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Abstract. This paper describes a method for specifying complex dis-
tributed algorithms at a very high yet executable level, focusing in par-
ticular on general principles for making properties and invariants explicit
while keeping the control flow clear. This is critical for understanding the
algorithms and proving their correctness. It is also critical for generat-
ing efficient implementations using invariant-preserving transformations,
ensuring the correctness of the optimizations.

We have studied and experimented with a variety of important dis-
tributed algorithms, including well-known difficult variants of Paxos, by
specifying them in a very high-level language with an operational seman-
tics. In the specifications that resulted from following our method, crit-
ical properties and invariants are explicit, making the algorithms easier
to understand and verify. Indeed, this helped us discover improvements
to some of the algorithms, for correctness and for optimizations.

1 Introduction

Distributed algorithms are at the core of distributed systems, which are in-
creasingly indispensable in our daily lives. Yet, understanding and proving the
correctness of distributed algorithms remain challenging, recurring tasks. Study
of distributed algorithms has relied on either pseudo code with English, which
is high-level but imprecise, or formal specification languages, which are precise
but harder to understand or not executable.

For example, the well-known Paxos algorithm for distributed consensus, from
when Lamport first described it in 1990 [16], through all the variations, investiga-
tions, and practical deployments (including Google’s Chubby distributed locking
and storage service [6]) over the years, e.g., [8, 17, 5], remains as actively studied
as ever in specification and verification, e.g., [20, 33]. The description by van Re-
nesse [33] finally provides precise pseudo code for full Paxos—multi-Paxos—with
comprehensive detailed explanations.

This paper describes a method to help make it easier to understand and verify
complex distributed algorithms by specifying them at a very high yet executable
level. The method focuses in particular on general principles for making prop-
erties and invariants explicit while keeping the control flow clear. It exploits
message history sequences and queries over sets and sequences to abstract the
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handling of received messages, and to abstract synchronization, when to send
what messages to whom, and sending of messages collectively.

Making properties and invariants explicit is critical also for generating effi-
cient implementations using invariant-preserving transformations, ensuring the
correctness of the optimizations. In fact, it was during the study of these opti-
mizations in the last several years, while trying to better understand and teach
distributed algorithms, that we developed the abstractions and the specification
method.

We have studied and experimented with a variety of important distributed
algorithms, including well-known difficult variants of Paxos, by specifying them
in a very high-level language with an operational semantics. In the specifications
that resulted from following our method, critical properties and invariants are
explicit, making the algorithms easier to understand and verify. Indeed, this
helped us discover improvements to some of the algorithms, both for correctness
and for optimizations, and also exposed some remaining correctness concerns.

2 Language and Case Studies

We use a very high level, executable language, called DistAlgo, that has an
operational semantics [23]. We use parts of two case studies as examples in
describing our method.

Language. To support distributed programming at a high level, we add four
main concepts to commonly used object-oriented programming languages, such
as Java and Python: (1) processes as objects, and sending of messages, (2) yield
points and waits for control flows, and handling of received messages, (3) com-
putations using high-level queries and message history sequences, and (4) config-
uration of processes and communication mechanisms. The following paragraphs
describe the constructs that support these concepts in DistAlgo. For other con-
structs, we mostly use Python syntax (indentation for scoping, ’:’ for separa-
tion, ’#’ for comments, etc.), for succinctness, except with a few conventions
from Java. The skip statement does nothing. We adopt the convention that any
method named setup implicitly assigns each of its parameters to a field with
the same name as the parameter before executing the rest of its body.

Processes and Sending of Messages. Process definition is done by defining
classes that extend a special class Process. This is analogous to thread defini-
tion in Java and Python, which is done by defining classes that extend a special
class Thread. The class must define a run method. The start method inherited
from Process starts the execution of the process, which executes its run method.
Processes can be created using constructors of process classes. Those construc-
tors have an optional additional parameter that specifies the site (machine) on
which the new process should be created. Processes can also be created by call-
ing newprocesses(n,P,s), which creates and returns a set of n processes of class
P on site s.
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A send-statement send m to p sends a message m to a process p. If p is a set of
processes, m is sent to each process in the set. A message can be a tuple, where
the first component is a string specifying the kind of the message.

Control Flows and Handling of Received Messages. The key idea is to
use labels to specify program points where control flow can yield to handling of
messages and resume afterwards. A yield point is a statement of the form -- l,
where l is a label that names this point in the program. Messages are handled
only at yield points, so code segments not containing yield points are atomic.
Handling of received messages is expressed using receive-definitions, which are
members of class definitions for processes and are of the form:

receive m1 from p1,...,mk from pk at l1,...,lj: stmt

where each mi is a variable or tuple pattern. This allows messages that match any
one of m1 from p1, ..., mk from pk to be handled at yield points labeled any one
of l1,...,lj, by executing the statement stmt at those points. A tuple pattern is
a tuple in which each component is a constant, a variable possibly prefixed with
“=”, or a wildcard. A variable prefixed with “=” means that the corresponding
part of the tuple being matched must equal the value of the variable for pattern
matching to succeed. A variable that is not prefixed with “=” matches any value
and gets bound to the corresponding part of the tuple being matched. A wildcard,
written as “_”, matches any value. The at-clause is optional, and the default
means all yield points. The from-clause is also optional. As syntactic sugar, a
receive-definition used at only one yield point can be written at that point.

Synchronization uses the await-statement, whose general form is

await bexp1: stmt1 or ... or bexpk: stmtk timeout t: stmt

This statement waits for one of the Boolean expressions bexpi to become true
or until t seconds have passed and then executes the corresponding statement.
The statements stmti and the timeout-clause are optional. An await-statement
must be preceded by a yield point; if a yield point is not specified explicitly, the
default is that all message handlers can be executed at this point.

High-Level Queries. Synchronization conditions can be expressed using high-
level queries—quantifications, comprehensions, and aggregates—over sets of pro-
cesses and sequences of messages. We define operations on sets; operations on
sequences are the same except that elements are processed in order, and square
brackets are used in place of curly braces.

– Quantifications are of the following two forms. Each variable vi enumerates
elements of the set value of expression expi; the return value is whether, for
each or some, respectively, combination of values of v1,...,vk, the value of
Boolean expression bexp is true.

each v1 in exp1, ..., vk in expk | bexp
some v1 in exp1, ..., vk in expk | bexp
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– Comprehensions are of the following form. Each variable vi enumerates el-
ements of the set value of expression expi; for each combination of values
of v1,...vk, if the value of Boolean expression bexp is true, the value of
expression exp forms an element of the resulting set.

{ exp: v1 in exp1, ..., vk in expk | bexp }

We abbreviate {v: v in exp | bexp} as {v in exp | bexp}.
– Aggregates are of the form agg(exp), where agg is an operation, such as count

or min, specifying the kind of aggregation over the set value of exp.
– In the query forms above, each vi can also be a tuple pattern, in which case

each enumerated element of the set value of expi is matched against the
pattern before bexp is evaluated. We omit |bexp when bexp is true.

We use {} for empty set; s.add(x) and s.del(x) for element addition and deletion,
respectively; and x in s and x not in s for membership test and its negation,
respectively. We overload or to work for sets; s1 or s2 returns s1 if s1 is non-
empty, otherwise it returns s2.

DistAlgo has two built-in sequences, received and sent, containing all mes-
sages received and sent, respectively, by a process.

– Sequence received is updated only at yield points. An arrived message m
for which the program contains a matching receive-definition is added to
received when the program reaches a yield point where m is handled, and all
matching message handlers associated with that yield point are executed for
m. An arrived message for which the program contains no matching receive-
definitions is added to received at the next yield point. The sequence sent
is updated at each send-statement.

– received(m from p) is a shorthand for m from p in received; from p is op-
tional, but when it is used, each message in received is automatically asso-
ciated with the corresponding sender. sent(m to p) is a shorthand for m to
p in sent; to p is optional, but when it is used, p is the process or set of
processes in the corresponding send-statement.

Configuration. Configuration statements can specify various aspects of config-
uration. For example, use fifo_channel and use reliable_channel specify that
channels are required to be FIFO and reliable, respectively; by default, chan-
nels are not required to be FIFO or reliable. The configuration statement use
Lamport_clock specifies that Lamport logical clock [15, 9, 25] is used; this con-
figures sending and receiving of messages to update the clock, and defines a
function Lamport_clock() that returns the value of the clock.

Case Studies. We use parts of two important algorithms as case studies: (1)
van Renesse’s pseudo code for multi-Paxos for distributed consensus [33], which
has been worked on for a long time, with the pseudo code remaining the same
for a year or more, and is in the process of being made a technical report, and
(2) Lamport’s description of distributed mutual exclusion algorithm [15], which
Lamport developed to illustrate the logical clock he invented. We use them
because they are the clearest descriptions we found for these problems.
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van Renesse’s pseudo code for multi-Paxos is for a set of leaders, commanders,
scouts, and acceptors to reach consensus among a set of replicas in serving a
sequence of requests from clients. A replica receives client requests and proposes
to leaders, and receives decisions from leaders and replies back to clients; a
leader spawns off commander and scouts to do the two phases of the consensus
algorithm; commander and scouts communicates with acceptors to try to have
proposed values accepted.

Lamport’s distributed mutual exclusion is for a set of processes accessing
a shared resource that can only be used by one process at a time. A process
maintains a queue of pending requests sorted by their logical timestamps, adds
self to the request queue and sends a message to all others to request the resource,
waits for all others to reply and for self to be first on the queue to get access,
and sends release messages to all and dequeues itself afterwards; it enqueues any
request upon receiving the request message, and dequeues it upon receiving the
release message.

3 High-Level Specifications of Distributed Algorithms

Our method aims to specify distributed algorithms at a high level while keep-
ing them fully executable as they are designed for. The key idea is to preserve
the sending and receive of messages while abstracting away details of local
computations.

Abstractions for Specifying Distributed Algorithms. Our method ex-
ploits two basic abstractions—message history sequences and queries over sets
and sequences—and has four main components:

1. abstracting waiting on received messages using high-level synchronization
with explicit wait,

2. abstracting when to send messages using high-level assertions over sets and
sequences,

3. abstracting what to send in messages to whom using high-level set and ag-
gregate computations, and

4. abstracting what messages to send collectively using loops and high-level
queries.

These abstractions help make invariants maintained in distributed algorithms
explicit, and thus help make the algorithms easier to understand and to verify.
Note that our method does not yet make all invariants explicit, if that is possible.

The method emphasizes sending of messages and synchronization, because
a process has no control over when it receives what messages from whom, but
only when and how to handle them once they arrive, and handling of received
messages is driven by the need to send messages, besides waiting and yielding.
Therefore, handling is implied by the four components above, especially as they
all heavily use queries over received messages.
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Message Sequences. For a distributed process to make decisions, the key
input is the history of messages it has sent and received. Therefore, at a high
level, these decisions should be expressed in terms of the sequences of messages
sent and received, not lower-level local updates after each message is sent or
received.

High-Level Queries. Because distributed computations involve sets of pro-
cesses and sequences of message, decision making mainly involves assertions and
other computations over sets and sequences. To specify these assertions and com-
putations at a high level, our method uses queries extensively, including logic
quantifications, set comprehensions, and aggregate computations.

Overall Method. The four components of our method are orthogonal and can
be applied independently. We describe these components in more detail in four
subsections and show precisely how they help specify distributed algorithms at
a higher level.

Incremental Computations. Although abstractions with high-level queries
help make algorithms easier to understand and to verify, computations using
these abstractions can be extremely inefficient, because they involve iteration
over sets and sequences, and they are performed repeatedly as the sets and
sequences are updated. This can take asymptotically much more time than nec-
essary, and furthermore the space usage may be unbounded if the history of
messages sent and received is used in actual implementations.

Optimization by incrementalization, e.g., [28, 12, 22, 21], transforms such ex-
pensive computations into efficient incremental maintenance of appropriate aux-
iliary values as the sets and sequences are updated. For distributed algorithms,
the resulting incremental computations become efficient message handlers [23].
In fact, it was during the study of such optimizations in the last several years
that we developed the abstractions, which we believe was instrumental in leading
us to discover improvements to some of the algorithms.

3.1 Explicit High-Level Synchronization

Synchronization is at the core of distributed systems. It requires waiting for cer-
tain conditions to become true before taking the corresponding actions. Because
message passing is generally asynchronous in distributed systems, synchroniza-
tion must be achieved by explicitly tracking synchronization conditions, main-
taining their truth values as messages are received, until the conditions become
true, and then taking the corresponding actions.

Expressing such synchronization at a low level requires, in general, sophisti-
cated updates driven by the events of different kinds of messages being received,
making it difficult to understand and verify the conditions that the process is
waiting for.

We use three principles in specifying such synchronization at a high level:
(1) specify the waiting on the conditions and corresponding actions explicitly
using await-statements, (2) express the conditions using high-level queries over
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sequences of messages sent and received, and (3) minimize local updates in the
actions.

Example. In multi-Paxos [33], a commander process is spawned by a leader
for each adopted triple of ballot number, slot number, and proposal, to try to
have it accepted by acceptors and notify replicas of the decisions, and in case of
being preempted by a different ballot number, to notify the leader.

Fig. 1 shows the pseudo codeprocess Commander(λ, acceptors, replicas, 〈b, s, p〉)
var waitfor := acceptors;

∀α ∈ acceptors : send(α, 〈p2a, self(), 〈b, s, p〉〉);
for ever
switch receive()
case 〈p2b, α, b′〉 :
if b′ = b then

waitfor := waitfor− {α};
if |waitfor| < |acceptors|/2 then
∀ρ ∈ replicas :

send(ρ, 〈decision, s, p〉);
exit();

end if;
else

send(λ, 〈preempted, b′〉);
exit();

end if;
end case

end switch
end for

end process

Fig. 1. Pseudo code for a commander in multi-
Paxos [33]

for a commander in multi-Paxos.
A commander maintains waitfor—
the set of acceptors from which it
waits for p2b messages. It sends a
p2a message to all acceptors and
then handles each p2b message it
receives from an acceptor, main-
taining waitfor in one of two cases.
When |waitfor|<|acceptors|/2 in
the first case, it sends a decision
message to all replicas and exits;
it sends a preempted message in
the second case.

We specify a commander at a
high level as follows. First, we spec-
ify the synchronization explicitly
using an await-statement. Then,
we note that waitfor can be queried
from the set of p2b messages re-
ceived and the given set of ac-
ceptors, so we do not maintain
waitfor explicitly; instead of start-

ing from all acceptors and removing certain acceptors until a minority remain,
we directly check whether those certain acceptors are a majority. Finally, the
corresponding actions are simply single send-actions, yielding the specification
in Fig. 2.

The result is that the flow that leads to each send-action is made clearer, and
the conditions for the actions can easily be read off. Similar improvements can
be made to the specification of a scout.

3.2 Direct High-Level Assertions

Determining the state of a distributed system is key to synchronization and
to making decisions in general. Because there is no shared memory, a process
must assert the state to the best of its knowledge through sending and receiving
messages. The truth values of assertions about the state must be updated as
messages are sent and received.

We express assertions using high-level queries over sequences of messages sent
and received, as for synchronization conditions. The queries may be in the forms
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class Commander extends Process:
def setup(leader, acceptors, replicas, b, s, p): skip

def run():
send (’p2a’, b, s, p) to acceptors
await count({a: received((’p2b’, =b) from a)}) > count(acceptors)/2:

send (’decision’, s, p) to replicas
or received(’p2b’, b2) and b2!=b:

send (’preempted’, b2) to leader

Fig. 2. Higher-level specification for a commander in multi-Paxos

of quantifications, comprehensions, and aggregates. However, a same assertion
may be expressed using different forms of queries. Because quantifications are
usually not supported in executable languages, loops and low-level updates are
most often used. Even in many high-level specifications, comprehensions and
aggregates are often used in place of quantifications; this can be error-prone or
lead to poor performance.

For example, an existential quantification may be specified indirectly as a set
comprehension followed by an emptiness test, but this may incur unnecessary
space for maintaining the intermediate set. For another example, a universal
quantification asserting that a number is greater than all elements in a set may
be specified indirectly as the number being greater than the maximum element
in the set, but this causes an error when the set is empty; a special boundary
value may be used in case the set is empty, but this is error-prone and may be
sensitive to the maximum or minimum number that can be represented, which
may be determined by the memory word size.

Our core principle in specifying assertions at a high level is to express existen-
tially and universally quantified properties directly using logic quantifications,
not indirectly using aggregates or comprehensions. Quantifications are easier and
clearer for correctly stating the requirements, and can be systematically con-
verted to aggregates and comprehensions that allow the best optimizations [23].

Example. In Lamport’s distributed mutual exclusion [15], a process that re-
quests a resource at time c needs to wait for the following two key conditions to
hold before it is granted the resource:

(i) the request time (c,self) in its request queue is ordered before every other
request in the queue, and (ii) it has received an acknowledgment message from
every other process timestamped later than c.

We express the assertion directly using three quantifications, including a
nested quantification in the second condition. The result is that the conditions
can be directly read off the assertion.

each (’request’,c2,p2) in q | (c2,p2)!=(c,self) implies (c,self) < (c2,p2)
and each p2 in s | some (’ack’, c2, =p2) in received | c2 > c
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3.3 Straightforward High-Level Computations

A distributed algorithm is designed for a set of processes to achieve a goal via
sending and receiving messages. Computations needed for achieving the goal
generally involve various collections of processes and messages. This means that
the algorithm specification must capture the effects of sending and receiving
messages on the needed computations.

Expressing these computations at a low level requires explicitly storing the
results of these computations and updating their values appropriately as rele-
vant messages are sent and received. Maintaining these low-level values correctly
through updates can be challenging and error-prone; some of them require com-
binations of sophisticated data structures, while others are tedious.

We use three principles in specifying such computations at a high level: (1)
specify computations of aggregate values using aggregate queries over message
sequences, (2) specify computations of set values using comprehensions over mes-
sage sequences, and (3) specify repeated computations straightforwardly where
the results are used.

Example. In multi-Paxos [33], an acceptor process responds to p1a messages
from scouts with p1b messages in the first phase, and responds to p2a messages
from commanders with p2b messages in the second phase.

Fig. 3 shows the pseudo code
process Acceptor()
var ballot num := ⊥, accepted := ∅;
for ever
switch receive()
case 〈p1a, λ, b〉 :
if b > ballot num then

ballot num := b;
end if;
send(λ, 〈p1b, self(), ballot num, accepted〉);

end case
case 〈p2a, λ, 〈b, s, p〉〉 :
if b ≥ ballot num then

ballot num := b;
accepted := accepted ∪ {〈b, s, p〉};

end if
send(λ, 〈p2b, self(), ballot num〉);

end case
end switch

end for
end process

Fig. 3. Pseudo code for an acceptor in multi-
Paxos [33]

for an acceptor in multi-Paxos.
An acceptor maintains
ballot_num—a ballot number,
and accepted—a set of accepted
triples of ballot number,
slot number, and proposal. It
handles a p1a message by up-
dating ballot_num and replying
with a p1b message containing
ballot_num and accepted, and
handles a p2a message by up-
dating ballot_num and accepted
and replying with a p2a mes-
sage containing ballot_num.

We specify an acceptor at a
high level as follows. First, we
note that ballot_num is updated
to be the maximum from p1a
and p2a messages, so we com-
pute it using an aggregate. Then,
we compute it straightforward-

ly where it is used in message handlers, yielding the specification in Fig. 4.
The result is that the invariants relating the sent messages to the received

messages are made clearer. In particular, it allowed us to make explicit the
property that (b,s,p) is added to accepted only if b equals ballot_num.
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class Acceptor extends Process:
def setup(): self.accepted = {}

def run(): await false

receive m:
self.ballot_num = max({b: received(’p1a’,b)}+{b: received(’p2a’,b,_,_)} or {(-1,-1)})

receive (’p1a’, _) from scout:
send (’p1b’, ballot_num, accepted) to scout

receive (’p2a’, b, s, p) from commander:
if b == ballot_num: accepted.add((b,s,p))
send (’p2b’, ballot_num) to commander

Fig. 4. Higher-level specification for an acceptor in multi-Paxos

3.4 Collective Send-Actions

Distributed algorithms generally involve sending and receiving collections of re-
lated messages. Precise specifications of distributed algorithms are commonly
centered around handling of individual received messages. This lower-level model
makes it harder than necessary to understand the overall working of the
algorithms.

In contrast, a distributed algorithm can be viewed as driven by send-actions,
because send-actions are observable externally, which then incur the needed com-
putations. Thus, distributed algorithms may be expressed at a higher level by
specifying send-actions collectively.

Our method aims to specify send-actions collectively in three steps: (1) iden-
tify the kinds of sent messages, (2) for each kind of sent messages, collect all
situations in which messages of this kind are sent, and (3) express the collective
situations using loops, choosing for-loops over while-loops if possible.

Example. In multi-Paxos [33], a replica process holds the state of the appli-
cation; it handles requests of operations from clients and proposes them with
minimum slot numbers to leaders, and it handles decisions of operations from
leaders, applies the operations following the order of slot numbers, and sends
the results to clients.

Fig. 5 shows the pseudo code for a replica in multi-Paxos. A replica main-
tains state—the state of the application, slot_num—a slot number for the next
operation to be applied, proposals—the set of proposals it sent to leaders, and
decisions—the set of decisions it received from leaders. It handles a request mes-
sage by calling function propose. It handles a decision message by repeatedly
checking decisions, re-proposing a proposal if overridden by a decision, and call-
ing function perform. Function propose(p) checks that requested operation p is
not in decisions, finds a minimum unused slot number for it, updates proposals,
and sends a propose message. Function perform checks whether the operation in
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the argument is in decisions; if so, it only increments slot_num; otherwise, it ap-
plies the operation to state, atomically updates state and increments slot_num,
and sends the result to the client.

process Replica(leaders, initial state)
var state := initial state, slot num := 1;
var proposals := ∅, decisions := ∅;
function propose(p)
if 
 ∃s : 〈s, p〉 ∈ decisions then

s′ := min{s | s ∈ N
+ ∧


 ∃p′ : 〈s, p′〉 ∈ proposals ∪ decisions};
proposals := proposals ∪ {〈s′, p〉};
∀λ ∈ leaders : send(λ, 〈propose, s′, p〉);

end if
end function

function perform(〈κ, cid, op〉)
if ∃s : s < slot num ∧

〈s, 〈κ, cid, op〉〉 ∈ decisions then
slot num := slot num + 1;

else
〈next, result〉 := op(state);
atomic

state := next;
slot num := slot num + 1;

end atomic
send(κ, 〈response, cid, result〉);

end if
end function

for ever
switch receive()
case 〈request, p〉 :

propose(p);
case 〈decision, s, p〉 :

decisions := decisions ∪ {〈s, p〉};
while ∃p′ : 〈slot num, p′〉 ∈ decisions do
if ∃p′′ : 〈slot num, p′′〉 ∈ proposals ∧

p′′ 
= p′ then
propose(p′′);

end if
perform(p′);

end while;
end switch

end for
end process

Fig. 5. Pseudo code for a replica in multi-
Paxos [33]

We specify a replica process at a
high level as follows. First, we iden-
tify the two send-actions as the driving
goals of the process. Then, we collect
all situations in which propose mes-
sages are sent: they are for all request
messages received, including those al-
ready proposed but whose proposed
slots are overridden by decisions. Here,
we add details to replace the set of
positive natural numbers N

+ with the
range of integers from 1 to the max-
imum of the slot numbers used plus
1. Finally, we collect all situations in
which response messages are sent: they
are for all decision messages received,
applied in increasing order of slot num-
bers. Here we increment slot_num in
both branches together, not worrying
about breaking the atomic block, be-
cause the local updates are atomic by
default without any yield point in be-
tween. We obtain the specification in
Fig. 6.

4 Experiments

We experimented with specifying a va-
riety of important distributed algo-
rithms in DistAlgo, including the same
algorithms specified at both high lev-
els and low levels, and discovered im-
provements to some of the algorithms.
We also implemented DistAlgo, as de-
scribed in [23], by automatically gen-
erating Python code from DistAlgo
specifications following the operational
semantics, and we tested the invariants
and performance by running the gener-
ated implementations on many inputs.

Algorithm specifications. Table 1 lists five algorithms with which we had the
most interesting experiences. The last two columns show the sizes of DistAlgo
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class Replica extends Process:
def setup(leaders, initial_state):

self.state = initial_state
self.slot_num = 1

def run():
while true:
-- propose
for (’request’,p) in received:
if each (’propose’,s,=p) in sent | some received(’decision’,=s,p2) | p2!=p:

s = min({s in 1.. max({s: sent(’propose’,s,_)}+{s: received(’decision’,s,_)})+1

| not (sent(’propose’,s,_) or received(’decision’,s,_))})
send (’propose’, s, p) to leaders

-- perform
while some (’decision’, =slot_num, p) in received:

if not some (’decision’, s, =p) in received | s < slot_num:
client, cmd_id, op = p
state, result = op(state)
send (’respond’, cmd_id, result) to client

slot_num += 1

Fig. 6. Higher-level specification for a replica in multi-Paxos

specifications at a high level and sizes of DistAlgo specifications containing low-
level incremental updates; for multi-Paxos in the last row, the second size is
for a specification corresponding to the pseudo code in [33]. Each specification
includes specification of a driver for configuring and running the algorithm.

These sizes are clearly smaller than specifications in other languages. For
example, our high-level specification for La Paxos is 44 lines, compared with 83
lines of PlusCal [26], 145 lines of I/O automata [13], 230 lines of Overlog [27],
and 157 lines of Bloom [29]. For multi-Paxos, our high-level specification is 86
lines, compared with 130 lines of pseudo code in [33], and about 3000 lines of
Python in an implementation of that pseudo code [32].

Table 1. Distributed algorithms and sizes of DistAlgo specifications (number of lines)

Algorithm Description Spec size Incr size
La mutex Lamport’s distributed mutual exclusion [15] 31 43
2P commit Two-phase commit [11] 32 55
La Paxos Lamport’s Paxos for distributed consensus [16, 17] 44 59
CL Paxos Castro-Liskov’s Byzantine Paxos [5] 72 81
vR Paxos van Renesse’s pseudo code for multi-Paxos [33] 86 132
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Improvements. We discovered improvements to some of the algorithms, as
well as correctness and performance issues, explained below.

La mutex. Our method specifies the key synchronization conditions using quan-
tifications directly, as discussed in Section 3.2. Transforming them into best
forms of set and aggregate queries led to two discoveries: (1) Lamport’s orig-
inal algorithm can be simplified to not enqueue and dequeue a process’s own
request, and (2) a standard heap-like data structure for maintaining the min-
imum of all pending requests in O(log n) time per update can be removed,
and the number of pending earlier requests can be maintained instead in
O(1) time per update.

2P commit. Our method leads to a succinct specification of a coordinator pro-
cess consisting mainly of 4 queries: 2 await-conditions, an if-condition, and a
set comprehension. Even though the core algorithm does not specify timeout
for the waits, the succinct specification makes it easy to see that allowing
timeout of the first await-statement is safe, but allowing timeout of the sec-
ond await-statement is not safe.

La Paxos and CL Paxos. Our method eventually led to specifications that use
quantifications directly and cleanly, almost exactly as stated in the original
informal algorithm descriptions. Our earlier versions used aggregates, and
we discovered later that some of them were incorrect, while others needed
to use special boundary values.

vR Paxos. Our method led to a specification easier to understand, as discussed
in Sections 3.1, 3.3, and 3.4. The clearer specification led to two discoveries:
(1) for a commander and scout, if the division operator /, which returns
an integer in common programming languages, is used directly, the original
checking of minority would be incorrect, and (2) for a replica, re-proposals,
due to earlier proposals being overridden, are delayed unnecessarily.

Code Generation. The table below shows the sizes (number of lines) of
Python implementations generated from DistAlgo specifications, and the compi-
lation time (ms) for generating the implementations. Our generated implemen-
tation of multi-Paxos corresponding to the pseudo code in [33] is 1099 lines of
Python, much smaller than a manually written implementation of 3000 lines of
Python [32]. Smaller higher-level specifications may take longer to compile than
larger lower-level specifications, because transforming queries that use received
and sent takes extra time, and may produce longer, more generic code.

We also measured time and space performance of generated implementations
from both high-level and low-level DistAlgo specifications for these algorithms.
The measurements confirmed the analyzed time and space complexities. The
graph below shows the running times of generated implementations of 2P commit
and 2P commit incr, for the commit case and abort case.
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Spec Gen’d Compil
Algorithm size size time

La mutex 31 951 4.451
La mutex incr 43 960 4.988
2P commit 32 978 5.910
2P commit incr 55 1001 6.816
La Paxos 44 1003 9.121
La Paxos incr 59 999 7.613
CL Paxos 72 1044 13.055
CL Paxos incr 81 1024 12.348
vR Paxos 86 1116 19.064
vR Paxos incr 132 1099 21.602

“incr” indicates specifications containing
low-level incremental updates.
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and 15 independent runs, measured on an
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and Python 3.2.2.

5 Related Work

There has been much study on distributed algorithms, e.g., [30, 24, 10, 31], in-
cluding especially much work on Paxos, from original [16], Byzantine [5, 20],
made simple [17], made live in Google’s Chubby service [6], and many more,
to most recently precise pseudo code for full Paxos [33]. Distributed algorithms
have been heavily and increasingly studied both because of their importance
in increasingly more distributed applications, e.g., Google’s computing infras-
tructure, and because of challenges in precisely specifying, implementing, and
improving them to satisfy the needs of applications.

Distributed algorithms have been expressed in a wide range of languages and
notations, from informal pseudo code to formal state machine based specifica-
tions, with many variations in between. Formal specification languages, such as
I/O automata [24, 14], TLA+ [18], and PlusCal [19], are instrumental in precise
verification. While study of languages is important, making specifications higher
level is orthogonal, because the most essential language features are already
present in many existing languages.

Besides state-machine based approaches, e.g., I/O automata [24, 14], estab-
lished specification methods include notably the actor model [1] and general
event-driven models where events include receipts of messages. These models
focus on specifying actions and state transitions driven by the receipts of indi-
vidual messages. Our specification method aims to make it easier to understand
the algorithms at a high level, by abstracting away low-level state updates. It
focuses on relating send-actions, which are externally observable, with the his-
tory of messages sent and received at a high level, by using high-level queries to
express the assertions and computations.

More declarative languages for expressing distributed algorithms have also
been studied, e.g., Datalog-based languages Overlog [2] and Bloom [3], and a
logic-based language EventML [4, 7]. More declarative languages generally ab-
stract away some or all control flow information and may be more succinct, but
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they are also harder to understand when used for specifications of algorithms, in
which control flow is essential. Our method uses declarative queries over sets and
sequences to express assertions and computations, and keeps the control flow of
sending and receiving messages clear.

Our method can make the resulting executable specifications extremely in-
efficient if executed straightforwardly, because of repeated expensive high-level
queries. Optimization by incrementalization [28, 12, 22, 21, 23] transforms such
expensive queries into efficient incremental maintenance of appropriate auxiliary
values. Invariants made explicit following our specification method not only help
prove the correctness of the algorithms, but also help apply the optimizations.
How to make more or all invariants explicit to make verification of distributed
algorithms even easier is open for future study; so is the verification.
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