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ABSTRACT 

Since software is developed to run on computers, there is a 

tendency to focus computer science and software engineering on 

how best to get software to run on computers.  But, engineering is 

different from science: the Webster definition of “engineering” is 

“the application of science and mathematics by which the 

properties of matter and the sources of energy in nature are made 

useful to people.” Thus, it would follow that the responsibility of 

software engineering and its research would include the utility to 

people of the software and the software-reliant artifacts they use, 

beyond thinking within purely digital boxes.  This position paper 

addresses two perspectives on the future of software engineering 

when viewed in this broader context. 

1. INFRASTRUCTURE, APPLICATIONS    

AND USER PROGRAMMING 
Figure 1 shows a 1995 attempt to characterize future software 

engineering practice and associated software cost estimation needs 

as a step in scoping the COCOMO II software cost model [Boehm 

et al., 1995].  Subsequent research [Scaffidi-Shaw-Myers, 2005] 

indicated that the trends and quantities were not too far off base, 

and were continuing to proportionally increase. 

With respect to the future of software engineering research, the 

main concern with respect to the figure and trends is that all the 

sectors are critical to how well software serves human needs, but 

that most software engineering research is focused on the 

Infrastructure sector.  Research on Infrastructure software is 

important, but is largely unrepresentative of Applications software 

is several key ways: 

 Its users are largely programmers, and its research tends 

to produce programmer-friendly capabilities, whereas 

Applications software largely needs to be 

nonprogrammer-friendly. 
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Figure 1. Future Software Practices Marketplace Model 

 

 Much of infrastructure software can be developed using 

an open-source approach.  This is because its 

developers are its users, unlike for applications 

software.   This has been a major boon to empirical 

software engineering research, as it has created a large 

corpus of easily-accessible software artifacts and 

histories for empirical analysis.  However, the degree to 

which the resulting research is representative of 

applications software is open to question.  For example, 

open source software deals largely with context-free, 

dimensionless data, whereas many applications interface 

problems come from data dimension mismatches and 

domain assumption mismatches. 

 Infrastructure software generally treats each byte, 

packet, record, pixel, and transaction as equally 

important, whereas in most software applications, 20% 

of the transactions account for 80% of the application’s 

value, and value-neutral capabilities tend not to be cost-

effective. 

A key need for future software engineering research is to establish 

a better balance between infrastructure and applications software 

research.  Also, user-programming research needs more emphasis: 

analysis of spreadsheet applications generally show that about half 

of them contain defects serious enough to cause corporate 

problems if encountered.  Some research and a series of ICSE 

workshops focused on creating the equivalent of seat belts and air 

bags for user programmers has been started, but more is needed. 

 

 



2. INTEGRATING SOFTWARE, 

HARDWARE, HUMAN FACTORS, AND 

SYSTEMS ENGINEERING 
Many applications-area projects involve the need to integrate 

software with hardware devices and human controls.  Left to 

themselves to determine the system architecture, the hardware or 

human factors personnel will often make commitments that 

severely complicate the software engineering function.  A good 

example is the choice of best-of-breed hardware components or 

user applications with incompatible COTS products or user 

interfaces.  Research is needed on integrated software-hardware-

human factors system definition and design that involves software 

engineers in both the research and the use of the resulting 

methods, processes, and tools. 

A valuable perspective on the mismatches between traditional 

hardware-oriented systems engineering architectural structures 

and modern software architectural structures has been provided in 

[Maier, 2006].  First, traditional hardware-driven systems 

engineering methods functionally decompose the systems 

architecture into one-to-many “part-of” or “owned-by” 

relationships.  This means that much of the software is fragmented 

into part-of children of numerous scattered hardware components, 

while modern software methods organize system capabilities as 

layers of many-to-many service-oriented relationships.  This 

makes for slow and cumbersome software adaptation to change, 

and difficulties in creating high-assurance systems.  

Second, hardware interfaces tend to be static: sensor data flows 

down a wire, and the sensor-system interface can be represented 

by its message content, indicating the data’s form, format, units of 

measure, precision, frequency, etc.  In a software-intensive, net-

centric world, interfaces are much more dynamic: a sensor 

entering a network must go through a number of protocols to 

register its presence, perform security handshakes, publish and 

subscribe, etc. When these interface aspects are neglected (as they 

frequently are), many later integration problems will cause project 

overruns and operational shortfalls. 

Third, hardware relations are assumed to be static and subject to 

static functional-physical allocation: if the engines on one wing 

fail, an engine cannot migrate from the other wing to rebalance 

the propulsion.  But in software, modules frequently migrate from 

one processor to another to compensate for processor failures or 

processing overloads. 

 Thus, a hardware-first approach to system architecting is likely to 

cause significant problems.  The table below provides 

perspectives on why software-first or human-factors-first 

approaches are similarly unlikely to succeed, and why concurrent 

hardware-software-human-factors approaches and bridging 

personnel capabilities are needed.  It summarizes some of the key 

differences between the phenomena, economics and mental 

models involved in hardware, software, and human factors 

engineering.  

The major sources of life cycle cost in most hardware-intensive 

systems are during development and manufacturing, particularly 

for systems having large production runs.  For software-intensive 

systems, manufacturing costs are essentially zero, and except for 

short-life software applications, about 70% of the life cycle cost 

goes into post-development maintenance and upgrades [Lientz-

Swanson, 1980].  For human-intensive systems, the major costs 

are in staffing and training, particularly for safety-critical systems 

requiring continuous 24/7 operators.  

As indicated in rows 2 and 3 of the table, particularly for widely-

dispersed hardware such as ships, automobiles or medical 

equipment, making hardware changes can be extremely time-

consuming and expensive.  As a result, many hardware 

deficiencies are handled via software or human workarounds that 

save money overall but shift the life-cycle costs toward the 

software and human parts of the system. 

As can be seen when buying hardware such as cars or TVs, there 

is some choice of options, but they are generally limited.  It is 

much easier to tailor software or human procedures to different 

Difference Area Hardware  Software  Human Factors  

Major Life-cycle Cost 
Source 

Development, manufacturing Life-cycle evolution Training and operations 
labor 

Ease of Changes Generally difficult Good within architectural 
framework 

Very good, but people-
dependent 

Nature of Changes Manual, labor-intensive, 
expensive 

Electronic, inexpensive Need personnel retraining, 
can be expensive 

User-tailorability Generally difficult, limited 
options 

Technically easy; mission-
driven 

Technically easy; mission-
driven 

Indivisibility Inflexible lower limit Flexible lower limit Smaller increments easier 
to introduce 

Underlying Science Physics, chemistry, continuous 
mathematics 

Discrete mathematics, 
linguistics 

Behavioral sciences 

Testing By test organization; much 
analytic continuity 

By test organization; little 
analytic continuity 

By users 



classes of people or purposes.  It is also much easier to 

incrementally deliver useful subsets of most software and human 

systems, while core hardware capabilities tend to be indivisible: 

delivering a car without braking or steering capabilities is 

infeasible. 

The science underlying most of hardware engineering involves 

physics, chemistry, and continuous mathematics.  This often leads 

to implicit assumptions about continuity, repeatability, and 

conservation of properties (mass, energy, momentum) that may be 

true for hardware but not true for software or human counterparts.  

An example is in testing.  A hardware test engineer can generally 

count on covering a parameter space by sampling, under the 

assumption that the responses will be a continuous function of the 

input parameters.  A software test engineer will have many 

discrete inputs, for which a successful test run provides no 

assurance that the neighboring test run will succeed.  And for 

humans, usage testing needs to be done by the users and not test 

engineers. 

The main point here is that for the future of software engineering 

research, there needs to be a balance between pure-software 

research and research which involves software engineering 

researchers with their hardware, human factors, and systems 

engineering counterparts in creating ways to requirements-

engineer, architect, and develop the increasingly complex 

software-hardware-human-intensive systems and systems of 

systems of the future.  Some steps in this direction and case 

studies are provided in the NRC study, Human-System Integration 

in the System Development Process [Pew and Mavor, 2007], and 

in Fredrick Brooks’ recent book, The Design of Design [Brooks, 

2010].  However, if research priorities cause software engineering 

researchers, and the students they teach, to deal only with discrete 

mathematics and linguistics, the software engineering field will be 

poorly prepared for such interdisciplinary research. 

Several additional references provide further perspectives for 

extending software engineering research outside the digital box. 
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