
Detecting Precedence-Related Advice Interference
Technical Report TR #0607, University of Passau, Computer Science Department, Passau, Germany, July 2006

Maximilian Stoerzer and Robin Sterr
University of Passau

{stoerzer, sterr}@fmi.uni-passau.de

Florian Forster
University of Hagen

Florian.Forster@fernuni-hagen.de

Abstract

Aspect-Oriented Programming (AOP) has been pro-
posed in literature to overcome modularization shortcom-
ings such as the tyranny of the dominant decomposition.
However, the new language constructs introduced by AOP
also raise new issues on their own–one of them is potential
interference among aspects.

In this paper we focus on a special case of this prob-
lem and demonstrate how undefined advice precedence can
easily jeopardize correctness of a program. We present an
interference analysis to detect and thus help programmers
to avoid advice order related problems.

1 Motivation

Aspect-Oriented Programming (AOP) as introduced in
[10] has been promoted in recent years as a mechanism to
overcome the tyranny of the dominant decomposition [15].
Even in well-designed systems it can happen that some re-
quirements cannot be implemented well-localized as a sepa-
rate module. Such requirements are called crosscutting con-
cerns, as their implementation scatters code cross several
modules. This scattered code typically is hard to maintain
as changes to it result in invasive changes to major parts of
the system. Classical examples are tracing or authorization.

Today aspect-oriented extensions are available for most
main stream languages, although the Java extension As-
pectJ1 [9] still is the most popular AO language. AO lan-
guages as understood in this paper share a common core
principle: a new kind of module called aspect contains defi-
nition of behavior (called advice) and a specification where
this behavior should be executed (called pointcuts). Point-
cuts are quantified statements over a program selecting a set
of well-defined points during the execution of a program
(called joinpoints). Examples for joinpoints are method

1We use the AspectJ language version 1.2 for this paper.

calls or field access. AspectJ follows this principle and we
will use it as example in the following.

AOP is not without problems. Recently there was an in-
teresting discussion on the AspectJ mailing list illustrating a
major AOP problem: aspect interference. An AspectJ user
had the following problem migrating his system to a new
version of the AspectJ compiler2: “What I am seeing . . . is
that my aspects that previously worked for transaction con-
trol and database connections are no longer working. . . . I
can not stress enough that the only change was my migra-
tion from 1.2 variants of AspectJ and AJDT to the newest
versions when this started to occur.” What changed in be-
tween these two compiler versions?

In the absence of explicit user-defined aspect ordering
advice precedence for two pieces of advice can be unde-
fined. The above problem could be tracked down to a
change in compiler specific precedence rules. The new
compiler chose a different order in cases where advice or-
der was undefined, finally resulting in a program failure as
advice is not commutative in general. In the same thread,
AspectJ developers state that no guarantee can be given on
any order picked by the compiler for undefined precedence,
even that the order can change arbitrarily among different
compiler versions or even for different compiler runs.

The advice-precedence related problem reported on the
mailing list is a special case of a problem known as the as-
pect interference problem in AOP research [4]. We will
term this above mentioned special case the advice prece-
dence problem in this paper. While one could argue that
programmers should not rely on a particular order picked
by a compiler, the problem is more substantial.

First, in team developed projects different programmers
potentially develop and test aspects independently of each
other. As a consequence these programmers in general are
not aware of other aspects let alone whether or not their
aspects interfere. Second, due to the design of pointcuts as
quantified expressions over a program, evolution of the base

2[aspectj-users] AJDT 1.3 and aspectj; thread started by Ronald R.
DiFrango on Oct. 10th, 2005

1

program may result in introduction of aspect interference
some time after aspects have been applied and tested. For
example assume a new method is added to the system where
now two pieces of advice from two formerly non-conflicting
aspects apply. Each system modification thus always re-
quires to check whether applied aspects interfere with each
other in the new version. Doing this manually is tedious and
error prone, as conflicts are not obvious. And finally man-
ually maintaining aspect precedence among a large number
of aspects can be hard, as a multitude of potential conflicts
has to be examined by the programmer. Most aspects how-
ever might not conflict at all. Thus the problem can easily be
neglected as an irrelevant effort (“Aspects don’t interfere.”),
leaving system semantics undefined if aspects conflict.

We argue that tool support is necessary to make pro-
grammers aware of interfering aspects at compile time.
In this paper we analyze the problem of undefined aspect
precedence in detail and define advice order related aspect
interference. Further on we propose a method to automati-
cally determine a set of potentially interfering aspects based
on static analysis of a system. Although we use the As-
pectJ programming model–focusing on advice, pointcuts
and (statically resolvable) joinpoint matching–our approach
is applicable to languages based on a comparable program-
ming model as well.

The contributions of this paper are threefold. First, we
discuss the problem of aspect interference which up to now
has been mostly neglected by aspect research. Second, we
present an interference criterion allowing to detect situa-
tions where establishing a defined advice precedence is nec-
essary. Third, we used program analysis techniques to im-
plement this criterion.

2 Example

We will use the simple Telecom application which is
part of the AspectJ distribution to illustrate the advice prece-
dence problem in this paper. The discussion of this ex-
ample will also give a short introduction to AspectJ for
readers unfamiliar with the language. The Telecom ap-
plication models a telecommunication administration sys-
tem. The base application is extended with two aspects
called Timing and Billing. The Timing aspect keeps
track of the duration of a phone call, while the Billing
aspect uses this information to calculate the amount of
money that customers are charged. In the original ex-
ample, aspect Billing contains an AspectJ statement
to explicitly define that Billing has higher precedence
than Timing: declare precedence: Billing,
Timing; However, we will remove this statement to
demonstrate interference problems.

Figure 1 shows the Timing and Billing aspects3

3Due to space limitations, we omit the base code here.

of the Telecom example. Consider the definition of the
pointcut named endTiming in Timing, which uses the
call keyword of AspectJ to select joinpoints representing
calls to the drop method of the Connection-class. In
the following c is the Connection-object drop is called
on. The target keyword is used to expose c to advice
bound to this pointcut.

There are two pieces of after-advice defined in the
Timing and Billing aspects referencing pointcut end-
Timing (shown in bold). These pieces of after-advice
are executed immediately after the call to drop returns. As
c is exposed by the pointcut, both pieces of advice can ac-
cess c to perform their calculations. Besides after-advice,
AspectJ also defines before- and around-advice, allow-
ing to add behavior before or instead of a selected joinpoint,
respectively. We call this the advice kind. For around-
advice, the original behavior at the joinpoint can be called
by using the proceed keyword.

Besides pointcuts and advice the Telecom example
also uses inter type declarations, which allow to add new
members to existing classes. The declaration Timer
Connection.timer = new Timer() for example
adds and initializes a field timer in the Connection
class. The difference compared to traditional member dec-
larations is the qualified name, specifying the target class
the new member should be a part of. This short introduc-
tion to AspectJ should suffice for this paper, for details we
refer the interested reader to [9] and the AspectJ manuals.4

Ending a phone call is modeled by calling hangUp
on a Customer-object which finally results in a call
to drop() on the Connection object. The pointcut
endTiming binds the after-advice of both the Tim-
ing and Billing aspects (shown in bold in figure 1)
to the joinpoint representing the drop() call. As can
be seen, Timing saves the end time of the phone call
(getTimer(c).stop()) and Billing uses this in-
formation to calculate the amount of money the caller
is charged (getTimer(conn).getTime()). The
Timer-class is shown in figure 2.

public class Timer {
public long startTime, stopTime;
public void start()
{ startTime = System.currentTimeMillis();
stopTime = startTime; }

public void stop()
{ stopTime = System.currentTimeMillis(); }
public long getTime()
{ return stopTime - startTime; }

}
Figure 2. Timer class.

The declare precedence statement in the original
example guarantees that the advice defined in the Tim-

4http://www.eclipse.org/aspectj/

public aspect Timing {
private Timer Connection.timer = new Timer();
public Timer getTimer(Connection conn)
{ return conn.timer; }

after (Connection c): call(
void Connection.complete()) && target(c)

{ getTimer(c).start(); }

pointcut endTiming(Connection c):
call(void Connection.drop()) && target(c);

after(Connection c): endTiming(c)
{ getTimer(c).stop();
c.getCaller().totalConnectTime

+= getTimer(c).getTime();
c.getReceiver().totalConnectTime

+= getTimer(c).getTime(); }
...

}

public aspect Billing {
/* declare precedence: Billing, Timing; */
private Customer Connection.payer;
public Customer getPayer(Connection conn)
{ return conn.payer; }
after(Customer cust) returning (Connection conn):
args(cust, ..) && call(Connection+.new(..))

{ conn.payer = cust; }
public abstract long Connection.callRate();
after(Connection conn):
Timing.endTiming(conn)

{ long time = Timing.aspectOf()
.getTimer(conn).getTime();

long rate = conn.callRate();
long cost = rate * time;
getPayer(conn).addCharge(cost); }

public long Customer.totalCharge = 0;
public void Customer.addCharge(long charge)
{ totalCharge += charge; }
...

}
Figure 1. Timing and Billing aspects of Telecom example.

ing aspect is executed before the advice defined in the
Billing aspect. However, if this statement is missing, the
compiler is free to choose the opposite order as in this case
advice precedence according to the language specification
is undefined. As a consequence the Billing-advice will
always receive 0 when calling getTime() on the shared
Timer-object, as the observant reader may verify. System
functionality is broken; here the order in which both actions
are performed is obviously relevant.

For this example dependence between the two aspects
is easy to see and the necessary explicit ordering is easy
to add. This is not the case in general. In large, team-
developed projects aspects interfering non-trivially might
be developed by different programmers, making it hard to
even notice interference. The resulting errors are cumber-
some to detect, as the interference may be well-hidden. The
missing ordering might also fail to produce a failure if the
compiler by chance chooses the “right” order. In this case
even thorough testing fails to detect a potential problem.
Note that this is not a weakness of testing, but rather a prin-
cipal problem of changing semantics due to a different com-
piler run—in the first version there simply is no problem a
test could reveal. This however might change with the next
compiler version or even with the next compilation of the
system, if the new compiler chooses the “wrong” order.

3 Advice Interference

In the Telecom example introduced in section 2
Billing uses information written by Timing. A “read
from relation” is also well-known from transaction serial-
ization theory for databases. In this context, two transac-
tions T1 and T2 conflict if they both access a common data
object and at least one of them modifies this object. If two

transactions conflict, they have to be serialized to maintain
database consistency.

Analysis of data flow between two pieces of advice is the
first cornerstone of our analysis. Besides data flow, multi-
ple pieces of advice at a single joinpoint can also interfere,
if they potentially prevent execution of subsequent advice.
This is the case, for example, if advice throws an excep-
tion or around-advice does not call proceed. Analysis
of control dependences thus is the second cornerstone of
our analysis. We will declare advice interference based on
these two properties. If two pieces of advice conflict, aspect
precedence has to be explicitly declared to avoid undefined
system semantics.

To formulate the data flow interference criterion, we
need to know which parts of the system state are used by
a piece of advice. This is captured by the def - and use-sets
for a piece of advice.

Definition 3.1 (def () and use()-sets) Let ‘m’ be a method
or a piece of advice. Let ‘decl ’ be the unique source loca-
tion of a variable declaration. Let Nt be the set of call tar-
gets for all call sites and At the set of all pieces of advice
attached to a joinpoint in m’s lexical scope. Then def () and
use() are defined as follows:

def (m) = {(a, decl(a)) | a appears as l-value in m}
∪ {(a.x, decl(a)) | a.x appears as l-value in m}

∪
⋃

nt∈Nt

def (nt) ∪
⋃

at∈At

def (at)

use(m) = {(a, decl(a)) | a appears as r-value in m}
∪ {(a.x, decl(a)) | a.x appears as r-value in m}

∪
⋃

nt∈Nt

use(nt) ∪
⋃

at∈At

use(at)

Traditionally the def - and use-sets of a method (and sim-
ilarly advice) are defined as the set of memory locations
defined (or written) and used (or read) by a method, respec-
tively. We define def () and use()-sets semi-formally based
on the statements contained in a method or advice. Note
that we assume that nested statements have been resolved
previously for simplification, which is always possible us-
ing simple syntactical transformations and is done on-the-
fly by our analysis.5

Definition 3.1 states that all identifiers (both qualified
and unqualified) used as l-values are added to the def ()-
set, while all identifiers used in expressions or method calls
as parameters are added to the use()-set (as they are im-
plicitly used as r-values). Note that we add the def ()- and
use()-sets of called methods and attached advice as well,
as we have to analyze data access in the complete con-
trol flow of potentially conflicting advice, including sub-
sequently called methods. The recursion in definition 3.1
terminates for methods without call site and attached ad-
vice. Recursive methods are no problem here, as a single
analysis of a given method is sufficient to collect all names
appearing either as l- or r-value.

Analyzing all pieces of advice is not necessary, as only a
small set of available pieces of advice is relevant. We define
advice data dependence for relevant advice in the following.

Definition 3.2 (Relevant Advice) Two pieces of advice a1

and a2 are relevant, if they are defined in different aspects,
apply at at least one common joinpoint and are either of the
same kind or at least one of them is around-advice.

Definition 3.3 (Advice Data Dependence) Let a1 and a2

be two relevant pieces of advice. Let ‘objects’ de-
note the objects a reference may refer to, ‘formals(a)’
be the formal parameters of a piece of advice ‘a’, and
‘actuals(proceed)’ the actual parameters of the call to
proceed. Then a1 and a2 are data dependent on each
other if for i, j ∈ {1, 2}, i 6= j either

(a.x, decl(a)) ∈ def (ai) ∧ (b.x, decl(b)) ∈ (def (aj) ∪ use(aj)))

⇒ objects(a, decl(a)) ∩ objects(b, decl(b)) 6= ∅

or, if ai is around-advice,

formals(ai) 6≡ actuals(proceed)∨
formals(ai) ∩ def (ai) 6= ∅∨

ai returns a different value than proceed(. . .).
5For example we transform x = a.b.c to $1 = a.b; x = $1.c or

f(g(x)) to $1 = g(x); f($1) where $1 is a new auxiliary variable.

The first property checks if one advice reads data from
the other, similar to the criterion stated for transactions.
The second criterion however handles the special case of
around-advice. Such advice can easily modify or com-
pletely redefine the actual parameters of the proceed-call,
thus changing values reaching e.g. a called method. Sim-
ilarly it can also access and modify the return value. The
second property explicitly captures these cases.

Additionally to data flow between advice we also have to
examine the control flow. Advice can modify control flow
such that execution of pieces of advice with lower prece-
dence applying at the same joinpoint is prevented (e.g. by
throwing an exception). In this case program semantics
again depend on advice precedence; order thus has to be
explicitly stated. We define control dependence and finally
advice interference as follows.

Definition 3.4 (Advice Control Dependence) Let a1 and
a2 be two relevant pieces of advice. ai is control depen-
dent on aj (for i, j ∈ {1, 2}, i 6= j), if aj explicitly throws
an exception6 which is not handled in the advice body of
aj or if aj is around-advice and proceed is not called
exactly once in it’s control flow.

Note that demanding that proceed is called at least
once is not sufficient as multiple calls to proceed subse-
quently result in multiple executions of respective methods
and advice so likely changing system semantics.

Definition 3.5 (Advice Interference) Two relevant pieces
of advice a1 and a2 interfere, if a1 is data or control depen-
dent on a2 or vice versa.

Note that advice interference is restricted by the advice
kind. The order of before and after advice is trivially
determined. However, if one of the two pieces of advice is
around-advice or both pieces of advice are of the same
kind, then advice precedence may be undefined and in this
case can be picked arbitrarily by the compiler, potentially
affecting program semantics. Finally we define aspect in-
terference based on conflicting advice.

Definition 3.6 (Aspect Conflict) Let A1 and A2 be two as-
pects. Then A1 and A2 conflict, if two pieces of advice
a1 ∈ A1, a2 ∈ A2 exist such that a1 and a2 interfere and
precedence of A1 and A2 is undefined.

Example 3.1 (Telecom) We apply definition 3.6 to the
Telecom example from section 2. Let a1 be the after-
advice in Timing, a2 the after-advice in Billing.
As we removed the declare precedence statement,
precedence of these two aspects is undeclared. These two

6Note that we consider explicitly thrown exceptions only. Runtime-
Exceptions due to programming errors (e.g. NullPointerExcep-
tions) are ignored in this context.

pieces of advice are relevant as they are both bound to join-
points selected by pointcut endTiming, are of the same
kind (both after-advice) and are defined in different as-
pects, Timing and Billing respectively.

As the reader may verify, both a1 and a2 access
the same Timer-object otim associated with the cur-
rent connection through their respective call to get-
Timer(Connection). a1 calls otim .stop(), thus set-
ting otim .stopTime, i.e. otim .stopTime ∈ def (a1). a2

in turn calls otim .getTime, so reading otim .stopTime,
i.e.otim .stopTime ∈ use(a2). So there is a data depen-
dence between a1 and a2 on otim .stopTime. As a con-
sequence a1 and a2 interfere and our criterion discovers
that aspects Timing and Billing have to be explicitly
ordered, as is the case in the original version of the Tele-
com example.

Note that this criterion, if it succeeds, does not state that
the two aspects are independent of each other in general.
There might of course be data flow between them. However
such data flow does not depend on advice precedence as
long as both pieces of advice do not apply at the same join-
point. Joinpoints are reached subsequently as program ex-
ecution proceeds,7 so advice execution order is determined
by program control flow. If aspect precedence however is
relevant for program semantics, definition 3.6 provides a
sufficient criterion to check if an order has to be established
for two given pieces of advice.

Note further that although detecting interference among
pieces of advice can help considerably to avoid problems,
this will not prevent programmers to add two semantically
incompatible pieces of advice to a system. Consider for ex-
ample a tracing and an encryption aspect (taken from [5]).
The tracing aspect is logging relevant data to be able to eas-
ily understand system failures, while the encryption aspect’s
job is to assert that no data leaves the system unencrypted.
Obviously there is a conflict here – we end up with an un-
encrypted log if logging has a higher precedence than en-
cryption (thus breaking the encryption aspect) or with a en-
crypted log (hampering logging). Both solutions are not
satisfactory. However, if both aspects access common join-
points, our analysis will at least detect the conflict (as the
same data is accessed by both aspects and the encrypting
aspects modifies it). If no common joinpoints exist, the sys-
tem will at least always show the same behavior and not
depend on the compiler used, easing debugging in this case.

4 Checking For Aspect Conflicts

In this section we discuss how our criterion has been im-
plemented. Unfortunately not all necessary information can

7Note that we do not explicitly handle multi-threaded programs here.
Synchronization in this case is similar to synchronization of traditional
Java code.

be calculated statically, thus we had to both approximate
unknown information and use heuristics.

The first step in our analysis is to find relevant pieces of
advice, by analyzing the advice mapping information acces-
sible from the aspect weaver. To check our interference cri-
terion we then examine control dependences and data flow
for each pair of relevant advice.

4.1 Basic Data Structures

To implement our analysis we need two basic data struc-
tures: the intra-procedural control flow graphs and the
advice-aware call graph.

Advice-Aware Call Graph Construction
Call graphs describe the calling relations among

methods–and in this context also advice–for a program.
Each method and piece of advice is modeled as a node,
and an edge from a node n1 to a node n2 indicates that
a call site or joinpoint, respectively, in n1 (potentially) in-
vokes n2. Creating a call graph for a language like AspectJ
raises two important issues. First, dynamic binding has to
be approximated and second implicit “advice calls” have to
be added in the call graph to model joinpoints where ad-
vice applies. While the first problem is a standard problem
for object-oriented languages [16], modeling of advice ap-
plication is more interesting. Here we insert explicit call
edges from the method containing an adapted joinpoint to
attached pieces of advice. While this approach is straight-
forward for before and after-advice, around-advice
is more challenging, as it actually wraps the adapted join-
point, which is only reached if proceed is called. Several
pieces of around-advice thus result in a hierarchy of wrap-
pers, their order implied by advice precedence.

Creating this wrapper hierarchy however faces two prob-
lems. First, advice precedence can be undefined and second
advice application itself can be uncertain due to dynamic
pointcuts, i.e. pointcut definitions which depend on runtime
values and thus cannot be decided statically. To deal with
both problems we explicitly model the respective adapted
joinpoint and add edges from the containing method to its
joinpoint and assume that each advice is called from the
adapted joinpoint in turn, thus flattening any wrapper hier-
archy to avoid a combinatorial explosion which would re-
sult if all possible precedence orders had to be considered.

Example 4.1 (Call Graph Construction) Consider the
simple program shown in figure 3. Sub-figure (a) shows
the call graph if we know that A1 has higher precedence
than A2. As we apply around-advice, the original
joinpoint – although not modeled explicitly in this call
graph – is replaced by the “call” to the around advice
in A1. The around-advice in A2 is called next, as it has

bar

around A1 around A2

foo
(a)

joinpoint call foo

bar

around A1 around A2

foo
(b)

Figure 3. Call Graph Modeling for known (a) and unknown (b) advice precedence.

lower precedence than the previous advice. We thus add a
respective edge to the call graph.

However if either aspect application is uncertain due to
dynamic joinpoints or advice order is unknown, this mod-
eling of the call graph is incorrect, as paths which actually
occur are potentially lost (just assume the opposite prece-
dence order than shown in figure 3 (a)). To deal with this
problem, we explicitly model the joinpoint as a special node
in the call graph in these cases, as shown in figure 3 (b).
Advice applied at this joinpoint is now attached to this join-
point node, and a call to proceed in the around-advice
links back to this joinpoint instead of an advice or method
node.

With this construction, all feasible paths are represented
in the call graph, no paths are lost, however at the cost that
now there are also infeasible paths. As this construction is
only necessary if precedence order is undeclared the addi-
tional imprecision can be tolerated.

Exception-Aware Control Flow Graphs
For each method and each piece of advice we create the

control flow graph. In this data structure each statement
is represented by a node, and an edge between two nodes
indicates potential control flow from one node to the other.
This is a standard data structure for static program analysis;
creating control flow graphs for advice does not add any
additional issues.

However, our analysis also needs information about ex-
ceptional control flow. Therefore we augment the control
flow graph with this information. While handling of catch
and throw statements is straightforward, method calls (and
as well advice application) are more complex as here po-
tentially exceptions thrown in the control flow of the called
method (applied advice) can be propagated as well. There-
fore we have to calculate the set of exceptions potentially
propagated by each method and piece of advice.

Definition 4.1 (Propagated Exceptions) Let Nt and At

be defined as before, m be a method or a piece of advice,
and e an exception. Then the set of exceptions potentially
propagated by m prop(m) is defined as follows:

prop(m) = {e|throw e ∈ m}

∪
[

nt∈Nt

prop(nt) ∪
[

at∈At

prop(at)

− {e|e is handled in m}

To calculate this information we process the control flow
graphs for each method in the call graph in topological or-
der and calculate the set of propagated exceptions for each
method. For library methods we rely on their throws-
declarations. Methods not calling any other methods or only
library methods are thus the base case of the above recur-
sion. The resulting propagation set is then inserted at each
call site to of an already processed method.

To deal with cycles we use a standard technique. First we
calculate the set of propagated exceptions for all non-cycle
methods which are called by methods within the cycle. Sec-
ond, we propagate exception sets around the cycle until a
fixpoint is reached. These final sets are then propagated to
all methods calling cycle members. Once this analysis is
finished we have an exception aware control flow graph, i.e.
for each method and piece of advice we know the set of
exceptions thrown by them.

Example 4.2 As the Telecom-example does not contain
any recursive methods we use an artificial example to illus-
trate this approach. Consider the program shown in figure
4. A valid topological order for the call graph shown in
(b) is {j, k, {g, h, i}, f}, where nodes {g, h, i} form a cycle
and thus are treated as a single node for the topological or-
der. We start our analysis with methods j and k, which each
throw an exception, E1 and E2, respectively. As both meth-
ods have no call sites and do not handle their exceptions,
prop(j) = {E1} and prop(k) = {E2}.

class C {
void f() { g(); }
void g() {

try { h(); }
catch (E1 e) {}

}
void h() { i(); k(); }
void i() { j(); g(); }
void j() { throw new E1(); }
void k() { throw new E2(); }

}

(a)

f g

h

i j

k

(b)

Figure 4. Calculating the set of Propagated Exceptions.

This information is now propagated to i and h, respec-
tively. However as both methods are part of the cycle, we
have to start a fixpoint iteration. We start with prop(i) =
{E1}, due to the call to j. For prop(h) = {E1, E2}
due to the calls to i and k. Next, we establish prop(g) =
{E1, E2} − {E1} = {E2}, due to the call to h and the
handler for E1. Further propagating this information in the
cycle does not further change the propagation sets, thus the
fixpoint is reached. So we can propagate the final set for g
to establish prop(f) = {E2}.

Note that the calculated propagation sets do not rep-
resent a conservative solution (our analysis misses unde-
clared RuntimeException thrown by libraries as well
as exceptions like NullPointerExceptions poten-
tially thrown by the virtual machine). We believe that this
approach has three important advantages: (i) if we follow
the Java convention that RuntimeExceptions are pro-
gramming errors then these exceptions should not be caught
but fixed and program semantics (as it should be!) conse-
quently do not depend on advice precedence (crash for any
advice order), (ii) we reduce the amount of false positives as
each non-trivial piece of advice can potentially throw some
RuntimeException, and (iii) this simpler heuristic ap-
proach is feasible and considerably faster compared to more
precise approaches, which is an important property as we
envision use of our analysis during compilation.

4.2 Checking Control Dependences

We use the control flow graphs to examine advice con-
trol dependence. Note that the way how before and af-
ter advice can affect control flow in AspectJ is rather lim-
ited. The only way to do this is by throwing an excep-
tion. Around-advice however has to explicitly call pro-
ceed; otherwise the original joinpoint–and lower prece-
dence advice–is not executed. We use the exception-aware
control flow graphs to check both properties.

Analyzing proceed

To analyze if around-advice indeed calls proceed,
we check if exactly one call to proceed is on every path in
the control flow graph through the advice using a modified
depth first search, which counts the number of proceed-
nodes visited for each path. If the depth first search reaches
an exit statement, the proceed-count has to be exactly one
in each case. If an already visited node is hit again, the
counter must never exceed 1. If this is not the case we report
a potential control flow dependence.

Note that due to the heuristic exception analysis this
is only a heuristic as well. However we believe that
creating a safe analysis producing too many false posi-
tives is less valuable than an analysis missing some cases
but in general reporting actual problems, especially if
missed problems are closely related to programming er-
rors (RuntimeExceptions) which should be detected
by unit tests and corrected afterward.

Analyzing Exceptions
Analysis of exceptional behavior of advice is straightfor-

ward once the propagation sets have been calculated. For a
piece of before or after-advice a we can check our cri-
terion by checking that prop(a) = ∅.

For around-advice however the advice must not change
the exception throwing behavior of the call to proceed.
Thus we have to check that no exception potentially thrown
by proceed is handled by the around-advice and that
the advice code throws no additional exceptions. However
this information is captured in the exception aware control
flow graphs and thus easy to derive from them.

4.3 Checking Data Dependences

To check the data interference criterion we have to re-
solve aliasing in order to approximate objects . There-
fore pointer analysis is a suitable technique. As for As-
pectJ no source level pointer analysis had been available,
we implemented our own analysis based on the BDDB-
DDB system[17]. Handling of plain Java constructs is well
known, so we focus on handling of AOP constructs in this

section. The analysis we implemented for our experiments
is both flow and context insensitive (but object sensitive)
and is thus rather imprecise, but fast.

Modeling inter type declarations is straightforward. In-
ter type members are visible only in the context of the as-
pect if declared private; otherwise they act as normal
class members with one important difference: members of
the declaring aspect are also accessible in introduced code.
We thus modeled inter type members similar to regular tar-
get class members but adapted lookup rules accordingly.

Handling advice is more complex. We modeled advice
similar to methods, however two important properties of
advice have to be considered. First, we have to provide a
mapping from exposed joinpoint context to formal advice
parameters and, second, naturally there is no explicit ad-
vice call. Advice is implicitly applied at adapted joinpoints.
However, as we know the relevant joinpoints (due to the ad-
vice joinpoint mapping from the weaver), we know where
virtual “advice calls” have to be inserted.

To provide the context mapping, we have to analyze what
part of the joinpoint context has been made available to ad-
vice via the pointcut. Analysis of the pointcut declaration
allows to identify respective variables. AspectJ offers three
constructs to explicitly expose context to advice: this,
target and args. Besides these, after-advice can also
give access to return values and thrown exception objects.
Determining the variable and thus the object referred to by
these constructs depends on the nature of the joinpoint, the
AspectJ manual gives a detailed overview. A simple syn-
tactic analysis can provide this information. Once these ob-
jects have been identified, we handle “advice calls” similar
to method calls by assigning these objects to formal advice
parameters and also creating a respective assignment for re-
turn values of around-advice.

While modifications of heap objects by advice are di-
rectly captured by our analysis, around-advice can addi-
tionally reassign parameter values. As a consequence the
constraints generated to model the parameter passing po-
tentially depend on the actual advice order.

Example 4.3 (Relevance of Precedence Order) Figure 5
illustrates this problem. Assuming A1 has higher prece-
dence than A2, parameters are assigned as follows: (i) a
= l; b = m; (actuals foo→ around in A1), (ii) u = b; v
= a; (proceed in around/A1→ around/A2) and (iii)
x = v; y = v; (proceed in around/A2→ formals foo).
The opposite order yields the following assignments: (i) u
= l; v = m; (actuals foo→ around/A2, (ii) a = v; b = v;
(proceed in around/A2→ around/A1) and x = b; y =
a; (proceed in around/A1→ formals foo).

Figure 5 shows the so called points-to graphs illustrating
the data flow in both cases: solid arrows denote an assign-
ment if A1 has higher precedence than A2, dotted lines the
other case. An arrow a → b indicates that a can point

to any object b also points to. We assume that l and m
are directly resolvable to the creation sites shown as rec-
tangles and labeled accordingly. Evaluating the resulting
constraints yields the points-to sets shown in figure 5 below
the graph. As points-to sets differ depending on the execu-
tion order, we potentially miss conflicts in the interference
analysis, if only one order is analyzed.

Dynamic pointcuts raise a similar issue. AspectJ of-
fers language constructs to restrict joinpoints matched by
a pointcut. The keyword if for example allows to restrict
joinpoint matching based on program values, cflow based
on the shape of the call stack. Pointcuts containing these
constructs cannot be evaluated statically in general. In this
setup, simply assuming that advice is applied is not suffi-
cient, as in this case some constraints might be lost if advice
actually does not apply, similar to the above case dealing
with advice order.

A solution would be to create constraints for each pos-
sible order of advice and union the results. However, for
n pieces of advice n! different orders exists. If we also
consider all subsets due to dynamic joinpoint matching
this number even increases. This combinatorial explosion
clearly demands a different solution. To avoid it we use
a simple trick. Instead of only generating one assignment
from actual to formal parameters (following Andersen[1]),
we also generate the opposite assignment to identify both
points-to sets (as suggested be Steensgard[13]). While this
approach is more imprecise it allows to conservatively ap-
proximate all possible assignment orders.

With these models for advice and inter type declarations
for both the pointer analysis and the call graph it is now
possible to derive necessary constraints from the AspectJ
source code. We use these constraints together with the call
graph as inputs for the BDDBDDB system [17], which uses
binary decision diagrams to efficiently solve them.

4.4 Implementation and Example

Implementing the interference criterion based on the re-
sults of the pointer analysis and the exception-aware control
flow graphs is now straightforward. If we are only inter-
ested in a binary information (interference or not), we can
abort the analysis for two pieces of advice once a criterion
violation is found. However in general it is interesting for
programmers to know why two pieces of advice interfere.
We thus continue with the analysis to collect all objects and
access patterns where the two pieces of advice potentially
conflict. Thus even if our analysis reports false positives,
the programmer has more detailed information to make a
well-informed decision if or how precedence for two as-
pects has to be declared.

We implemented our analysis as a set of plug-ins for
the Eclipse IDE. Our system correctly identifies the data

class SomeClass {
void zip() {

...
foo(l, m); }

void foo(Object x,
Object y) {

...
}}

aspect A1 {
around(Object a,

Object b):
call(foo(..))
&& args(a, b){

...
// switched!
proceed(b, a);
...

}}

aspect A2 {
around(Object u,

Object v):
call(foo(..))
&& args(u, v) {

...
// only forward v!
proceed(v, v);
...

}}

Variable a b u v x y
A1 before A2 {l} {m} {m} {l} {l} {l}
A1 before A2 {m} {m} {l} {m} {m} {m}

l m

a b

v

xy

u

Figure 5. Generated constraints depend on advice order.

Figure 6. Interference Analysis Results for Telecom

flow conflict if the declare precedence statement is
removed in the Telecom example. The pointer analy-
sis reveals that both Timing and Billing access the
same Timer objects, where Timing sets stopTime and
Billing reads this value to finally bill the call. As neither
piece of advice throws a (checked or declared) exception,
no control flow interference is found here.

Figure 6 shows a screen shot of the results presented to
the user. Clicking on the first line of the view opens the
editor and presents the joinpoint affected by both pieces of
advice to the user. Clicking on the second line in turn opens
either the Timing or the Billing advice and the final
line allows to access the creation site of the timer object, so
allowing the user to quickly examine the analysis results.

If aspect order is defined by adding the declare
precedence statement, this is also detected by our sys-
tem and no warnings are generated. Clearly our example
can only give a first impression of the effectiveness of our
approach and additional case studies are needed to better
evaluate it. However this is hampered by the fact that unfor-
tunately only few AspectJ programs are publicly available.
However some programs are available, and additional case
studies are planned.

Although experience with our prototype is limited, we
expect our system to scale to at least medium size programs
as we use an efficient system for the most expensive part
of the analysis–the pointer analysis. BDDBDDB claims to
provide this scalability. For medium size AO systems main-
taining an overview over all applying aspects and their pe-
culiarities is already hard, and thus applying our system to
capture precedence related problems is valuable.

The precision of our analysis could clearly benefit from
improvements in the pointer analysis underlying our algo-
rithm, especially by using a context-sensitive pointer analy-
sis. Future work will on one hand increase precision for our
analysis by switching to such an analysis. Second, we are
currently in the process of refactoring open source Java sys-
tems to generate some subjects to better evaluate our sys-
tem and also generate some interesting runtime data.8 To
further increase precision and reduce spurious data depen-
dence warnings, we could also try to resolve dynamic join-
points statically as far as possible. As this is also an im-
portant topic for AspectJ performance optimization [2] and
program analysis research in general we consider this to be
orthogonal to our work.

5 Related Work and Conclusions

A shortened version of this work has been published
in [14]. In general our work is related to pointer analysis
and aspect interference analysis. We start with a very short
overview of pointer analysis in literature which is necessar-
ily not comprehensive, as a large body of work on this topic
exists.

Andersen presented a subset-based algorithm for pointer
analysis for the C language in [1], which is basically also
used in this work. As this algorithm is relatively expen-
sive (O(n3)), Steensgard [13] proposed a simpler algorithm
which identifies points-to sets on assignments, resulting in
almost linear runtime, however also a considerable loss of

8For the Telecom example runtime is just few seconds.

precision. Extensions for object-oriented languages have to
deal with dynamic binding. Due to space restrictions we
refer to [7] for an overview of available algorithms.

Although the problem of aspect interference has been
recognized by researchers, there are still only few ap-
proaches in literature addressing this problem. In [4] the
aspect interaction problem is discussed in a position paper,
although on a more abstract level and targeted to the compo-
sition filter approach [3]. While this work contains an inter-
esting discussion of problem itself, a solution is only briefly
outlined. In [11] a reflective aspect-oriented framework
is proposed which allows users to visually specify aspect-
base and aspect-aspect dependences using the Alpheus tool.
The tool is also used to specify aspect conflicts and resolu-
tion rules which are then resolved automatically at runtime.
While the framework offers a more abstract view on aspects
and provides a richer set of conflict resolution rules than
AspectJ (thus leveraging some of the problems discussed in
this paper), conflict detection is manual.

In [5, 6], a non-standard but base-language independent
aspect-oriented framework, including support for conflict
detection and resolution, is discussed. The presented con-
flict resolution mechanisms are more powerful that the de-
clare precedence construct of AspectJ. However the
presented model does not handle around-advice and bases
conflict detection on multiple pieces of advice applying to a
single joinpoint only. Our method in contrast explicitly an-
alyzes advice for commutativity thus reducing the number
of false positives.

In [12] Rinard et. al. propose a combined pointer and ef-
fect analysis to classify aspects by their effects on the base
system. While we use a similar underlying analysis, our
work differs from their’s in several ways. First, we apply
the analysis to determine effects of aspect-aspect rather than
aspect-base interference. Second, their algorithm–while
more precise–is also considerably more expensive than our
BDDBDDB-based pointer analysis, thus potentially allow-
ing to analyze larger systems. As our analysis focuses on
joinpoints with multiple pieces of applied advice, loss in
precision seems acceptable in favor of gained performance.

The problem that conflicts are not reported at all has also
been reported as a bug for AspectJ, and a compiler warning
has been suggested to deal with this problem. While this
makes programmers aware of potentially conflicting advice,
our analysis is able to detect commutative advice thus pro-
viding more precise feedback.

Finally, in [8] Ishio et. al also address the increased com-
plexity of AspectJ. To support program debugging they pro-
pose two techniques: First, they analyze call graphs and
implemented a tool to automatically detect potential infi-
nite recursion due to careless pointcut design. Second, they
calculate dynamic slices based on a technique called DC
slicing to help programmers isolate failures in code. To

create the underlying data structures, they discuss similar
problems as discussed here and also in part propose similar
solutions, although application of their work is completely
different.

To summarize, the contributions of this paper are three-
fold. First, we provided an in depth analysis of the advice
precedence problem and demonstrated its relevance. Sec-
ond, we defined an interference criterion to check for rel-
evant undefined advice precedence. Third and finally we
used standard program analysis techniques to implement
this criterion and discussed the results of our implementa-
tion for the Telecom example.

Our approach can support programmers working with
AO systems who have to deal with the advice precedence
problem by helping to avoid unexpected side effects during
system contruction and evolution.

Acknowledgements Thanks to Daniel Wasserrab for
comments on the draft version of this technical report and to
the anonymous reviewers of our earlier ASE paper, whose
feedback also helped to improve this extended technical re-
port.

References

[1] L. O. Andersen. Program Analysis and Specialization for
the C Programming Language. PhD thesis, DIKU, Univer-
sity of Copenhagen, May 1994. DIKU report 94/19.

[2] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
J. Lhotàk, O. Lhotàk, O. de Moor, D. Sereni, G. Sittam-
palam, and J. Tibble. Optimising Aspectj. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN conference on Pro-
gramming language design and implementation, pages 117–
128, New York, NY, USA, 2005. ACM Press.

[3] L. Bergmans and M. Aksits. Composing crosscutting con-
cerns using composition filters. CACM, 44(10):51–57, 2001.

[4] L. M. Bergmans. Towards detection of semantic conflicts
between crosscutting concerns. Proceedings of workshop
AAOS 2003: Analysis of Aspect-Oriented Software, held in
conjunction with ECOOP 2003, 2003.

[5] R. Douence, P. Fradet, and M. Südholt. A framework for
the detection and resolution of aspect interactions. In GPCE
’02: The ACM SIGPLAN/SIGSOFT Conference on Genera-
tive Programming and Component Engineering, pages 173–
188, London, UK, 2002. Springer-Verlag.

[6] R. Douence, P. Fradet, and M. Südholt. Composition, reuse
and interaction analysis of stateful aspects. In AOSD ’04:
Proceedings of the 3rd international conference on Aspect-
oriented software development, pages 141–150, New York,
NY, USA, 2004. ACM Press.

[7] M. Hind and A. Pioli. Which pointer analysis should i use?
In ISSTA ’00: Proceedings of the 2000 ACM SIGSOFT inter-
national symposium on Software testing and analysis, pages
113–123, New York, NY, USA, 2000. ACM Press.

[8] T. Ishio, S. Kusomoto, and K. Inoue. Debugging Support
for Aspect-Oriented Program Based on Program Slicing and
Call Graph. In Software Maintenance, 2004. Proceedings.
20th IEEE International Conference on Software Mainte-
nance, Washington, DC, USA, 2004. IEEE Computer So-
ciety.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. Lecture Notes
in Computer Science, 2072:327–355, 2001.

[10] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Akşit and S. Matsuoka, editors, Pro-
ceedings European Conference on Object-Oriented Pro-
gramming, volume 1241, pages 220–242. Springer-Verlag,
Berlin, Heidelberg, and New York, 1997.

[11] J. L. Pryor and C. Marcos. Solving conflicts in aspect-
oriented applications. In Proceedings of 4th Argentine Sym-
posium in Software Engineering, Buenos Aires, Argentina,
September 2003.

[12] M. Rinard, A. Salcianu, and S. Bugrara. A classification
system and analysis for aspect-oriented programs. In SIG-
SOFT ’04/FSE-12: Proceedings of the 12th ACM SIGSOFT
twelfth international symposium on Foundations of software
engineering, pages 147–158, New York, NY, USA, 2004.
ACM Press.

[13] B. Steensgaard. Points-to analysis in almost linear time. In
Proceedings of the Twenty-Third ACM Symposium on Prin-
ciples of Programming Languages, pages 32–41, St. Peters-
burg, FL, January 1996.

[14] M. Stoerzer, R. Sterr, and F. Forster. Detecting precedence-
related advice interference. In In Proceedings of 21th In-
ternational Conference on Automated Software Engineering
(ASE). IEEE Press, September 2006.

[15] P. Tarr and H. Ossher. Hyper/j: multi-dimensional sepa-
ration of concerns for java. In ICSE ’01: Proceedings of
the 23rd International Conference on Software Engineering,
pages 729–730, Washington, DC, USA, 2001. IEEE Com-
puter Society.

[16] F. Tip and J. Palsberg. Scalable propagation-based call graph
construction algorithms. In OOPSLA ’00: Proceedings
of the 15th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages
281–293, New York, NY, USA, 2000. ACM Press.

[17] J. Whaley and M. S. Lam. Cloning-based context-sensitive
pointer alias analysis using binary decision diagrams. In
PLDI ’04: Proceedings of the ACM SIGPLAN 2004 confer-
ence on Programming language design and implementation,
pages 131–144, New York, NY, USA, 2004. ACM Press.

