requirements-

engineer, architect, and develop the increasingly complex

software-hardware-human-intensive systems and systems of

systems of the future. Some steps in this direction and case

studies are provided in the NRC study, Human-System Integration

in the System Development Process [Pew and Mavor, 2007], and

in Fredrick Brooks’ recent book, The Design of Design [Brooks,

2010]. However, if research priorities cause software engineering

researchers, and the students they teach, to deal only with discrete

mathematics and linguistics, the software engineering field will be

poorly prepared for such interdisciplinary research.

Several additional references provide further perspectives for

extending software engineering research outside the digital box.

3. REFERENCES

[1] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy,

and R. Selby, "Cost Models for Future Software Life Cycle

Processes: COCOMO 2.0," Annals of Software Engineering,

Springer Netherlands, Volume 1, Number 1, December,

1995, pp. 57-94.

[2] B. Lientz and E.B. Swanson, Software Maintenance

Management, Addison Wesley, 1980.

[3] M. Maier, “System and Software Architecture

Reconciliation,” Systems Engineering 9 (2), 2006, pp. 146-

159.

[4] C. Scaffidi, M. Shaw, and B. Myers, “Estimating the

Numbers of End Users and End User Programmers,”

Proceedings of the 2005 IEEE Symposium on Visual

Languages and Human-Centric Computing, pp.207 – 214.

[5] R. Pew and A. Mavor (eds.), Human-System Integration in

the System Development Process, NAS Press, 2007.

[6] F. Brooks, The Design of Design, Addison Wesley, 2010

[7] S. Biffl, A.Aurum, B. Boehm, H. Erdogmus, and P.

Gruenbacher (eds.), Value-Based Software Engineering,

Springer, 2005.

[8] W. Royce, K. Bittner, and M. Perrow, The Economics of

Iterative Software Development, Addison Wesley, 2009.

[9] A. Sears, J. Jacko (Eds.), Handbook for Human Computer

Interaction (2nd Edition), CRC Press, 2007.

[10] B. Shneiderman. C. Plaisant: Designing the User Interface:

Strategies for Effective Human–Computer Interaction. 4th

ed. Addison Wesley, 2004.

[11] A. Pretschner, M. Broy, I. Kruger, T. Stauner, " Software

Engineering for Automotive Systems: A Roadmap," in

Future of Software Engineering (FOSE 2007), IEEE Cat.

No. PR2829, pp. 55-71.

http://www.springerlink.com/content/y2386315010g7113/

