Service-Oriented Information Visualization for Smart Environments

Conrad Thiede, Christian Tominski, Heidrun Schumann
Institute for Computer Science
University of Rostock
{thiede,ct,schumann} @informatik.uni-rostock.de

Abstract

Smart environments consist of several interconnected
devices. The device ensemble can change dynamically as
mobile devices enter or leave the environment.

To utilize such environments efficiently for information
visualization, we propose a service-oriented architecture.
Various services run on different machines and visualiza-
tions are generated dynamically depending on the envi-
ronment’s current situation. The necessary adaptation to
available output devices is driven by instantiation of dif-
ferent service implementations, by parameterizing service
invocations, and by adapting the visualization pipeline at
run-time. We implemented a prototype that provides paral-
lel coordinates, scatter plot matrices, and a map display.

Keywords— Information Visualization, Service-Oriented
Architecture, Smart Environments

1 Introduction

Today’s computing environments integrate a multitude
of interconnected devices. In addition to classic com-
puting and output devices, smart environments integrate
sensor devices to monitor the environment and its inhab-
itants. These sensors plus appropriate analysis and pre-
diction methods make a computing environment smart. A
specific instantiation of a smart environment is the smart
meeting room [3]. Its device ensemble consists of station-
ary devices such as desktop computers, projectors, lights,
or motion trackers, and additional mobile devices such as
laptops, PDAs, smart phones, but also mobile projectors,
which may enter the ensemble as users carry them along.
The latter devices form the ad-hoc character of the smart
meeting room.

From the perspective of information visualization,
smart ad-hoc environments pose an interesting research
question: How can we make efficient use of computing
devices and output devices available in a device ensemble
that, however, is subject to ad-hoc changes? Classic infor-
mation visualization provides data- or task-specific solu-
tions that are computed on a single machine for a static
output device. Approaches that utilize multiple loosely

coupled devices to generate and present visualizations are
scarce. It is not yet investigated well how the devices in
smart ad-hoc environments can be utilized to better com-
municate information or how to harness more devices to
communicate more information. New adaptation strategies
are needed in smart ad-hoc environments to handle differ-
ent output devices and to cope with the environment’s ad-
hoc character, i.e., to integrate into the overall visualization
ensemble those devices that enter the environment, and de-
tach the ones that leave. Moreover, the adaptation process
needs to be smart, i.e., the need for user intervention should
be reduced to a minimum.

This paper describes our ongoing work to develop a
service-oriented architecture (SOA) that can be used as a
generic basis for information visualization in smart ad-hoc
environments. The architecture is a means to utilize dis-
tributed device ensembles and to address problems related
to the ad-hoc character of smart meeting rooms. Instead
of a hard-wired visualization pipeline, the SOA approach
has been designed so as to instantiate the pipeline dynam-
ically at runtime based on environment’s current situation.
We utilize Chi’s data state reference model [4] as the start-
ing point for our approach. The reference model describes
a visualization pipeline as a sequence of data transforma-
tions, so called operators. Our idea is to map operators to
separable services that may run on different machines and
that are capable of generating visualizations adapted to dif-
ferent output devices.

In Section 2] we describe the basics of smart environ-
ments and service-oriented architectures (SOA) and take a
look at related work. Section [3| presents our general ap-
proach, while specific implementation details are given in
Section[d] We exemplify a usage scenario in Section[5] be-
fore closing with a summary and an outlook on future work
in Section[6l

2 Basics & Related Work

We now briefly describe smart environments as the
background of our research and introduce the basics of
service-oriented architectures. Related work in distributed
visualization is discussed in the third part of this section.

2.1 Smart Environments

Cook and Das [3] define a smart environment as “one
that is able to acquire and apply knowledge about an envi-
ronment and also to adapt to its inhabitants in order to im-
prove their experience in that environment.” Smart homes,
smart class rooms, and smart meetings rooms are specific
examples of smart environments [8, [1]]. The device ensem-
ble can be differentiated into stationary devices, which are
firmly mounted, and mobile devices, which can enter or
leave the environment. The smart meeting room that we
address here is a mixed environment with a set of station-
ary devices, including computing devices (e.g., desktop
computers, servers), output devices (e.g., projectors, can-
vasses, monitors, flat panels), environmental devices (e.g.,
lights, blinds, air conditioning), and sensor devices (e.g.,
motion trackers, infrared beacons, light sensors). Users of
the smart meeting room can bring mobile devices like note-
books, mobile projectors, PDAs, and smart phones, which
make up the dynamic ad-hoc character. In most cases, mo-
bile devices act as output devices, but they can also be uti-
lized to accomplish computing tasks.

The devices form a loosely coupled network, which al-
lows for the necessary communication to accomplish tasks
in a coordinated fashion. The network is driven by var-
ious technologies, including Bluetooth, wireless LAN, or
hard-wired LAN. Here, we abstract from the underlying
technology and assume that proper communication chan-
nels are available.

A smart environment also implements software that is
responsible for providing “smart” support to users. It is an
actively investigated research question how to accomplish
“smart” support in a joint effort of several distributed soft-
ware components. The task is to constantly assess the cur-
rent situation of the environment and that of its inhabitants.
Based on an analysis step, user intentions and tasks are pre-
dicted [13]]. Preferably, the predictions are as accurate as
to allow for fully automatic user support. For instance, if
the user leaves his PDA on the desk and moves toward a
large canvas, the output is automatically routed to the cor-
responding projector. In cases where predictions cannot
be as accurate, users always have the possibility to revise
the decisions made by the environment or to fine-tune the
environment to their needs [12].

That said, our goal is to utilize device ensembles, com-
munication infrastructure, and predictive software compo-
nents to drive information visualization in smart meeting
rooms. However, classic approaches do not fit well in
this scheme of distributed architectures. It is necessary
to adapt the visualization process to the requirements and
constraints of the smart meeting room. We strive to achieve
this by developing a generic service-oriented architecture
for information visualization in smart environments.

2.2 Service-Oriented Architectures

A service-oriented architecture (SOA) is based on a set
of software components that are loosely coupled [6]. This
makes SOA a perfect match for implementing information
visualization in the smart meeting room.

A service encapsulates a specific functionality and pro-
vides it to users through a well-defined interface [11]]. Ata
high level of abstraction, SOA consist of three basic com-
ponents [14] 20]]: service providers, service consumers,
and service brokers (or registries). Service providers make
different services available by registering them at a service
broker. Service consumers requests services from the bro-
ker to access specific functionality. To accomplish higher
order tasks, services can be combined. Yang and Papa-
zoglou differentiate between three different strategies [24]]:
Fixed composition provides static pre-defined service com-
binations; semi-fixed composition strategies allow for dy-
namic adaptations; explorative composition strategies gen-
erate service combinations dynamically at run-time.

SOA are advantageous with regard to several aspects.
(1) Flexibility: A SOA makes it easier to adapt software
to changing requirements. (2) Reduction of complexity:
Services provide just basic functionality, but by combin-
ing services, higher order tasks can be accomplished. (3)
Reusability: Services can be reused in different application
contexts. (4) Compatibility: A well-defined interface war-
rants compatibility between different implementations of
services. All these advantages bear relevance to adaptable
information visualization in smart environments.

One can consider it a disadvantage that stricter rules
must be obeyed during the development of services. How-
ever, these initial higher costs pay off later in the software
life cycle. Another critical aspect are communication costs,
which are particularly relevant for information visualiza-
tion where larger volumes of data need to be transferred.

2.3 Distributed Visualization

Distributed visualization has been applied in several
contexts [2]. Service-oriented architectures as well as
agent-based models (ABM) are often used as the techni-
cal basis. Compared to services, whose operation relies
on a higher-level control mechanism, agents operate au-
tonomously to accomplish tasks. Despite this difference,
there is much overlap between ABM and SOA. Next we
review related approaches that utilize services or agents for
visualization.

Automatic balancing of rendering workloads in collabo-
rative visualization environments is presented in [9]]. Avail-
able resources are allocated automatically, which enables
visualization clients to request services regardless of the
particular system implementation. Data services and ren-
derer services are the only components provided by this
approach.

A multi-level approach to service-based interactive vi-
sualization is described in [26]. All necessary computa-
tions are performed by services, which include data trans-
fer services, filter services, mapping services, and render
services. The approach allows for interactive visualization
and multiple outputs. However, only fixed compositions of
services with fixed parameterizations are possible.

MUVA is a flexible visualization architecture for multi-
ple client platforms [19]. It is organized into four substruc-
tures. (1) Visualization tools generate visual mappings of
some input data. (2) Platform drivers are responsible for
the adaptive rendering on different platforms. (3) Appli-
cation interfaces are used for input and output. (4) The
service logic is the control and management component. It
handles client requests, data transfer, access to visualiza-
tion tools, and distribution of mapping results to platform
drivers. Although MUVA is able to provide adaptive ren-
dering, neither adaptations in the data space (e.g., cluster-
ing, filtering, or mapping) nor interaction are considered.

Zhao et al. developed a collaborative visualization ap-
proach based on web services [25]]. Visualization operators
are encapsulated as services, which are hosted on a cen-
tral visualization server. This server creates visualizations
and transfers them in form of bitmaps to the clients. Even
though the visualization pipeline is separated into different
services, distribution of these services to better use avail-
able resources in not considered.

Hagen et al. [10] apply agents to construct a three-
tier multi-agent scientific visualization system. The ker-
nel layer implements core visualization functionality. The
extension layer provides the necessary tools for data
im-/export, geometry generation, and visual mapping.
The hardware layer encapsulates device-specific rendering
functions. This architecture allows for adapted and dis-
tributed rendering, but does not considerer distribution of
other visualization stages (e.g., clustering or visual map-
ping).

AVAM is an agent-oriented model for adaptive visual-
ization over the internet [22]). It has been designed so as to
adapt to the changing resources in internet scenarios. The
main components are (1) a sensor component, which mon-
itors available resources, (2) an arbitrator, which decides if
and how agents are distributed depending on a cost-benefit
analysis, and (3) the visualization agent, which realizes the
commands issued by the arbitrator by calling visualization
modules. This approach focusses on distribution of render-
ing calls and does not consider other data transformations.

A distributed information visualization approach that
supports all steps of the visualization pipeline is presented
in [18]]. Reactive and deliberative agents are distinguished.
Reactive agents have only little knowledge of the environ-
ment and perform low-level control tasks, whereas delib-

erative agents have a broader view on the environment,
which enables them to accomplish more complex high-
level tasks. Filtering and rendering are implemented as
reactive agents and mapping is realized as deliberative
agents, which choose automatically an appropriate visu-
alization technique.

All reviewed approaches have in common that they im-
plement loosely coupled software components for visual-
ization. Many approaches focus on a specific aspect only.
Balancing the workload, distributing the rendering step, or
providing collaboration facilities are major objectives. We
found no approach in the literature that targets the specific
requirements of smart ad-hoc environments. Therefore,
our goal is to make use of selected aspects of previous ap-
proaches and adapt them to the smart meeting room.

3 Visualization in the Smart Meeting Room

In this section, we first discuss requirements of the
smart meeting room scenario and then describe on an ab-
stract level our service-oriented architecture.

3.1 Requirements

The heterogeneous and ad-hoc character of the device
ensemble is a core challenge: one can neither know of the
involved devices nor can one depend on the availability of
specific functionality. On the other hand, we want to take
advantage of the devices that are currently available in the
smart meeting room. We aim for distributing computations
and for utilizing multiple display devices.

Relying on hard-wired implementations of the visual-
ization pipeline is therefore not possible. Instead, the vi-
sualization pipeline must be composed from basic building
blocks and must be adapted to the current situation of the
environment at run-time. The adaptation has to take into
account the availability and the characteristics of devices
(e.g., computing power, memory, display size, resolution,
color depth). Complex computations should preferably be
performed on capable devices. Avoiding visual clutter (see
[[7]) is a particular requirement for smaller mobile devices.
Strategies are needed to avoid mapping more information
to an output device than can be displayed, but still the core
message of the visualization must be preserved.

Although fully automatic support is desirable, users
must always be able to control in how far their devices con-
tribute to the environment. It is also a necessity to allow
users to override system decision by offering methods for
manual interactive adjustments.

On an abstract level, one can summarize these require-
ments as follows: (1) Composition of visualizations from
basic building blocks in a distributed ad-hoc fashion, (2)
adaptation of visualizations to the available computing and
output devices, and (3) integration of appropriate user con-
trol mechanisms.

Descriptions

Service b2, Control Layer . Pipeline
Pool &) kS Templates
"g Service Composition and Adaptation g _I
Service g 8 Template I
))
)) b L
: 3
A Q
« . L a
: \ h Service Pipeline
Device Parameterization Adaptation

Interaction

‘ Presentation and

N

Figure 1: Service-oriented architecture for information visualization in the smart meeting room.

3.2 The SOA Model

We decided to use services as building blocks in favor
of agents for the following reason. As the application con-
text may change in the smart meeting room (e.g., one day
the room is used for a technical presentation, the other day
for collaborative exploration of statistical data), the partic-
ular requirements with regard to visualization also change.
It is more suitable to build on top of a set of basic ser-
vices a dedicated control layer that encapsulates several
application-specific steering mechanisms, rather than in-
tegrating an overhead of control semantics to autonomous
agents. With regard to the previously discussed require-
ments, we have to investigate three issues in detail:

1. What information visualization services are required
in the smart meeting room?

2. How can services be linked and adapted dynamically
at runtime to accomplish visualization tasks given
the environment’s current situation?

3. How are services invoked to create visual output?

We consider Chi’s data state reference model
(DSRM) [4]] to identify required services. It is a well-
accepted architecture for information visualization and
models the visualization pipeline as a static network of
data transformation operators. Our approach is to split
up the hard-wired visualization pipeline and to implement
operators as services that run on different devices. To
facilitate service composition, it is necessary to abstract
from concrete implementation details of services and to
extract higher-level specifications. Therefore, we distin-
guish between interfaces and implementations of services.
An interface Z = {I, O} describes a service as a black-
box with specified inputs I = {é1,...,%,} and outputs
O = {o01,...,0m}. Inputs and outputs include both data
specifications and definitions of control parameters. Sev-
eral implementations of an interface can exists, which then

provide the same functionality, but differ in what control
parameters they accept and how they perform the neces-
sary computations.

The services are managed by a control layer whose ma-
jor tasks are: (1) service registration, (2) service compo-
sition, parametrization, and adaptation, and (3) service in-
vocation. Two mechanisms support the registration of ser-
vices. First, by manually invoking a service it is registered
at the control layer. Second, once started, a service re-
ports itself to the control layer at fixed time intervals. This
enables us to keep track of dynamic changes to the envi-
ronment (e.g., a service ceases to exist). With the help of
interface specifications, the control layer identifies those
services that can be utilized to accomplish a particular vi-
sualization task.

The second task of the control layer is to dynami-
cally link several services to form an adapted visualization
pipeline at runtime. For that purpose, predefined problem-
oriented pipeline templates are used. They describe an ab-
stract visualization pipeline as a network of interconnected
service interfaces (not specific implementations). At run-
time, the control layer evaluates pipeline templates and
binds specific device-oriented service implementations to
create an executable visualization pipeline.

The necessary adaptation to the heterogeneous dynamic
environment is realized in different conceptual ways: (1)
providing different service implementations, (2) adjusting
control parameters of services, and (3) by adapting the
pipeline templates themselves. At the first level, if a de-
vice leaves the environment and with it a specific service
implementation, the missing service is replaced with an-
other implementation (of the same interface). At the sec-
ond level, service parameters are set depending on char-
acteristics reported by device description services. For in-
stance, a device description service provides display reso-
lution and color-depth as outputs O that can be connected
to the input I of other services to control adaptation. In ad-
dition to automatic parameterization, users can manually

tune service parameters. Thirdly, adaptation can be real-
ized by automatically incorporating additional interfaces
in a pipeline template at runtime. For instance, if a data set
is too large to be presented on a smart phone, additional
data abstraction steps are incorporated into the pipeline.

Finally, the control layer invokes the parameterized ser-
vices in the order as described by the dynamically instanti-
ated pipeline. This involves transferring data between suc-
cessive services via network communication channels.

Figure [I] shows the main components of the service-
oriented architecture as we are using it in the smart meet-
ing room. In the next section, we will discuss in detail how
specific aspects have been implemented and where future
work is necessary to complete the architecture.

4 Implementation
4.1 Services

We coarsely categorized the operators of Chi’s reference
model based on the data transformation they perform. In-
terfaces have been inserted at those points in the visualiza-
tion pipeline where major changes in the data structure are
expected. In particular, the following basic interfaces are
available: (1) data import, (2) data analysis, (3) mapping,
(4) rendering, and an additional interface for (5) comple-
mentary services. This initial categorization works well
with our proof-of-concept implementation. However, fur-
ther investigation is necessary to adapt the interface design
to different usage scenarios and to arrive at an appropriate
level of granularity and a truly generic model.

A concrete implementation of a service interface is en-
capsulated as a Java program that can run as Web-Start ap-
plication on any Java-ready device in the smart meeting
room. The communication between services is based on
Jini™. Currently, our prototype integrates the following
services: data import services: CSV file import, SQL im-
port; data analysis services: hierarchical clustering, filters;
mapping services: color coding, parallel coordinates, scat-
ter plot matrix, geographic map, halo highlighting [[16];
rendering services: Java2D rendering, PDF output; com-
plementary services: device description, data item identi-
fication, and clutter metrics.

4.2 Service Pool

While many of these services are running on the station-
ary devices of the smart meeting room, a user that enters
the room can contribute the computing power of his mobile
devices and can utilize it as display for visualization. For
doing so, the user may invoke one or several Java Web-
Start links to start services on his device. After that, the
necessary registration at the service pool is done automat-
ically. To address the ad-hoc environment (e.g., services
on mobile devices may temporarily leave the environment
and then re-enter it), services notify the control layer of
their existence continuously at fixed time intervals.

4.3 Service Composition and Adaptation

To facilitate the dynamic construction of adapted visual-
izations at run-time, we introduced pipeline templates that
connect service interfaces, rather than specific implemen-
tations. A pipeline template is based on an XML descrip-
tion (see Figure [2) that is evaluated by the control layer
in order to test validity and to bind interface implementa-
tions at run-time. We make use of Java’s Reflection API to
identify candidates in the service pool that implement the
interfaces used in a template.

Now the first way of adaptation comes into play: the de-
vice properties as reported by device description services
(see [21]]) are fetched to the candidates. Each candidate
checks if it can perform the request successfully given the
device characteristics. This enables us to provide dedi-
cated service implementations for different devices, which
in turn are automatically chosen during service composi-
tion. For instance, a customized parallel coordinates im-
plementation for small displays will deny requests whose
display resolution parameter exceeds a certain size.

As a second way for adaptation, a service implementa-
tion can be inherently adaptive, that is, it accepts as input
parameter any device characteristics and internally adapts
its operation accordingly. Our scatter plot service for in-
stance automatically adjusts the number of bins, which are
used to maintain an overview and to accelerate the render-
ing [17], to the target device resolution (see Figure B(b)).

During service composition, the most simple case is that
only a single service matches interface and device descrip-
tions; it is bound immediately. In the case that no suitable
service is found, a third way of adaptation is applied: by
means of a rule-based mechanism, we incorporate addi-
tional service interfaces into the pipeline template at run-
time. Adding a service for transforming the color space of
a generated visualization to that of the target device is one
example. We also implemented an automatic data abstrac-
tion rule that applies when the target device cannot handle
large data sets. In that case, two additional service inter-
faces are inserted into the pipeline template: a data abstrac-
tion interface right after the data import and a clutter metric
interface before the rendering. As implementation for the
data abstraction and the clutter metric we use hierarchi-
cal clustering and data density (see [23]), respectively. If
the clutter metric exceeds an empirically determined thres-
hold, which depends on the visualization technique used,
the visualization is not transmitted to the display, but in-
stead the data abstraction is run to reduce the amount of
data to be visualized. This also causes subsequent services
to re-perform mapping and rendering and finally the clutter
metric re-checks whether the abstraction is sufficient. This
iterative loop finishes when the amount of clutter has been
reduced to the desired level.

<template>
<obj name="filtering" type="Data">
<arg>count (diagnosis=influenza and
year=1999)</arg>
</obj>
<obj name="colorParam" type="Color">
<arg><readObj objName="filtering"/></arg>

</obj>

<obj name="deviceParam" type="Device">
<arg>SEARCH</arg>

</obj> ...

<obj name="mapping" type="Mapping">

<arg><readObj objName="filtering"/></arg>
<arg><readObj objName="colorParam"/></arg>
<arg><readObj objName="deviceParam"/></arg>
</obj>
<obj name="rendering" type="Renderer">
<arg><readObj objName="deviceParam"/></arg>
<arg><readObj objName="mapping"/></arg>
</obj>

</template>

Figure 2: Sample pipeline template.

The result of the template evaluation is a set of parame-
terized services. The Java Reflection API is used to create
referential links between input and output of the services as
described by the pipeline template. This also includes link-
ing to user interface services that provide GUI elements for
interactive adjustments of parameters.

4.4 Service Invocation

Finally, a fully parameterized and interconnected net-
work of services has been created that can be scheduled for
execution. A service is invoked by the control layer once
it has been successfully added to a visualization pipeline.
The control layer then starts transferring input data to the
services. To reduce data transmission costs, we use data
compression methods (ZIP for plain data; PNG for visual
content). If all necessary data are available at the input
ports, a service performs its computation. After that, the
control layer is notified to transfer the computed results to
all services that depend on them. This procedure continues
until all services have been executed, in particular those
services that transmit visualizations to output devices.

In contrast to classic web-services, the data transforma-
tions that an information visualization service computes
can be complex. Therefore, we implement a caching strat-
egy to avoid unnecessary re-computations. The increased
costs in terms of memory usage are acceptable since ser-
vices run on different devices. Because one and the same
service implementation can be part of several visualization
pipelines, a session identifier is used to distinguish between
cached content of several service invocations.

5 Usage Scenario

As a first usage scenario for service-oriented informa-
tion visualization in our smart environment [3|], we have
chosen a meeting of physicians and statisticians and a data
set with 10 dimensions and 1095 tuples. This scenario al-
lows us to test and demonstrate our concepts for the ad-hoc
generation and adaptation of visualizations.

Suppose a number of medical doctors and data analy-
sis experts who meet to discuss the current health situation
in their federal state. At a primary projector display, the
waves of influenza of recent years are presented on a color

coded map visualization. The experts discuss similarities
of past years with the current situation to assess acute risks
and necessary precautions. This is supported by automatic
highlighting of important data portions (see Figure |3).

The visualization is distributed as follows: the laptop
ARGON runs the data input service and the desktop com-
puter NEON is responsible for mapping and rendering. A
projector that is connected to NEON is used as output de-
vice.

While the map-based visualization of influenza is dis-
cussed, the question arises which other illnesses are closely
related. This question is to be answered with a second vi-
sualization: a scatter plot matrix service is run on the ma-
chine XENON, which is connected to a second projector
(see Figure [A(a)).

In order keep an overview, even when speaking to the
expert group, the discussion leader decides to redirect a
copy of the scatter plot matrix to his PDA (FERRUM). The
low display resolution is recognized by the control layer
and an adapted visualization is automatically generated for
the PDA (see Figure [4(b)).

During the discussion, one expert has to leave the meet-
ing unexpectedly. His laptop device ARGON is no longer
available and the data import service gets disconnected.
Another participant has a copy of the data on his machine
and provides access to it by invoking a data import service.
The control layer automatically integrates the newly avail-
able service from RADON into the running visualization en-
vironment, and the meeting can continue (see Figure [3)).

6 Summary & Future Work

We presented preliminary results of our ongoing work
on service-oriented information visualization in smart en-
vironments. The presented architecture allows us to make
use of the available computing devices to generate visual-
izations in a distributed fashion. The ad-hoc character of
the environment is dealt with by automatically managing a
service pool. Vanishing service implementations are auto-
matically substituted by other readily available ones. Our
architecture also facilitates utilization of multiple display
devices. To address the heterogeneous display characteris-

[o]

(b) On a PDA, binning is used to reduce

(a) On a full resolution projector display all information is
complexity.

shown in details.

Figure 4: To compare influenza to other diagnoses, a scatter plot matrix is utilized (rendering times between 0.5s and 3.5s).

£ 55C on localhe o] 4| SC on localho -0 x| B 55€ on localho] 3]
| close | | add | | close | | add | | close | | add |
@ IColor @ xenon = @ IData = @ IColor @ xenon =

@ IData @ radon

T @ IDevice @ xenon
— @ IDevice @ ferrum
@ IRenderer @ xenon

@ IColor @ xenon
T @ IDevice @ xenon
— @ IDevice @ ferrum

@ IData @ argon
@ IDevice @ xenon
@ IDevice @ ferrum

@ IRenderer @ xenon
@ IRenderer @ ferrum

shutdown all services

@ IRenderer @ xenon
@ IRenderer @ ferrum

shutdown all services

@ IRenderer @ ferrum

shutdown all services

(¢) A new data service on
RADON is automatically inte-
grated into the running pipeline.

(b) The data service on ARGON

(a) List of services on different
is no longer available.

devices.

Figure 5: Automatic replacement of missing services.

tics, we integrated adaptations strategies (e.g., abstraction-
metric-loop or binned rendering). A critical point of the
SOA architecture is the data transmission between ser-
vices. We implemented caching strategies and apply com-
pression methods where possible to reduce the data trans-
mission costs.

One aspect for future works is linking our model with
research on security issues in the smart meeting room [[15].
We will also have to investigate in how far our model is
sufficiently generic to allow its application in other smart
environments. An important aspect that we have not con-
sidered in this work is collaborative interaction across vi-
sualizations displayed on multiple devices.

With regard to output adaptation, we envision several
future ways to utilize multiple displays. If users work col-
laboratively, it makes sense to automatically present the
same information on all available user devices simultane-
ously. To facilitate the visualization of larger data sets,
one could split a visualization into several portions each of
which being presented on a separate device. Another idea
is to employ a details-on-demand strategy where one dis-
play shows an overview and selected details are shown on
other displays. We also plan to implement advanced adap-
tation mechanisms that utilize the smart environment’s sen-
sory devices and situation analysis modules. If, for in-
stance, two render services are available for two projector
devices, it makes sense to bind the one that is closer to the
user.

Acknowledgements
The research presented in this paper is conducted within
the graduate school “MuSAMA — Multimodal Smart Ap-
pliance Ensembles for Mobile Applications”, which is
funded by the Deutsche Forschungsgemeinschaft (DFG).

References
[1]1 E. Aarts and J. Encarnacgdo. True Visions: The Emergence of Ambi-
ent Intelligence. Springer, 2006.

[2] K. Brodlie, D. Duce, J. Gallop, J. Walton, and J. Wood. Distributed
and Collaborative Visualization. Comp. Graph. Forum, 23(2), 2004.

[3] C. Burghardt, C. Reisse, T. Heider, M. Giersich, and T. Kirste. Im-
plementing Scenarios in a Smart Learning Environment. In Proc. of
1EEE Intl. Workshop on PervasivE Learning, 2008.

[4] E. Chi. A Taxonomy of Visualization Techniques Using the Data
State Reference Model. In Proc. of IEEE Sym. on Information Vi-
sualization, 2000.

[5] D. Cook and S. Das.
2005.

Smart Environments. Wiley-Interscience,

[6] 1. Duda, M. Aleksy, and T. Butter. Architectures for Mobile Device
Integration into Service-Oriented Architectures. In Proc. of Intl.
Conf. on Mobile Business, 2005.

[7]1 G.Ellis and A. Dix. A Taxonomy of Clutter Reduction for Informa-
tion Visualisation. /EEE Trans. on Vis. and Comp. Graph., 13(6),
2007.

[8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

J. Encarnagdo and T. Kirste. Ambient Intelligence: Towards Smart
Appliance Ensembles. In From Integrated Publication and Informa-
tions Systems to Virtual Information and Knowledge Environments.
2005.

I. Grimstead, N. Avis, and D. Walker. Automatic Distribution of
Rendering Workloads in a Grid Enabled Collaborative Visualiza-
tion Environment. In Proc. of ACM/IEEE Conf. on Supercomputing,
2004.

H. Hagen, H. Barthel, A. Ebert, A. Divivier, and M. Bender. A
Component- and Multi Agent-based Visualization System Archi-
tecture. In Proc. of Intl. Sym. on Mobile Computing, 2000.

T. Hau, N. Ebert, A. Hochstein, and W. Brenner. Where to Start
with SOA: Criteria for Selecting SOA Projects. In Proc. of Ann.
Hawaii Intl. Conf. on System Sciences, 2008.

T. Heider and T. Kirste. Automatic vs. Manual Multi-Display Con-
figuration: A Study of User Performance in a Semi-Cooperative
Task Setting. In Proc. of BCS HCI Group Conference, 2007.

T. Heider and T. Kirste. Minimizing Cognitive Load by Automatic
Display Management. In Ubicomp Workshop on Attention Manage-
ment in Ubiquitous Computing Environments, 2007.

M. Huhns and M. Singh. Service-Oriented Computing: Key Con-
cepts and Principles. IEEE Internet Computing, 9(1), 2005.

D. Hutter, G. Miiller, W. Stephan, and M. Ullmann, editors. Security
in Pervasive Computing, number 2802 in LNCS. Springer, 2003.

M. Luboschik and H. Schumann. Illustrative Halos in Information
Visualization. In Proc. of Advanced Visual Interfaces, 2008.

M. Novotny and H. Hauser. Outlier-Preserving Focus+Context Vi-
sualization in Parallel Coordinates. IEEE Trans. on Vis. and Comp.
Graph., 12(5), 2006.

J. Schidlich and K. Mukasa. An Intelligent Framework for User-
Oriented Information Visualization in the Production Automation
Area. In Proc. of Intl. Conf. Information Visualisation, 2004.

L. Skorin-Kapov, H. Komericki, M. Matijasevic, I. Pandzic, and
M. Mosmondor. MUVA: a Flexible Visualization Architecture for
Multiple Client Platforms. Journal of Mobile Multimedia, 1(1),
2005.

J. Street and H. Gomaa. Software Architectural Reuse Issues in
Service-Oriented Architectures. In Proc. of Ann. Hawaii Intl. Conf.
on System Sciences, 2008.

C. Thiede and H. Schumann. Beschreibung des Kon-
textes zur Adaption visueller Interfaces in multimedialen adhoc-
Umgebungen. Rostocker Informatik-Berichte, Vol. 31, 2007, (in
German).

K. Tsoi and E. Groller. Adaptive Visualization over the Internet.
Technical report, TU Vienna, 2000.

E. Tufte. The Visual Display of Quantitative Information. Graphics
Press LLC, 2. edition, 2006.

J. Yang and M. Papazoglou. Web Components: A Substrate for Web
Service Reuse and Composition. In Proc. of Intl. Conf. on Advanced
Information Systems Engineering, 2002.

Y. Zhao, C. Hu, Y. Huang, and D. Ma. Collaborative Visualization
of Large Scale Datasets Using Web Services. In Proc. of Intl. Conf.
on Internet and Web Applications and Services, 2007.

E. Zudilova-Seinstra and N. Yang. Towards Service-based Interac-
tive Visualization. In Proc. of Intl. Sym. on Ambient Intelligence
and Life, 2005.

	Introduction
	Basics & Related Work
	Smart Environments
	Service-Oriented Architectures
	Distributed Visualization

	Visualization in the Smart Meeting Room
	Requirements
	The SOA Model

	Implementation
	Services
	Service Pool
	Service Composition and Adaptation
	Service Invocation

	Usage Scenario
	Summary & Future Work

