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Abstract—thereConsumption of multimedia content is moving
from a residential environment to mobile phones. Optimiz-
ing Quality of Experience—smooth, quick, and high quality
playback—is more difficult in this setting, due to the highly
dynamic nature of wireless links. A key requirement for achieving
this goal is estimating the available bandwidth of mobile devices.
Ideally, this should be done quickly and with low overhead. One
challenge is that the majority of connections on mobiles are
short-lived TCP connections, where a significant portion of data
exchange is within the slow start phase. In this paper, we propose
a novel method that passively estimates the currently available
bandwidth by monitoring the minimal traffic generated by such
connections. To the best of our knowledge, no other solution can
operate with such constrained input. Our estimation method is
able to achieve good precision despite artifacts introduced by
the slow start behavior of TCP, mobile scheduler and phone
hardware. We evaluate our solution against traces collected in
4 European countries. Furthermore, the small footprint of our
algorithm allows its deployment on resource limited devices.
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I. INTRODUCTION

In recent years, the availability of fast cellular networks
has led to increasing usage of mobile devices. Thus, the
distribution of audio and video content is swiftly moving from
the desktop environment to the mobile one. This shift affects
streaming applications like Spotify [13], that have seen an
increasing mobile consumption over the last years and continue
to do so. In the competitive market of streaming services, Qual-
ity of Experience (QoE) is important. The metrics comprising
QoE include fast start-up time, low playback latency, stutter-
free media delivery, and high bit-rates.

Given the high variation of the available radio resources
and capabilities of mobile devices, streams are often available
in different bit-rates. To achieve high QoE, it is imperative to
select the highest possible bit-rate, as constrained by available
bandwidth and device hardware. Ideally, it is desirable to avoid
switching bit-rates during playback, but due to the difficulty
of predicting bandwidth, it is currently a common practice to
begin playback on a low-quality bit-rate, and then increase it
if possible. In order to improve on the current practice and
select an appropriate bit-rate also for the initial part of stream,
it is required to have a bandwidth estimation algorithm that
operates on very small amounts of traffic.

Another key use case for a rapid bandwidth estimator is
to make buffering decisions. Streaming media players need to
buffer content before commencing playback, and thus need
to decide on the size of said buffer. Such decisions require

an estimate of the bandwidth available in the near future.
This is particularly important for applications such as Spotify,
which do not perform bit-rate switching, but still require low
playback latency. Furthermore, when streaming audio tracks,
the small amount of data transferred makes it difficult to apply
traditional bandwidth estimators. Spotify reported in a previous
study [13] a median playback latency of 265 ms with less than
1% of streams suffering one or more stutter events. However, at
that point, most users were streaming on desktops rather than
mobile devices, and the data reported did not include phones.

The current state of the art solutions for bandwidth esti-
mation require the transmission of link saturation traffic [19],
[8], [22], a practice that is problematic considering the scarce
resources of mobile devices. The focus of this study is the
estimation of available bandwidth of mobile phones through
passive traffic monitoring. We specifically focus on traffic
generated during the initial few hundred milliseconds of the
TCP “slow start” phase. At least 95% of the streams a mobile
phone generates are TCP and the majority of them are so short
lived that they do not exit the slow start phase of TCP [9]. In
this paper, we present a method that provides good bandwidth
estimation in these challenging conditions. Further, it is robust
against measurement artifacts introduced by hardware-limited
mobile devices, and the scheduling process of the base station.
The run time complexity of our algorithm is O(n) and requires
only the first packets of a TCP stream.

The output of our algorithm can also be used as input to
bandwidth optimization algorithms [16], [1], [4], to achieve
more efficient usage of the mobile resources. Such algorithms
are usually based on a resource prediction model that makes
heavy use of time series information. We evaluate our algo-
rithm by means of real-word experimentation, through LTE
traces collected in 4 European countries (Germany [12], Swe-
den, Greece and Spain), using a variety of Android devices.

The remainder of this paper is structured as follows: related
work is introduced in Section II and some essential theoretical
background fundamentals are analyzed in Section III. Our
algorithm and a comparison with similar tools are presented
in Sections IV and V and their discussion is in Section VI.
Finally, Section VII summarizes our conclusions.

II. RELATED WORK

Nowadays, the most popular solution for mobile bandwidth
estimation is Ookla’s mobile application Speedtest [19], which
makes use of active measurement techniques. To estimate the
bandwidth available to a mobile device, Speedtest tries to



saturate the device’s downlink by downloading a large file
through two parallel long-lived TCP connections in a test
that lasts for about 10 seconds. Speedtest can connect to
many well-connected measurement servers deployed by Ookla,
so the measured bandwidth is less likely to be affected by
cross traffic. To the best of our knowledge, there is no public
documentation detailing the algorithm used by Speedtest on
mobile. Our understanding is that every second, a certain
amount of traffic samples are generated. These samples are
aggregated into 20 bins, which are then filtered to remove
measurement artifacts. The final estimation is calculated by
averaging over the bandwidth values of the remaining bins.
A similar approach is proposed by [8], where 3 parallel
TCP connections are established with the three closest servers
to reduce the impact of TCP’s receive window, overloaded
servers, and packet losses. The traffic samples are segmented
into equally sized bins, and samples collected during the slow-
start phase are discarded. Then, the median of the bandwidth
estimated in the remaining bins is taken as the final estimation.
In [22], authors calculate the end-to-end throughput availability
by sending high rate UDP traffic, while taking into consider-
ation scheduling effects of mobile networks. These tools are
unsuitable for frequent usage on mobile devices as they rely
on transfer of large amounts of data.

“Packet dispersion” is a lightweight active measurement
technique [14], [6]. Packet pairs or packet trains are transmitted
from a server to a target device, which timestamps their
arrivals. It is meant to measure the asymptotic capacity of
the path’s bottleneck link by analyzing the time dispersion of
packet arrivals. As we showed in [17], applying this technique
in a mobile network is problematic because the scheduler of the
base station either shrinks or enlarges the dispersion greatly.
A packet pair dispersion technique that is able to operate in
mobile networks is presented in [11]. This approach though is
very sensitive to topology parameters, like the number of nodes
in the path and the link utilization. The number of packet pairs
required to generate a valid estimation, rapidly increases, when
these parameters increase. Furthermore, it ignores the effects
of the mobile scheduler.

On the other hand, several approaches that estimate avail-
able bandwidth by monitoring mobile communications but
without generating any traffic have been proposed. The method
proposed in [7] first sniffs all the traffic going through a certain
vantage point inside an operator’s network. Then it identifies
the traffic flows that belong to applications that are not rate-
limited at the server side and are guaranteed to use all the
resources that the base station allocates to a user. A similar
approach is proposed in [20] and [9] for UMTS and LTE
networks, respectively. Even though all these techniques are
passive, they are implemented inside the operator’s network.
Therefore, they are not applicable at the application level and
require the cooperation of the operator.

We conclude that, even though available bandwidth esti-
mation is a well studied topic, none of the proposed solutions
are able to provide trustworthy results on the device side by
just relying on the minimal traffic generated during the slow
start phase of TCP.

Fig. 1: Simplified LTE topology and network components that
form the path between a server and a mobile device.

III. THEORETICAL BACKGROUND

This section provides an introduction to the technologies
and characteristics of the current generation of mobile net-
works. We focus on LTE, due to its increasing popularity.

A. LTE fundamentals

When a mobile user surfs the web through an User Equip-
ment (UE), a TCP connection is established with a remote
server. As shown in Figure 1, the packets associated with
this TCP connection travel through the Internet, enter the
core network of the mobile operator through the Packet Data
Network Gateway (PGW), and are then routed to the serving
base station (eNodeB) that the UE is connected to. At the
eNodeB, the packets are stored in a buffer dedicated to the
target device. The allocation of resources to the connected UEs
is determined by a scheduling mechanism, which considers
the recent resource allocation history, the channel quality of
devices that have pending traffic, and some fairness conditions.
This mechanism tries to find a balance between sending as
much data as possible and fulfilling the needs of all connected
UEs.

The scheduling decision is taken periodically, once every
Transmission Time Interval (TTI). The TTI of the downlink
for the Frequency-Division Duplexing (FDD) version of LTE,
which is used by the majority of operators, is fixed to 1
ms [10]. For the Time-Division Duplexing (TDD) version, used
mostly by operators in China [5], the TTI is in the range of a
few ms, depending on operator configuration. When a UE is
scheduled, the packets present in the buffer are grouped into a
Transport Block (TB), which is then sent to the UE. In case of
a very bad signal and/or a small amount of allocated resources,
a segment of a packet can be encapsulated in a TB instead.

B. Measurement accuracy

Our tool is based exclusively on phone side measurements,
and this imposes some limitations. Ideally, we would like to
measure the exact size and timing of every TB that is being
allocated to the device. However, this would require informa-
tion that is only available at the eNodeB, or at the Network
Interface Card (NIC) of the mobile device. Extracting such
information from the NIC is impossible without specialized
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(a) FDD LTE device receiving saturation traffic.
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(b) Artifact caused by a weak and/or busy CPU.
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(c) During TCP slow start the server sends packets in
distinct groups. Three such groups are visible in the
figure.
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(d) Arrival of high speed UDP constant bit-rate traffic.
Packets on the left side of the vertical line are arriving
slower than those on the right side.

Fig. 2: IP packet arrivals to an LTE device for different scenarios. The first data packet arrives at time 0.

drivers that vendors are very hesitant to release for public
usage. Instead, we use rooted Android phones and the traffic
sniffing program TCPdump [21] to record the time and the
size of every IP packet reported by the kernel. Unfortunately,
a noticeable delay exists between the arrival of an IP packet
at the NIC (as part of a TB) and its appearance in the kernel.
As we discuss below, such delay can potentially impact the
accuracy of our method.

An attempt to measure a similar delay is presented in [15].
The authors try to measure the delay between the arrival of
an IP packet at the WiFi interface, and its registration in the
kernel. They believe that this delay should be comparable with
the delay between the LTE NIC and the kernel. The physical
link or the driver reacts faster to TCP data packets compared
to ICMP and TCP SYN/RST. Thus, the data packets that we
target have the lowest possible delay. The delay is dependent
on the network card and varies from insignificant (hundreds
of µs), to being variable in the range of a few ms. According
to [22], both delays are related to the polling frequency of
the NIC from the OS. TCPdump registers packets as soon as
they arrive in the kernel, but in case of high network load, the

kernel might choose to delay polling in order to reduce packet
processing overhead.

We have investigated the impact of polling in a variety
of phones through a small scale experiment. When a cellular
network is used, all the phones we tested report packets in
groups, similar to the ones shown in Figure 2a. The exact size
and spacing of the groups varies depending on how powerful
the phone is, but the pattern is always similar. Thus, the
pattern is determined by the grouped delivery of packets in the
physical layer, but the timestamping accuracy of each packet
is related to the phone hardware. On the other hand, under
WiFi (802.11g without packet coalescing), different phones
exhibit very different behavior. In this scenario, some phones
report the packets in the same grouped fashion, whereas others
report continuous delivery of packets. A sniffer we used to
monitor the WiFi traffic while conducting the experiment
always detected a continuous delivery of packets “in the air”.
Based on these observations, we conclude that the pattern
of packet arrival on WiFi seems to be greatly dependent on
the phone specifications. Exhaustively studying this effect and
adapting our algorithm to it is beyond the scope of this paper.



C. Measurement artifacts

Figure 2 presents several characteristic packet arrival pat-
terns captured by TCPdump running on a FDD LTE UE.

a) Scheduler: When the UE is scheduled by the eN-
odeB, it receives packets during one or more TTIs. When it
is not, no packets are registered. In Figure 2a, the scheduler
effect can be easily observed.

b) CPU: When the CPU is busy, it may significantly
delay the polling of the NIC, as shown in Figure 2b. This figure
presents the steady state phase of a TCP connection, where
packets were continuously arriving to the NIC. The kernel did
not poll the NIC for about 100 ms, which caused a “gap” in
the registering arrivals of packets.

c) TCP slow start: The perhaps most well known
artifact which our algorithm must handle is the grouping of
packets during the slow start phase of a TCP connection. After
the handshake is finished, the server sends data packets back-
to-back, until the number of unacknowledged packets reaches
the congestion window value, which typically starts small.
These packets, unless there is significant cross traffic in the
path between the server and the UE, arrive as a group in the
eNodeB, which buffers them. Depending on the group size, the
channel quality of the target UE and the cell congestion, the
eNodeB might not be able to transmit all packets during one
TTI, but might require several TTIs, spread across a few tens
of ms. Upon reception, the UE transmits the related ACKs. In
both FDD and TDD, the transmission opportunities for the UE
to send data are at least 8 ms apart (in TDD even more). Thus,
the TCP ACK packets are sent in groups. Upon arrival at the
server, the ACK group triggers the transmission of a larger
group of data packets to the UE, since the congestion window
now has a higher value. The delay between the arrival of such
data packet groups at the antenna is usually higher than their
transmission time to the UE, thus the data packet groups can
be identified at the client side. The first three such groups of a
TCP flow can be seen in Figure 2c. Notice that each subsequent
group has increased size, since the congestion window takes
progressively larger values. Eventually, the congestion window
reaches the size of the bandwidth delay product and thus
TCP is able to send continuously. As a consequence, the
packet delivery at the phone side then becomes continuous.
The specific flavor of TCP is not important, since all of them
use initial congestion window values that create this effect.

d) Slower arrival of the first packets: We were able to
identify a significant difference in the downlink speed during
the first few hundred packets, compared to the speed achieved
later on the same flow, in cases where the UE may achieve a
very high speed. We have observed this effect in all our traces,
gathered in four European countries with a variety of phones.
The number of incoming packets in the middle of the trace
is higher compared to the beginning, even after taking into
consideration the reduced slow start TCP speed. We further
investigated this in a Spanish network, by sending constant bit-
rate UDP traffic to a UE. We did not observe any difference
in the downlink speed when the server speed was less than 25
Mbps. When the server was transmitting at rates higher than
25 Mbps though, the first packets (ranging from the first 150 to
the first 300 packets) were received at about 25% to 50% lower
speed compared to the rest. For example, in Figure 2d the first

190 packets (left of the vertical line) were received at a 25%
lower speed compared to the remaining packets (shown at the
right of the vertical line). If the transmission is paused for a few
tens of ms, we observe the same pattern when the transmission
starts again. A similar effect was observed by an independent
group, which did measurements in the same German network
we used to collect our traces [3]. According to this study,
when the speed is higher than 20Mbps, the first packets of
a flow are delivered with considerably higher delay than the
remaining ones. Since we do not have physical layer or mobile
network specific information, we can not know the exact cause
of this behavior. We suspect that it is an operator configuration.
Finally, we have indications that this phenomenon is even more
prominent in 3G networks, but 3G is beyond the scope of this
study.

IV. ALGORITHM

In this section, we introduce the bandwidth estimation
algorithm. Our goal is to provide a tool that can estimate the
available bandwidth of a mobile device by passively monitor-
ing the traffic exchanged during the slow start phase of TCP,
coping with all the artifacts described in Section III. The core
idea can be summarized as: we try to identify groups of packets
that arrive at the eNodeB together and thus were transmitted
to the UE at the maximum speed that the scheduler could
allocate at that instance. For each such group we compute the
bandwidth by dividing the group’s total number of bytes by
its time duration. Because this approach is very susceptible to
artifacts, we apply a set of filtering techniques before a result
is derived.

We use TCPdump to sniff the traffic and organize it into
flows based on IPs and ports. Packets related to TCP and TLS
handshakes are ignored, since we are only interested in the
data exchange part of the connection. On phones, most of the
time only one TCP flow is actively downloading data [9], thus
the chance of having overlapping flows is low. Even if there
is an additional flow, it will most probably be in the slow start
as well, or generate very low traffic. We may include these
packets in the measurement, since our goal is to detect burst
transmissions from the antenna.

An outline of the algorithm is presented in Algorithm 1
and its analytical presentation follows. For each incoming data
packet Pi of a given flow, its size Si and timestamp Ti are
logged. The logging continues until a TCP FIN or RST packet
is detected or until a few seconds have passed without any data
exchange. The next step is to identify the groups of packets
that were transmitted back-to-back from the server, which is
done by locating unusually large delays between the arrivals
of two consecutive packets. At this point, the timestamps of
all the packets of the flow are available, so we derive their
inter-arrival delays Di = Ti+1 − Ti. We ignore all the delays
that are smaller than 1 ms, as such small delays imply that
the packets were transmitted in the same TB and arrived at
the same time at the NIC (i.e. packets that belong in the same
“line”, as shown in Figure 2a). The remaining delays are either
caused by the scheduler organizing IP packets into consecutive
TBs (delay between the last packet of a TB and the first packet
of the next TB) or the server having paused the transmission
because the congestion window limit has been reached (delay
between the last packet of a server group and the first packet
of the next server group). We want to identify the latter.



Data: Array T of n timestamps of packet arrivals
Array S of sizes of n packets
Result: Estimation of the instantaneous available

bandwidth class
D,G,BW ← ∅;
for i = 1 to n− 1
do

if Ti+1 − Ti ≥ 1 ms then
D = D ∪ {Ti+1 − Ti};

end
end
s← 1;
P1 is the first packet of group G1;
for i = 1 to n− 1
do

if Ti+1 − Ti ≥ average(D) then
Pi last packet of group Gs;
Pi+1 first packet of group Gs+1;
s← s+ 1;

end
end
Pn is the last packet of group Gs;
for g in G
do

if Tglast
− Tgfirst

< 2 ms then
Delete g;

else
BW = BW ∪

{ ∑
Sg

Tglast
−Tgfirst

}
;

end
end
return 75th percentile of BW ;

Algorithm 1: Algorithm outline

Usually, a TB related delay is significantly smaller than
a server group related one. However, this observation applies
only to the early stages of slow start. For larger flows, which
reach a state of almost continuous arrival of packets the
two kinds of delays are indistinguishable. Such flows are
beyond the scope of our tool, since other established bandwidth
estimation tools can be used in case a flow is that large. If a
delay Di is higher than the average delay, we assume that it
is server related, thus packet Pi is the last packet of the server
group Gs and Pi+1 is the first packet of the next server group
Gs+1.

The duration of a group is the time difference between
its first and its last packet. Each group that has a duration of
less than 2 ms is ignored. In order to generate a bandwidth
estimator from a group, it should consist of multiple TBs.
Groups with a total duration of less than 2 ms usually are
single-TB groups. For such, the measured time duration is
unreliable since the packets arrive at the same time at the
physical layer. At the kernel level where they are reported,
there is a small time difference, which, if used to compute
an estimator, would yield very high values. Also, such groups
can be indicative of artifacts from a weak CPU, where a lot
of packets appear at once after a long period of inactivity.
The upper part of Figure 3 presents the first 100 packets of a
high speed download generated by the Speedtest application.
Our algorithm was able to identify six valid groups (marked
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Fig. 3: First 100 packets of a TCP flow. The identified groups
are enclosed between two vertical lines and their derived
bandwidth estimators are located right below them.

between vertical lines), and one group that had to be ignored
because of its small duration.

For each remaining group g a bandwidth estimation value is
derived by summing its total number of bytes over its duration:

BWg =

∑
Sg

Tglast
− Tgfirst

(1)

We then filter out the lowest 50% of these values. Such small
values are usually caused by smaller groups that are unable
to fully utilize the available bandwidth (usually the very first
server group, which was generated with the smallest possible
congestion window value). Other possible reasons are sets of
packets that arrived a little later at the antenna because of
cross-traffic, or the algorithm splitting groups too aggressively.
In order to avoid the effect of very large outliers, the median
of the remaining samples is the output of the algorithm.
These outliers could be caused by ordinary polling delays
and weak hardware artifacts, which may significantly alter the
timestamps. Effectively, these last two steps are implemented
by picking the 75th percentile of the values. In the example
of Figure 3, the estimator values of each group are calculated
in the lower part. The values of the 2nd, 4th and last group
are ignored as part of the lowest 50% and the final result is
the median of the remaining ones: about 30 Mbps.

This algorithm is so lightweight that it can be used on any
modern mobile hardware with minimal impact on its resources.
Not only is its complexity O(n), but also n is bounded by
the number of packets, which is at most a few hundred. The
algorithm is designed to provide results for flows that have a
number of packets that ranges from many tens (about 60-80)
to a few hundred.

V. COMPARISON WITH BIN-BASED TOOLS

In this section we assess the accuracy of our algorithm. We
collected traces from 4 European countries (Sweden, Germany,
Spain, and Greece) using several FDD LTE devices. Our traces
were collected by measuring traffic generated by automated
tests and by volunteers who performed their usual tasks on our
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Fig. 4: A trace generated by the Speedtest application while
the UE was stationary and connected to an uncongested cell.

instrumented devices. In this way, we can test our algorithm
in a variety of scenarios and configurations.

To the best of our knowledge, there are no other bandwidth
estimation tools that can exploit the traffic exchange of the
slow start phase. An alternative would be to compare the
resources allocated by the eNodeB scheduler to the result of
our algorithm. This can be achieved by accessing the logs
of an eNodeB in order to fetch the exact timing of each TB
transmission. Obtaining such information is very hard, since
it requires access to network components that are regarded
as commercial secrets by both equipment vendors and mobile
operators. Instead, we compare to a baseline bin-based algo-
rithm similar to the one used in [19], [8]. If the measurement
was generated by the Speedtest application, we use the result
of this application instead. The baseline algorithm works as
follows: 1) the data exchange part of a flow is isolated, then
2) the flow is split into 100ms bins, 3) a bandwidth estimation
for each bin is generated by dividing the data exchanged by
its duration, 4) the highest 10% and the lowest 30% of the
values, as well as bins with no data, are discarded in order
to reduce the effect of slow start and measurement artifacts
and finally 5) the average of the remaining bins is returned.
When the baseline algorithm is used on Speedtest generated
traces, the deviation from the Speedtest value is at most 8%.
Therefore, we believe its results are close to those of Speedtest.
We remark that our algorithm only has access to a very small
part of the data, while the baseline algorithm has access to the
full trace.

A comparison between our algorithm and an active mea-
surement one should be done with caution, because they are
designed to compute different metrics. The data exchange part
of files in the range of 100 KB, which is the target of our
tool, requires no more than 500ms even in slow connections
and can often be completed in less than 200ms. On the other
hand, an active measurement tool requires very big downloads,
that must be active for 10 to 20 seconds, in order to provide
trustworthy results. Thus, our tool measures instantaneous
bandwidth and an active tool measures the average channel
capacity over the duration of the measurement. The perceived
bandwidth at the side of the end user may greatly vary
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Fig. 5: A trace generated by the Speedtest application while
the UE was in car moving with 100 Km/h.

over a 10 second period. This can be caused by the channel
experiencing fast variations (e.g., moving car), changing cell
congestion, or packet loss. In such cases, it is expected that
the results of the two tools differ. This effect can be seen
in Figures 4 and 5, which present traces generated by the
Speedtest application. Both traces, generate a similar pattern
in their slow start phase (presented in the the smaller figures),
which is what our tool is designed to use as input. The trace
of Figure 4 continues to have a stable packet arrival pattern
throughout its duration, in contrast to the one of Figure 5.
Consequently, the deviation of the resulting speeds between the
two tools is several times higher in the second case compared
to the first. In addition, it is reported that even well regarded
tools that are meant to measure speed on the less dynamic
“wired scenario” using a similar approach may have significant
deviation between each other [2].

For the rest of this section, the result generated by our tool
is based on the first 100 packets of a flow. We use this limit
in order to represent what it would be able to track if the flow
was a short-lived TCP download that finished before exiting
the slow start phase. Figure 6 results are generated by a small
subset of the collected measurements generated solely by the
Speedtest application. Except for some cases that were caused
by the phenomena described above, the deviation is within
45%. Our tool is consistently giving lower values, because of
the effect described in Figure 2d, since the speed achieved in
most of the these traces, as reported by Speedtest, was mostly
above 35Mbps.

Next, we filter our traces in order to keep flows that could
be used by both our tool and the active bin-based estimator,
described above. Thus, we reject flows that are too short, have
too few packets, are UDP, use network technologies other
than LTE etc. Consequently, the size of our sample reduces
greatly from a few thousand flows to a few hundred, since
most flows are too short-lived for the baseline algorithm.
This further highlights the importance of a passive tool that
can be used when very low traffic is present. The deviation
between the values of the two tools is presented in Figure 7.
For the majority of the cases the deviation is less than 50%.
The traces which exhibit a deviation of more than 100% are



caused mostly by flows that exhibit traffic patterns not suitable
for binning (e.g., video streams) or extreme cases of channel
variation (e.g., usage on a train). For example, a video stream is
unsuitable for binning, because it is very bursty—there are long
pauses and short bursts of rebuffering. The binning algorithm
samples using a fixed time interval of 100 ms. Thus in every
burst the first and the last bin are mostly empty, resulting in
significant underestimation. Building a more robust binning for
the baseline algorithm is beyond the scope of this work.

For the purpose of selecting the appropriate bit-rate for a
streaming application, it is convenient to classify the resulting
bandwidth into ranges. The number of classes and their limits
are chosen with respect to bandwidth range categories that
would make sense for a multimedia streaming application
(bitrates of different stream qualities). Thus, the lower classes
have significantly smaller range than the higher ones. To this
end, we define five classes, that have the following Mbps
ranges: 1) 0-5 Mbps 2) 5-10 Mbps 3) 10-20 Mbps 4) 20-
60 Mbps and 5) higher than 60 Mbps. Table I presents how
frequently our algorithm and the baseline match and by how
many classes they differ, if they do not. We present both a
comparison over all the traces and a comparison over only the
traces that have traffic patterns more suitable for binning. Even
though the two approaches have different objectives, in at least
60% of the cases they agree on the class. This is significant,
considering that the result of our solution is derived with
virtually no cost and there is no other tool that may provide
such information.

Class difference Same 1 2 3 4
Traces suitable for binning 70% 29.6% 0.4% 0% 0%
All traces 60.29% 30.88% 8.46% 0.37% 0%

TABLE I
Our approach is optimized for cellular scenarios but we

have also performed some limited experimentation with WiFi.
The challenges of a WiFi scenario are different from those of a
cellular one. In brief, 1) the channel is half duplex, 2) usually
a centralized scheduling entity is absent, 3) the significantly
lower RTT times compared to cellular networks may make the
detection of burst transmissions by the server harder, 4) the
variable timing of the back-off mechanism, 5) the potentially
weak hardware and the great variation of polling behavior,
as presented in Section III-B and finally 6) the presence of
broadcast traffic.

Despite the above, the same version of the algorithm,
applied to a small WiFi trace was able to agree with the bin-
based benchmark on the bandwidth class in at least 50% of
the cases. Also, the deviation between the values of the two
tools was again less than 50% in the majority of the trials.

VI. DISCUSSION

This section highlights some important aspects of our
solution. The small footprint of the algorithm makes it possible
to run as a background service without influencing the OS’s
resource utilization. For example, it could be integrated in the
interrupt or polling functions triggered upon packet arrivals. As
mentioned in [7], some of the services that generate the flows
we monitor might be rate limited on the server side or by a
bottleneck link other than the antenna. In this case the tool
does not measure the available bandwidth that the eNodeB
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Fig. 6: Percentage of difference between the instantaneous
bandwidth measured by our tool and the average bandwidth
measured by the Speedtest APP.
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Fig. 7: Percentage of difference between the instantaneous
bandwidth measured by our tool and the average bandwidth
measured by a bin-based estimator. The solid and the dashed
lines mark the 100% and 50% limits respectively.

can allocate to the user, but rather the rate of the server or
the bottleneck link of the path. Thus, as with other passive
techniques, the output of our algorithm should be seen as a
lower bound. Also, a big portion of flows do not generate
enough traffic to be used for a trustworthy estimation even for
our tool. This includes applications that by definition use use
very low traffic (less than 10 packets per 100ms), like chat
applications (WhatsApp), or notification services like “Google
cloud service”. Of course, if a user receives a media file in
one of these apps, the traffic generated then is sufficient.

If the reported bandwidth is above 25Mbps, it is possible
that the actual bandwidth that could be achieved by larger flows
is significantly higher because of the phenomenon presented
in Figure 2d. Also, it is possible that the slow start phase of
TCP cannot (even momentarily) saturate the link enough for
the estimators to get such high values. Our tool is meant to
be used to optimize the QoE of media streaming applications
and not to provide a highly accurate bandwidth estimation. An
underestimation of the true value at such a high bandwidth
class is not going affect the media application. Even the
most demanding video streaming applications, like the Ultra



HD quality of Netflix require bandwidth in the range of 25
Mbps [18]. Thus, any value above that is guaranteed to ensure
minimum start up delays and uninterrupted playback, while
offering the best possible stream quality. If desirable, the exact
value of bandwidth might be obtained by another solution after
the playback has started. This tool is designed to operate during
the slow start phase of a TCP connection. If the flow enters
the steady state, our tool is under-performing, because it will
try to find server related groups of packets, when the incoming
packets form a continuous stream. In such cases, it is better to
use another approach that is designed to work on large flows.
Our tool is meant to be used as a complementary solution
to the flows that can not be used by the existing bandwidth
estimation algorithms.

Since our tool only tracks the size and time of the incoming
packets, there is no privacy violation. The IP and port pairs
are only used to identify when a flow is active and can be
discarded after the measurement. Finally, when a user has a
lot of small downloads within a short period of time, such as
browsing web sites, the resulting estimations may be able to
reflect the channel variation.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a very lightweight mobile bandwidth
estimation tool that is able to provide reliable results by moni-
toring small data exchanges. To the best of our knowledge,
it is the only tool that may provide an estimation relying
solely on the traffic generated during the early phase of a
TCP connection in mobile scenarios. Such flows are the vast
majority in mobile networks. It is designed to be robust
against various measurement artifacts introduced by the phone
hardware and the scheduling process of mobile networks. It
is ideal for enhancing the QoE of streaming applications.
It can provide an estimation of the bandwidth available to
a device, by just monitoring flows that precede a media
streaming request, enabling the optimal selection of content
bit-rate. Our solution is meant to be used alongside traditional
bandwidth estimation tools that require access to large flows,
thus offering reliable estimation for a great range of traffic.
We have evaluated our approach with traces collected in 4
European countries with a variety of devices.

In the future, we plan to evaluate more precisely both the
accuracy of our technique and the accuracy of network related
information extracted at the kernel level of LTE phones. To do
so, we intend to sniff the control channel of LTE and measure
the delay between the arrival of a TB and the registration of
the related IP packets at the kernel.

DISCLAIMER

We would like to emphasize that this is an academic re-
search paper and should not be taken as indicative of Spotify’s
product plans.
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