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Preface

Microelectronics is the core technology for numerous industrial innovations. Progress in mi-
croelectronics is highlighted by milestones in chip technology, i.e. microprocessor and memory
chips. This ongoing increase in performance and memory density — accompanied with de-
creasing prices — would not have been possible without extensive use of computer simulation
techniques, especially circuit simulation.

An important analysis type in circuit simulators is time domain analysis, which calculates the
time-dependent (transient) behaviour of electrical signals in a circuit responding to time varying
input signals. A network description of the circuit is generated automatically in computer-aided
electronics-design systems from designer’s drafts or fabrication data files. An input processor
translates this network description into a data format reflecting the mathematical model of the
system. The mathematical network equations are based on the application of basic physical
laws like energy or charge conservation onto network topology and characteristic equations for
the network elements. This automatic modeling approach preserves the topological structure
of the network and does not aim at systems with a minimal set of unknowns. Hence an initial-
value problem of differential-algebraic equations (DAEs) is generated which covers characteristic
time constants of several orders of magnitude (stiff equations) and suffers from poor smoothness
properties of modern transistor model equations.

In the first part of this article (Chapter I–III) we aim at filtering out the numerical analy-
sis aspects time domain analysis is based on: The numerical integration of the very special
differential-algebraic network equations. This task comprises the simulation core of all simu-
lation packages. Although modelling, discretization and numerical integration can be clearly
distinguished as different steps, all these levels are strongly interwoven (and therefore also
somehow hidden) in commercial packages.

In Chapter I we discuss how these mathematical models are generated on the basis of a network
approach with compact (lumped) models. The structural properties of these DAE models can
be described by the DAE-index concept. We will learn in Chapter II that these properties
are fixed by the topological structure of the network model in most cases. However, if more
general models for the network elements are incorporated, or refined models are used to in-
clude second order and parasitic effects then special circuit configurations may be built, which
render ill-conditioned problems. These investigations form the basis for constructing numerical
integration schemes that are tailored to the respective properties of the network equations. In
Chapter III we describe the direct integration approach based on multi-step schemes, which
is used in the extremely widespread simulator SPICE [170] and has become a standard since
almost 30 years. We include in our discussion a comparison with one-step methods, since recent
developments have revealed an interesting potential for such schemes.

The second part (Chapters IV and V) deals with two challenges circuit simulation is faced
actually in industry: The simulation of very large circuits with up to millions of transistors
such as memory chips on the one hand, and oscillatory circuits with eventually widely separated
time constants, appearing in radio frequency (RF) design on the other hand. For the reason
of efficiency and robustness, and to make numerical simulation feasible at all, the time domain
approach discussed in the first part has to be adapted in both cases. These fields are very much
driven by actual industrial needs, and hence are rapidly evolving. So we can in the second part
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only describe the state of the art, rather than present an established mathematical theory, as is
meanwhile available for numerical integration of DAE systems. Nevertheless we hope that the
second part as well as the first one helps to get some feeling about the nature of the underlying
problems and the attempts to solve them, and may be useful for both mathematical researchers
and the users of the codes.
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Chapter I

DAE-Systems — the modelling aspect

In computational engineering the network modelling approach forms the basis for computer-
aided analysis of time-dependent processes in multibody dynamics, process simulation or circuit
design. Its principle is to connect compact elements via ideal nodes, and to apply some kind of
conservation rules for setting up equations. The mathematical model, a set of so-called network
equations, is generated automatically by combining network topology with characteristic equa-
tions describing the physical behaviour of network elements under some simplifying assump-
tions. Usually, this automatic modelling approach tries to preserve the topological structure of
the network and does not take care to get systems with a minimal set of unknowns. As a result,
coupled systems of implicit differential and nonlinear equations, shortly, differential-algebraic
equations (DAEs), of the general type

f(x, ẋ, t) = 0 with det
(
∂f

∂ẋ

)
≡ 0

may be generated. From a mathematical point of view, these systems may represent ill-posed
problems, and hence are more difficult to solve numerically than systems of ordinary differential
equations (ODEs).

In this first Chapter we have to answer the questions on how and why: How does one generate
the differential-algebraic network equations that model the circuits? And why using at all a
DAE approach with a redundant set of network variables, and not an ODE model?

In the subsequent Chapters II and III answers are given to the remaining questions: What are
the structural properties of the arising DAE systems? Do they have an impact on numerical
discretization? Which integration schemes are used to solve the systems numerically in a robust
and efficient manner?

Let us start our discussion with

1 The Schmitt trigger—an introductory example

The Schmitt trigger [133] shown in Fig. 1 is used to transform analogue ones into digital signals.
The circuit is characterized by two stable states: If the input signal Vin exceeds a certain
threshold, then the associated stable state is obtained as an output signal at node 5. The
circuit consists of five linear resistors with conductances G1, . . . , G5 between the input voltage
source Vin and node 1, the power supply voltage source VDD and nodes 2 and 5, between node
3 and ground, and between nodes 2 and 4. The dynamic behaviour of the circuit is caused by
the linear capacitor with capacitance C0 between nodes 2 and 4. The nonlinear characteristic
is introduced by two bipolar transistors of npn type at nodes 1,2,3 and 4,5,3.

To derive a mathematical model for the Schmitt trigger that determines the time-dependent
voltage courses of the five node potentials u1, . . . , u5 at nodes 1, . . . , 5, we may build up the
current balances for all nodes except ground. To apply this so-called nodal analysis, we first
have to replace all branch currents by voltage-depending functions. For the one-port elements
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capacitor and resistor , the characteristic equation relating branch current I(t) and branch
voltage U(t) is given in admittance form, i. e. I(t) is given explicitly as a function of U(t):

• Ohm’s law for a linear resistor: I(t) = GU(t) with conductance G.

• Faraday’s law for a linear capacitor: I(t) = CU̇(t) with capacitance C.

0

4

3

52
1

VDD
Vin

G

G C0

3

G1

2

4G

5G

V =0

Figure 1: Schmitt trigger circuit
U

U

I B

C

 E

B

C

U

I

IE

Figure 2: Bipolar transistor of npn type

Using a compact model, the multi-port element bipolar transistor of npn-type shown in Fig. 2
can be described by three branch currents IB(t), IC(t) and IE(t) entering the base, collector
and emitter terminal of the transistor with corresponding node potentials UB(t), UC(t) and
UE(t). If UC(t) > UB(t) > UE(t) then the three currents are given in a first order model by

IB(t) = g(UB(t)− UE(t)),
IC(t) = α · g(UB(t)− UE(t)),
IE(t) = −(1 + α) · g(UB(t)− UE(t)),

with the characteristic exponential current g(U) := β · [exp (U/UT )− 1] of a pn-junction. The
parameter α denotes the amplification factor, β the saturation current and UT the thermal
voltage at room temperature. For more details see [97, 133].

Now we have collected all ingredients to apply nodal analysis (i.e. apply Kirchhoffs’ current law)
to nodes 1 to 5. We get:

1 0 = G1 · (u1 − Vin) + g(u1 − u3),

2 0 = G2 · (u2 − VDD) + C0 · (u̇2 − u̇4) +G4 · (u2 − u4) + α · g(u1 − u3),

3 0 = −(1 + α) · g(u1 − u3) +G3 · u3 − (1 + α) · g(u4 − u3),

4 0 = G4 · (u4 − u2) + C0 · (u̇4 − u̇2) + g(u4 − u3),

5 0 = G5 · (u5 − VDD) + α · g(u4 − u3),
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Reformulated as a linear implicit system, we have



0 0 0 0 0
0 C0 0 −C0 0
0 0 0 0 0
0 −C0 0 C0 0
0 0 0 0 0



·




u̇1

u̇2

u̇3

u̇4

u̇5




+




G1 · (u1 − Vin) + g(u1 − u3)
G2 · (u2 − VDD) +G4 · (u2 − u4) + α · g(u1 − u3)
G3 · u3 − (1 + α) · g(u1 − u3)− (1 + α) · g(u4 − u3)

G4 · (u4 − u2) + g(u4 − u3)
G5 · (u5 − VDD) + α · g(u4 − u3)




= 0 .

(1.1)

The 5× 5 capacitance matrix is not regular and has only rank 1: The network equations (1.1)
are a mixed system of one differential equation (difference of lines 2 and 4) and four algebraic
equations (line 1, sum of lines 2 and 4, line 3, line 5). Hence, it is impossible to transform this
system of differential-algebraic equations (DAEs) analytically to a system of ordinary differential
equations (ODEs) by pure algebraic transformations.

With this example in mind, we can now inspect the mathematical modelling of electrical circuits
— the set-up of differential-algebraic network equations — in the general case.

2 Principles and basic equations

In contrast to a field theoretical description based on Maxwell’s equations, which is not feasible
due to the large complexity of integrated electric circuits, the network approach is based on
integral quantities — the three spatial dimensions of the circuit are translated into the network
topology. The time behaviour of the system is given by the network quantities branch currents
I(t) ∈ IRnI , branch voltages U(t) ∈ IRnI and node voltages u(t) ∈ IRnu , the voltage drop of
the nodes versus the ground node. As will be seen later, it may be convenient to include more
physical quantities like electrical charges q(t) ∈ IRnq and magnetic fluxes φ(t) ∈ IRnφ into the
set of variables as well.

Network topology laws. The network model consists of elements and nodes, and the latter
are assumed to be electrically ideal. The composition of basic elements is governed by Kirch-
hoff’s laws which can be derived by applying Maxwell’s equations in the stationary case to the
network topology:

— Kirchhoff’s voltage law (KVL). The algebraic sum of voltages along each loop of the network
must be equal to zero at every instant of time. Often this law is used only for getting a
relation between branch voltages U(t) and node voltages u(t) in the form:

A> · u(t) = U(t) (2.1)

with an incidence matrix A ∈ {−1, 0, 1}nu×nI , which describes the branch-node connec-
tions of the network graph.

— Kirchhoff’s current law (KCL). The algebraic sum of currents traversing each cutset of the
network must be equal to zero at every instant of time. As a special case we get that the
sum of currents leaving any circuit node 1 is zero:

A · I(t) = 0. (2.2)

When applying KCL to the terminals of an element, one obtains by integration over time
the requirement of charge neutrality, that is the sum of charges qkl over all terminals k of

1The sign is only a matter of convention.
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an element l must be constant: ∑

k(l)

qkl = const. (2.3)

Hereby the constant can be set to zero without loss of generality.

Basic elements and their constitutive relations. Besides these purely topological rela-
tions additional equations are needed for the subsystems to fix the network variables uniquely.
These so-called characteristic equations describe the physical behaviour of the network elements.

One-port or two-terminal elements given in Fig. 3 are described by equations relating their
branch current I and branch voltage U = u+−u−. Here the arrows in the figure indicate that the
branch current is traversing from the “+”-node of higher potential u+ to the “–”-node of lower
potential u−. The characteristic equations for the basic elements resistor, inductor and capacitor
are derived by field theoretical arguments from Maxwell’s equations assuming quasistationary
behaviour [165]. In doing so, one abstracts on Ohmic losses for a resistor, on generation of
magnetic fluxes for an inductor, and on charge storage for a capacitor, by neglecting all other
effects. The set of basic elements is completed by ideal independent, i.e. purely time-dependent
current and voltage sources.

I

UR
I
UC

I

UL

I

U

Figure 3: Basic network elements: Linear resistor (I = U/R = G · U), capacitor (I = C · U̇),
inductor (U = L · İ), independent current source (I = s1(t)) and independent voltage source
(U = s2(t)).

I = ı

U = v

Figure 4: Controlled sources: Voltage/current controlled current source (I =
ı(Ucontrol, Icontrol)), voltage/current controlled voltage source (U = v(Ucontrol, Icontrol)).

Interconnects and semiconductor devices (i.e. transistors) are modelled by multi-terminal ele-
ments (multi-ports), for which the branch currents entering any terminal and the branch voltages
across any pair of terminals are well-defined quantities. One should note that also for these
elements Kirchhoff’s laws are valid, i. e. the sum of all branch currents flowing into the element
is zero, and the sum of branch voltages along an arbitrary closed terminal loop is zero. Hence,
n-terminal elements are uniquely determined by n− 1 branch currents into n− 1 terminals and
n− 1 branch voltages between these n− 1 terminals, and a reference pole. Controlled current
sources are used to describe the static branch current; alternatively, controlled voltage sources
may be used to describe branch voltages, see Fig. 4 for the symbols. Dynamic behaviour is
described by inserting capacitive or inductive branches between the terminals.

These constitutive relations describe the terminal characteristic, which in the classical approach
is a relation between terminal currents I and branch voltages U and/or their time derivatives
for each terminal. If the terminal currents are explicitly given, then the element equations are
said to be in admittance form (independent current source, voltage/current controlled current
source, linear resistor and linear capacitor); if the branch voltages are explicitly given, then
the equations are said to be in impedance form (independent voltage source, voltage/current
controlled voltage source and linear inductor).
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As a more flexible and universal approach a charge/flux-oriented formulation can be taken for
energy storing elements which reflects better the underlying physics of the circuit devices, see
e. g. Calahan [31], Chua and Lin [38], Ward and Dutton [253]. It requires the inclusion of
terminal charges q and branch fluxes φ into the set of network variables.

3 Conventional versus charge/flux oriented formulation

At this point the reader may pose the question why charges and fluxes are introduced at all
to model characteristic equations of energy storing elements in a charge/flux oriented way —
and not the classical capacitors and inductors are used. The answer to this question contains
modelling, numerical and software engineering aspects. We will now focus on the first two
aspects. Arguments for the latter will be addressed in the next section.

Modelling. The use of a charge/flux-oriented formulation can be motivated by inspecting
the case of nonlinear capacitors and inductors: C = C(U), L = L(I). The problem here is
that there is no generic way to get the capacitor current and inductor voltage in this case.
Rather there exist different approaches in the literature. We discuss them for capacitors here,
the relations for inductors are similar. See Table 1 for an overview.

Conventional formulation Charge/flux-oriented formulation
Linear capacitor Charge/current defining element

I = C · U̇ q = qC(U, I), I = µ(U) · q + q̇ = Idc + q̇

Linear inductor Flux/voltage defining elements
U = L · İ φ = φL(U, I), U = φ̇

Table 1: Constitutive relations for energy storing elements

The most popular is an interpretation of C as differential capacitance , with

I = C(U) · U̇
as capacitor current. However also an interpretation of C as general nonlinear capacitance with

I =
d

dt
(C(U) · U)

can be found. This interpretation can be transformed into the first one by using

C̃(U) =
∂C(U)
∂U

· U + C(U)

as differential capacitance.

A more natural access for the handling of nonlinear capacitances would be to introduce the
terminal charges

q = qC(U)

and apply the formula

I =
dq

dt

for getting the capacitor current. Another argument for this approach is, that for the classical
capacitance definition the controlling branch voltage U is restricted to be the voltage drop over
the capacitor itself, which is too much restrictive to handle large classes of circuits. Hence
charge-oriented models are highly desirable, not only for getting more flexibility but also since
they are consistent with the physical reality: Both static and dynamic behaviour can be derived
from one single set of equations, see the equation for the current in the second column of
Table 1 [169]. Unfortunately, it is in practice often too difficult to develop such models for real
circuit elements with sufficient accuracy. So this ideal principle is often violated in practice,
and static and dynamic behaviour are modeled separately.
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Charge conservation. A mixture of modelling and numerical aspects is the possibility to
correctly model and analyse the charge flow in the circuit. In the following, we will concentrate
on the latter item.

The original intent of the charge/flux-oriented formulation was to assure charge conservation.
This property is crucial for the analysis of many analog circuits like switched capacitor filters,
charge pumps, dynamic memories etc., which work on the basis of properly balanced charge
flow.

In the following we merely look at charge conservation. The relations for flux conservation are
similar. Ideally, charge conservation is assured if

• the principle (2.3) of charge neutrality is observed for each charge storing element, and

• during numerical integration of the network equations no erroneous charges are “created”.

In practice, the latter condition can be replaced by the weaker requirement that

• the charge error due to numerical procedures can be made arbitrarily small if the network
equations are solved with increasing accuracy.

How can charge conservation be obtained with the different formulations? First we look at
the conventional approach. Here charges are obtained indirectly via numerical integration of
capacitances C = C(u):

q(t) = q(t0) +
∫ u(t)

u(t0)

C(v)dv.

Here t0 is the starting time, and t is the actual time point. The numerically computed voltage
u will differ from the exact value u∗:

u(t) = u∗(t) +4u(t).

So we obtain as a first-order approximation from the capacitance-oriented formulation

q(t) ≈ q(t0) +
∫ u(t)

u(t0)

C(v∗)dv +
∫ u(t)

u(t0)

∂C

∂v
4vdv,

while the exact value for the charge is given by

q∗(t) = q(t0) +
∫ u∗(t)

u(t0)

∂q(v∗)
∂v

dv.

Insertion yields

q(t) ≈ q∗(t) +
∫ u∗(t)

u(t0)

[
C(v∗)− ∂q(v∗)

∂v

]
dv +

(∫ u(t)

u(t0)

−
∫ u∗(t)

u(t0)

)
C(v∗)dv +

∫ u(t)

u(t0)

∂C

∂v
4vdv.

The latter two integrals can be made arbitrarily small by improving the accuracy of the numer-
ical procedures. However the first integral is independent of numerical accuracy, and hence the
charge obtained from the conventional formulation will approximate the exact value only if

C(u∗)− ∂qC(u∗)
∂u

= 0 (3.1)

holds. This requirement concerns the capacitance model. It means that with the conventional
formulation charge conservation can only be obtained if the capacitance matrix is the Jacobian
of a charge vector, i. e. has a generic function. A sufficient condition is that the capacitance
is controlled only by the branch voltage of the capacitor itself. So in these cases there is a
chance to get charge conservation even with a capacitance-oriented formulation, provided that
the numerical solution is sufficiently accurate. However, in many models developed so far, the
requirement (3.1) is violated — because it implies additional restrictions on the capacitor model
for real circuit devices, which is difficult to develop anyway. A well known counterexample is the
model of Meyer for MOS capacitances, which has been discussed extensively in the literature,
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since it has been found that it violates the charge conservation requirement [167, 210, 253].
See [98] for more details.

With the charge/flux-oriented formulation it is not difficult to obtain charge conservation. The
first requirement is automatically met with the construction, that for each charge storing ele-
ment one terminal charge is just the negative sum of all others. To check the second requirement,
we expand the numerical approximation of the charge vector around the exact solution:

q(t) = qC(u(t)) = qC(u∗(t)) +
∂qC(u∗(t))

∂u
· 4u+O(4u2)

= q∗(t) +
∂qC(u∗)
∂u

· 4u+O(4u2)

Hence q(t) will approximate the exact charge, as 4u becomes smaller with increasing numerical
accuracy.

4 Modified Nodal Analysis

The electrical network is now fully described by both Kirchhoff’s laws and the characteristic
equations in charge/flux oriented formulation. Based on these relations, most computer pro-
grams employ one of three schemes to set up the network equations: Sparse Tableau Approach
(STA, see Hachtel et al. [107]), Nodal Analysis (NA, see Chua and Lin [38], or Modified Nodal
Analysis (MNA, see Ho et al. [114]).

STA is rather canonical: All basic equations are set up explicitly in a system which contains all
network variables as unknowns, i.e. node voltages u, branch voltages U and branch currents I.
However, even for small circuits, a very large number of mainly short equations is generated.

We should mention that for theoretical investigations mostly an even more flexible extension
of STA called Hybrid Analysis is used, which takes Kirchhoff’s equations in their general form
for loops of branch voltages and cutsets of branch currents rather than (2.1, 2.2).

NA. Contrary to STA, the aim of NA is to keep the network equations as compact as possible, so
the vector of unknowns x contains only node voltages u. Since voltage sources have no admit-
tance representation, they need a special treatment [38] by which the number of KCL equations
and of components of x is reduced by one for each voltage source. Hence the components u1 of
x are a subset of the node voltages u.

Current-controlled sources are difficult to implement, and inductors may lead to integro-differen-
tial network equations. Thus NA is not well suited for modelling circuits which contain these
elements.

MNA represents a compromise between STA and NA, combining the advantages of both meth-
ods. It shares the universality with STA, but has the advantage of a smaller number of unknowns
and equations: In addition to the node voltages, the branch currents V and L of just those
elements are included into the vector x of unknowns which have no simple characteristic equa-
tions in admittance form, i.e. voltage sources and inductors/flux sources. Therefore it is most
commonly used in industrial applications to generate the network equations.

Charge/flux oriented formulation of MNA. To set up the MNA network equations,
KCL (2.2) is applied to each node except ground, and the admittance form representation
for the branch current of resistors, current sources, capacitors and charge sources is directly
inserted. The impedance form equations of voltage sources, inductors, and flux sources are
explicitly added to the system of equations. They implicitly define the branch currents of
these elements. Finally, all branch voltages are converted into node voltages with the help of
KVL (2.1). Splitting the incidence matrix A into the element related incidence matrices AC ,
AL, AR, AV and AI for charge and flux storing elements, resistors, voltage and current sources,



14

one obtains from MNA the network equations in charge/flux oriented formulation [67]:

AC q̇ +ARr(A>Ru, t) +ALL +AV V +AI ı(A>u, q̇, L, V , t) = 0, (4.1a)
φ̇−A>Lu = 0, (4.1b)

v(A>u, q̇, L, V , t)−A>V u = 0, (4.1c)
q − qC(A>Cu) = 0, (4.1d)
φ− φL(L) = 0 (4.1e)

with node voltages u,
branch currents through voltage and flux controlled elements V and L,
charges and fluxes q and φ,
voltage dependent resistors r,
voltage and current dependent charge and flux sources qC and φL,
controlled current and voltage sources ı and v.

For an illustration of AC , AL, AR, AV and AI we refer to the following example.

The Schmitt trigger again. Let us now return to the Schmitt trigger introduced in Sec-
tion 1. To apply Modified Nodal Analysis, we have to introduce additional nodes 6 and 7 as
terminals of the voltage sources Vin and VDD. This yields additional node potentials u6, u7 and
branch currents V1 , V2 through the voltage sources Vin and VDD as new network variables.
With u := (u1, . . . , u7)> and V := (V1 , V2)

>, the network equations (1.1) for the Schmitt
trigger can be written in the charge/flux-oriented form (4.1a,4.1c,4.1d) by defining

AC =




0
1
0
−1
0
0
0




, AR =




1 0 0 0 0
0 1 0 1 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1
−1 0 0 0 0
0 −1 0 0 −1




, AV =




0 0
0 0
0 0
0 0
0 0
1 0
0 1




, AI =




1 0 0 0
0 1 0 0
−1 −1 −1 −1
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0




,

C = C0, qC(A>Cu) = CA>Cu, G = diag(G1, . . . , G5), r(A>Ru, t) = GA>Ru,

v(A>u, q̇, L, V , t) =
(
Vin(t)
VDD(t)

)
, ı(A>u, q̇, L, V , t) =




g(u1 − u3)
α · g(u1 − u3)
g(u4 − u3)

α · g(u4 − u3)


 .

Note that the circuit does not contain inductors. Hence L = {}, and the contribution ALL
does not appear in (4.1a).

Conventional formulation of MNA. Inserting flux and charge relations (4.1d,4.1e) into the
first equations, one achieves the analytically equivalent conventional formulation of MNA

ACC(A>Cu)A
>
C u̇+ARr(A>Ru, t) +ALL + AV V +AI ı(A>u, q̇C(A>Cu), L, V , t) = 0, (4.2a)

L(L, t) ˙L − A>Lu = 0, (4.2b)
A>V u− v(A>u, q̇C(A>Cu), L, V , t) = 0, (4.2c)

with generalized capacitance, inductance and conductance matrices

C(w) :=
∂qC(w)
∂w

, L(w) :=
∂φL(w)
∂w

and G(w, t) :=
∂r(w, t)
∂w

.

These matrices are positiv-definite, but not necessarily symmetrical, in contrast to the capaci-
tance, inductance and conductance matrices gained from the two-terminal elements capacitor,
inductor and resistor used, for example, in the Schmitt trigger example.
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Structure of MNA network equations. Generally, the following properties hold: The
matrices

C̃(A>Cu) := ACC(A>Cu)A
>
C , and G̃(A>Ru, t) := ARG(A>Ru, t)A

>
R

are usually very sparse and have structural symmetry.

In some respect, the fine structure of the network equations depends on the type of network
elements, on the network topology and on the modelling level:

Type of network elements. There are the trivial conclusions, that the system degenerates to
a purely algebraic one if the circuit contains neither capacitors nor inductors (energy storing
elements), and that the system is homogeneous if there are no time-dependent elements. If
there are no controlled sources, then the Jacobian matrix

D(A>Ru, t) :=




G̃(A>Ru, t) AL AV

−A>L 0 0
−A>V 0 0


 (4.3)

with respect to u, L and V has structural symmetry.

Network topology. Due to Kirchhoff’s laws, cutsets of current sources and loops of voltage
sources are forbidden. This implies that the matrix (AC , AR, AV , AL) has full row rank and
the matrix AV has full column rank. If there is a loop of independent voltage sources and/or
inductors, or a cutset of independent current sources and/or capacitors, the Jacobian matrix
D(A>Ru, t) is singular. In these cases no steady-state solution can be computed, and so most
circuit analysis programs check and refuse these conditions, which are purely topological. But
note that in the nonlinear case the Jacobian matrix also may become numerically singular, e. g.
due to vanishing partial derivatives or in the case of bifurcation (in the autonomous case this
deals with free oscillators).

The matrix C̃(A>Cu) is singular, if there are nodes which have no path to ground via energy
storing elements. If the circuit contains voltage sources, the MNA network equations contain
algebraic relations of type (4.1c) and (4.2c), resp. This is true in most circuits, and so mostly
the equations are DAEs, i.e. the Jacobian matrix

B(A>Cu, t) :=




C̃(A>Cu) 0 0
0 L(L) 0
0 0 0


 ,

with respect to u̇, ˙L and ˙V is singular.

Modelling level. Additionally, the modelling level defines some properties of the systems.
C̃(A>Cu) is symmetrical in case of linear or nonlinear differential capacitances, but symme-
try may be lost in case of general nonlinear capacitances or nonlinear charge models, as are
used for example in MOS transistor models [97, 98].

Charge/flux oriented or conventional MNA? On which formulation — charge/flux ori-
ented or conventional — should the numerical discretization be based, if MNA is used for the
automatic generation of network equations? From a structural aspect, the conventional MNA
formulation yields a standard form of numerical integration problems, while the charge/flux ori-
ented formulation does not. There are however several reasons, not to transform (4.1) into (4.2)
before applying numerical discretization schemes, although they are analytically equivalent:

Structure. (4.1) is of linear-implicit nonlinear form, while (4.2) is of nonlinear-implicit nonlinear
form. This may have an impact on the choice of a suitable integrator.

Numerics. Information on the charge/flux level is lost in the conventional approach, and charge
conservation may only be maintained approximately in numerical integration schemes.

Implementation. Implicit numerical integration schemes for the conventional MNA equations
(4.2) require second partial derivatives of qC und φL. These derivative informations, however,
are not available in circuit simulation packages, may even not exist because of the lack of
smoothness in transistor models.
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5 Why differential-algebraic equations?

The charge/flux-oriented formulation of energy storing elements and MNA network equations
supply us with a first argument for using differential-algebraic equations in electrical circuit
modelling. In the following we will assemble more arguments why using a DAE approach with
a redundant set of network variables, and not an ODE model.

First of all, one has to distinguish between two different ways to obtain ODE models:

• Generating a state-space model with a minimal set of unknowns. Drawbacks of this ap-
proach include software engineering, modelling, numerical and designer-oriented argu-
ments. The state-space form cannot be generated in an automatic way, and may exist
only locally. The use of independent subsystem modelling, which is essential for the per-
formance of todays VLSI circuits, is limited, and the advantage of sparse matrices in the
linear algebra part is lost. Finally, the topological information of the system is hidden for
the designer, with state variables losing their technical interpretation.

• Regularizing the DAE to an ODE model by including parasitic effects. It is commonly
believed that the DAE character of the network equations is only caused by a high level
of abstraction, based on simplifying modelling assumptions and neglection of parasitic
effects. So one proposal is to regularize a DAE into an ODE model by including parasitic
effects. However, this will yield singularly perturbed problems, which will not at all be
preferable to DAE models in numerical respect. Beyond it, refined models obtained by
including parasitics may make things worse and lead to problems which are more ill-posed.

So we have to inspect feasibility of state-space formulation, subcircuit partitioning and regu-
larization based on including parasitic effects.

State-space formulation: State equations. It is well known that for a large class of
nonlinear circuits it is possible to write the network equations as an explicit system of ordinary
differential equations of first order, the so-called State Equations [38]. For this purpose the
vector x1 of unknowns is constructed only from capacitor voltages and inductor currents 2 —
resp. of capacitor charges and inductor fluxes, if a charge/flux-oriented formulation is preferred.
In case of special circuit configurations like loops of capacitors or cutsets of inductors, algebraic
constraints on the state variables have to be observed (refer also to Section 7), so perhaps not
all of them are included into x1. The resulting system of equations is:

ẋ1 = f1(x1, s(t), ṡ(t)),
x2 = f2(x1, s(t), ṡ(t)).

Here s describes independent sources, and x2 contains those network variables which are not
included in x1, e. g. voltages of nodes to which no capacitive element is connected, or branch
currents of voltage sources. The second equation serves for computing x2, once the set of
explicit differential equations (first part) has been solved for x1 [17]. Note that the equations
may contain time derivatives of the input source waveforms.

However, as we can conclude from an extensive literature, the existence of this form is not at
all trivial for general classes of nonlinear circuits [38, 39, 161], and therefore the algorithms for
setting up the equations are difficult to program and time consuming. Furthermore, compared
to NA or MNA, the number of unknowns is extremely large for actual integrated circuits
containing a large number of parasitic capacitors. And most important, the structure of the
equations does not reflect the structure of the circuit. Therefore this formulation is no longer
used in actual circuit simulation programs.

Subcircuit partitioning. The design of memory chips and advanced digital/analog circuits
demands the numerical simulation of networks with several ten thousand transistors. Parallel
simulation is then valuable to reduce runtime, which otherwise would be prohibitive for such

2Note that in network theory just the latter variables are called state variables, which is somewhat different
from the use of this notation in numerics.
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large applications. For this purpose, domain decomposition methods may be employed, requir-
ing to partition the circuit into subblocks which are decoupled by introducing virtual voltage
and/or current sources as coupling units at the boundaries [5, 258] (see Sect. 15).

Regard now, for example, two subcircuits only connected by resistive paths, with only linear
energy storing elements and resistors, and without any sources. With the partitioned vectors
of node voltages u = (u1, u2)> and branch currents through inductors L = (L1, L2)>, the
network equations read

AC q̇ +ARr(A>Ru) +ALL +AV V = 0, (5.1a)
φ̇−A>Lu = 0, (5.1b)

A>V u = 0, (5.1c)

where

AC := diag(AC1 , AC2), q = qC(A>Cu) := diag(C1, C2)A>Cu,
AL := diag(AL1 , AL2), φ = φL(L) := diag(L1, L2)L,

r(A>Ru) = GA>Ru

and (5.1c) describes the virtual voltage sources and V are their branch currents. We will have
to deal with DAE models even if the designers assure that all subcircuits are represented by
ODE models! This is easily explained by the fact that the network equations (5.1) correspond
to Lagrange equations of the first kind: Defining the electric and magnetic energies of both
networks by

V (u) =
1
2

2∑

i=1

u>i ACiCiA
>
Ci
ui, T (L) =

1
2

2∑

i=1

>Li
LiLi

yields the Lagrangian
L := T (L)− V (u) + λ>

(
A>V u− 0

)
,

where the characteristic equations for the virtual voltage sources are added via Lagrangian
multipliers λ. L fulfills the equation

d
dt
∂L
∂ẋ

− ∂L
∂x

=
∂W
∂ẋ

for x = {q, φ, λ}, ẋ = {L, u, V }, with the dissipative function W given by

W :=
2∑

i=1

>Li
A>Li

ui +
1
2
u>ARGA

>
Ru.

Here we used the integral quantities charges and fluxes as state variables and Lagrangian mul-
tipliers:

q(t) :=
∫ t

0

L(τ) dτ, φ(t) :=
∫ t

0

u(τ) dτ, λ(t) :=
∫ t

0

V (τ) dτ.

One notes that the Lagrangian depends only on derivatives of the state variables. This is
caused by the fact that the characteristic equations for energy storing elements are differential
equations of first order in the state variables u and L.

Regularization based on including parasitic effects. In general, regularization is based
on the assumption that the differential-algebraic form of the network equations is caused by a
too high level of simplification in the modelling process, and therefore an ODE formulation can
be reached by adding proper “parasitic” effects or elements to the circuit model [71]. One rule-
of-thumb is to include parasitic capacitors to ground at each node to get a regular capacitance
matrix, and thus an ODE model for the circuit. However, this approach fails, if, for example,
a cutset of current source and inductor with inductance L is regularized by adding a small
capacitor with capacitance C bridging the cutset [98].
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The drawback is that we are confronted with a singularly-perturbed ODE system if C is too
small: An additional oscillation with frequency ω1 = 1/

√
LC, the eigenfrequency of the regu-

larized system, is invoked through regularization, which overlays the principle voltage courses,
and the numerical problems even increase. One example for such an inappropriate regulariza-
tion is given by the ring modulator, whose numerical problems have been discussed extensively
in the literature [51, 118, 133]: Parasitic capacitances in the proposed range of some pF yield
additional high-frequency oscillations in the GHz-range, which drastically slows down numeri-
cal simulation. Numerical regularization effects become visible only for capacitances thousand
times larger, which are not realistic [71]. On the other hand, the DAE model without parasitic
capacitors leads to physically correct results, without any numerical problems, if appropriate
integration schemes are used.

Besides that, it is not trivial to make sure that a refined modelling based on including parasitic
effects will always yield ODE models. Even worse, the numerical problems may increase with
the refinement of the model, as will be shown in Section 9 for different levels in the refined
modelling of a bipolar ring oscillator. This result can be explained easily by the fact that the
DAE index, a measure for the structural properties of DAE systems, increases.
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Chapter 2

DAE-index — the structural aspect

So we are faced with network equations of differential-algebraic type when simulating electrical
circuits. Before attacking them numerically, we have to reveal the analytical properties of DAEs.
In a first step we inspect linear systems and apply, in a second step, the results to nonlinear
systems. We will see that for a rather general class of circuits the network topology determines
the structural properties of the DAE network equations. However, if more general models for
the network elements are incorporated, special circuit configurations apply or refined models
are used to include second order and parasitic effects, one may have to cope with ill-conditioned
problems.

6 The index concept for linear systems

If a circuit contains only linear elements — or if the system is linearized at an operating point
(x(t0), ẋ(t0)), in order to investigate the system behaviour for small signal excitations from that
operating point — then the corresponding network equations represent differential-algebraic
equations in linear implicit form:

Bẋ+Dx = s(t), x(t0) = x0 . (6.1)

If we further assume MNA form then x = (u, L, V )> and

B =




ACCA
>
C 0 0

0 L 0
0 0 0


 , D =




ARGA
>
R AL AV

−A>L 0 0
−A>V 0 0


 , s =



−AI ı(t)

0
−v(t)


 .

Such linear-implicit systems constitute the starting point to classify differential-algebraic equa-
tions by a structural property known as the index. In the linear case, this property depends
only on the structure of B and D:

ODE-case: B regular. This holds, iff the circuit contains no voltage sources and there are no
nodes which have no path to ground via capacitors. In this case, system (6.1) represents a
linear-implicit system of ODEs, and can be transformed into the explicit ODE system

ẋ = B−1(−D · x+ s(t)).

DAE-case: B singular. In the following we will assume D to be regular. This requirement allows
for computing equilibria solutions by an operating point analysis to determine initial values, and
can be assured by proper demands on the network topology [97, 101]. Thus multiplying (6.1)
with D−1 from the left-hand side leads to

D−1B · ẋ+ x = D−1 · s(t). (6.2)

By Jordan decomposition of

D−1B = T−1

(
B̃ 0
0 N

)
T



20

with a regular, time independent, matrix T , equation (6.2) can be written after multiplication
by T from the left-hand side as

(
B̃ 0
0 N

)
T ẋ+ Tx = TD−1s(t) (6.3)

with a regular matrix B̃ and a nilpotent matrix N . N belongs to the eigenvalue 0 and is of
nilpotency ν, i.e. ν is the smallest number such that Nν = 0, but Nν−1 6= 0. The transformation

(
y

z

)
:= Tx, and

(
η(t)
δ(t)

)
:= TD−1s(t)

with differential variables y and algebraic variables z decouples this system into an explicit
ODE and a nilpotent part:

ẏ = B̃−1(η(t)− y), (6.4)
Nż = δ(t)− z. (6.5)

The nilpotent part has to be investigated further:

• Index-1 case: ν = 1, i.e. N = 0
Now the nilpotent part reads

z = δ(t); (6.6)

the algebraic variables are explicitly given by the input signal. After one differentiation
an explicit ODE system for z is obtained.

• Higher-index case: ν ≥ 2
The algebraic variables are only given explicitly after a differentiation process: Differen-
tiation of (6.5) and multiplication with N from the left-hand side yields

N2z̈ +Nż = Nδ̇(t) =⇒ z = δ(t)−Nδ̇(t) +N2z̈.

If ν = 2 holds, we cease the process, otherwise it has to be repeated until Nν = 0:

z = δ(t)−Nδ̇(t) +N2δ̈(t)− . . .+ (−1)ν−1Nν−1δ(ν−1)(t) . (6.7)

Now the solution depends not only on the input signal, but also on its derivatives! A last
differentiation (i.e. the ν-th one) leads to the desired explicit ODE system

ż = δ̇(t)−Nδ̈(t) +N2δ(3)(t)− . . .+ (−1)ν−1Nν−1δ(ν)(t). (6.8)

Here we have assumed that δ is ν − 1-times differentiable to get a continuous solution z.
On the other hand, if we allow discontinuous input signals, solutions may only exist in
the sense of distributions [189].

Summing up, the solution behaviour of a linear-implicit system of differential equations differs
from standard ODE theory in the following sense:

• The solution has to fulfill an algebraic constraint, since z(t0) is fixed by δ and its higher
derivatives at the initial time point t0. Especially, the solutions do not depend contin-
uously differentiable on the initial values. For ν = 1, this constraint is explicitly given
by (6.6). In the higher-index case, however, the constraint is hidden: A differentiation
process is necessary to obtain (6.7).

• The system is sensitive to perturbations. Take as example a signal noise, modelled by the
input signal δ: Although δ may be very small, its higher derivatives may be arbitrarily
large. A severe amplification of perturbations may occur for higher-index problems: We
are faced with ill-posed problems.

These analytical results suggest that no severe numerical problems arise in index-1 systems:
The algebraic constraint is explicitly given; hence implicit numerical integration schemes for
stiff systems such as BDF [81] or ROW-type methods [194] (see Chapter III), which contain a
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nonlinear equation solver, are suitable to treat these problems. Additionally, no amplification
of round-off errors is to be expected since the system is not sensitive to perturbations.

However, severe numerical problems may arise for systems with nilpotency ν ≥ 2: There are
hidden algebraic constraints, which can be resolved only by an unstable differentiation process.
Regarding perturbations δ entering the right hand side due to inaccurate solutions or due
to roundoff errors, terms of order δ/hν−1 will enter the solution, where h is the small time
discretization parameter.

Since the value of ν defines the behaviour of the system (6.1), both in theoretical and numerical
respect, ν is called the algebraic index of the linear implicit system (6.1). Additionally, the
observations made above motivate three different point of views:

Differential index : To obtain an explicit differential system instead of the linear-implicit system
(6.1), we had to differentiate the nilpotent part (6.5). Since numerical differentiation is an
unstable procedure, the number of differentiation steps needed to get an explicit ODE system
is a measure for the numerical problems to be expected when solving systems of type (6.1).
Hence the minimum number of differentiations required is called the differential index νd of the
linear-implicit linear system (6.1).

Perturbation index : We have seen that derivatives of the perturbation enter the solution of
(6.1). This observation leads to a new kind of index, which measures the sensitivity of the
solutions to perturbations in the equations: The linear-implicit system (6.1) has perturbation
index νp, if derivatives of perturbations up to degree νp enter the derivative of the solution.

Tractability index : Finally it was shown that the decomposition of a DAE system into the
part governed by regular ODEs, the algebraic part, and the part which can only be solved by
performing a differentiation process gives much insight into the nature of the problem. This
is especially helpful for analysis and construction of new methods. Griepentrog and März
developed a calculus for doing this by using properly constructed chains of projectors, which
led to the tractability index concept [89, 158]. We restrict here to the definition of index 1 and
2. To this end we introduce

N := ker B, S := {z : Dz ∈ im B}

and define: The system (6.1) with B being singular has tractability index 1, if N ∩ S = {0},
i. e. B1 := B +DQ is nonsingular for a constant projector Q onto N .
If it is not of index 1 then we introduce

P := I −Q, N1 := ker B1, S1 := {z : DPz ∈ im B1}

and define: The system has tractability index 2, if N1 ∩ S1 = {0}, i. e. B2 := B1 +DPQ1 is
nonsingular for a constant projector Q1 onto N1.
In the index-2 case, N ∩ S comprises just those components, which can be solved only by a
differentiation process. An outcome of this index notation is an exact identification, which part
of the DAE system needs which smoothness condition to be solvable.

Although the different index concepts were developed for different purposes, it turns out that
in most nonpathological cases all of them yield the same number, or differ at most by one. So
we are free to select one of them which suits best to our actual item of interest, or is the easiest
to compute.

All definitions can be generalized in a straightforward way to nonlinear DAE systems [83, 84,
89, 110].

It remains to determine the index of the charge/flux-oriented network equations (4.1). Due to
the charge and flux defining equations (4.1d–4.1e), the index is always ≥ 1 if the circuit contains
energy storing elements at all.
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7 Network topology and DAE-index for RLC networks

In the linear case, the two-terminal elements capacitor, inductor and resistor are described by
linear functions with positive capacitance, inductance and resistance. Hence the matrices

C :=
∂qC(w)
∂w

, L :=
∂φL(w)
∂w

G :=
∂r(w)
∂w

of capacitances, inductances and resistances are symmetrical positive-definite. In other words,
the elements are strictly passive.

Generalizing this property to the nonlinear case, the local strict passivity of nonlinear capacitors,
inductors and resistors corresponds to the positive-definiteness (but not necessarily symmetry)
of the so-called generalized capacitance, inductance and conductance matrices

C(w) :=
∂qC(w)
∂w

, L(w) :=
∂φL(w)
∂w

and G(w, t) :=
∂r(w, t)
∂w

.

already introduced in Section 4. If this property of positive-definiteness holds, the network is
called an RLC-network.

Topological conditions. Let us first investigate RLC-networks with independent voltage
and current sources only. To obtain the perturbation index of (4.1), we perturb the right-hand
side of (4.1a–4.1c) with a slight perturbation δ = (δC , δL, δV )> on the right-hand side. The
corresponding solution of the perturbed system is denoted by xδ := (uδ, δL, 

δ
V )>. One can

show that the difference xδ−x between perturbed and unperturbed solution is bounded by the
estimate

‖xδ(t)− x(t)‖ ≤ const ·
(
‖xδ(0)− x(0)‖ + max

τ∈[0,t]
‖δ‖+

+ max
τ∈[0,t]

‖Q>CRV δ̇C‖ + max
τ∈[0,t]

‖Q̄>V−C δ̇V ‖
) (7.1)

using orthogonal projectorsQC , QCRV and Q̄V−C onto kerA>C , ker (ACARAV )> and ker Q>CAV ,
respectively [237]. Since Q>CRV AC = 0 holds, the index does not raise, if also perturbations δq
and δφ are allowed in the charge and flux defining equations (4.1d–4.1e).

Thus the index of the network equations is one, iff the following two topological conditions hold:

T1: There are no loops of only charge sources (capacitors) and voltage sources (no VC-loops):
kerQ>CAV = {0} and thus QCRV = 0 .

T2: There are no cutsets of flux sources (inductors) and/or current sources (no LI-cutsets):
ker(ACARAV )> = {0} and thus Q̄V−C = 0.

In this case, we are faced with well-posed problems. If however T1 or T2 is violated then we
have to cope with ill-posed problems of index 2. The generic index-2 configurations for such
a violation are shown in Fig. 5: A VC-loop consisting of voltage source and capacitor, and an
LI-cutset of current source and inductor 3.

VC loops. Let us investigate one important case of networks with VC-loops. As we have seen
in Section 5, one rule-of-thumb is to regularize a circuit by adding at each node parasitic ca-
pacitors to ground. This approach yields ker A>C = {0}, and condition T2 is fulfilled. However,
T1 is violated due to QC = 0 iff the network contains voltage sources: Every voltage source
leads to a loop of capacitors and this voltage source.

3The conductance is only inserted in the figures as a representative to show possible augmentations of the
circuit without having an impact on the index.
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q̇ +G · u+ V = 0
u− v(t) = 0
q − C · u = 0

ı(t) +G · (u1 − u2) = 0
L −G · (u1 − u2) = 0

φ̇− u2 = 0
φ− L · L = 0

⇒ V = −C · v̇(t)−G · v(t) ⇒ u2 = −L · ı̇(t)
u1 = −L · ı̇(t)− 1/G · ı(t)

Loop of voltage source and capacitor Cutset of current source and inductor

Figure 5: Index-2 generic configurations

We determine now the index for both cases. After differentiating the characteristic equations
for charge, flux and voltage sources, we get with C̃(w) := ACC(w)A>C a system of the type



C̃(A>Cu

δ) 0 AV

0 L(δL) 0
A>V 0 0






u̇δ

˙Lδ

δV


 + f(u, L, t) =



δC(t) +AC δ̇q(t)
δL(t) + δ̇φ(t)

δ̇V (t)


 (7.2)

with uδ, δL, 
δ
V being the solution of (4.1), perturbed with δ = (δC , δL, δV , δq, δφ)> on the right-

hand side. With Kirchhoff’s voltage law we have ker AV = 0, and thus the system can be
resolved for (u̇δ, ˙δL, 

δ
V ). For networks without voltage sources the index is one, otherwise two.

One notes that system (5.1) generated by subcircuit partitioning in Section 4 represents a
special linear case of (7.2): C(A>Cu) = C and L(L) = L. In this case, we can derive sharper
perturbation estimates than (7.1). The difference between the differential part y := (u, L) and
yδ := (uδ, δL) of unperturbed and perturbed solution is bounded by

‖y(t)− yδ(t)‖ ≤ const ·
(
‖y(0)− yδ(0)‖ + max

τ∈[0,t]
‖δ1‖ + max

τ∈[0,t]

∥∥∥∥
∫ τ

0

δ0(τ)dτ
∥∥∥∥
)

with δ0 = (δL, δC) and δ1 = (δV , δq, δφ) — no derivatives of perturbations enter the estimate for
the differential variables. But for the algebraic components V one gets with the sharp estimate

‖V (t)− δV (t)‖ ≤ const ·
(
‖y(0)− yδ(0)‖ + max

τ∈[0,t]
‖δ‖ + max

τ∈[0,t]
‖δ̇1‖

)

an index-2 behaviour, as expected. In general however, derivatives of perturbations cannot be
neglected in the bounds of both differential and algebraic components [4].

Generalization. A generalization of these results for RLC-networks with independent voltage
and current sources to special linear controlled sources is given in [192], where linear active
networks are considered of capacitors, inductors, resistors, ideal transformers and gyrators.
The results hold also for RLC-networks with a rather large class of nonlinear voltage and
current sources: The index depends only on the topology; in general, the index is one, and two
only for special circuit configurations [67, 98, 237]. This class of sources contains, for example,
controlled current sources not being part of V C-loops that are controlled by (ACAV AR)>u, V
and t.
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One example for such an RLC-network is given by the Schmitt trigger already introduced in
Section 1. Inspecting the charge-/flux-oriented network equations (4.1) derived for the Schmitt
trigger in Section 4, we see that the current sources IB , IC and IE describing the bipolar
transistors are only controlled by the branch voltages A>V u and A>Ru. Since kerQ>CAV = {0}
due to

QC =




1 0 0 0 0 0 0
0 1/2 1/2 0 0 0 0
0 0 1 0 0 0 0
0 1/2 1/2 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1




and ker(ACARAV )> = {0} hold, the Schmitt trigger yields an index-1 problem.

These results obtained for RLC circuits rest on two different types of assumptions: Positive-
definiteness of generalized capacitance, inductance and conductance matrices on the one hand,
and no arbitrary controlled sources on the other hand. If one of these demands is violated, the
index may depend not only on whether the topology conditions T1 and T2 hold or not, but
also on circuit and model parameters and — for circuits containing nonlinear elements — on
their bias conditions. In addition, the index can be larger than two.

Violation of positive-definiteness. Independent charge and flux sources, which may model
α-radiation or external magnetic fields in a somewhat higher level of abstraction, can destroy
the positive-definiteness of generalized capacitance and inductance matrices. Generic examples
for this case are the circuits of Fig. 6: ΦC-loop and QL-cutsets. We see that u1 and u2 (resp. V )
are index-3 variables in the cutset (loop) circuit. It has to be checked whether this mechanism
may also lead to index-3 problems in case of MOS circuits with charge models whose derivatives
vanish under certain bias conditions.

u

GC

V

φ̇

���
�

���
�

���
� u1

G

u2

q̇

L

L

���
�

���
�

q̇ +G · u+ V = 0
φ̇− u = 0

q − C · u = 0
φ− φL(t) = 0

q̇ +G · (u1 − u2) = 0
L −G · (u1 − u2) = 0

φ̇− u2 = 0
q − qC(t) = 0
φ− L · L = 0

⇒ V = −C · φ̈L(t)−G · φ̇L(t) ⇒ u2 = −L · q̈C(t)
u1 = −L · q̈C(t)− 1/G · q̇C(t)

Loop of flux source and capacitor Cutset of charge source and inductor

Figure 6: Index-3 configurations: ΦC-loop and QL-cutset.
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8 Networks with controlled sources

Higher index can also be generated by controlled sources. One example is the coupling of
index-2 problems via controlled sources. Another example is that although both topological
conditions T1 and T2 hold, circuit parameters may have an impact on the structural properties
of the network equations if a network contains controlled sources, even it is linear. First we
discuss the effects of coupling circuits with controlled sources; then we analyze a differentiator
circuit and a Miller integrator , for illustration of the second phenomenon.

Before doing this we should note that controlled sources are indispensable elements in circuit
simulation, which are extensively used in semiconductor models as well as in macro models of
a somewhat higher level of abstraction, and for modelling signal propagation on and between
interconnects. An instructive example for the latter use and its effects on the index is discussed
in Section 9.

Coupling of higher-index configurations via controlled sources may raise the index
of the driven circuit part by one or two per controlled source, if the controlling network variable
itself is of higher index. The question, in which cases the index gets higher, is difficult to answer.
Below we will give some simple generic cases. Surprisingly, much sophisticated research in this
field was done twenty years ago, although the index notion was not yet introduced at all. The
motivation was to develop algorithms for setting up network equations in the State Variable
approach [97] for general classes of networks including controlled sources, and the methods
developed for this purpose aimed just to capture as many circuit configurations as possible,
which in our notation are of index ≤ 2. Most of them start from properly constructed normal
trees spanning the network graph. An overview can be found in [32, 38].

There are eight possibilities to couple cutsets of current sources/inductors (JL cutsets) and
loops of voltage sources/capacitors (VC loops) via either a voltage-controlled element or a
current-controlled element. It turns out that only those configurations will have an increased
index where the controlling variable itself is of higher index. These configurations are listed in
Table 2. Here the subscript C (D) denotes network elements and variables of the controlling
(driven) circuit. The argument t characterizes the input variable, and a prime ′ indicates the
derivative with respect to the controlling variable.

Case Controlling Input Driven Controlled Output Index
circuit variable circuit source variable

1 JL cutset J(t) JL cutset JD(uC) uD = LCLDJ
′
DJ̈(t) 3

2 JL cutset J(t) VC loop VD(uC) ID = LCCDV
′
DJ̈(t) 3

3 VC loop V(t) VC loop VD(IC) ID = CCCDV
′
DV̈ (t) 3

4 VC loop V(t) JL cutset JD(IC) uD = CCLDJ
′
DV̈ (t) 3

Table 2: Index-3 coupling of index-2 circuits via controlled sources

Extensions are possible by replacing in the VC loops and JL cutsets the inductor or voltage
source by a flux source, and the current source or capacitor by a charge source. These extensions
lead to 32 further high-index configurations, and one can get a circuit configuration of index 5
with only 4 elements [98]. Further extensions are possible by replacing the sources by norators.

The higher-index configurations described here may be recursively used, thus obtaining circuit
configurations of arbitrary high index.

Differentiator circuit We must expect a higher-index problem if the circuit itself acts as a
differentiator. A differentiator circuit with input source v(t) and output voltage u3 is given in
Fig. 7 where the operational amplifier (see Fig. 8) with amplification factor a is a special case
for a voltage-controlled voltage source.
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Figure 7: Differentiator circuit

uc1

uc2

u
I¾

Ic1-

Ic2-

u = a · Ucontrol,
Ucontrol = uc2 − uc1

Ic1 = −Ic2 = 0

Figure 8: Operational amplifier: Network symbol and characteristic equations

From its MNA equations

ARGA
>
Ru+ALL +AV V = 0

φ̇−A>Lu = 0

A>V u−
(
v(t)
au2

)
= 0

φ− L · L = 0

with G := G1 and

AR =




1
−1
0


 , AL =




0
1
−1


 and AV =




1 0
0 0
0 1




one obtains index 1.

For the limit case of an ideal operational amplifier, i. e. a → ∞, the element relation has
Ucontrol = 0 (u2 = 0) as a limiting case, and neither the output voltage U (u3) nor the output
current I (V 2) are determined by the characteristic equations. So, its controlling nodes are
connected by a nullator (i.e. an element with vanishing branch voltage and branch current),
and its output nodes are connected by a norator (i.e. an element with arbitrary branch voltage
and branch current).

In this case, the MNA structure (4.1) is destroyed, since

A>V u−
(
v(t)
au2

)
= 0

is replaced by

Ã>V u−
(
v(t)
0

)
= 0 with Ã>V =

(
1 0 0
0 1 0

)
6= A>V .

We recognize that the static elements, whose element equations are independent of the out-
put variables (here: The degenerated controlled source), are responsible for the higher index,
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because now the output variable is determined only via differential equations of the dynamic
elements. We have u3 = −L ·G · v̇(t) for the differentiator circuit, i.e. the output voltage is the
time derivative of the input voltage, and the problem is of index 2. This situation is typical for
higher-index problems and is merely an electrical interpretation of the mathematical condition
for index ≥ 2.

Any extension of the differentiator circuit, which does not shortcut the inductor in Fig. 7, will
keep the index ≥ 2. By inserting LC-, LR- or RC-circuits into the feedback loop between ideal
operational amplifier and inductor of the differentiator circuit, the index can be raised by 2, 1
or 1, respectively [191].

Miller integrator. When we replace the inductor of the differentiator circuit by a capacitor
then the circuit turns into an integrator. Fig. 9 shows such a circuit, which is called Miller
integrator. The capacitor C2 is mandatory for the circuit, while C1 is added as a parasitic
grounded capacitance, which may vanish.

We take this circuit to illustrate that due to the use of controlled sources the circuit parameters
may have an impact on the structural properties of the network equations: Index, sensitivity
of the solution with respect to input signals, and degree of freedom for assigning initial values.
This is true even for linear circuits.

The function of this time-continuous version of an integrator is to integrate an input signal
over time. Such integrators are important parts of integrated filter circuits, since they are used
to substitute inductors of arbitrary inductance L, which are expensive to obtain otherwise in
integrated technologies. Hereby the inductor relation is taken in admittance form

 =
1
L

∫
u dt,

which requires the integration of the branch voltage u. For the sake of simplicity we use an
ideal operational amplifier element with limited amplification a here.

v(t)

V 1

C1

C2

u1
G1

u2 u3

V 2+
−

Ground

Figure 9: Miller integrator circuit

Using Modified Nodal Analysis, the network equations read

ACCA
>
C · u̇+ARGA

>
R · u+AV V = 0,
A>V u− v(u, t) = 0,

with

AC =




0 0
1 −1
0 1


 , AR =




1
−1
0


 , AV =




1 0
0 0
0 1


 ,

C = diag(C1, C2), G = G1, v(u, t) =

(
v(t)
au2

)
.
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Technical parameter Index Degree of freedom Sensitivity w.r.t. v(t)

C1 > 0
a 6= 1 + C1/C2 2 only u2 only v(t)
a = 1 + C1/C2 3 — v(t) and v̇(t)
C1 = 0
a 6= 1 1 only u2 only v(t)
a = 1 2 — only v(t)

Table 3: Miller integrator circuit: Impact of technical parameters on index, degree of freedom
and sensitivity with respect to input signal

If the amplification factor a tends to infinity then u2 = 0, and for the capacitor current we get
C2 · u̇3 = −V 2 = −G ·u1 = −G · v(t), from which follows the integrator function of the circuit:

u3 = − G

C2

∫
v(t)dt.

For a 6= 1 + C1/C2, one can solve for u̇2 by inserting the last equation into the second: u̇2 =
G(v(t)− u2)/C with C = C1 +C2(1− a). All components are now fixed by u2, the only degree
of freedom:

u1 = v(t), u3 = au2, V 1 = G(u2 − v(t)), V 2 =
C2

C
G(1− a)(v(t)− u2).

For a = 1 +C1/C2, however, u2 is fixed by the hidden algebraic relation u1 − u2 = 0. Now the
solution is given at every time point by the input signal and its derivatives:

u1 = u2 = v(t), u3 = av(t), V 1 = 0, V 2 = C2(1− a)V̇ (t).

This reflects the impact of the technical parameters C1, C2 and a on the system w. r. t. input
signals and and degree of freedom for assigning initial values, see Table 3 for an overview. It
remains to discuss the influence on the index:

First case: C1 > 0. The derivative of the algebraic part with respect to the algebraic compo-
nents (u1, L, V )> is singular, since the element relation for the amplifier u3 = au2 does not
depend on V 2. After one differentiation we get by inserting the formulae for the differential
variables u2 and u3 the linear algebraic relation




−(1− a)G1/C1

(1− a)G1/C1

(1− a)/C1 + 1/C2




>

u1

u2

V 2


 = 0 (8.1)

in u1, u2, V 2, which can be solved for V 2 iff a 6= 1 + C1/C2; in this case, the index is two.
This is not surprising, since together with C1 and C2 the operational amplifier forms a loop of
voltage source and capacitors.

For the exceptional case a = 1 + C1/C2 the relation (8.1) reads

u1 = u2,

and a second differentiation is necessary to solve for V 2: The index is now three.

Second case: C1 = 0. The partial derivative of the algebraic part with respect to the algebraic
components (u1, u2 + u3, V 1, V 2)> now reads




G −G/2 1 0
−G G/2 0 1
1 0 0 0
0 (1− a)/2 0 0


 .
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The matrix is regular, and correspondingly the index is 1, iff a 6= 1 holds. For a = 1, however,
the matrix has only rank 3. The last algebraic relation becomes u2 − u3 = 0, which fixes the
differential component, too. To get the remaining differential relation from this equation, two
differentiations are necessary. Hence the index is 2.

Conclusion These results for controlled sources have an important practical consequence: It
is not sufficient to rely only on structural aspects when trying to cope with higher-index prob-
lems in circuit simulation. This will be further elaborated when looking at stepwise refinements
of a bipolar ringoscillator model in the following section. Possible solutions to this problem are
discussed in Section 10.

9 Effects of refined modelling — a bipolar
ringoscillator

The task of a ringoscillator is to generate autonomously an oscillating signal, which may be used
for driving other parts of a circuit, but in many cases serves only for measuring the maximal
clock rates which can be achieved with a given technology. The basic principle is to connect
an odd number of inverter stages in a loop. Compared to standard MOS technologies, bipolar
technologies are faster (by approximately an order of magnitude, such that frequencies of 10
GHz and higher are possible) due to a very small signal swing and high driving capabilities,
but the circuits are not as compact and have a higher power consumption.

The basic model. A circuit diagram of our bipolar ringoscillator is shown in Fig. 10. Since it
is simplified as far as possible it may look somewhat strange for an experienced circuit designer.
On the other hand it has still its basic functionality, and can be extended in such a way that
we observe the effects we want to discuss here.

Circuit description. The dashed box contains the core of the circuit and will be used as an icon
in the extensions discussed later. It consists of three differential stages. The nodes between the
resistors and the collector of the bipolar transistors (e.g. the nodes 1 and 2 for the left stage)
are the outputs of each stage, while the nodes connected to the base of the bipolar transistors
(e.g. the nodes 7 and 8 for the left stage) are its inputs. Each output of a stage is connected to
the corresponding input of the next stage, thus forming a loop. Basically the circuit works in a
current mode: The differential stages are driven by current sources, and due to the exponential
characteristic of the bipolar transistor just that branch of each differential stage will take over
almost all of the current, whose input node is at a higher voltage level. Since the Ohmic resistors
cause a larger voltage drop for the branch carrying the larger current, its output will be at a
lower voltage level, thus inverting the input signal.

In principle, one input of each differential stage may be fixed at a constant reference voltage.
For speed advantages, often the complementary technique shown here is used, where both the
original signal and its inverse are generated in each stage and propagated to the inputs of the
next. Note that the circuit operates with negative voltages, which reduces the sensitivity of the
signals with respect to perturbations of the power supply. First-order formulas for designing
such an oscillator can be found in the textbooks (see e. g. [115]).

Network equations. With u := (u1, . . . , u10)>, being the vector of node voltages at nodes
1, . . . , 10, and V = JSS being the current through the only voltage source, the charge ori-
ented MNA network equations read:

AC q̇ +ARdiag(G1, G2, G3, G4, G5, G6)A>Ru+AV V +AI ı(A>u, t) = 0,
A>V u+ VSS(t) = 0,
q − qC(A>Cu) = 0,
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Figure 10: Bipolar ringoscillator

with

AC =




1 0 0 0 0 0
0 1 0 0 0 0
−1 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 −1 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 −1 −1
0 0 0 0 0 0




, AR =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0




, AV =




0
0
0
0
0
0
0
0
0
1




,

AI =




1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 −1 −1 0 0 0 0 −1 −1 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 −1 −1 0 0 0 0 −1 −1 0 0 1
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
−1 −1 0 0 0 0 −1 −1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1




, and
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qC(A>Cu) = diag(c13, c23, c46, c56, c79, c89) ·A>Cu,
ı(A>u, t) = (IC1, . . . , IC6, IB1, . . . , IB6, J1(t), J2(t), J3(t))> .

Here ICj and IBj are the collector and base current of the bipolar transistor Tj(j = 1, . . . 6)
introduced in Section 1. The capacitances cij between nodes i and j may be linear, or modelled
in a nonlinear way: cij = cij(A>Cu) [98].

The index. With the projector

QC =




1/3 1/3 1/3 0 0 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0 0 0 0
0 0 0 1/3 1/3 1/3 0 0 0 0
0 0 0 1/3 1/3 1/3 0 0 0 0
0 0 0 1/3 1/3 1/3 0 0 0 0
0 0 0 0 0 0 1/3 1/3 1/3 0
0 0 0 0 0 0 1/3 1/3 1/3 0
0 0 0 0 0 0 1/3 1/3 1/3 0
0 0 0 0 0 0 0 0 0 1




onto kerA>C one shows that kerQ>CAV = {0} and ker(ACARAV )> = {0} hold. Since all
sources are either independent or current sources that are not part of any VC loop and which
are driven by branch voltages of capacitive paths, this model yields an index-1 problem. We
only have to require that the charge model used for the capacitors in the nonlinear case yields
a positive-definite generalized capacitance matrix.

Refined modelling. Eventually our basic circuit model has to be refined in order to get a
higher degree of accuracy and to take non-ideal operating conditions into account. Basically
this is achieved by

• replacing idealized network elements by real circuits. As an example we will discuss the
substitution of the current sources by transistor configurations,

• a more detailed modelling with respect to parasitic effects (see Table 4 for an overview).

The impact of a model refinement on the index is not a priori clear: Regularization to lower
index, no change, and even an increase of the index may happen. In [98] some circuit con-
figurations are reviewed which may yield higher-index problems. This will be illustrated in
the following with some extensions of our basic ringoscillator model. Hereby it is sufficient for
our purpose to modify only the circuit frame, while the core symbolized by a dashed box (see
Fig. 10) remains unchanged.

Inductance of interconnect. Since power supply and ground line conduct a significant and rapidly
changing current, it may be necessary to take their inductance into account (see Table 4). For
the sake of simplicity we insert only an inductor with inductance L into the ground line of
Fig. 10. The inclusion of an inductor into the power supply line gives no further insight here.

The differential index is raised from one to two, since the circuit now contains a cutset of an
inductor and current sources. All node voltages in the cutset depend on the first derivatives of
J1(t), . . . , J3(t), i. e. are index-2 variables. Numerically, this may not cause problems as far as
the sources Ji(t) are smooth. However it becomes apparent if the Ji(t) are slightly perturbed
with a ’noisy’ signal of small amplitude and high frequency .

Realistic model for current sources. The sources providing the current for the differential stages
in our basic ringoscillator model of Fig. 10 are in practice realized by bipolar transistors of
npn-type, which are biased with a positive base-emitter voltage and a negative base-collector
voltage. In this case the collector current is approximately given by

IC ≈ β · (e
UBE
UT − 1)
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Effect Important for Example Impact on index
Non ideal element high performance, limited output
characteristics analog circuits conductance of eventually decreasing

transistors
Resistance
of diffusions standard designs emitter resistance of eventually decreasing

bipolar transistors
of interconnects long interconnects, resistance of power eventually decreasing

high currents supply, via holes
Capacitance
of diffusions standard designs capacitive load usually no change
of interconnects large interconnects signal cross-coupling usually no change

Inductance
of interconnects, high currents, inductance of eventually increasing
package, etc. fast switching power supply

Temperature large temperature temperature depen- no change
effects range dence of mobility

high power self-heating of eventually increasing
power transistors

Distributed very fast switching delay time of eventually increasing
(non-compact) signals transmission lines
elements charge sensitive non quasistationary usually no change

circuits element equations
Parasitic semicon- compact design rules, bipolar latchup
ductor devices unusual operating in CMOS circuits usually no change

conditions
External
electromagnetic flux or charge α-radiation in eventually increasing
noise, sensitive designs dynamic memory
radiation cells

Table 4: Important parasitic effects in integrated circuit designs

(see Sec. 1), which defines vBias = UBE in order to get the same value for IC as was provided
by the current sources J1 · · · J3 in the basic model.

Formally, the cutset of current sources and inductors is broken, and the index is reduced to 1.
Numerically however, the bipolar transistors still act as current sources, and so one has to deal
with a singularly perturbed index-2 problem if the regularizing capacitances cij at the three
transistors acting as real current sources are small.

Modelling of crosstalk. If the interconnects are long parallel wires in the layout, then it may
become necessary to take crosstalk between them into account (see Table 4). We restrict here
to the simple case of crosstalk between the interconnect nodes 9 and 10 in our circuit of Fig. 10.
Usually, crosstalk is modeled by adding a coupling capacitor between the nodes. However,
sometimes also controlled sources are used for this purpose, especially in higher order models.
We will focus here on the latter model since it may have a negative impact on the index, while
the first one has a regularizing effect.

Node 10 is split into a pair 10 and 10a which are connected by a voltage-controlled voltage
source ECross. The controlling branch voltage is the voltage drop between nodes 9 and 10:

ECross = u10a − u10 = αE · (u9 − u10) .
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A reasonable value for the crosstalk factor αE is between 1% and 10%. Note that here the
mutual crosstalk from node 10 to node 9 is one order of magnitude smaller and can be neglected.
Now the power supply voltage of node 10 is no longer constant. In our case, this will not have
an effect on the oscillating waveforms, since the current provided by the sources J1, J2, J3 is
independent of u10. But now the parasitic capacitor c10 of node 10 versus ground has to be
included, since it is de- and upcharged simultaneously and such causes an additional load for
the power supply current JSS .

With JL and JE being the currents through the inductor and the controlled voltage source
ECross, respectively, a first order approximation yields

JSS = −JE = c10 · u̇10 − J1 − J2 − J3

≈ ∆JSS − J1 − J2 − J3,

where
∆JSS = −αEc10u̇9

is caused by the crosstalk effect. The relative additional current
∣∣∣∣

∆JSS

J1 + J2 + J3

∣∣∣∣

is not very significant for smooth current sources, but it may increase dramatically if the current
sources J1, J2, J3 are somewhat noisy. The reason is, that u9 is of index 2 due to the cutset
of current sources/inductor. Since this variable controls the voltage source ECross, which is
enclosed in a loop of voltage sources/capacitor anyway, its current JE and therefore also the
current JSS of the power supply source VSS are of index 3 [98]. So JSS depends on the second
derivatives of the current sources J1(t), J2(t), J3(t).

Note that for the latter model the numerical integrations schemes in standard simulation pack-
ages will fail in general if a noisy signal is applied to the input sources. Not even the startup
behaviour of this circuit, where the power supply and input signals are ramped up to their final
value, can be analysed in general due to the nonsmooth form of the ramp-up signals.

A detailed discussion of the bipolar ringoscillator and its refinement levels, including all technical
parameters and models, derivation of network equations, and waveforms, can be found in [97].

After setup and analysis of the DAE network equations modelling electrical circuits in time
domain, it remains to discuss the third step in circuit simulation: Numerical integration using
DAE discretization schemes, which are tailored to the structure and index of the network
equations.
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Chapter III

Numerical Integration Schemes

The numerical integration of the network equations defines (at least from a mathematical
point of view) the kernel of simulation packages in circuit design. This chapter does not aim
at an introduction into numerical integration schemes for DAE systems: Neither in theory
(convergence and stability) nor in general aspects of implementation (adaptivity, solution of
nonlinear and linear systems). For this, the reader may consult a bunch of excellent textbooks [7,
26, 111] or the survey article [190].

In the following we first describe the conventional approach based on implicit linear multi-step
methods, discuss the basic algorithms used, and how they are implemented and tailored to
the needs of circuit simulation. Special care is demanded of index-2 systems. In addition, we
introduce an alternative approach based on one-step methods. This recently developed scheme
is compatible to the conventional one with respect to efficiency and robustness, and shows
interesting numerical damping properties.

Throughout this chapter we will assume that the network equations correspond to RLC net-
works, and the only allowed controlled sources are those which keep the index between 1 and
2, depending on the network structure.

10 The conventional approach:
Implicit linear multi-step formulas

To simplify notation, we first rewrite the network equations (4.1) in charge/flux oriented for-
mulation

0 =



AC 0
0 I

0 0




︸ ︷︷ ︸
A :=

·
(
q̇

φ̇

)

︸ ︷︷ ︸
ẏ :=

+



ARr(A>Ru, t) +ALL +AV V +AI ı(u, L, V , t)

−A>Lu
v(u, L, V , t)−A>V u


 ,

︸ ︷︷ ︸
f(x, t) :=(

q

φ

)

︸ ︷︷ ︸
y :=

=

(
qC(A>Cu)
φL(L)

)

︸ ︷︷ ︸
g(x, t) :=

in a more compact linear-implicit form:

0 = F(ẏ(t), x(t), t) := A · ẏ(t) + f(x(t), t), (10.1a)
0 = y(t)− g(x(t)) (10.1b)

with x := (u, L, V )> being the vector of unknown network variables.
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The basic algorithm. The conventional approach can be split into three main steps: Com-
putation of consistent initial values, numerical integration of ẏ based on multi-step schemes,
transformation of the DAE into a nonlinear system and its numerical solution by Newton’s
procedure. Since the third step is usually performed with methods which are not very specific
for circuit simulation, we will not discuss it further here.

Let us assume for the moment that the network equations are of index 1 — the index-2 case
will be discussed later.

Consistent initial values. The first step in the transient analysis is to compute consistent initial
values (x0, y0) for the initial time point t0. In the index-1 case, this can be done by performing
a steady state (DC operating point) analysis, i.e. to solve

F(0, x0, t0) = 0 (10.2)

for x0 and then set y0 := g(x0). If there are no controlled sources, the Jacobian ∂F/∂x of (10.2)
with respect to x0 reads

∂F
∂x

=




G̃(A>Ru0, t0) AL AV

−A>L 0 0
−A>V 0 0




with the definition G̃(A>Ru, t) := ARG(A>Ru, t)A
>
R already introduced in Section 4. Since

ker (∂F/∂x) = ker (AR, AL, AV )> × ker (AL, AV ) holds, the matrix is only regular, if there
are neither loops of independent voltage sources and/or inductors, nor cutsets of independent
current sources and/or capacitors. If these topological conditions are violated, no steady state
solution can be computed, and so most circuit analysis programs check and refuse these circuit
configurations. Additional assumptions are implied in the case of controlled sources. But note
that in the nonlinear case the Jacobian matrix also may become numerically singular, e. g. due
to vanishing partial derivatives or in the case of bifurcation.

An approach always feasible in the index-1 case is to extract the algebraic constraints using the
projector QC onto ker A>C :

Q>C(ARr(A>Ru, t) +ALL +AV V +AI ı(u, L, V , t)) = 0
v(u, L, V , t)−A>V u = 0.

If the index-1 topological conditions hold, this nonlinear system uniquely defines for t = t0 the
algebraic components QCu0 and V,0 for given (arbitrary) differential components (I −QC)u0

and L,0. The derivatives ẏ0 have then to be chosen such that Aẏ0 + f(x0, t0) = 0 holds.

Numerical integration. Starting from consistent initial values, the solution of the network equa-
tions is computed at discrete time points t1, t2, . . . , by numerical integration with implicit linear
multi-step formulas.

The direct approach, which is shortly described here, was first proposed by Gear [81] for back-
ward differentiation formulas (BDF methods): For a timestep hk from tk−1 to tk = tk−1 + hk

the derivative ẏ(tk) in (10.1) is replaced by a linear ρ-step operator ρk for the approximate ẏk,
which is defined by

ρk =
1
hk

ρ∑

i=0

γk,iyk−i −
ρ∑

i=1

βk,iẏk−i := αkyk + rk (10.3)

with yk−i := g(xk−i), i = 0, 1, . . . , ρ and ẏk−i, i = 1, . . . , ρ, already computed by previous
operators ρk−i. The index k in the method coefficients βk,i and γk,i indicate their dependence
on the step size history in the case of variable step size implementations (see the paragraph
about adaptivity below). The remainder rk contains values of y and ẏ for previous time points.

Transformation into a nonlinear system of equations. The numerical solution of the DAE sys-
tem (10.1) is thus reduced to the solution of a system of nonlinear equations

F(αkg(xk) + rk, xk, tk) = 0, (10.4)
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which is solved iteratively for xk by applying Newtons’s method in a predictor-corrector scheme.
Starting with a predictor step x

(0)
k (xk−1 or some kind of extrapolated value from previous

timepoint may be a reasonable choice), a new Newton correction ∆x(l)
k := x

(l)
k − x

(l−1)
k is

computed from a system of linear equations

DF (l−1)∆x(l)
k = −F (l−1), F (l−1) := F(αkg(x

(l−1)
k ) + rk, x

(l−1)
k , tk) (10.5)

directly by sparse LU decomposition and forward backward substitution. Due to the structure
of the nonlinear equations the Jacobian DF (l−1) for Newton’s scheme is

DF (l−1) = αk · F (l−1)
ẋ + F (l−1)

x with F (l−1)
ẋ = A · ∂g(x

(l−1)
k )
∂x

, F (l−1)
x =

∂f(x(l−1)
k , tk)
∂x

.

If the step size h is sufficiently small, the regularity of DF (l−1) follows from the regularity of
the matrix pencil {A · ∂g(x)/∂x, ∂f/∂x} that is given at least for index-1 systems.

Implementation: Element stamps and cheap Jacobian. The implementation of the
direct approach for one timestep into the analysis kernel of circuit simulation packages such as
SPICE is outlined in Fig. 11.

Newton
loop

dt
d

~~
dt
d ~~

k

tk

∂ x ∂ xITERATEtime
loop

LOAD

SOLVE

0

algebraic equations

time point t

Predictor:

x(t  ) = x

x    
α

α

k

nonlinear differential−

linear sparse system for

x     

Modified Nodal Analysis

0

Ag(x)

∆ ∆

set:          x := x +    x  ∆

 Compute: F := f(x, t  ) +

k Newton correction at 

Newton iteration converges; set x   := x

approximations x   at time points 

predict next discretization point

use implicit multistep formulae:

from LTE control;

 solve:      DF    x = − F   for    x

nonlinear algebraic
equations for x   at
time point t k

k

l

k k

kf(x  , t  ) + k

k−1

t=t   already computed (l=0,1,...,k−1)l

k

A (α

A     g(x) + r)(α

k

∂ ∂DF :=     f(x, t  ) +

 g(x  ) + r)  = 0

  g(x  )        g(x  ) + r     

f(x(t)) +    Ag(x(t)) = 0

Figure 11: The direct approach in SPICE like simulators

In every Newton step (10.5), two main steps have to be performed:

• LOAD part: First the right-hand side −F (l−1) of (10.5) and the Jacobian DF (l−1) have to
be computed;

• SOLVE part: The arising linear system is solved directly by sparse LU decomposition and
forward backward substitution.

A characteristic feature of the implementation is that modelling and numerical integration (10.3)
are interwoven in the LOAD part: First the arrays for right-hand side and Jacobian are zeroed. In
a second step, these arrays are assembled by adding the contributions to F and DF element by
element: So-called element stamps are used to evaluate the time-discretized models for network
elements.

Let us consider, for example, a linear capacitor with capacitance C between the nodes ′′+′′

and ′′−′′ with node potentials u+ and u− at time point tk. Its characteristic equation reads
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IC(tk) = q̇C(tk), qC(tk) = C · (u+ − u−). After incorporating the approximation (10.3) for q̇C
one gets the approximate element relation

IC = αkC · (u+ − u−) + rk,

which gives the following contributions to the Jacobian matrix for the rows corresponding to
nodes ′′+′′ and ′′−′′ and columns corresponding to node potentials u+ and u−, and to the
right-hand side (rhs) at nodes ′′+′′ and ′′−′′:

u+ u− rhs

+ αkC −αkC −IC
− −αkC αkC IC

One consequence of using element stamps is the cheap availability of the Jacobian: For highly
integrated circuits with a very sparse Jacobian, it is only slightly more expensive to evaluate
both right-hand side and Jacobian than to evaluate only the right-hand side by its own. So,
if not linear algebra aspects are dominant (which may happen for very large circuits) then the
use of full rather than modified Newton may be appropriate in many cases.

BDF schemes and trapezoidal rule. It remains to answer the question which types of
implicit linear multi-step formulae (10.3) are actually used. Since SPICE2 [170], most circuit
simulators solve the network equations either with the trapezoidal rule (TR)

ρk = −ẏk−1 +
2
h

(yk − yk−1) (ρ = 1, βk,1 = 1, γk,0 = −γk,1 = 2) (10.6)

or with BDF schemes:

ρk =
1
hk

ρ∑

i=0

γk,iyk−i, (βk,1 = . . . βk,ρ = 0) (10.7)

For the BDF methods no derivatives of y at previous time points are needed. The first timestep
is always performed by BDF1 (implicit Euler scheme) as starting procedure.

Why BDF schemes? The most appealing argument is to save function evaluations as much as
possible, since they are extremely expensive in circuit simulation — see Gear’s article [81] which
was explicitly dedicated for solving circuit equations, and consequently had been published in
an electrical engineering journal. A second one is that the use of higher order methods does not
require much extra cost. And the third one is a settled convergence and stability theory for fully-
implicit (and not only semi-explicit) index-1 systems. Nonlinear index-1 network equations fit
into this class of problems. For such systems the following convergence result for BDF schemes
can be found in any textbook on DAEs: The ρ-step BDF method of fixed size h for ρ < 7
is feasible and converges to O(hρ) if all initial values are correct to O(hρ) and if the Newton
process at each timestep is solved to accuracy O(hρ+1). This convergence result has also been
extended to variable stepsize BDF methods, provided that they are implemented in such a
way that the method is stable for standard ODEs, i.e. the ratio of two succeeding stepsizes is
bounded.

It should be noted that BDF schemes with order greater 3 are rarely used in practice because of
the low smoothness properties of the transistor model equations. Stability properties give an ad-
ditional argument for BDF1 and BDF2 schemes anyway: They are A-stable, i.e. for Dahlquist’s
linear test equation ẋ = λx the numerical solution with arbitrary stepsize h is bounded for
all {λ; Re(λ) < 0} in the left half plane C−. In other words, no stability problems occur for
stiff systems with decaying solutions. In contrast, convergent BDF schemes with higher order
(3 ≤ ρ ≤ 6) cannot be A-stable because of the second Dahlquist barrier. However, they are
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A(α)-stable with 0 < α < π/2, i.e. stable in the sectorial {λ; |arg(−λ)| < α, λ 6= 0} of the left
half plane; and at least for BDF3 α ≈ 86 · π

180 is large enough to yield no serious stability
problems in practice.

In addition to A-stability — and A(α)-stability, respectively — the numerical solutions of BDF
tend to zero (for fixed stepsize h) in the very stiff limit Re(λ) → −∞. This stiff decay property
(which is equivalent to the L-stability property for one-step methods) allows to skip rapidly
varying solution details and still maintain a decent description of the solution on a coarse level
in the very stiff case. Hence they are suitable for network equations that are generally very stiff
because of the widely separated time constants in electrical circuits.

One consequence forA stable methods with stiff decay is numerical damping along the imaginary
axis. This behaviour defines a serious shortcoming for BDF1 and BDF2 schemes: The solution
is damped so strongly, that even for rather small timesteps oscillations may be damped out,
and after some cycles a circuit seems to be quiescent even though it oscillates in reality.

A natural alternative to BDF2 is the trapezoidal rule TR, since it is the A-stable linear multi-
step method of order 2 with smallest leading error coefficient. Due to its energy conserving
property, it avoids the shortcoming of BDF methods: Oscillations are not damped at all —
unfortunately, not even instabilities of highest frequency caused by numerical noise. This weak
instability can be seen directly from (10.6): Errors of ẏk−1 are propagated to ẏk = ρk without
being damped, and errors of ẏk propagate directly to the respective components of xk.

One conclusion might be that TR would be a desirable integration rule, if it were damped
sufficiently, but not as strongly as BDF. For this purpose several approaches are described to
construct a combination of TR and BDF schemes [70], so-called TR-BDF schemes. This name
was first used in a paper by Bank et al. [9]. The aim is to combine the advantages of both
methods: Large timesteps and no loss of energy of the trapezoidal rule (TR) combined with the
damping properties of BDF. An interesting interpretation of TR-BDF as a one-step method
was presented in [120].

When looking for alternatives to TR-BDF, we will return in Section 12 for a more detailed
discussion to the problem of preserving physical oscillations, while damping out artificial ones
very efficiently.

Adaptivity: Stepsize selection and error control. Variable integration stepsizes are
mandatory in circuit simulation since activity varies strongly over time. A simple criterion
for timestep control can be obtained from the Newton process itself: The stepsize is re-
duced/increased, if the number of Newton iterations per timestep is larger/smaller than a given
threshold (for example, 8 and 3); otherwise, the stepsize remains unchanged. This criterion is
cheap to compute, but not very reliable: Linear problems converge with one single Newton step
and hence would always be integrated with maximal stepsize.

The conventional strategy: Estimating the local truncation error in ẏ. A more reliable and still
efficient stepsize prediction is based on estimating the local truncation error εẏ = ẏ(tk+1)−ρk+1

of the next step to be performed, i.e. the residual of the implicit linear multi-step formulas if
the exact solution is inserted (βk+1,0 = 1):

εẏ :=
ρ∑

i=0

βk+1,iẏ(tk+1−i) −
1

hk+1

ρ∑

i=0

γk+1,ig(x(tk+1−i)) .

Usually the accuracy of ẏ is controlled rather than that of y, because y itself is no quantity of
interest for the user. This implies the loss of one integration order, as we will see now. After
Taylor expansion around tk the leading error term in εẏ turns out to be

εẏ ≈





1
2
hk+1

d2

dt2
g(x(tk)) for BDF1

1
6
hk+1(hk+1 + hk)

d3

dt3
g(x(tk)) for BDF2

1
6
h2

k+1

d3

dt3
g(x(tk)) for TR
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The higher order time derivatives of g are usually estimated via divided differences based on
yk, . . . , yk−1−ρ. This is rather inaccurate, since only backward information is used to get the
derivatives at the actual timepoint. So timestep control is always somewhat “behind” the
actual timepoint, which makes it unstable and gives rise to overreactions, especially when the
timesteps are large. This is another argument — besides that of low order smoothness of the
element models — why BDF schemes of order greater than 3 are seldom used in practice.
To improve the estimates for the higher order derivatives of g, it was suggested in [138] to
replace the divided differences by a higher order scheme — e. g. the trapezoidal rule — and
to employ ρk, . . . ρk−p for its evaluation. This improves accuracy, needs less backward stages,
and is surely more consistent since the time derivatives entering the solution are either used for
timestep control, and not any further approximations of them.

A new stepsize can be predicted by matching εẏ with a user defined error tolerance TOL. If hk+1

is not different from hk, then TR allows due to its smaller error constant a timestep which is
approximately 40% larger than for BDF2.

For an a-posteriori error check, the inequality ||εẏ|| ≤ TOL has to be evaluated with updated
function evaluations for the higher order derivatives. Furthermore, an order control for variable
order BDF schemes can be constructed very easily: The stepsize predictions for order ρ−1, ρ and
ρ+1 are computed, and that order is chosen which gives the maximal timestep. In practice, the
difference between the converged solution at t = tk and the initial value provided by a suitable
predictor polynomial is a key value for the local truncation error estimation.

Modified timestep control. The main flaw of controlling εẏ is that the user has no direct control
on the really interesting circuit variables, i.e. node potentials u and branch currents L, V . In
order to overcome this disadvantage associated with charge/flux oriented integration, Denk [50]
used

ġ(x(t))) =
∂g(x(t))
∂x

ẋ(t),

which means to assemble the terminal charges/branch fluxes in circuit nodes/branches and to
perform classical integration on x rather than y. This method works well if Newton’s procedure
is started from a low order predictor. However, it requires the computation of the second
derivatives of g, which are hard to get in practice or do not even exist due to poor smoothness
properties of transistor models.

An alternative approach [221] is based on the idea not to transfrom the whole network equations
as done by Denk, but only the local truncation error εẏ for q̇ into a (cheap) estimate for the
local error εx := x(tk) − xk of x(t). By expanding F(ẏ(t), x(t), t) at the actual time point tk
into a Taylor series around the approximate solution (ẏk, xk) and neglecting higher order terms,
one obtains

F(ẏ(tk), x(tk), tk) ≈ F(ẏk, xk, tk) +
∂F
∂ẏ

(ẏ(t)− ẏk) +
∂F
∂x

(x(t)− xk).

With the difference of exact and approximate value for ẏ(tk)

ġ(x(tk))− ġ(xk) = αk(g(x(tk))− g(xk)) + εẏ ≈ αk
∂g

∂x
(x(tk)− xk) + εẏ

follows:

F(ẏ(tk), x(tk), tk) ≈ F(ẏk, xk, tk) +
∂F
∂ẏ

εẏ +
(
αk
∂F
∂ẏ

∂g

∂x
+
∂F
∂x

)
εx.

As F is zero for both the exact and the approximate solution, the desired error estimate εx for
x(tk) can be computed from the linear system

(
αkA

∂g

∂x
+
∂f

∂x

)
εx = −Aεẏ (10.8)

of which the coefficient matrix is the Jacobian of Newton’s procedure! Since the local error εx

can be interpreted as a linear perturbation of x(tk), if F is perturbed with the local truncation
error εẏ, the choice of εx is justified as an error estimate for numerical integration. The idea
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to weight the local truncation error via Newton’s method was already proposed by Sacks-
Davis [207] for stiff ordinary differential equations and by Gupta et al. [105] and Leimkuhler [152]
for nonlinear DAEs of index 2. They key motivation pursued in the literature was to damp
the impact of the stiff components on timestep control — which otherwise would yield very
small timesteps. While this aspect can be found in the textbooks, a second aspects comes from
the framework of charge oriented circuit simulation: Newton’s matrix brings system behaviour
into account of timestep control, such mapping integration errors of single variables onto those
network variables, which are of particular interest for the user.

Because of αk = O(h−1), the first term in Newton’s iteration matrix may become dominant
if the timestep is sufficiently small. Hence for high accuracy requirements — which force the
timesteps to be small — we can expect to get back one order of accuracy, which was lost by
directly controlling the truncation error εẏ. However, the a-posteriori test is more rigorous than
with the conventional strategy because of the inclusion of an updated iteration matrix. This
leads in principle to a loss in robustness since more timesteps are likely to be refused. In such
a situation more conservative a-priori timesteps should be chosen, but overall this may degrade
efficiency either.

Timestep control as an optimal control problem. How can we determine an optimal compro-
mise between large a-priori timesteps and only a few number of a-posteriori refused timesteps?
An interesting approach pursued by Söderlind et al. [106] is to look at this problem from the
viewpoint of control theory, and to build a linear PI-controller for this purpose: Its P-term
is proportional to the difference between the desired tolerance TOL and the actual a-posteriori
error, and its I-term integrates (sums up) the past values of these values. An increase/decrease
of them gives rise to a more conservative/relaxed a-priori choice of timesteps. This approach
has for the first time opened timestep control to a rigorous mathematical analysis, and conse-
quently has found entrance into the textbooks [54, 111]. An actual survey is given in [227]. Since
practical experience shows that it is difficult to find a fixed set of parameters for the controller,
which applies well to all circuit simulation problems [3], it was suggested to employ adaptive
control mechanisms for this purpose [162]. Although looking very interesting and promising,
this kind of timestep control still needs improvements in details, which would make it practical
for standard applications in an industrial environment. One reasonable extension might be to
include the number of Newton iterations per timestep into the controller ([3]).

Note. In practice, in some circuit simulators attention to the local discretization error is re-
stricted to the voltage unknowns in x [141].

The index-2 case. Since most applications of practical interest yield network equations of
index 2, numerical integration must be enabled to cope with this kind of problems. As they are
not of Hessenberg type, it is not a-priori clear whether the BDF approach can be generalized
to such problems. Fortunately, the fine structure of the network equations derived in Chapter
II helps to answer this question. It turns out that the BDF can be used to solve such systems,
provided that consistent initial values are available, a weak instability associated with an index-
2 non-Hessenberg system is fixed, and some problems with timestep control are solved.
The latter item was already mentioned before: It can be solved by using Newton’s iteration
matrix for weighting the local truncation error εẏ, thus getting εx for timestep control, see
equation (10.8). The first items can be solved by using information from an index monitor, as
will be shown in the following.

An index monitor has following tasks: It determines the index, identifies critical parts of the
circuit and invokes special treatment for them in order to avoid failures of the numerical in-
tegration, gives hints to the user how to regularize the problem in case of trouble, and which
network variables may be given initial values, and which must not. And of course the index
monitor must be fast enough to cope with the large size of problems which are standard in
industrial applications.

Such an index monitor has been developed by Estévez Schwarz and Tischendorf [67, 237] 4 and

4Based on the generic index concept, alternative algorithms were suggested in [191, 192]. The same approach
can also be used to smooth results when restarting from discontinuities, which otherwise show some intial wiggles.
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Figure 12: An index-2 circuit

successfully implemented into an industrial circuit simulator [68]. It aims at characterizing a
charge oriented network model in MNA formulation to be of index 0, 1, 2, or possibly larger than
2. This diagnosis tool consists of a graph oriented part, which checks topological criteria about
position and — in case of networks with controlled sources – control of the network elements,
and of a numerical part, which checks positive definiteness of element relations during analysis.
The combination of topological and local numerical checks makes the monitor very efficient:
A 30000 transistor circuit can be handled in a few seconds. In case of circuit configurations
which may yield an index > 2, the critical circuit parts are identified, and suggestions for
regularization are issued.

One essential outcome of this work is that industry has learned how to construct future device
and circuit models in order to avoid numerical problems due to high DAE index as far as
possible.

Computing consistent initial values. The usual way in circuit simulation to compute initial values
by solving a DC steady state problem (10.2) may yield inconsistent initial values in the index-2
case, since the hidden constraints — relating parts of the solution to the time derivatives of
the time dependent elements — are not observed. A simple example is the VC-loop of Fig. 5,
where the current V depends on the time derivative v̇(t) of the input signal. This raises two
questions for index-2 problems:

• How can we get consistent initial values?

• What happens when integration is started from nonconsistent initial values?

The standard method for the first problem consists of three steps ([65, 182]):

1. Select variables which can be given initial values, and initialize them;

2. setup equations for hidden constraints;

3. solve an augmented nonlinear system which includes the hidden constraints.

In [63] it was shown that the first and the second step can be done efficiently in circuit simulation
by using the results of the previously described index monitor. However, a problem with this
approach is that it is very much different from the handling of initial conditions in the lower
index case. So an alternative was developed in [66], which aims at being as near as possible to
the standard algorithm for low index:

1. Find a solution without hidden constraints from solving equation (10.2);

2. setup and solve a linear system for corrections to this solution, such that the

hidden constraints are fulfilled;

3. add the corrections to the initial values found in step 1 to get consistent ones.

Again the hidden constraints can be easily derived from the information provided by the index
monitor. When the algorithm is applicable then the variables to be corrected turn out to be
branch currents in VC-loops and node voltages in LI-cutsets; details can be found in [66].

As an example we look at the circuit given in Fig. 12. It contains a VC-loop and is of index 2.
The unknowns are the node voltages and the branch current of the voltage source, if an MNA
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formulation is used: x = (u1, u2, u3, V )>. The network equations are given by:

KCL1: V + C1 · (u̇1 − u̇2) +
1
R1

u1 = 0

KCL2: C1 · (u̇2 − u̇1) +
1
R2

u2 + C2u̇2 +
1
R3

· (u2 − u3) = 0

KCL3:
1
R3

· (u3 − u2) + C3u̇3 = 0

V-Source: u1 = V (t)

The steady state DC solution

u̇1 = 0 u̇2 = 0 u̇3 = 0
u1 = V (0) u2 = 0 u3 = 0

V = − 1
R1

· V (0)

solves the network equations, but violates the hidden constraint

u̇1 = V̇ (t).

To make it consistent, we need an additional current4V in the VC-loop, which we can compute
from:

KCL1: 4V + C1 · (u̇1 − u̇2) = 0
KCL2: C1 · (u̇2 − u̇1) + C2u̇2 = 0

V-Source: u̇1 = V̇ (0)

(Node 3 is not part of the VC-loop, and can be omitted here.) Its solution is added to the
previous one to get the following consistent initial values:

u̇1 = V̇ (0) u̇2 =
C1

C1 + C2
· V̇ (0) u̇3 = 0

u1 = V (0) u2 = 0 u3 = 0

V = − 1
R1

· V (0)− C1 · C2

C1 + C2
· V̇ (0)

In case of a charge/flux oriented formulation the procedure is similar.

To answer the second question, we note that transient analysis may abort or yield wrong results
if it is started from an inconsistent inital value. An example is given in [66]. Fortunately, the
multi-step methods are mostly started with a backward Euler step, and thanks to the special
structure of the network equations this is sufficient in many cases to bring the solution back
onto the right manifold, although integration was started from an inconsistent value [66] 5.
Note however that this is not true if integration is started with the trapezoidal rule; even with
stiffly-accurate one-step methods it may take some timesteps to get back to the correct solution,
if the initial values are not consistent.

Fixing the weak instability. The variable order, variable stepsize BDF for the index-2 network
equations (10.1) reads

A
1
hk

ρ∑

i=0

γk,ig(xk−i) + f(xk−i, tk−i) = δk .

Here, the defect δk represents the perturbations in the kth step caused by the rounding errors
and the defects arising when solving the nonlinear equations numerically. März and Tischen-
dorf [159] have shown that if the ratio of two succeeding stepsizes is bounded and the defect δk
is small enough, then the BDF approach is feasible — i.e. the nonlinear equations to be solved

5Some authors exploit this feature to get consistent initial values by performing some Eulersteps backward
and then again forward in time [25, 242].



44

per integration step are locally uniquely solvable with Newton’s method — and convergent.
However, a weakly instable term of the type

max
k≥0

1
hk
‖Dkδk‖

arises on the right-hand side for the error estimate of maxk≥ρ ‖xk − x(tk)‖. Here Dk denotes
a projector that filters out the the higher-index components of the defect. In contrast to
Hessenberg-type index-2 systems, this instability may affect all solution components, and may
cause trouble for the timestep and error control. Remember, that the stepsize is decreased if
the a-posteriori error check fails. For small stepsizes however, the weak instability is reflected
by an error growth if the stepsize is decreased — the usual timestep and error control must fail!

Since all solution components may be affected, an appropriate error scaling — as done for
Hessenberg systems — is no remedy. However, the instability can be fixed by reducing the
most dangerous part of the defect δk, that is, those parts belonging to the range of Dk. This
defect correction can be done by generalizing the back propagation technique, since the projector
can be computed very cheaply by pure graphical means with the use of an index monitor.

We finish this section with some remarks on a new BDF-based approach to integrate the network
equations numerically, which shows some potential for the future: Modified Extended BDF.

In 1983, J. Cash proposed the Modified Extended BDF (MEBDF) method, which combines
better stability properties and higher order of convergence than BDF, but requires more com-
putations per step [33, 34]. One timestep with the MEBDF method consists of three BDF
steps and an evaluation step. This results in more work compared to BDF, but the order of
convergence increases with one for most circuits[30]. This implies that for convergence order 3
we normally apply the 3-step BDF method, while with the MEBDF method a 2-step method
suffices.

The k-step MEBDF-methods are A-stable [109] for k ≤ 3, while for BDF this is restricted to
the case k ≤ 2 [33].. Thus these MEBDF-methods ‘break’ Dahlquist’s Law [109] that applies
to real multistep methods: we have higher order methods with unconditional stability.

The approach looks attractive because implementation may re-use existing BDF-based datas-
tructures efficiently. In the Modified version, also the number of needed LU-factorizations is
reduced to only 1. Variants also allow parallelism [75].

11 A second approach: One-step methods

Up to now, only multi-step methods have been used for the numerical discretization in profes-
sional packages. These conventional methods have achieved a high degree of maturity, and have
proven to be efficient and very robust in an extremely large variety of applications. Nevertheless
there is some motivation to look at alternative schemes also from an industrial point of view:

• The BDF methods are applicable to much more general classes of nonlinear DAEs; can
methods be superior, which are definitely constructed for the special linear-implicit non-
linear form (10.1) of the circuit equations?

• In the charge/flux oriented form of conventional codes, timestep control is difficult, since
charge/flux tolerances are not of interest for the user, and extra effort is necessary to derive
charge/flux tolerances from the desirable user given node voltage or current tolerances.
Are there methods with a more natural embedding of timestep control even in charge
oriented formulation?

• The fully implicit methods used so far require in each timestep a nonlinear system to be
solved. Can semi-implicit methods be employed, which need only linear systems to be
solved?

Recently, a class of one-step methods was developed that give a positive answer to the three
questions above. They are based on embedded Rosenbrock-Wanner (ROW) schemes, which
have been used successfully for solving classical network equations [195], and
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• are tailored to the special structure of charge/flux oriented network equations (10.1), and
do not aim at solving arbitrary DAEs of non-Hessenberg type;

• enable a natural timestep control which applies directly on node potentials and branch
currents;

• define linearly-implicit methods that need only linear systems to be solved.

Since these schemes turned out to be competitive with the standard multi-step methods even
in an industrial environment, it seems worthwhile to introduce them in more detail here.

Charge/flux-oriented ROW schemes. In a first step, we apply a standard Rosenbrock-
Wanner method to the linear-implicit DAE system (10.1) [110, 194]. To simplify notation,
we assume for the moment that the network equations do not explicitly depend on time,
i.e. f(x(t), t) ≡ f(x(t)). For this homogeneous case, the numerical approximation for one ROW
step reads

x1 = x0 + b>k, (11.1a)
y1 = y0 + b>l, (11.1b)

with weights b := (b1, . . . , bs)> and increments k := (k1, . . . , ks)>, l := (l1, . . . , ls)> defined by



A γh
∂f(x0)
∂x

−γI γ
∂g(x0)
∂x


 ·

(
li

ki

)
=




−hf(
i−1∑

j=1

αijkj)− h
∂f(x0)
∂x

i−1∑

j=1

γijkj

y0 − g(
i−1∑

j=1

αijkj) +
i−1∑

j=1

(αij + γij)lj − ∂g(x0)
∂x

i−1∑

j=1

γijkj




(11.1c)

where αij = 0 for i ≥ j, γij = 0 for i > j and γii = γ 6= 0, i, j = 1, . . . , s. x1 and y1 are
the approximations to the solution at time h with x(0) = x0, y(0) = y0. The increments are
uniquely defined by the linear system (11.1c): The matrix




0 A
∂g(x0)
∂x

+ γh
∂f(x0)
∂x

−γI γ
∂g(x0)
∂x




obtained after one block Gaussian elimination step is nonsingular for sufficient small stepsizes
h, since the matrix pencil {A∂g(x)/∂x, ∂f/∂x} is regular at least for index-1 systems.

In a second step, we use the special structure of (10.1) to eliminate the differential components
y from the computation of x1. The linear structure of the charge constraint (10.1b) allows
for ki to be computed independently from l1, . . . , li−1. To fulfill charge conservation during
integration, the differential variables y are projected at each grid point ti in the integration
interval [0, T ] on the charge constraint:

yi := g(xi), ∀i with ti ∈ [0, T ]. (11.1d)

In the end, the computation of x1 does only depend on x0, and we have defined a class of
charge/flux oriented ROW schemes by (11.1a,11.1c) and (11.1d).

One notes that the same Jacobian information is needed in both multi-step schemes and
charge/flux oriented ROW methods, but for different reasons: As iteration matrix for the
multi-step schemes in the first case, and as system matrix of the linear equations which serve
for getting the stage increments in the latter case. Note that the same Jacobian is used here
for all stage equations. It is however possible to construct efficient higher order methods which
exploit the fact that in circuit simulation the Jacobian is rather cheap to get [95, 99]; in this
case the Jacobian would be different at each stage.
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Convergence and order conditions. As shown in [96], classical convergence theory for semi-
explicit index-1 problems can be applied to the ROW method (11.1a,11.1c,11.1d). Owing to the
projection (11.1d), the local error g(x1)−g(x(h)) must be O(hp+1) to obtain convergence order
p. For arbitrary charge functions, this conditions leads to the requirement x1−x(h) = O(hp+1),
and we have the following convergence result: To obtain order p for the network equations (10.1)
of index-1, the coefficients of the Rosenbrock method (11.1a,11.1c,11.1d) have to fulfill all order
conditions for the algebraic variables up to order p in semi-explicit index-1 systems. This result
applies also for a large class of index-2 network equations of the form (10.1).

The coefficients of the method are free to fulfil order conditions for a given method and to
guarantee A- and L-stability, respectively. In contrast to multi-step methods, one can construct
A- and L-stable methods of arbitrary order.

CHORAL - an embedded method of order (2)3. On account of the low smoothness
properties of transistor models, as well as of the low accuracy demands usually required in
practice, an embedded method of order (2)3 seems to be suitable. The corresponding scheme,
CHORAL, has four stages and only three function evaluations. To avoid a constant term in the
error estimate due to inconsistent initial values, both methods are chosen as stiffly accurate [111],
and in particular L-stable.

For the general non-homogeneous case of (10.1), the numerical approximation xk after one
timestep from tk−1 to tk = tk−1 + hk, together with an embedded approximation x̂k of lower
order for error control and timestep prediction, is now given by

xk = xk−1 +
s∑

i=1

diκi, x̂k = xk−1 +
s∑

i=1

d̂iκi,

where the increments κi are computed from linear systems
(

1/γ
hk

F0
ẋ + F0

x

)
κi =

1/γ
hk

A (g(xk−1)− g(ai))−
i∑

j=1

β̃ijf(aj)

−
i−1∑

j=1

β̃ij
∂f

∂x
(xk−1, tk−1)κj − hτ̃i

∂f

∂t
(xk−1, tk−1),

whose right-hand sides can be setup after evaluating the functions f(ai) and g(ai) at internal
stage values

ai := xk−1 +
i−1∑

j=1

σijκj .

The corresponding coefficient set of CHORAL with β̃ij := βij/γ and τ̃i := τi/γ is given in
Table 5. Since the usual error estimate ‖x1 − x̂1‖ = ‖κ4‖ for stiffly-accurate embedded ROW
methods is used, a reliable error control and stepsize selection are offered that are based on
node potentials and branch currents only. This makes timestep control very elegant, especially
in comparison with the techniques discussed in the previous section for multi-step methods.

Practical experience. The implementation of CHORAL in an industrial circuit simulation
package opened the possibility to gain experience not only with simple standard benchmark
examples like an LC oscillator and MOS ringoscillator, but also for numerous real life problems
[119]. Some of them are included in Table 6: A 16 bit adder, critical path circuits of dynamic
memory (DRAM) circuits, and an arithmetic logical unit ALU, which is the core of a central
processing unit.

We see that CHORAL can cope even with large problems, and is competitive with BDF not
only with respect to CPU times (Table 6) but also with respect to accuracy, see Fig. 13.

One reason for the efficiency of CHORAL seems to be the stepsize and error control that allow
large stepsizes by only a few failures of the stepsize predictions. These results are confirmed by
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γ = 0.5728160624821349 β21 = −2.0302139317498051
d1 = d̂1 = σ21 = σ31 = σ41 = 1/γ β31 = 0.2707896390839690
d2 = d̂2 = σ32 = σ42 = 0.0 β32 = 0.1563942984338961
d3 = d̂3 = σ43 = 1.0 β41 = 2/3
d4 = 1.0 β42 = 0.08757666432971973
α2 = 1.0 β43 = −0.3270593934785213
α3 = 1.0 γ1 = γ

α4 = 1.0 γ2 = −2.457397870
τ1 = 0.3281182414375370 γ3 = 0
τ2 = −2.57057612180719 γ4 = 0
τ3 = −0.229210360916031
τ4 = 1/6

Table 5: Coefficients for CHORAL

CPU time
Circuit # transistors # equations

CHORAL BDF2

LC oscillator 0 3 0.57s 0.33s
MOS ringoscillator 134 73 30.13s 27.61s

16 bit adder 544 283 2m41.32s 2m30.1s
1 Mbit DRAM 2005 1211 10m16.18s 8m29.15s
16 Mbit DRAM 5208 3500 23m37.18s 12m5.11s

ALU 13005 32639 97m31.64 82m21.03s

Table 6: CPU times: CHORAL versus BDF2 on HP workstation C200

numerical tests reported in [96] for digital circuits, NAND gate and 2 bit adder: For non strin-
gent accuracy demands required in network analysis, CHORAL turned out to be as powerful
and efficient as DASSL [26], the latter being a standard code for BDF integration of low index
DAEs.

Particularly appealing are CHORAL’s damping properties: Excitations and oscillations with
physical significance are tracked, but perturbations are damped. This behaviour will be dis-
cussed in more detail in the following section.

12 Oscillatory circuits and numerical damping:
A comparison

Dealing with oscillatory behaviour, we have to distinguish between two types of oscillations.
The first type is given by oscillations of physical significance which reflect the behaviour of
the mathematical model and the circuit, and should be preserved during numerical integration.
The LC oscillator shown in Fig. 14 (left side) can serve as a basic example. This linear circuit
consists of one capacitance C = 4 pF and inductance L = 1 nH in parallel driven by an initial
current source I0 = 6 A. Numerical approximations obtained by CHORAL and BDF2 are
given in Fig. 14 (right side) for the branch current through the inductor. The current oscillates
with the amplitude given by I0 and frequency ω = 1/

√
LC, which corresponds to a period of

T = 2π/ω ≈ 0.4 nsec. While an error becomes visible both in phase and amplitude for BDF2,
both phase and amplitude are preserved by CHORAL.

The second type is given by high frequent numerical noise, which should be attenuated by the
integrator. It may be due to failures of stepsize and error control, or due to an inappropriate
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Figure 13: One output nodal voltage for the 16 bit adder: Integration steps of CHORAL (¦)
vs. BDF2 (+).
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Figure 14: LC oscillator (left) and simulation results (right) for BDF2 (- -) and CHORAL (—)

semidiscretization of a PDE model with respect to space [102]. A third possible origin are
discontinuities of the solution, which might be invoked by non smooth transistor models or
input stimuli. In the latter case no problems should occur if integration is stopped at these
points, and restarted with consistent initial values. Here the algorithms discussed in Section 10
for consistent initialization can be used efficiently for CHORAL, too. However, if integration is
not stopped at these points, one may have to deal with inconsistent initial values. An example
for such an effect is the current waveform of an operational amplifier circuit, for which the
numerical results of the trapezoidal rule and CHORAL are shown in Fig. 15. At ≈ 1 nsec there
is a sharp spike, which is invoked by traversing a discontinuity of a MOS capacitance model.
Due to its energy conserving property, the trapezoidal rule maintains this perturbation, turning
it into an oscillation with the actual timestep as period. This yields an impression that the
circuit is unstable and oscillates.

In contrast, the perturbation is damped immediately by CHORAL, and only a few steps are
necessary to get back to the smooth solution. The results with TR-BDF are not given here,
but are similar to those of CHORAL.

Model equation: Harmonic oscillator. To explain these results for both physical and
artificial oscillations, we investigate the model equation

ẍ+ ω2x = 0 (12.1)
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Figure 15: Operational amplifier circuit: Simulation results for trapezoidal rule (- - -) and
CHORAL (· · · )

of a harmonic oscillator with frequency ω over one period [0, T := 2π/ω]. With initial values
x(0) = x0, ẋ(0) = ẋ0, the solution reads

x(t) = r · Re exp(iϕ)

with
r :=

√
x2

0 + ẋ2
0/ω

2, ϕ := ωt− arctan(ẋ0/(ωx0)).

Note that the LC oscillator discussed above corresponds to a harmonic oscillator with frequency
ω = 1/

√
LC.

The results obtained on model equation (12.1) with initial values
(x(0), ẋ(0))> = (1, 0)> for BDF2 and the trapezoidal rule, the integration schemes TR-BDF is
based on, and CHORAL are given in Figs. 16 and 17. For each method one period was resolved
with sample rate n = 1, 2, . . . , 1000 steps of equidistant stepsize h = T/n.

Comparing the numerical approximations with the exact solution
(x(T ), ẋ(T ))> = (1, 0)> after one period, we see the following: Due to its energy conserv-
ing property, the trapezoidal rule generates no magnitude error for any n; however, for small
sample rates one has to deal with rather large phase errors. BDF2 acts much worse: In addition
to a phase error, one has to deal with amplitude errors, if one period is sampled too roughly.
CHORAL, however, has only slight amplitude and phase errors even for rather small sample
rates.

These results become more visible, if we zoom into the results for n = 10, 11, . . . , 20. As a
rule-of-thumb in circuit simulation, one has to sample one oscillation with approximately 10–20
points to get results which are accurate enough. Thus oscillations of physical significance which
are approximated numerically using sample rates in the range of 10–20 yield rather large phase
errors (trapezoidal rule) or both amplitude and phase errors (BDF2). CHORAL, however, is
highlighted by only slight errors in phase and amplitude.

Analysis of one-step methods. These good properties of CHORAL applied to oscillatory
circuits can be explained by investigating the model equation in more detail. Besides that, this
analysis can illustrate its excellent damping properties as well. As a first step, we scale and
rewrite (12.1) as an ODE system of first order. With y := [x, ẋ/ω]> we have

ẏ = Jy, y(0) =

(
x0

ẋ0/ω

)
, (12.2)
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Figure 16: Numerical approximation of BDF2 (¤), trapezoidal rule (©) and CHORAL (×) for
model equation (12.1) after one period T = 2π/ω. The results are plotted for stepsizes h = T/n
(n = 1, 2, . . . , 1000) in phase space x = r exp(iϕ).

where

J =

(
0 ω

−ω 0

)
.

For one-step methods such as trapezoidal rule and CHORAL, the numerical solution yh
n after

one period with n equidistant steps of size h = T/n reads

yh
n = [R(hJ)]n

(
x0

ẋ0/ω

)
.

The stability matrix R(hJ) has eigenvalues R(±iωh) which are given by evaluating the scalar
stability function R(z) for imaginary arguments z = ±iωh. Furthermore, its eigenvectors are
(1, i)> and (1, −i)>, and thus it holds

[R(hJ)]n = U

(
R(z)n 0

0 R(−z)n

)
U−1, U =

(
1 1
i −i

)
.

Therefore the numerical properties of a one-step method applied to the model equation is fixed
by its stability function along the imaginary axis:

yh
n = U

(
R(z)n 0

0 R(−z)n

)
U−1

(
x0

ẋ0/ω

)
,

see Fig. 18. Note that we have
lim
z→0

R(z) = 1

for convergent methods, and
lim

z→±∞
R(z) = 0,

for L-stable methods [111]. Thus there is a range of small stepsizes where |R(z)| is close to one
and information is almost preserved, and another range where |R(z)| tends to zero and strong
damping prevails.
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CHORAL (×) on model equation (12.1) in phase space with sample rates n = 10, 11, . . . , 20.

Depending on the type of oscillation, we demand different properties:

• Oscillations of physical significance. These should be preserved. Assuming a sample rate
of 10–20 steps for oscillations of physical significance, we demand |R(z)| ≈ 1 in the range
of |z| ∈ [0.1π, 0.2π].
Having a look at Fig. 18, we see that this demand is fulfilled by all methods but the
implicit Euler scheme.

• Perturbations. Such oscillations of high frequency, either numerical noise caused by
timestep and error control, inconsistent initial values or by an inappropriate semidis-
cretization of a PDE model, should be damped as much and soon as possible. Hence a
slight damping should already occur for |z| larger than 0.2π, the limit for oscillations of
physical significance, and |R(z)| ≈ 0 for highly oscillatory signals, i.e. |z| > 100.
Except the trapezoidal rule, which is not L-stable, all methods show good damping prop-
erties for highly oscillatory signals (|z| > 100). But only the implicit Euler scheme and
CHORAL damp already for |z| > 0.2π.

Summing up, CHORAL shows all the desired properties of a (non-ideal) numerical low pass
filter: Physical oscillations of low frequency are preserved, but highly oscillatory perturbations
are efficiently damped.

The corresponding analysis for multi-step methods can be found in [104].
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Chapter IV

Numerical treatment of large problems

Due to their reliability and robustness software codes employing the standard algorithms are
established as workhorses, which are inevitable when designing electronic circuits. Especially
for integrated circuit design one can distinguish two different steps in the design flow, where
these tools are used:

• The electrical design stage comprises standard applications for characterization and op-
timization of functional building blocks, such as gates, operational amplifiers, oscillators
etc.. These analyses are run excessively in order to make sure that the functional units
meet their specifications under a large variety of load and bias conditions and tempera-
tures, and with different parameter sets representing the fluctuations of the technological
processes in the fabrication lines.

• In the verification stage overall functionality of the circuit is checked. For this purpose
the circuit parts containing the critical path inclusive parasitics — like capacitances and
resistances of junctions and interconnects — are re-extracted from layout. This yields
accurate but very large circuit models with many input nodes, which have to be biased
with rather lengthy input stimuli in order to verify overall functionality of the circuit.

Typical data for these different kinds of application are given in Table 7. The dimension of the
mathematical circuit model corresponds approximately to its number of transistors. Since the
transistor models are fairly complex, most time in standard applications is spent for setting up
the matrix and right hand side of the resulting linear system (‘load’). Due to the overlinear
increase of sparse Gaussian elimination, the computational expense for the linear solver becomes
dominant for large applications. The overhead spent for timestep and convergence control etc.
is usually below 5%.

Since the turnaround times for large applications are often beyond desirable limits, i.e. signifi-
cantly more than 5 · · · 8 hours, it is of a major interest to obtain speedups without sacrificing

standard large
application application

no of transistors 101 . . . 103 103 . . . 105(. . . 106)
no of equations 101 . . . 103 103 . . . 105(. . . 106)
no of timesteps 102 . . . 103 103 . . . 106

CPU times sec . . . min hours . . . days
(on workstation or PC)
load 85% 85% . . . < 50%
lin. solver 10% 10% . . . > 50%
overhead 5% 5% . . . 2%

Table 7: Typical data for standard and large applications in circuit simulation
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Source of expense Speedup possible by
- higher level of abstraction, using

functional modelling with
complexity of device models languages like VHDL-AMS

- use of table models for devices
or subblocks like gates

overlinear expense for Gauss solver decomposition
- typically n1.2 · · ·n1.8 ⇒ decoupling into smaller blocks

(n: number of circuit nodes) ⇒ use of iterative methods
decomposition

lack of adaptivity ⇒ higher degree of adaptivity
- global timestep control by exploiting different activity
- global convergence control of different circuit parts

at different times
large number of devices parallelization

Table 8: How to speedup circuit simulation

accuracy, universality and robustness too much.

Many attempts are pursued in the literature to overcome the computational limitations of
circuit simulation. Table 8 shows the basic principles of these approaches, and which kind of
problem they aim to improve.

The first row of Table 8 concerns modelling issues, which are not to be discussed here. The
remaining rows of Table 8 roughly characterize the main aspects of our further discussion.
First a glance at a simple MOS ringoscillator example will illustrate typical properties of the
mathematical circuit models, which offer potentials for getting improvements.

13 Numerical properties of an MOS ringoscillator model

The task of a ringoscillator in bipolar technology and its basic principles were already explained
in Section 9. Most of the very complex integrated circuits challenging circuit simulation however
are fabricated in MOS technologies. As a typical representative we will now consider a sim-
ple ringoscillator in complementary MOS (CMOS) technology, and highlight some interesting
properties of this circuit class.

Fig. 19 shows a circuit diagram of a CMOS ringoscillator consisting of 11 inverter stages, which
are connected in a feedback loop. Each inverter is composed of a P-type MOS transistor —
which is connected to power supply VDD — and of an N-type MOS transistor connected to
ground. Furthermore a parasitic wiring capacitance to ground is added. When the input signal
at the gate nodes of both transistors of an inverter is higher than a certain threshold voltage
then the P-channel transistor is OFF, and the N-channel transistor is conducting, thus pulling
the output signal at the common drain node to ground. Inversely, a low level input signal
switches the N-channel transistor OFF and the P-channel transistor ON, such that the output
node is loaded up to power supply voltage VDD. The inverted output signal drives the next
inverter, and after passing all stages of the closed loop, it arrives with a certain time delay as
input signal of the first one. This invokes an oscillation, and its period is usually just 2 · 11
times the average switching delay of one inverter stage. The waveforms of nodes 1, 6, and 11
are shown in Fig. 20; the other waveforms are identical — if the design is regular — but shifted
in time.
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Figure 19: CMOS ringsoscillator
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Figure 20: CMOS ringoscillator – Waveforms (in Volt) over time (in sec):
Nodes 1 (——), 6 (– – –) and 11 (· · · )

Multiscale. When looking at the waveforms of node 1 and 11 in Fig. 20 we recognize that
the first inverter in the loop is only active in fairly small parts of an oscillation cycle, and
more or less quiescent else. The same is true for all other inverters; but they are active at
different time windows, since the signal is continuously propagating through the circuit. So
the varying degree of activity for different circuit parts has usually no computational effect:
Timestep control always has to take care about the smallest timestep in the whole circuit,
unless multirate integration is being used.

In order to get an estimate for the potential benefit of multirate integration, we relate the global
timestep hglob to the timestep hloc needed for numerical integration of the first inverter, see
Fig. 21. We see that hloc determines the global timestep just when the first inverter is switching,
and becomes much larger else. Obviously the relations are quite similar for all inverter stages.
Using a slightly modified version of a formula given in [11], we can estimate the possible speedup
in this case to be:

speedup =
n ·m

nL + nA ·m ≈ 1
mean value(hglob/hloc)

where n is the number of devices, nA is the average number of active devices, nL = n− nA the
average number of inactive devices, and m is the average number of global timesteps within a
timestep in case of no activity. Measuring the mean value from Fig. 21, we get

speedup ≈ 1
0.24

≈ 4.2,

or with a more practical restriction of the local timesteps to ≤ 5 · hglob still a speedup factor of
approximately 3.

In reality this figure will become smaller due to inevitable overhead; on the other hand it may
further increase for larger circuits. So we conclude that multirate integration seemingly offers
significant speedup potential for circuit simulation.

Latency. Another effect of the varying degree of activity is the different rate of convergence
for different circuit parts, when applying fully implicit integration methods like BDF. Fig. 22
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Figure 21: CMOS ringoscillator – Timestep ratio hglob/hloc for the first inverter, over time
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Figure 22: CMOS ringoscillator – Iteration count ratio ncloc/ncglob for node 1, over time

shows as an example the ratio ncloc/ncglob over time, where ncloc counts the number of Newton
iterations needed per timestep to get convergence of node 1, and ncglob is the global iteration
count per timestep. Similar to the multirate formula we get a rough estimate

speedup =
n

nL · µ+ nA

for an algorithm which exploits the different rate of convergence for different circuit parts. Here,
µ is an average ratio of iteration counts for the inactive and the active circuit parts. For our
ringoscillator, an approximation follows which can be directly measured from Fig. 22:

speedup ≈ 1
mean value(ncloc/ncglob)

≈ 1
0.48

≈ 2.1

A special case would be to omit re-evaluation of circuit parts which do not change from one
timestep to the next (µ = 0 → ’latency’). This gives an estimated speedup = n/nA in this case,
making the exploitation of latency an interesting alternative to multirate integration.

Unidirectional signal flow. An inherent property of MOS transistors is to have — almost
— no static current flow from the gate node into the device. So, when the signal flow in a
circuit is passing the gate of an MOS transistor then it is mainly unidirectional in a local sense,
and only dynamic effects can cause local feedback. This is illustrated in Fig. 23, where static
and capacitive coupling in forward and backward direction is shown for the first inverter of the
CMOS ringoscillator. Static backward coupling is negligible. Note that although capacitances
are small, their coupling effect is comparable to static coupling, which is due to the high
switching speed of 109 . . . 1012 Volt per sec.

Unfortunately, those circuit configurations which propagate signals between source and drain
node of the MOS transistors — like bus structures — do not exhibit unidirectional signal flow.
Furthermore, global feedback coupling principles are extensively applied in circuit design.
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Figure 23: CMOS ringoscillator – Forward (—–) and backward (- - -) coupling coefficients for
the first inverter, over time. Static/capacitive coupling is shown in the left/right diagram.

Parallelism. Finally we see that the circuit schematic consists of a large number of identical
primitives (here: MOS transistors and capacitors), thus offering speedup potential by handling
them in parallel. Since the model equations of transistors are usually very complex and contain
many if-then-else branches, their evaluation is well suited for a medium or coarse grain type of
parallelization.

14 Classification of existing methods

In the literature there is a rich variety of attempts to overcome the computational limitations
of standard circuit simulation. A rough overview is given in Fig. 24. We see that decomposition
techniques [44, 108] are applied at almost all stages of the standard algorithms, in order to

• apply relaxation methods,

• introduce a higher degree of adaptivity, and

• improve performance on parallel computers.

Single boxes (with larger fonts) in Fig. 24 represent single but large systems, while double boxes
(with smaller fonts) indicate sets of decomposed, smaller subsystems.
The three columns on the left (ROW, MLN and standard) concern algorithms which are suffi-
ciently general to cope with any circuit of not too high DAE index. While standard TR-BDF as
well as ROW integration are discussed in Chapter III, the multi-level Newton method (MLN)
will be described in more detail later on. A multi-level direct linear solver (block Gauss solver)
is not included in the figure, since it can be seen as a special case of the multi-level Newton
solver. Furthermore, modifications of the Newton method in the standard solver — as are
described in [59, 60] — are not included due to space limitations.
The right five columns (ITA, WR, WRN, PWL and Exp. Fit) describe approaches which can be
efficiently used only for a restricted class of circuits, e. g., for more or less digital MOS circuits.
These methods are shortly reviewed below; more details can be found in the survey papers
[44, 173] and in the book of White and Sangiovanni-Vincentelli [259]. Further developments are
reviewed in [213, 241], and their specific strengths and limitations are compared.

The formulas given below refer to network equations given in the compact form (10.1a). We
assume that variables and equations are partitioned and reordered, such that each subblock i
is characterized by just one entry in

x = (x1, . . . xi, . . . xm)T , f = (f1, . . . fi, . . . fm)T , A = (A1, . . . Ai, . . . Am)T ,

with m being the number of subblocks. Furthermore we assume that implicit multi-step meth-
ods

ẏ = αy + β

are applied with α as leading integration coefficient and β giving the contributions of previous
timepoints.
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ITA – iterated timing analysis. Historically, timing simulation was the first attempt to
compute approximate waveforms for very large digital MOS circuits [36]. Here the nonlinear
systems were completely decomposed into single equations, which were approximately solved
by performing one single Gauss-Jacobi or Gauss-Seidel step. In iterated timing analysis ITA
the applicability of the method is significantly extended by blockwise decomposition, where the
subblocks are solved with conventional methods [43, 211]. Hence for each relaxation sweep j a
sequence i = 1, . . .m of subsystems

Ai · (αy(xj) + β) + fi(xj , t) = 0

has to be solved for xj
i with

xj =

{
(xj−1

1 , xj−1
2 , . . . , xj−1

i−1 , x
j
i , x

j−1
i+1 , . . . x

j−1
m )T for Gauss-Jacobi relaxation

(xj
1, x

j
2, . . . x

j
i , x

j−1
i+1 , . . . x

j−1
m )T for Gauss-Seidel relaxation.

(14.1)

The l-th iteration of the inner Newton process is described by

xj,l+1
i = xj,l

i +4xj,l
i ,

where 4xj,l
i is computed from

(
αAi · ∂y

∂x

∣∣∣∣
x=xj,l

+
∂f

∂x

∣∣∣∣
x=xj,l

)
4xj,l

i = −Ai · (αy(xj,l) + β)− fi(xj,l, t).

The particular Newton iterate reads, e.g., for Gauss-Seidel relaxation as

xj,l = (xj
1, . . . x

j
i−1, x

j,l
i , xj−1

i+1 , . . . x
j−1
m )T .

A convergence proof of ITA is given in [240] for circuits with strictly diagonal dominant capac-
itance matrix and Lipschitz continuous conductance matrix, provided that the timesteps are
sufficiently small.

For efficiency reasons, often only one single Newton step is performed per relaxation sweep
in ITA. This may cause some loss of accuracy and reliability, which is however acceptable in
many cases. Adaptivity can be improved by exploiting the different activity of different circuit
partitions. This is implemented in some kind of event control: Only those partitions of the
system are scheduled for computation, which are activated by changing signals at their borders.

WR – waveform relaxation. This method is basically an application of Picard iteration to
the network equations. The method can also be characterized as a block Gauss-Seidel-Newton
or block Gauss-Jacobi-Newton method in the function space, since after decomposition of the
circuit into subblocks the subsystems are solved for a whole waveform with standard methods,
while their coupling is handled with relaxation methods. That means that for each relaxation
sweep j a sequence of subsystems

Ai · ẏ(xj) + fi(xj , t) = 0 i = 1, . . .m

has to be solved for xj
i (t) in the time intervall 0 ≤ t ≤ tend with xj being defined by (14.1).

WR was first discussed in [153], and a global convergence proof was given for circuits with a
grounded capacitor at each node, provided that some Lipschitz conditions hold and the time
windows used are sufficiently small.

The method has found much interest in the literature, since it offers a very natural way to
improve adaptivity in form of multirate by integrating each subblock with its own timestep:

ẏ = αj
iy + βj

i

A survey including many practical aspects of WR methods is given in the book edited by Ruehli
[42]. Efficient parallelization of WR is described in [176]. Recent convergence theorems given
in [90] extend the class of feasible circuits and provide insight how to decompose the circuit
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for getting good convergence rates. The latter aspect has turned out to be a key issue for the
performance of WR. Since simple partitioning schemes based on circuit topology sometimes
give no satisfactory results, information about the entries of the Jacobian is often used for this
purpose. This may even require repartitions from time to time, especially in case of strongly
nonlinear circuits [265].

Most of the literature published about WR deals with ordinary differential equations and there-
fore requires to have a grounded capacitor at each node, at least at the decoupling subblock
borders. Extensions to DAEs with non differential — i.e. algebraic — coupling equations are
discussed in [5]; it is shown that certain contractivity conditions additionally must hold in order
to ensure convergence in these cases.

WRN – waveform relaxation Newton. If the Newton process is applied directly in the
function space, before time discretization, then we get the waveform Newton method WN:
Compute

xl+1(t) = xl(t) +4xl(t)

in the time interval 0 ≤ t ≤ tend from solving

A · d
dt

(
∂y

∂x

∣∣∣∣
x=xl(t)

· 4xl

)
+
∂f

∂x

∣∣∣∣
x=xl(t)

· 4xl = −A · ẏ(xl)− f(xl, t).

for 4xl(t). With

Cl(t) = A · ∂y
∂x

∣∣∣∣
x=xl(t)

, Gl(t) =
∂f

∂x

∣∣∣∣
x=xl(t)

this reads as

Cl(t) · d4x
l

dt
+

(
Gl(t) + Ċl(t)

)
4xl = −A · ẏ(xl)− f(xl, t).

Note that 4xl(0) = 0 if xl(0) = x0.

A convergence proof of WN is given in [213] for very general circuit classes.

At a first glance, this method seems not to be very attractive for circuit simulation, since one
cannot expect that initial waveforms are close to the solution. Its main advantage is that it
yields systems of linear DAEs. These can eventually be solved with discretization methods
which are more efficient than standard integration [181]. The main motivation for presenting
this method here is however, that it serves as a base for waveform relaxation Newton WRN.

If the nonlinear DAE subsystems of the WR method are solved with the WN method, then we
get the WRN method:
Solving

Ai · ẏ(xj) + fi(xj , t) = 0 i = 1, . . .m

with WN means to compute
xj,l+1

i (t) = xj,l
i (t) +4xj,l

i (t)

in the interval 0 ≤ t ≤ tend from solving

Cj,l
i (t) · d4x

j,l
i

dt
+

(
Gj,l

i (t) + Ċj,l
i (t)

)
· 4xj,l

i = −Aiẏ(xj,l)− fi(xj,l, t),

for 4xj,l
i (t), where xj,l is given by (14.1) and

Cj,l
i (t) = Ai

∂y

∂x

∣∣∣∣
x=xj,l

, Gj,l
i (t) =

∂fi

∂x

∣∣∣∣
x=xj,l

.

We see again that here the DAEs are linear time variant.

A convergence proof for this method can be derived from the convergence of the WR and
WN methods, from which it is composed [213, 240]. The adaptivity of this method is high
due to its natural support of multirate integration. For efficiency reasons timesteps should
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be coarse in early stages of the relaxation process, and become finer only when it approaches
convergence. The method is reported to be superior over WR for circuits which do not have
a strongly unidirectional signal flow. For efficiency often only one Newton step is performed
per relaxation; the price of slightly reduced accuracy and reliability seems to be acceptable in
many applications. Finally, WRN allows for an efficient parallelization [212].

PWL – piecewise linear analysis. In an alternative approach, the nonlinear device char-
acteristics are approximated by piecewise linear models. The resulting linear DAE systems are
only piecewise valid. When they are solved with conventional time discretization schemes like
BDF, then timestep control has to take care that their region of validity is not left within the
timestep. This may slow down efficiency, if the model resolution is fine. For finding a solution,
improved versions of Katzenelson’s algorithm are used in general [136, 249, 264].

If the validity regions are explicitly included as constraints for the piecewise linearized network
equations, then extra “state variables” have to be introduced, which define for which particular
region a certain linear relation is valid. This piecewise linear mapping leads to systems of the
following form:

A · ẏ + F · x+B · z + f0(t) = 0 piecewise linearization of f(x,t)
y = G · x+ E · z + y0 piecewise linearization of y(x)
z = H · x+D · z + z0 definition of region of validity

z ≥ 0; z ≥ 0
zT · z = 0 complementarity of state variables

The dimension of the state variables z, z ∈ IRnz defines the maximal number of different regions
of validity to be 2nz , since each component of z can be selected to be either = 0 or > 0, and
the corresponding component of z is then defined from the complementarity condition. The
crossing of a border between two regions of validity is characterized by just one component of
z or z to become zero. Fortunately, this crossing can be performed by a rank one update of the
system matrix; and if a hierarchical LU decomposition method is used for solving the linear
system, this does not require much extra effort. A review of these techniques can be found in
[243].

In [155] piecewise linear circuit equations are obtained by mapping nonlinear conductances and
capacitances into time variant linear conductances and capacitances, respectively.

The most appealing aspects of piecewise linear analysis PWL are, that no Newton iterations are
necessary [155], strong global convergence properties, and a uniform kind of modelling, based
on tabulated data [247].

Exp.Fit – exponential fitting. If a PWL circuit model is decomposed into small subblocks
then each subsystem can be solved analytically for a certain time interval, until the solution
crosses the border of the particular linear model section. These techniques are known as ex-
ponential fitting methods [215]. They have shown to offer high simulation speed, especially in
timing simulators, where only one relaxation step is performed [12, 177, 248].
A mathematical analysis of exponential fitting methods in circuit simulation is presented in
[222]. It starts from the piecewise linearized version of (10.1a)

C · ẋ+G · x+ f0(t) = 0,

which is dicretized with an explicit exponential formula of order 1:

x(tl+1) = x(tl) +D−1(1− e−Dh)ẋ(tl).

The solution is of the matrix exponential form

x(t) = e−Dtx0 −G−1f0(t),
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where D is given by
D = C−1G.

Timing simulators of this kind use for D an approximation of C−1G, in order to decouple
equations. In any way, the methods work only for regular C = A · ∂y

∂x

∣∣
x=xtl

, i.e. ODEs. For the

DAE case the Drazin inverse might come into play [261]. Unfortunately numerical evaluation
of the matrix exponential containing the Drazin inverse turns out to be cumbersome [195]; so
exponential fitting was only applicable to a restricted class of circuits up to now.

Concluding remarks:

• Surprisingly, iterative solvers for the linear equations of the standard or ROW approach
are not included in Fig. 24. Although numerous attempts were made in the past to substi-
tute direct Gaussian elimination by iterative solvers in general purpose circuit simulation
programs, no one was really successful yet. Basically this is due to a lack of favourate
numerical properties of the linearized circuit equations, in combination with restrictive
accuracy requirements. Roughly speaking, the use of iterative linear solvers requires very
good preconditioners, which are not much cheaper to get than direct LU factors. Fur-
thermore, the widespread use of quasi Newton methods — taking Jacobians and their
LU-factors from earlier iterations — alleviates the need for iterative solvers, if the circuit
size is not too large, say less than 105 nodes. Only recently, promising approaches for
iterative linear solvers were presented [14, 217]; both of them are particularly tailored to
the specific structure of the network equations.

• Timing simulation has in the past always relyed on multi-step integration or exponential
fitting methods. It might be interesting to explore similar techniques on the basis of an
advanced one-step method — like that presented in the previous section.

• Today software codes employing ITA or WR or exponential fitting algorithms have ob-
tained a high degree of maturity and robustness, which allows them to be successfully
used even in industrial environments. Especially when exploiting hierarchical concepts on
highly repetitive circuits, these codes can simulate several clocks of 107 · · · 108 transistor
circuits on transistor level with reasonable accuracy in some hours.

Note however that although these codes often are one or two orders of magnitude faster
than standard circuit simulation packages, they cannot really substitute the latter. This is
due to their limited focus of applications as well as some lack of accuracy and universality
and — even worse — reliability. So we will focus in the remaining part of this chapter on
methods to speed up the standard transient analysis algorithms without sacrificing their
universality and robustness. One is parallelization, and another one deals with multirate
integration.
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15 Parallelization

At a first glance, parallel circuit simulation offers a high speedup potential due to

• a large number of devices with fairly complex, but identical characteristic equations;

• large systems of linear equations to be solved;

• a small amount of purely serial overhead.

In practice however, the speedup of parallel versus serial simulation often saturates at a low
level — say 2 to 4 — even on very powerful parallel computers. Further improvements can only
be obtained by carefully adapting the granularity of parallelism to the particular computer
architecture, which has an impact on both algorithms and coding.

A rough classification identifies three different granularity levels of parallelism [41]:

• Fine grain parallelism for single instruction multiple data or pipelining architectures like
vector supercomputers, which were the workhorses for large industrial circuit simulation
tasks in the past. Parallelization is basically achieved by vectorization.

• Medium grain parallelism for multiprocessor machines with shared memory. Such systems
are presently often installed in industry for complex design tasks. Parallelization here is
based on thread concepts.

• Coarse grain parallelism on loosely coupled clusters of workstations or PCs. Here it is
essential to take care for a minimum data traffic over the local network. Parallelization
is based on message passing systems like PVM or MPI. This level may also be useful for
shared memory multiprocessors.

Due to reasons of cost effectiveness and flexibility, vector supercomputers are no longer used
for circuit simulation. So vectorization will not be further considered here; literature can be
found in [58, 59, 70].

While the levels of fine and medium grain parallelism directly aim at the classical circuit simu-
lation algorithms, the coarse grain is best realized with a multi-level Newton method for solving
the network equations at a particular timepoint. This method will be described in the following
subsection, before we come back to parallel circuit simulation.

Multi-level Newton method

Originally, the multi-level Newton MLN method was developed to solve large nonlinear systems
by decomposition without loosing the quadratic convergence of Newton’s algorithm [188]. If a
proper decomposition can be found then the method offers a good speedup potential by parallel
execution on clusters of fast processors, but relatively slow interconnect network.

Our further discussion restricts on a two-level Newton method; an extension to more levels is
possible, but not common practice.

We assume that the nonlinear system of equations f(x) = 0 with x ∈ IRn, f : IRn → IRn has
a regular Jacobian ∂f/∂x. Further we assume that f is decomposed into m subsystems fi

(i = 1 . . .m) and one master system fm+1, and x is reordered such that

x> = (x1, x2, . . . , xm, xm+1), f> = (f1, f2, . . . , fm, fm+1),

where xi (i = 1 . . .m) contain the inner variables of fi and xm+1 contains the outer variables.
Then

fi = fi(xi, xm+1) (i = 1 . . .m)
fm+1 = fm+1(x1, x2, . . . , xm, xm+1),
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and the Jacobian of f has bordered block diagonal form:

∂f

∂x
=




∂f1
∂x1

∂f1
∂xm+1

∂f2
∂x2

∂f2
∂xm+1

. . .
...

∂fm

∂xm

∂fm

∂xm+1

∂fm+1

∂x1

∂fm+1

∂x2
. . .

∂fm+1

∂xm

∂fm+1

∂xm+1




Finally it is assumed that all submatrices ∂fi/∂xi (i = 1 . . .m) are regular; otherwise the
decomposition has to be changed. Then the two-level Newton method contains a Newton loop
for the master system, where for each outer iteration k the inner systems are solved for xi with
fixed outer variables xk

m+1, see Fig. 25 6.

Fig. 26 shows an example in two dimensions, i.e.m = 1, with the notation S := 1, M :=
m + 1 = 2. The inner Newton steps starting from the point (x0

S , x
0
M ) yield a solution on the

curve fS = 0 with fixed outer variable x0
M . Then a Newton step is done into xM direction

to get the point (x1
S , x

1
M ); the latter may be further improved into xS direction by adding the

tangent correction, such that the next inner Newton cycle can start from the point (xT1
S , xT1

M ).

The two-dimensional example illustrates how the two-level Newton scheme can be derived: The
subsystem fS = 0 defines an implicit relation xS = xS(xM ), and the outer Newton method
solves fM (xS(xM ), xM ) for xM .

The MLN approach can be characterized as follows:

• Quadratic convergence of the method is shown in [188] under standard assumptions, if
the inner nonlinear systems are solved with higher accuracy than the outer ones:

‖4xi‖ ≤ ‖4xm+1‖2 (i = 1 . . .m)

This may become difficult to achieve, especially for MLN methods with more than two
levels. Methods for reducing the number of inner iterations without affecting quadratic
convergence are described in [116, 267]. A simple practical rule to get sufficiently super-
linear convergence is to solve the inner systems just somewhat more accurately than the
actual norm of the outer Newton process, e. g.:

‖4xi‖ ≤ α‖4xm+1‖ (i = 1 . . .m) with α = 10−1 . . . 10−2

• A single-level Newton method is obtained, when only one inner iteration is performed and
the solution is updated with the tangent correction [266]. This is useful for combining
global and multi-level Newton steps, which may improve efficiency and robustness in
certain cases [116].

• Due to additional inner Newton iterations one should expect that the multi-level method is
more expensive than the standard Newton process. However in practice often nonlinearity
can be shifted into the smaller subsystems, thus reducing the number of outer iterations
and getting even better efficiency than with the single-level algorithm [77].

• Originally, the tangent correction is not included in the MLN algorithm. Mainly it serves
for getting a good start vector for the next inner iteration cycle [126, 260, 266]. In practice
it turns out that the tangent correction should be omitted as long as the outer process is
still far away from convergence.

• In case of sufficiently decreasing norms, quasi Newton steps may be employed for the
outer iteration process by taking the Schur matrices of earlier iterations, and eventually
avoiding expensive LU factorization of the outer system [77].

6In the linear case, the Schur complement Si and residuum Ri of Fig. 25 can be easily explained to be the
Gauss updates for eliminating xi in fm+1, i.e. to transform the system into upper triangular form.
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• Initialization:

– get start vectors x0
1, x

0
2, . . . x

0
m, x

0
m+1

– set iteration indices k = 0, ji = 0 (i = 1 . . .m)

• Outer Newton process:
do until convergence

– do for all subsystems i = 1 . . .m

∗ Inner Newton process:
do until convergence
· solve: ∂fi/∂xi · 4xji

i = −fi

· add Newton correction: xji+1
i = xji

i +4xji

i

· update inner iteration index: ji = ji + 1
enddo

∗ compute Schur complement: Si =
∂fm+1

∂xi
·
(
∂fi

∂xi

)−1

· ∂fi

∂xm+1

∗ compute residuum: Ri =
∂fm+1

∂xi
·
(
∂fi

∂xi

)−1

· fi

enddo

– solve:

(
∂fm+1

∂xm+1
−

m∑

i=1

Si

)
· 4xk

m+1 = −fm+1 +
m∑

i=1

Ri

– add Newton correction: xk+1
m+1 = xk

m+1 +4xk
m+1

– update master iteration index: k = k + 1

– Tangent correction:
do for all subsystems i = 1 . . .m

∗ update inner variables: xji+1
i = xji

i −
(
∂fi

∂xi

)−1

· ∂fi

∂xm+1
· 4xk

m+1

∗ update inner iteration index: ji = ji + 1

enddo

enddo

Figure 25: The two-level Newton method
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Figure 26: Two-level Newton scheme for solving fS(xS , xM ) = 0, fM (xS , xM ) = 0.
Index S: inner Newton, on subsystem; index M: outer Newton, on master system
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Figure 27: Ideal data flow for parallel MLN.

In [116, 117] a variant is described in which the Schur complement actions and the tangent
corrective actions are replaced by introducing a simple global Newton-Raphson step as outerloop
action: in fact their method is Newton-Raphson in which each iteration is solved by m-parallel
Newton-Raphson sub-processes, each of at most J-iterations (with J ≤ 5) for the subsystems.

Parallel multi-level Newton: Loop over hierarchies

If the circuit is decomposed into a set of subblocks which are interconnected via a carrier
network, then the MLN method described in Fig. 25 is a natural choice for parallelization at a
coarse grain level: For each timestep, each subblock is solved in an inner Newton loop by a slave
process on a separate processor unit, and then the master process performs an outer iteration
for getting the carrier network solution. An ideal data flow for parallel MLN is shown in Fig. 27:
The master sends the values of the carrier circuit variables xm+1 and the actual timestep to the
slaves; then each slave performs its tangent correction, solves its subblock equations, computes
Schur complement Si, residuum Ri and timestep control information, and sends all back to the
master. The black boxes in Fig. 27 indicate when the particular process is busy. Of course, the
relative time for data transmission should be much smaller than suggested in Fig. 27.

Decoupling. If the branch currents flowing from the slave subnets into the master carrier
circuit are introduced as additional variables in the vector of unknowns, then the network
equations are well decoupled, and the term ∂fm+1/∂xi arising in the Schur matrix

Si =
∂fm+1

∂xi
·
(
∂fi

∂xi

)−1

· ∂fi

∂xm+1

and the residuum

Ri =
∂fm+1

∂xi
·
(
∂fi

∂xi

)−1

· fi

is simply a constant incidence matrix. Before showing more details, we make a further extension
of the vector of unknowns: The pin voltages of the slave subblocks at the border to the master
circuit are duplicated, and the new voltages are assigned to the slave subnets [77]. This is not
necessary in principle for efficient parallelization; however there are two advantages:

• Circuits can be easily decoupled using controlled sources, as shown in Fig. 28 [262, 263].
Since the latter are standard elements in any circuit simulator, no extra programming
efforts are necessary for decoupling. 7

7Decoupling by imposing pin voltages to the subblocks — as illustrated in Fig. 28 — is called ”node tearing”
in the literature [214], and is mostly applied when simulating integrated circuits. This is surely adequate from
a numerical aspect, as long as the circuit is voltage driven, i.e. its functionality is described in terms of voltage
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Figure 28: Circuit decoupling with controlled sources.
Pin currents IBi and pin voltages xBi are introduced for each subblock i.

• Numerical robustness of the MLN method can be improved by applying particular damp-
ing strategies for the controlled voltages sources, which drive the pins of the slave subcir-
cuit blocks [251].

With these extensions, the vectors xi and functions fi, fm+1 of the standard MLN scheme
(Fig. 25) have to be replaced by

xi ⇒




xSi

xBi

IBi


 , fi(xi, xm+1) ⇒




fSi(xSi, xBi)
fBi(xSi, xBi) + IBi

xBi −Ai · xm+1


 (i = 1, . . . ,m)

fm+1(xi, xm+1) ⇒ fm+1(xm+1)−
m∑

i=1

AT
i · IBi,

where the variables xSi ∈ IRnSi , xBi ∈ IRnBi , IBi ∈ IRnBi and xm+1 ∈ IRnm+1 denote the
inner network variables of subblock i, the pin voltages of subblock i, the pin currents leaving
subblock i and the network variables of the master circuit, respectively. Ai ∈ {0, 1}nBi×nm+1

are incidence matrices, projecting the nodes of the master system to the pin nodes of subblock
i. Hereby are m the number of subblocks (slaves), nSi and nBi the number of inner network
variables and pins of subblock i, and nm+1 the dimension of the master system.

The network equations can be characterized as follows:

— fSi : IRnSi × IRnBi → IRnSi are the inner network equations of subblock i;

— fBi : IRnSi × IRnBi → IRnBi capture the currents flowing from the inner nodes of subblock
i into its pins;

— fm+1 : IRnm+1 → IRnm+1 are the network equations of the master circuit without the slave
contributions;

Consequently, the Jacobians ∂fi/∂xi, ∂fi/∂xm+1, and ∂fm+1/∂xi of the MLN scheme given in
Fig. 25 have to be replaced by

∂fi

∂xi
⇒ Ji :=




∂fSi

∂xSi

∂fSi

∂xBi
0

∂fBi

∂xSi

∂fBi

∂xBi
I

0 I 0



,

∂fi

∂xm+1
⇒




0
0
−Ai


 ,

∂fm+1

∂xi
⇒

(
0 0 −AT

i

)
,

where I is a nBi × nBi unity matrix. With this decoupling, we get the following form for the
Schur complement:

Si = AT
i ·

(
∂fBi

∂xSi
·
(
∂fSi

∂xSi

)−1

· ∂fSi

∂xBi
− ∂fBi

∂xBi

)
·Ai (i = 1, . . .m). (15.1)

waveforms; an example is standard CMOS logic. For current driven circuits like some analog building blocks
or power circuits with switches, ”branch tearing” may be preferable [108]. In this case the subcircuit pins are
driven by controlled current sources, and the pin voltages are fed back into the master circuit.
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The second factor can be shown to be just ∂IBi/∂xBi, if the inner system is solved exactly.
Since the latter is not possible in general, we conclude that the Schur matrix is a more or less
good approximation for the admittance matrix of the particular subblock:

Si ≈ AT
i ·

∂IBi

∂xBi
·Ai = AT

i ·
∂IBi

∂xm+1
.

For its numerical computation we can use equation (15.1), which requires to calculate the
inverse of ∂fSi/∂xSi. This may become expensive since nSi is large in general, and so it is more
economic to exploit that the Schur matrix is just the lower right part of J−1

i , where Ji is the
inner iteration matrix:

J−1
i =




(
∂fSi

∂xSi

)−1

0 −
(
∂fSi

∂xSi

)−1
∂fSi

∂xBi

0 0 I

−∂fBi

∂xSi

(
∂fSi

∂xSi

)−1

I
∂fBi

∂xSi

(
∂fSi

∂xSi

)−1
∂fSi

∂xBi
− ∂fBi

∂xBi




This submatrix can be computed columnwise, using the original system from the inner Newton
process

Ji ·




4xSi

4xBi

4IBi


 = −




fSi

fBi + IBi

xBi −Ai · xm+1


 ,

but taking different right hand sides: Solve

Ji ·




. . .

. . .

sk
i


 = −




0
0
ek
i


 (k = 1, . . . nBi)

for sk
i , where ek

i is the k-th column of an nBi × nBi dimensional unity matrix. This requires
one LU decomposition of Ji and only nBi forward backward substitutions, which can be done
locally on each slave processor. The sk

i then form the columns of the Schur matrix, which has
to be transferred to the master processor for being assembled into the outer iteration matrix.

If the inner Newton loops are truncated after some iterations then there remains a defect of
the subblock equations which enters the outer Newton process in form of the residuum Ri, see
Fig. 25. In the decoupled formulation we get:

Ri = −AT
i ·

(
−∂fBi

∂xSi

(
∂fSi

∂xSi

)−1

I −∂fBi

∂xSi

(
∂fSi

∂xSi

)−1
∂fSi

∂xBi
− ∂fBi

∂xBi

)
·

·




fSi

fBi + IBi

xBi −Ai · xm+1




= AT
i · 4IBi (i = 1, . . .m)

Here is 4IBi an error term for the pin currents which is induced from truncating the inner
Newton loop, and which can be computed from solving

Ji ·




. . .

. . .

4IBi


 = −




fSi

fBi + IBi

xBi −Ai · xm+1


 .

This can be done locally on each slave processor, and after being transferred to the master
processor, the 4IBi must be assembled into the right hand side for the next outer Newton step.
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Finally the tangent correction has to be computed, before the next inner Newton loop is started.
It is easy to see that this can be done locally either, as soon as the actual state of the master
variables xm+1 is available on the slave processors.

Some remarks can be given on how to improve parallel performance:

• For the master circuit the linear solver is the most time critical part. Since the Schur
complements tend to be dense, a sparse block or even dense linear solver is adequate.

• We see from Fig. 27 that the master process is idle when the slaves are working, and vice
versa. So, one slave process can be assigned to the master processor 8; and on a shared
memory machine a parallel linear solver utility should be used, which includes the slave
processors for solving the large interconnect network of the master.

• A performance model for parallel MLN is described in [88]. It can be used for dynamically
adopting numerical parameters of the MLN method — like the maximal number of inner
iterations — to the computer- and network-configuration and its actual load.

Partitioning. In an industrial environment an automatic tool is indispensable, which — by
applying tearing methods — partitions a given circuit netlist into subnets, inserts the con-
trolled sources for proper decoupling, and assigns the subnets for being solved in a particular
process (→ static assignment). The number of partitions is prescribed by the user. Hereby
two different strategies can be applied: One makes the number of partitions just equal to the
number of processors, which are actually available. In this case the partitions have to be equally
balanced with respect to their computational load, and latency effects — i.e. the different rate
of convergence for different partitions — cannot be exploited. The other strategy makes the
number of partitions much larger than the number of processors, and assigns several subnets to
one processor. This alleviates the needs to get partions of equal workload, and opens a chance
to exploit latency effects. Unfortunately, in real life applications it turned out, that a large
number of partitions tends to increase the interconnect network significantly, which has to be
solved in the master process [52]. This is a critical issue for the performance of MLN, and so
in practice a small number of partitions is often more efficient than a large one.

The most essential requirements for the partitioner are [77, 251]:

1. prescribed number of partitions;

2. small number of interconnects between each partition and master;

3. small total number of interconnects;

4. equal computational weight (workload) for each partition;

5. solvability for each partition and carrier network;

6. small runtime;

7. all nonlinear elements put into partitions;

The second requirement is for keeping the dimension nBi of the Schur complements small, which
is desirable for reducing both the expense to calculate the Schur matrix and the amount of data
to be sent to the master. The third requirement is extremely important for the workload of
the master process since the interconnect net mainly determines the dimension of the master
system, which is not sparse in general. The 4th requirement takes care of a well balanced
load of the slave processors, which is essential if each processor gets just one partition. The 5th

requirement concerns that unsolvable circuit structures — like loops of inductors and/or voltage
sources discussed in Section 7 — may be generated due to insertion of controlled sources at the
partition borders, which must be avoided. The runtime requirement is obvious, but hard to
meet since partitioning problems are NP complete [80, 108]. Hence heuristics have to be found
which produce near optimal solutions in a short time. Finally, the last requirement is desirable
to shift nonlinearity into the slaves, thus reducing the number of expensive outer iterations.

8More precisely: The master can start collecting data as soon as the fastest slave has finished its task; so the
slave task with the smallest workload should be assigned to the master processor.
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In Section 5 it was shown that decomposition may have an impact on the DAE index of the
system. This is not a critical issue as long as the index does not get greater than 2 for the
decomposed system, since state of the art integrators usually can cope with index-2 problems.
However, in case of DAE index > 2 most integrators may run into severe numerical problems,
and to avoid that should be a further requirement for the partitioner. Unfortunately, it may
be difficult to find out for a certain circuit configuration if insertion of controlled sources would
raise the index beyond 2, see [67]. So this requirement is not (yet) observed in any partioning
tool.

We will now shortly consider partitioning algorithms as far as they are suited for coarse grain
parallelization of classical circuit simulation. Special partitioners for waveform relaxation or for
placement tools, e.g., are not included here, since their objectives are different.

Since partitioning is closely related with the task to transform a given matrix into bordered
block diagonal form [108], the methods suggested for the latter problem may be useful for
partioning as well. One of them is nested dissection. In its original form it provides partitions
of decreasing size [108]; it has to be checked if variants like that in [85] provide better balanced
partitions [193].

In [214] a local clustering algorithm was proposed, which turned out in practice to be efficient
and to generate partitions of almost equal size. It starts from a vertex of a weighted network
graph, and adds that neighbour vertex to the cluster, which provides the minimal number of
edges to the vertices outside the cluster. If the cluster size is somewhat beyond its “optimal”
value, then a backtracking step takes care that the number of edges crossing the border becomes
minimal within a certain interval. This cluster is selected as a first partition, and the cluster
process is restarted. The computational complexity of this method is O(n2

V ), where nV is the
number of vertices [214].

A more accurate weight model for the computational cost of a partition is suggested in [251].
To this end, each circuit element is given a specific weight – depending on its computational
complexity – and the cost of a partition is just the sum of the weights of its elements, plus a
certain weight for each of its nodes, since the latter gives rise to one more circuit equation.

This model requires to formulate the cluster problem on hypergraphs which are weighted on
both vertices and edges. It is however possible to extend the local clustering algorithm of [214]
properly, such that partitions with very well balanced computational cost can be generated
even for large industrial designs in a reasonable time [251].

Partitions with even smaller numbers of interconnects can be expected from algorithms with a
more global view. These operate usually in two steps: The first step provides an initial partition-
ing under global aspects, in order to meet the requirements 3 and 4. For this purpose bisection
methods [41], analytical placement [77], or simply the hierarchy of the network description are
used. In the second step the cut cost of each partition is reduced (→ requirement 2) by shift-
ing circuit nodes or branches between partitions. This is done using Fiduccia-Mattheyses like
methods [41, 180], minimizing ratio-cut [77], or with some other heuristics [132].

Global partioning methods often suffer from prohibitive runtimes when being applied to very
large problems. As an alternative, a clustering algorithm was recently developed, which keeps
global aspects in mind and aims at a very high computational efficiency [78]. Basically it forms
clusters by merging adjacent vertices (circuit elements) of an edge (circuit node) in a weighted
modified network graph. For clustering, the simple edge weight criterion is replaced by a more
sophisticated coupling measure, which takes care that adjacent vertices with only a few edges
are preferred for clustering, and that the cluster size is well balanced. For each merging step
the whole circuit is inspected; this brings the global aspects into account and finally enables
excellent partitioning results in a reasonable time, as is demonstrated with a large number of
actual designs from industry [79]. The method has a complexity of O(nR · nV · log(nR · nV )),
where nR is an average number of edges per vertex, and nV is the number of vertices.

Dynamic assignment techniques were explored in an experimental paper [41], in order to check
how far latency effects can be exploited, and which maximal degree of parallelism can be
obtained. To this end the number of partitions was made quite large, and by using partial
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No of processors Speedup
4 2.5 . . . 3
8 3.5 . . . 5
12 5 . . . 7
16 > 7

Table 9: Typical speedups with parallel MLN versus serial standard Newton.

LU factorization and dynamic subtask allocation, ≈ 95% of the total job could be executed
in parallel, which is hard to obtain with static assignment. As a conclusion, dynamic resource
allocation was recommended on shared memory machines, while static assignment fits better
to clusters with distributed memory and slow interconnect network. It would be interesting to
check if these results still hold for very large actual designs. Furthermore, it should be noted
that dynamic allocation schemes require considerable programming efforts for the simulator
itself, while partitioning requirements are less ambitious.

Results. The speedup obtainable with this kind of parallelization depends primarily on the
circuit structure and on the quality of partitioning. In the best cases — with partitions providing
equal workload and a small number of pins — almost linear speedups were reported, e. g. a
factor 7.79 on 8 CPU’s [77]. Sometimes even superlinear speedups can be observed, which is
due to the shift of nonlinearity into smaller circuit blocks, or due to reduced memory needs.
In the worst case of unbalanced partitions and large interconnect to the master circuit, the
speedup may not be much larger than 1. Fortunately, the user can see in advance whether it
makes sense to start parallel simulation with a given partitioning.

Typical speedups for real life applications are given in Table 9 [77, 78, 251, 258]. Note that it
often does not make much difference if the problem is run on a shared memory multiprocessor
system or on a cluster of processors with relatively slow interconnect network. The latter aspect
is of commercial interest, since it allows to set up a very cheap cluster of fast PCs for running
large circuit simulations efficiently.

A reasonable number of processors is actually between 4 and 16. Each processor should have a
fairly large load, since otherwise there is a risk to get a poor ratio of interconnect to partition
size, making parallelization inefficient. Therefore scalability is limited: Increasing speedups can
only be expected for an increasing number of processors, if the problem size is increasing as
well [258].

The runtime of an advanced partioning tool is 1 . . . 10 min for circuits containing 15k . . . 150k
transistors. This makes its possible to run several partitioning trials with different options, and
to select the best partition found for performing the analysis.

Even more important than exact speedups is the chance to handle problems of a size which
is almost one order of magnitude larger than with serial simulation. An actual example is a
500k transistor circuit including parasitics, which can be simulated over night on a 12 processor
machine, giving full confidence in its functionality to the designer [52].

Note that the results reported here were obtained with a fully implicit integration method like
BDF or TR-BDF. Semiimplicit numerical integration schemes — like the ROW method — do
not require a parallel MLN method. However they can utilize the multi-level linear solver [250],
which is naturally included in MLN, and so parallelization of the ROW method is achieved at
almost no extra cost if a parallel MLN solver is available for fully implicit integration rules.
Even partitioning is not affected by the particular choice for numerical integration.

Thread based parallelization: Loop over processes (threads)

This kind of parallelization is targeted for multiprocessor systems with a large shared memory.
Hence interchange of data between processes is not of major concern. However cache effects are
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of great importance, and so it is essential to take care of data locality. We restrict on systems
with a limited number of processors, as are commonly used in industrial environments.

From Table 7 we see that parallelization should focus on the load and on the linear solver part
of a circuit simulator. Parallelization of the rest either does not impose any difficulties, or does
not make sense due to ist serial character and small runtimes.

Load. The load part consists of three tasks:

1. Evaluation of the device characteristics and their derivatives: This is an expensive, but perfectly
parallelizable task, since all evaluations are independent from each other. Furthermore there
are always many elements of the same kind (transistors, capacitors, . . . ); hence load balancing
is trivial.

2. Numerical integration in case of BDF like methods; this is easy to parallelize as well.

3. Stamping, i.e. adding the element contributions to matrix and right hand side: This is some
kind of protected operation, since different elements may stamp into the same entry of matrix or
right hand side. Nevertheless, parallelization is necessary, since otherwise parallelization effects
saturate already for 4 . . . 6 processors [208]. Possible solutions are [58, 208]:

• Edge colouring techniques can be applied: Circuit elements of the same kind sharing the
same node are marked with different colours. Then all elements with identical colour can
be stamped in parallel.

• The circuit is partitioned into equally sized subblocks with minimal number of intercon-
nects between them. Elements of different subblocks not being at the border then can be
stamped in parallel; the border elements can be stamped blockwise sequentially, partition
per partition.

• The stamp-into operation is replaced by a fetch-from operation: Each entry of matrix and
right hand side knows from which element it gets a contribution, and fetches it from there.
All entries can act in parallel. If the number of elements connected to one node is very
unbalanced, then some refinements of this method may be useful, e. g., the generation of
subtasks.

In sum, parallelization of the load part can be done very efficiently, and good scalability can be
expected.

Linear solver. The focus is here on parallel LU factorization, since forward backward sub-
stitution is far less expensive and easier to parallelize [74]. Two main directions are pursued:

Tearing: The first approach is to partition the circuit with tearing methods into well balanced
subblocks, and LU factorize the subblocks in parallel [41, 208, 249]. This technique is closely
related to the parallel multi-level Newton method described above. So we will not further
discuss it here.

Clustering Gauss operations: The second approach is to cluster the Gauss operations of sparse
LU factorization into sets of independent tasks, and perform all tasks of a set in parallel. These
concepts are rapidly evolving at present due to their importance in a much more general frame-
work. On overview can be found in Chapter 9 of this Handbook; an actual code is described
in [216]. Note that in this framework the notation of parallel granularity (see, e. g.,[113]) is
different from what we have introduced at the beginning of this section.

We end with some comments on the second approach which directly concern circuit simulation
aspects.

Mixed direct / iterative linear solver: Parallelization of a mixed sparse direct / iterative lin-
ear solver was recently suggested in an interesting alternative, which directly aims at circuit
simulation problems [14], see Chapter 9 for details.

Adaptive partitioning: In the course of a transient analysis the linear solver is called quite often
with an identical zero/non zero pattern of the matrix. So it may be worthwhile to provide
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Aspect Thread based Multi-level Newton

hardware shared memory
multiprocessor

— cluster of workstations or PCs
— shared memory multiprocessor

hardware cost moderate cheap . . .moderate

memory needs large small
(eventually large for partitioner)

communication overhead large small

user handling easy . . .moderate easy . . .moderate . . . difficult
(depending on partitioner)
complex on workstation cluster:

data flow simple — scatter partitions to slave processors
— gather/merge resulting waveforms
— restart and error management

scalability
— small problems good no
— large problems good . . . moderate moderate

— static assignment:
spatial adaptivity low low . . .moderate

(exploitation of latency) — dynamic load balancing: high

algorithmic overhead small — Schur complement
— interconnect solver

algorithmic benefit none shift nonlinearity into subsystem

algorithmic challenge partitioner: split
Gauss operations

partitioner: split circuit

programming effort moderate — static assignment: low . . . moderate
— dynamic load balancing: high

Table 10: Aspects of parallelization.

some learning phase in the algorithms, where partioning is adapted until optimal speedups
are obtained. In [74] such an adaptive partioning method is described, which does not only
provide significant speedup improvements, but also requires less CPU time than a conventional
partitioner.

Ordering: The sparse LU factorization needs preordering of the matrix for minimal generation of
fillins. Circuit simulation codes mostly employ the Markowitz method [160], which is a variant
of the minimum degree algorithms [55]. For parallel LU factorization other methods may be
better suited ([14, 193]), although first experiments with nested dissection methods were not
successful yet [74].

Thread based parallelization and parallel multi-level Newton MLN – a conclusion.
Both schemes are realized in codes, which are used since some time in industrial environments,
there is no direct comparison available at present. As a first step, we try to compare them in
Table 10 with respect to the most important aspects of parallelization, without giving numbers
or assessments. If run on a shared memory system, MLN may be somewhat less efficient than
a dedicated thread based version. The merits of MLN are an excellent performance / cost ratio
and its flexibility, which even makes distributed simulation via Internet possible. One surprising
fact is, that the most critical issue in both approaches is the partitioner, even if its objectives
are somewhat different.
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Hierarchical Simulation

Very often the design of an electronic circuit is characterized by a hierarchical organization of
models and submodels with as final leaves active and passive components. Compact transistor
models (devices) are treated as building blocks in the modular design of the circuit. Submodels
and devices are linked to the hierarchy by their terminal unknowns to the enclosing model. A
device is a leave of the tree. The top model is the circuit-level, which has only one terminal,
the ground node (which voltage is set to 0). Models and devices may have their own internal
unknowns. The behaviour of the solution of of a model at all nodes is completely determined by
the values at the terminals (together with the internal sources) and the non-linear interaction
with its containing submodels and devices.
A hierarchical organized algorithm allows a datastructure of the circuit that is very close to
the original design [187, 234, 254, 255]. A hierarchical formulation corresponds to a particular
block partitioning of the problem that allows for parallelism in a natural way [16]. Even in a
sequential approach particular algorithms can be pursued, starting with the observation that
the overall matrix and the solution can be distributed over all hierarchical levels. Algorithms
are usually defined recursively (see algorithm in Fig. 29) . Depending on actions being done
before or after the recursions and passing data to or lifting data from a submodel, or device,
one can speak of Top-Down and of Bottom-Up recursions.

for all i = 0, . . . , I − 1 (Time step iteration) do
for k = 0, . . . ,K − 1 (Newton iteration) do

Recursion I: Bottom-Up Matrix Assembly [Axn+1 = b ≡ −F(xn) +Axn]
and Decomposition [ A = UL, Lxn+1 = c ≡ U−1b ]
Recursion II: Top-Down Linear Solution [ xn+1 = L−1c ]
Recursion III: Bottom-Up error estimation

end for
Recursion III: Bottom-Up discretization-error estimation

end for

Figure 29: The Main Hierarchical Recursions

In the algorithm above Gaussian elimination is used because it nicely fits a hierarchical algo-
rithm. This is in contrast to several iterative linear solvers in which needed preconditioners
disturb the assumed block structure (however, for a collection of some recent results by some
hierarchical-friendly methods, see [217]).

Bypass mechanisms Each hierarchical branch normally depends continuously on the values
of the terminals at some top-level, in addition to values of internal sources and values of time-
derivatives. This allows for several forms of bypassing where we satisfy ourselves not to update
results obtained previously in some part of a process.

• Newton-level bypassing: In a Newton-Raphson iteration one can decide to bypass a com-
plete hierarchical branch starting from submodel S when its terminals do not change that
much.

xn+1
S,j = xn

S,j if ||xn+1
M,i − xn

M,i|| < ε (15.2)

where S denotes a submodel or device, and M the encompassing model. At this highest
level i ranges from 1 to nM

t (number of terminal unknowns of S at level M). At each
sublevel S, j ranges from 1 to nS

t + nS
i (where nS

t , n
S
i are the number of terminal and

internal unknowns at level S, respectively).
Clearly, by this one can re-use matrix-contributions and right-hand side contributions
from all submodels of which the tree starts at model M . Depending on the type of linear
solver one also can re-use the local LU -decompositions.

• Transient step bypassing: The bypass approach may be extended to a transient step, when
the extrapolated values (or the result of the predictor) indicate results close to the final
one at the previous time level.
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• Cross-tree bypassing: The above bypass approaches are examples of in-tree bypassing:
one can only bypass a remainder of the hierarchical branch by comparing it to a previous
approximation to the solution of the same branch.
A generalization to this might be called cross-tree bypassing. For this one identifies
branches that formally have identical datastructures, for instance because each branch
starts at different occurrences of a same model or device definition.
When one has determined the solution of one branch, its results may be copied to the
other branch (when needed, one might postpone this). Note that this applies to the New-
ton as well as to the Transient step level as well (in Transient analysis one might also
apply cross-tree bypassing during the stepsize determination).
The HSIM simulator, developed by Nassda Corporation [127], exploits this type of by-
passing. It efficiently stores repeated instances of the same subcircuit, providing by this
”unlimited” design capacity (compared to flat-based simulators). It takes advantage of
hierarchical structures operating under the same conditions in the design to dynamically
reuse computed results [252]. In mixed-signal analysis the bulk of the circuit is of a digital
nature and only a minor part is a true analog part. In the digital part, a lot of branch
matchings may occur, and also their boundary (terminal) values may be identical (in fact
because of the digital nature, only very few different stages will be possible). Good speed
up are reported when compared to conventional analog circuit simulators. In addition
to bypassing, a hierarchical RC reduction algorithm compresses parasitic resistances and
capacitances in the hierarchical database. Finally, a coupling decomposition algorithm
efficiently models submodel couplings, such as crosstalk noises, as submodel interface
currents and conductances.

16 Multirate integration

From our CMOS ringoscillator example in Section 13 we have seen that multirate integration
offers significant speedup potential for circuit simulation. Waveform relaxation WR exploits the
multirate behaviour in a very natural way: Subblocks are decoupled, and each of them can be
integrated with its own local timestep. In standard circuit simulation however the subsystems
are not decoupled. So when we solve a certain circuit part at a particular timepoint, we need
information about the contribution of all other circuit parts, which is not available due to their
different integration stepsize.

To get accurate, controllable, and cheap to compute estimates for these contributions has been
a key problem in multirate integration.

Let us for the sake of simplicity assume that the circuit at a timepoint t can be separated into
an active part xA — which has to be integrated with a small timestep h — and a less active
(“latent”) part xL, being integrated with a much larger timestep H >> h. Then there are two
different strategies to compute a solution in the time between between t and t+H [82, 225]:

• Fastest first: Integrate xA with small stepsize h from t to t + H, using extrapolated
values for xL;
then perform one integration step for xL from t to t+H, taking interpolated values from
xA, if necessary.

• Slowest first: Integrate xL with one step of size H, where xA(t+H) is extrapolated;
then integrate xA with small stepsizes h, taking interpolated values from xL.

Both approaches are pursued in different implementations. While the first one seems to be
straightforward — since it relies on the assumption that the slowly varying variables can be
well extrapolated into future — offers the second computational advantages.

Roughly two directions can be recognized in the literature: One tries to extend standard circuit
simulation techniques using multi-step integration methods; the second is oriented towards
one-step methods. Both of them have in common, that for reducing overhead the circuit is
partitioned into subblocks, each of which is handled with its own local timestep.
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• Initialization:

– partition circuit into subblocks

– compute initial values

– setup and initialize event list

• Transient simulation:
for each entry of event list do

– mark subblocks to be active or latent

– Newton loop:
until convergence do

∗ load matrix and right hand side for active subblocks as usual
∗ load matrix and right hand side for substitute circuits

of latent subblocks
∗ solve reduced linear system
∗ add Newton correction to active part of circuit variables
∗ check convergence

– timestep control and verification step:
for all active subblocks do

∗ perform timestep control

enddo
for all latent subblocks do

∗ check latency assumption

enddo
update event list

enddo

Figure 30: Event controlled multi-rate integration with multi-step methods

Multi-step methods. All multi-step methods known so far employ the fastest first principle,
and make use of some kind of event control, see Fig. 30: Based on conventional timestep control,
each subblock computes its next timepoint and puts it into an event list. The global timestep h
is determined from the next entry of this event list, and depending on their own local stepsize hi,
the subblocks are marked to be active — if hi is not much larger than h — or to be latent else.
The active subblocks are evaluated in a conventional way, but the latent subblocks are replaced
by some simple substitutes, which aim at extrapolating their terminal behaviour. With these
substitutes, the reduced system is solved, and after getting convergence the latency assumption
has to be verified a posteriori. The latter step is important to maintain the reliability of the
standard algorithm. It may give rise to roll back the simulation for several timesteps, which is
very critical since it degrades performance significantly.

Alternatives for the substitute circuits are shown in Fig. 31. In a) the value of R is fixed, and V
is determined such that the extrapolated values for both pin current and voltage are consistent.
b) is just the Norton equivalent of the subblock at the pin node, i.e. G = 1/R and C are
its static and dynamic entry in the Jacobian, and I is the right hand side entry from the last
iteration in active mode. Another approach suggests independent sources with extrapolated
values for pin currents or voltages [209].

The speedup potential for this kind of multirate integration is mainly determined by savings of
expensive device evaluations for the latent parts, and by solving a smaller system of equations.
On the other hand there is slowdown due to roll back steps and due to overhead of event control.
Overall speedup factors 2 . . . 20 have been reported [40, 70, 209], but obviously methods and
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codes are not yet mature enough to be used in standard industrial environments.

One-step methods. Multirate one-step schemes so far have aimed at systems where the
whole dynamics can be described by an initial value problem of ordinary differential equations

ẏ = f(t, y), y(t0) = y0, y ∈ IRn. (16.1)

For the sake of simplicity, we concentrate our investigations on autonomous initial value prob-
lems, whose state vector y ∈ IRn is partitioned into only two parts: Latent components
yL ∈ IRnL and a small number of active components yA ∈ IRnA with nA + nL = n and
nA ¿ nL,

ẏA = fA(yA, yL), yA(t0) = yA0, (16.2a)
ẏL = fL(yA, yL), yL(t0) = yL0. (16.2b)

The active components yA are integrated with a small stepsize h, the latent components yL

with a large stepsize H = mh. The realisation of multirate one-step schemes now depends
not only on the underlying numerical scheme, but also on which part is integrated first and,
crucially, how the coupling is done.

One origin of these method are the split Runge-Kutta schemes by Rice [197]. Multirate ex-
trapolation [61] and Runge-Kutta [62] schemes are successfully used in stellar problems by
Engstler and Lubich. In Günther and Rentrop [91, 92] multirate Rosenbrock-Wanner (MROW)
methods are used for VLSI applications of electrical networks. One shortcoming of all these
multirate methods derived so far is the coupling between active and latent components by inter-
polating and extrapolating state variables, which inevitably decompose the underlying one-step
method in a two-step procedure, and thus makes their implementation very difficult into ex-
isting simulation packages. Recently, a new answer on how to realize the coupling, was given
by Kværnø/Rentrop [145] for explicit Runge-Kutta schemes: The internal stages are used to
compute the coupling terms, too. Meanwhile, this so-called generalized multirate approach was
extended to implicit schemes, e.g. ROW- and W-methods, to manage also stiff problems as
arise in network analysis. One should note that the coefficients of all these one-step schemes
can be chosen such that one gets stable methods of any prescribed order of convergence.

We start to give the outline of a somewhat generic generalized multirate one-step method: The
approximate solution yH

L (t0 + H) of yL at time point t0 + H and yh
A

(
t0 + (λ + 1)h

)
of yA at

time points t0 + (λ+ 1)h are given by

yH
L

(
t0 +H

)
= yL,0 +

s∑

i=1

b̃ikL,i,

yh
A

(
t0 + (λ+ 1)h

)
= yh

A

(
t0 + λh

)
+

i∑

i=1

bik
λ
A,i (λ = 0, . . . ,m− 1),

I

R

u
+
−
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Figure 31: Substitute circuits at the pins of latent subblocks
a) Reference [70] (left), b) Reference [40] (right).
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where the increments are computed via the linear systems

kL,i = H fL

(
yL,0 +

i−1∑

j=1

α̃ijkL,j , ȲA,i

)
+H

∂fL

∂yL

∣∣∣∣
y0

i∑

j=1

γ̃ijkL,j +mH
∂fL

∂yA

∣∣∣∣
y0

i∑

i=1

ν̃ijk
0
A,j ,

kλ
A,i = h fA

(
Ȳ λ

L,i , yA,λ +
i−1∑

j=1

αijk
λ
A,j

)
+ h

∂fA

∂yA

∣∣∣∣
y0,λ

i∑

j=1

γijk
λ
A,j +

h

m

∂fA

∂yL

∣∣∣∣
y0,λ

i∑

j=1

νijkL,j .

Still, the coupling terms need to be defined, where we aim at

• active to latent: ȲA,i ≈ yA(t0 + α̃i ·H),

• latent to active: Ȳ λ
L,i ≈ yL(t0 + λ · h+ αi · h),

with αi :=
∑i−1

j=1 αij . Depending on the way how coupling terms are computed, we get different
types of multirate formulae:

MROW [91]: The coupling terms are defined by the usage of rational extrapolations yextra
A and

yextra
L , respectively:

• active to latent: ȲA,i = yextra
A

(
t0 + α̃iH

)
;

• latent to active: Ȳ λ
L,i = yextra

L

(
t0 + (λ+ αi)h

)
.

Furthermore N := (νij)i,j=1,...,s = 0, Ñ := (ν̃ij)i,j=1,...,s = 0; the coefficient matrices A :=
(αij)i,j=1,...,s, Ã := (αij)i,j=1,...,s are strict lower triangular, and G := (γij)i,j=1,...,s, G̃ :=
(γ̃ij)i,j=1,...,s are lower diagonal with non-vanishing diagonals. Last, the Jacobian is evaluated
at: y0,λ =

(
yextra

L (t0 + λh) , yh
A(t0 + λh)

)
, λ = 0, . . . ,m− 1. Thus the computation over each

macro step is decoupled, a kind of weakened slowest first strategy [82].

Generalized Multirate [145]: The coupling terms are computed by their ‘own’ RK-like methods,

ȲA,i = yA,0 +m

i−1∑

j=1

δ̃ijk
0
A,j , and

Ȳ λ
L,i = yL,0 +

1
m

i−1∑

j=1

(δij + Fj(λ))kL,j ,

which gives us a genuine one-step method. Fixing, where to evaluate the Jacobian and some
finer structure of the coefficient matrices, yields different kinds of methods:

• explicit Runge-Kutta [145]: G = N = G̃ = Ñ = 0 - thus no Jacobian is coupled.

• partitioned Runge-Kutta [103]: G = N = Ñ = 0; G̃ with non vanishing diagonal.

• W-method [10]: G, G̃, N and Ñ have constant diagonals, which differ from zero at least
for the first two matrices; in addition y0,λ = y0, i.e. the Jacobian is lagged over a single
macro step in order to compute the micros.

• ROW-method [10]: Conditions like W-method, plus evaluation of Jacobian on the fine
grid.

Generalized multirate schemes yield a compound step of macro and first micro step, and decou-
ple all later micro steps. By the linear implicitness, we may sequentially compute the increments
kL,i and k0

A,i. If at least one diagonal element of N, Ñ vanishes, a block triangular form of the
system matrix for the increments is obtained, such that the increments may be computed in
an interleaved mode: kL,1, k

0
A,1, kL,2, k

0
A,2, . . . . Furthermore, we have ROW-type coefficients,

i.e. we need just one decomposition per timestep.

Combining both coupling approaches leads to a hybrid scheme [11]: Whereas the latent and
first active step are computed simultaneously in a compound step, the remaining active steps
within one macro step can be computed by an arbitrary stiff method, iff dense output formulae
of enough accuracy are used for evaluating the latent part. First steps have now been made
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to generalize this idea of “mixed multirating” to the charge/flux oriented DAE network equa-
tions [228]. Although multirate one-step schemes show promising features to gain speed-up in
circuit simulation, the reliablility and robustness of these schemes does not yet allow to use
them in standard packages.
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Chapter V

Periodic Steady-State Problems

Periodic Steady-State (PSS) Problems have received special attention for simulating analog
circuits. The aim was to efficiently study solutions of problems where a highly oscillating signal
(carrier) was modulated by another signal. Due to non-linear components the response to a
single tone may give rise to higher harmonics, which in general is considered as (harmonic)
distortion. When two tones are considered, intermodulation distortion may arise. Then an
IC-designer is interested in detecting the (group of) components that contribute most to the
distortion. The same analyses also allow study of Electromagnetic Compatibility Immunity.
The above problems were studied by techniques in the time domain, in the frequency domain,
or by mixed time-frequency domain methods. In the last years, Radio Frequency simula-
tion initiated renewed focussing on simulating PSS problems, especially in the time-domain
[56, 142, 232, 233].
This Section describes several algorithms for simulating PSS problems. This will include forced
problems (i.e. periodicity caused by external sources) as well as free oscillator problems. How-
ever, we will point out also that the separate algorithms are a step in a larger process: distortion
analysis, immunity analysis, noise analysis. A complete algorithm shows a cascading sequence of
basic simulation methods (for instance for providing initial approximative solutions). Another
feature is that algorithms are favoured that exploit re-use of existing implementations.

17 RF Simulation

In the past decade there has been an exponential growth in the consumer market for wireless
products. Products like pagers, cordless and cellular phones are now common products for
consumers all over the world. But also computers are no longer connected to other computers
and their peripherals by copper wires only: wireless computer networks are used more and
more. Not yet very common but growing steadily are the wireless home systems, connecting
all kinds of equipment present in peoples homes. Furthermore there are promising markets in
the automotive area in vehicular navigation and inter-vehicular communication.

The change from mainly professional wireless applications (military, private mobile radio, etc.)
to a consumer market has severe implications for the total design process. Where in the past
there was time to build and measure several prototypes, nowadays the demands on time-to-
market, time-to-quality, price, production volume, etc. are so severe that designers have to
resort to simulation. In a marketing window of only a few months there clearly is no time for
several iterations of these systems-on-silicon.

Although the RF part of these systems constitutes only a minor part of the total design area, it
presents a major challenge in the total design cycle. This challenge is caused by the analogue/RF
nature of the design but also by the lack of appropriate tools, models and design flows. Because
the demand for RF simulation tools on this scale is relatively new, the developments of tools
(the underlying principles and the commercial implementation there of) are lagging behind the
designers needs. It is clear that we are only in the start-up phase of RF tooling and RF design
flow development. Nevertheless, recently a lot of progress has been made in the research of
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mathematical principles for RF simulation. A number of these new ideas are already available
in industrial and commercial software.

RF circuit and signal characteristics

An RF circuit forms the link between some baseband information signal and an antenna. A
transmitter modulates the baseband signal on a high frequency carrier (sinusoid) and the task of
the receiver is to retrieve the baseband signal from the modulated carrier. Thus, as compared to
baseband circuits, RF circuits are special in the sense that they process modulated carriers. In
the frequency domain a modulated carrier is a narrow band signal where the absolute bandwidth
is related to the frequency of the carrier signal and the relative bandwidth is related to the
modulating baseband signal. Practically, the ratio of the two frequencies is in the order of 100
or 1000.

Another major difference is that in RF systems, noise is a major issue. Noise consists of the
(usually) small unwanted signals in a system. One can think of several forms of device noise
(thermal noise, shot noise, flicker noise) but also of interferers like neighbouring channels, mirror
frequencies, etc. All noise sources are of major importance because they directly translate to
bit-error-rates of the transmitted data. Therefore it is imperative that RF designers can predict
the overall noise quickly and accurately.

When dealing with narrow band signals in a noisy environment two mechanisms are of major
importance. Firstly, if a narrow band signal is passed through a non-linearity, the spectrum
will be repeated about integer multiples of the carrier frequency resulting in a very wide but
sparse spectrum. Secondly, the signal will interact with other signals in the circuit leading to
wanted and unwanted frequency shifts. Although both mechanisms are always present and even
interact, the first mechanism is less important for small signal levels (e.g. noise).

RF building blocks

RF systems are typically built from a limited number of different building blocks: oscillators,
mixers, amplifiers/filters, dividers and power amplifiers. When building or discussing special
RF circuit simulation functionality it is important to first determine the characteristics of each
building block and the information which should be obtained during simulation:

• Oscillators are autonomous circuits which serve as a frequency reference signal often of
very high accuracy. Therefore the frequency itself must be determined accurately but
it is also important to be able to determine the frequency behaviour over time, i.e. the
phase noise. Physically the phase noise is caused by the device noise of the oscillator’s
components.

• Mixers perform a frequency shift on the input spectrum. Because of unwanted non-
linearities the input signal will not only be shifted but also distorted. Furthermore, the
mixer will add noise to the signal, again generated by the devices in the circuit.

• Amplifiers and filters also suffer from unwanted non-linearities and add noise to the signal.

• Dividers are used to modify a frequency reference signal for example coming from an
oscillator. They are strongly non-linear and they add phase noise to the signal.

• Power amplifiers are much like small signal amplifiers. However, depending on the mod-
ulation type and efficiency requirements they may be strongly non-linear. Assessing the
non-linearity, especially in the frequency domain is important.

Requirements for Simulating RF circuits

As mentioned earlier, noise is of major importance in RF circuit design. Depending on the
required accuracy and application area the noise can be seen as a small, independent signal in
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the circuit. Much more often, however, the small noise signals interact with the large signals in
the circuit resulting in frequency shifts of the noise spectra (noise folding). In a few cases the
noise can not even be considered as a small signal but interacts with the other (noise) signals
in a non-linear manner. The RF designer must be able to simulate all these different views on
noise but the second one is considered the most important.

Non-linearity (harmonic distortion and intermodulation distortion) is mainly a measure for the
behaviour of a circuit under unwanted strong disturbances which enter the system.

RF designers must be able to extract this information by simulating a design with reasonable
turn-around times. This has to do with the actual computing time required for a simulation
job but also addresses the robustness of the software. Equally important, however, is that the
results are accurate and hence reliable.

18 The basic two-step approach

From the above it is clear that conventional SPICE-like simulators are not sufficient: transient
simulation of RF circuits suffers from excessive CPU times because they have to deal with the
absolute bandwidth of the signals and will therefore only be used when no alternatives are
available (e.g. full non-linear noise simulation including time domain transient noise sources).
AC analysis can easily deal with the high bandwidths but does neither take into account non-
linearities nor frequency shifts.

The newly developed RF simulation methods all somehow exploit the ‘sparsity’ of the signal
spectra. The basic method is that of determining the periodic steady-state (PSS) solution of
a circuit. Conceptually this can be seen as a generalisation of the well-known DC operating
point: for baseband circuits the spectral content around 0 Hz (the DC point) is important.
For RF circuits the (narrow) spectral content around specific frequencies (of the PSS solution)
is of interest. This PSS solution can be obtained in the frequency domain (f.i. by applying
the harmonic balance method) or in the time domain (by methods, like shooting, based on
transient simulation methods). With baseband simulation, after determining the DC point,
additional simulations like AC, noise, etc. can be done to obtain more information about the
circuit. Similarly, based on the PSS solution several other simulations can be done like periodic
AC, periodic noise, etc. In view of the RF circuit and signal characteristics, the PSS solution
determines the non-linear behaviour of the circuit while the periodic AC, etc. deals with the
frequency shift.

The main difference between the time domain and frequency domain methods to obtain the PSS
solution is that the former can easily deal with strongly non-linear circuits and discontinuities
and have good convergence properties while the latter deal naturally with components char-
acterised in the frequency domain. Over the years combinations of both basic methods were
developed resulting in mixed time-frequency domain approaches each with their own advantages
and drawbacks.

A two-step approach appears to be powerful as well as practical for simulating RF mixing noise:

• Determine the noiseless Periodic Steady-State (PSS) solution as large-signal solution.
This can be done in the time-domain, the frequency-domain or by using mixed time-
frequency methods. The time-domain representation is a time-varying solution.
Of course, a noiseless PSS-analysis (with or without determining the oscillation fre-
quency), has value on its own for RF simulations.

• Apply a linearisation around the PSS-solution and study noise as a small signal pertur-
bation. The noise sources may have frequencies that are different from the PSS-solution.

For simulating RF phase noise, or timing jitter (i.e. shifts in zero crossings of the solution)
in the case of free oscillators, to apply as second step a linearisation around the PSS-solution
and study noise as small signal perturbation is of limited use [49]. In fact, the results are only
usefull for small t, because the resulting perturbations may grow large with time. But it allows
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that the noise sources may have frequencies that are different from the PSS-solution.
The non-linear perturbation analysis, proposed in [49], is an alternative to the second step. Also
in this approach, the first step is necessary. The non-linear perturbation analysis results in a
correct phase deviation. For the orbital deviation, again a linearisation around the PSS-solution
(but including phase deviation) can be used. This implies that periodicity of the coefficients
of the linear time varying differential equation can not be assumed. It also implies that, in
general, the phase deviation is a time varying function.

After defining the PSS problem mathematically, we describe in the next two sections some
methods for these phases in some more detail.

19 The PSS Problem

For the charge/flux oriented network equations (10.1) in compact form, the Periodic Steady-
State (PSS) problem for one overall period T > 0 is defined as:

d
dt
q(t, x) + j(t, x) = 0 ∈ IRN , (19.1)

x(0)− x(T ) = 0 (19.2)

with q(t) := A·g(x) denoting charges assembled at the respective nodes and fluxes, and j(t, x) :=
f(x, t) including the static part and sources as well. This implies that for all t ∈ IR, x(t) =
x(t+ T ). A function x : IR → IRn is called a Periodic Steady-State Solution if there is a T > 0
such that x satisfies (19.1)-(19.2). Note that according to this definition, a stationary solution
(called the DC, direct current, solution), i.e. a solution of the form x(t) ≡ x0, is also a PSS
solution.

To define precisely the PSS problem, we have to introduce the concept of limit cycles and to
define stability for PSS solutions and limit cycles.

The limit cycle C(x) of a PSS solution x is the range of the function x(t), i.e.

C(x) = {x(t) | t ∈ IR}. (19.3)

A set C is called a limit cycle of (19.1) if there is a PSS solution x of (19.1) so that
C = C(x).

A PSS solution x is called stable (some authors prefer the term strongly stable) if
there is a δ > 0 such that for every solution x∗ to (19.1) which has the property
that

∃τ1>0||x∗(0)− x(τ1)|| < δ, (19.4)

there exists a τ2 > 0 such that

lim
t→∞

||x∗(t)− x(t+ τ2)|| = 0 (19.5)

A limit cycle is called stable when all of its periodic steady-states are stable.

Periodic steady-states solutions that are not stable are not interesting for the IC designer, since
they do not correspond to any physical behaviour of the modelled circuit. In fact, we want to
actively avoid non-stable periodic steady-states solutions for this reason.
An exception to the above might be the DC solution, which is the most well-known unstable
solution. Also numerically the DC solution is of interest because it provides a way to find
(approximate, initial) solutions for finding stable solutions, by perturbing the DC solution.
For forced, or driven, (i.e. non-autonomous) problems all explicity time-dependent coefficients
and sources are periodic with a common (known) period T . When dealing with autonomous
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circuits (also called free-running oscillator circuits) the functions q and j do not explicitly
depend on time and j does not involve time-dependent external sources.

d
dt
q(x) + j(x) = 0 ∈ IRN . (19.6)

x(0)− x(T ) = 0. (19.7)

Despite this, a time-varying periodic steady-state solution may exist for some particular value of
T . When this solution is non-trivial, i.e. different from the DC-solution, we will call this solution
the oscillation solution and ωosc and fosc, given by ωosc = 2πfosc = 2π

T , the angular and ’normal’
oscillation frequency, respectively. In the autonomous case, solution and oscillation frequency
have to be determined both. Mathematically, the problem is a nonlinear eigenproblem.
In the autonomous case, it is clear that when x(t) is a solution of (19.6)-(19.7), another solution
can simply be constructed by making a time-shift: x̃(t) = x(t−t0). To make the problem unique,
in practice one gauges the solution by requiring that

e>i x(t0) = c (19.8)

(for some coordinate i and constant c) [clearly c should be determined in the range of x, but
not equal to a DC-value], or by imposing a condition on the time-derivative9

e>i x
′(t0) = c. (19.9)

Now the system (19.6), (19.7) and (19.8), resp., (19.9) defines a nonlinear problem with a
”unique” solution for the unknowns x, T : i.e. small time shifts are excluded.

Rescaling the time by writing t = sT , with s ∈ [0, 1], we have

d
dt
q(x(t)) + j(x(t)) =

1
T

d
ds
q(x(sT )) + j(x(sT )

=
1
T

d
ds
q(x̂(s)) + j(x̂(s)) (19.10)

where x̂(s) = x(sT ). Note that x̂(1) = x(T ). Hence, the problem (19.6)-(19.7) can also be
studied on the unit interval for the function x̂(s) after scaling the s-derivative by a factor 1/T .
In fact, T can be nicely added to the system as well

1
T

d
ds
q(x̂(s)) + j(x̂(s)) = 0 (19.11)

d
ds
T = 0 (19.12)

x̂(0) = x̂(1) (19.13)
e>i x̂(0) = c (19.14)

(Clearly, T automatically fulfills the periodicity condition).

20 Perturbation analysis

Before describing algorithms for solving a PSS-problem, in this section we will consider the
problem for a subsequent perturbation analysis. The PSS-solution of (19.1) will be denoted by
xPSS . It will also be called the noiseless time-varying large signal solution. Now we perturb
the left-hand side of (19.1) by adding some small (noise) function n

d
dt
q(x) + j(t, x) + n(t) = 0 ∈ IRN , (20.1)

which results in a solution

x(t) = xPSS(t+ α(t)) + xn(t), (20.2)

in which the phase shift function α(t) still has to be prescribed and xn(t) is small.
9In the following, the prime ’ will denote differentiation w.r.t. time.
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Linear perturbation analysis for forced systems

Linearising (20.1) around xPSS (i.e. considering the case α(t) = 0), results in a Linear Time
Varying (LTV) differential equation for xn

d
dt

(C(t)xn) +G(t)xn + n(t) = 0 ∈ IRN , (20.3)

C(t) =
∂q(x)
∂x xPSS

, G(t) =
∂j(t, x)
∂x xPSS

(20.4)

In practical applications, a basic noise term has the form

n(t) = B(t)b(t), (20.5)
B(t) = B(xPSS(t)) (20.6)

that consists of a normalized perturbation function b(t), which is modulated by the periodical
function B(t) = B(xPSS(t)). Here b(t) may be defined most conveniently in the frequency
domain, while the B(xPSS(t)) is defined by expressions in the time domain.
The validity of this approach has been discussed by [49]. For forced systems the perturbed
solution x(t) can be approximated by (20.2) with α being identically zero and xn the solution
of (20.3). However, when dealing with free oscillators a non-trivial choice for the phase-shift
function α(t) has to be made too.

We note that the coefficients in (20.3) are periodic in t with period T . Thus, they can be
expanded in exponentials eiωkt, in which ωk = 2πk/T . It is instructive to consider the case for
a simple sine-wave source, i.e. when

n(t) = Ueiνt, (20.7)

in which U does not depend on time, and ν = 2πfn, where fn may be interpreted as a noise
frequency, that may be different from the ωk. Introducing yn(t) ≡ e−iνtxn(t) results in a linear
DAE of which source term and (complex) coefficients (that depend on the parameter ν) are
periodical with period T

d
dt

(C(t)yn) + [G(t) + iνC(t)]yn + U = 0 ∈ IRN . (20.8)

When xPSS(t) ≡ xDC , and [G(t) + iνC(t)] is regular (and time-independent), the solution yn

is time-independent and simply equals the well-known AC-solution. For the general case, we
find that yn and xn have expansions of the form (see also [179, 231])

yn(t) =
∞∑

k=−∞
y
(ν)
n,ke

iωkt, (20.9)

xn(t) =
∞∑

k=−∞
y
(ν)
n,ke

i(ν+ωk)t. (20.10)

Because of the periodic coefficients in (20.3) and (20.8), the determination of the y(ν)
n,k is called

Periodic AC (PAC) analysis. The expansion of xn(t) implies that

xn(t+ T ) = β(ν)xn(t), or (20.11)
xn(0) = β(−ν)xn(T ), where (20.12)
β(ν) = eiνT (20.13)

It is clear that, for a single input frequency ν, the solution xn(t) contains frequencies of the
form (ν +ωk), i.e. frequency folding occurs. If we allow for several input frequencies νi, we can
also say that a certain output frequency might originate from a large number of possible input
frequencies. Hence, noise components at a certain frequency might end up in a different fre-
quency band. This is why, for example, 1/f noise which has its main energy at low frequencies,
still plays an important role in RF circuits.
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It is important to note that we described a linear perturbation analysis and we will not find
contributions containing for example (ν1 + ν2 + ωk), (ν1 + 2ν2 + ωk) etc. This assumption is in
general not a severe limitation when simulating noise in RF circuits.
In [179, 231] one considers the integration of (20.3) in which case the factor β easily allows adap-
tive re-usage of linear algebra used for solving the PSS-problem (see also [14, 15]). However,
the integration of (20.8) also gives rise to elegant algorithms.

Floquet theory

When dealing with perturbed oscillatory systems

d
dt
q(x) + j(x) + n(t) = 0 ∈ IRN (20.14)

it is no longer possible to assume that small perturbations n(t) lead to small deviations in
xPSS(t) [An instructive example is provided by considering y′(t) + cos(t)y(t)− 1 = 0, of which
the inhomogeneous solution is not periodic at all; however, note that y(t + 2π) still satisfies
the differential equation]. The main reason is that the period of the large signal solution is
influenced by n(t). This can lead to large (momentary) frequency deviations such that the
difference between the noiseless and noisy solution can no longer be considered to be small.
This section gives the necessary background of Floquet Theory when applied to oscillatory
problems and which provides a way to a proper perturbation approach [46, 49, 147, 148]. We
start by noting that x′PSS(t) satisfies the homogeneous part of (20.3)

d
dt

(C(t)x) +G(t)x = 0 (20.15)

We assume the case of index 1 DAEs. At the end of the section the higher index case is
considered.

Independent solutions. Let,

S(t) = {z ∈ IRN | (G(t) +
d
dt
C(t))z ∈ Im(C(t))}, (20.16)

N(t) = Ker(C(t)). (20.17)

Then one has

S(t) ∩N(t) = 0, (20.18)
S(t)⊕N(t) = IRN , (20.19)

in the index-1 case. We assume that S(t) is m-dimensional. There are N independent so-
lutions of the homogeneous problem: u1(t)eµ1t, . . . , um(t)eµmt, um+1(t), . . . , uN (t). The first
u1(t), . . . , um(t) are a basis of S(t); the last, um+1(t), . . . , uN (t), are a basis of N(t). The
µ1, . . . , µm are so-called Floquet exponents; the eµ1T , . . . , eµmT are Floquet multipliers. For
a stable autonomous index 1 problem we can assume that µ1 = 0 and that Re(µi) < 0 for
i = 2, . . . ,m. In this case we can choose u1(t) = x′PSS(t).

Adjoint problem. The homogeneous adjoint (or dual) system corresponding to (20.3) is

C>(t)
d
dt
y −G>(t)y = 0 (20.20)

Similar to the not-adjoint case we introduce

S>(t) = {z ∈ IRn | G>(t)z ∈ Im(C>(t))}, (20.21)
N>(t) = Ker(C>(t)), (20.22)
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which have the properties

S>(t) ∩N>(t) = 0, (20.23)
S>(t)⊕N>(t) = IRN . (20.24)

Also S> is m-dimensional. The adjoint problem has N independent solutions: v1(t)e−µ1t, . . .,
vm(t)e−µmt, vm+1(t), . . . , vN (t), where v1(t), . . . , vm(t) are a basis of S>(t) and the last, vm+1(t),
. . . , vN (t), are a basis of N>(t).

Bi-orthogonality. It is easy to verify that if x and y are solutions of (20.15) and (20.20), re-
spectively, the inner-products y>(t)C(t)x(t) are constant, thus y>(t)C(t)x(t) = y>(0)C(0)x(0),
for all t ≥ 0. More specifically, the bases u1(t), . . . , uN (t) and v1(t), . . . , vN (t) can be chosen
such that, the N ×N matrix U(t) with as columns the ui(t) and the N ×N matrix v(t) with
as rows the vi(t) satisfy a bi-orthogonality relation w.r.t. C(t) and a nearly one w.r.t. G(t)

v(t)C(t)U(t) =

(
Im 0
0 0

)
, (20.25)

v(t)G(t)U(t) =

(
J1

m 0
J2

m J3
m

)
. (20.26)

Here Im is a m×m identity matrix. J1
m is a m×m block matrix. J2

m and J3
m are just suitable

block matrices.

State-transition matrix, monodromy matrix. Assuming a consistent initial condition
x(0) = x0 ∈ S(0), the solution xH(t) of (20.15) can be written as

xH(t) =
m∑

i=1

ui(t) exp(µit)v>i C(0)x0, (20.27)

= Φ(t, 0)x0, (20.28)
Φ(t, s) = Θ(t, s)C(s), (20.29)
Θ(t, s) = U(t)D(t− s)v(s), (20.30)

D(t− s) = diag(exp(µ1(t− s)), . . . , exp(µm(t− s)), 0, . . . , 0) (20.31)

If x0 is not a consistent initial value, one can write x0 = x
(S)
0 + x

(N)
0 , where x(S)

0 ∈ S(0) and
x

(N)
0 ∈ N(0). Clearly C(0)x0 = C(0)x(S)

0 , and xH(t) depends on x
(S)
0 , rather then on x0. For

calculating consistent initial values we refer to [19].
An inhomogeneous solution of (20.3) can be written as

xP (t) = xH(t) +
m∑

i=1

ui(t)
∫ t

0

exp(µi(t− s))v>i (s)B(s)b(s)ds+ Γ(t)B(t)b(t), (20.32)

= xH(t) +
∫ t

0

Θ(t, s)B(s)b(s)ds+ Γ(t)B(t)b(t) (20.33)

Here Γ(t) is a matrix with Ker(Γ(t)) = Span(C(t)u1(t), . . . , C(t)um(t)).

The monodromy matrix is the matrix Φ(t, 0) after one period, i.e. Φ(T, 0) (this matrix one
naturally studies when one considers shooting methods or applies Floquet theory for analyzing
stability of a limit cycle). Because of the periodicity of the ui, we see that the ui(0), for i =
1, . . . ,m are eigenvectors of the monodromy matrix with corresponding eigenvalues exp(µiT ),
and that the remaining ui(0), for i = m+ 1, . . . , N , are eigenvectors for the (N − (m− 1))-fold
eigenvalue 0.

The adjoint problem (20.20) has the state-transition matrix

Ψ(t, s) = v>(t)D(s− t)U>(s)C>(s), (20.34)

=
m∑

i=1

exp(−µi(t− s))vi(t)u>i (s)C>(s) (20.35)
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Similar to the not-adjoint case, the vi(0) are eigenvectors of the associated monodromy matrix
Ψ(T, 0).

The higher index case. The index-2 case is discussed in [149] for quasilinear problems,
which is sufficient here. It turns out that not only the algebraic but also the hidden constraints
(see the discussion in Section 10) have to be observed when setting up the state transition and
monodromy matrix. Especially they have to start from consistent initial values. The latter can
either be computed with the methods sketched in Section 10, or columnwise as eigenvectors
of a generalized eigenvalue problem. Of course the Floquet multipliers are only those of the
independent part of the monodromy matrix. The stability criterion is again that all Floquet
multipliers have magnitude < 1, except that one which has magnitude 1 in case of autonomous
oscillation.

Remark. Sometimes the monodromy matrix in the higher index case is defined to comprise
only the linear independent parts of Φ(T, 0) i. e. the basis vectors of S(t) [220]. This delivers
the same information as before, but may save some memory space and computational effort for
its calculation.

Phase noise by non-linear perturbation analysis

Phase shift function α(t). We will take u1(t) = x′PSS(t). Let α(t) be a (sufficiently smooth)
phase- or time-shift function and let s = t + α(t) be the shifted time. If xPSS(t) is the PSS-
solution of (19.6) then the phase-shifted function y(t) ≡ xPSS(s) = xPSS(t+ α(t)) satisfies

d
dt
q(y) + j(y) =

d
ds
q(xPSS(s)).

ds
dt

+ j(xPSS(s))

=
d

dxPSS
q(xPSS(s))

dxPSS

ds
α′(t)

= C(t+ α(t))u1(t+ α(t))α′(t). (20.36)

Hence, the phase shifted function y satisfies a perturbed DAE in which the right-hand side has
a particular form. Here u1 is the tangent to the orbit.
We now consider perturbations of the form B(x(t))b(t) (cf. also (20.3)) to the original DAE
(19.6)

d
dt
q(x) + j(x) +B(x(t))b(t) = 0 (20.37)

and express B(x(t+α(t)))b(t) into its components using the basis {C(t+α(t))u1(t+α(t)), . . . ,
C(t+ α(t))um(t+ α(t)), G(t+ α(t))um+1(t+ α(t)), . . . , G(t+ α(t))uN (t+ α(t))}

B(x(t+ α(t)))b(t) =
m∑

i=1

ci(x, α(t), t)C(t+ α(t))ui(t+ α(t))

+
N∑

i=m+1

ci(x, α(t), t)G(t+ α(t))ui(t+ α(t)), (20.38)

ci(x, α(t), t) = ṽi(t+ α(t))b(t) (20.39)
ṽi(t) = v>i (t)B(x(t)) (20.40)

Here the scalar functions ṽi(t) are periodical in t with period T .
The first component of B(x(t + α(t)))b(t) will be used to determine α(t). We define α(t) to
satisfy the non-linear, scalar, differential equation

α′(t) = −v>1 (t+ α(t))B(xPSS(t+ α(t)))b(t), α(0) = 0 (20.41)
= −ṽ1(t+ α(t))b(t), α(0) = 0 (20.42)

(See also already [130, 131] where a first start was made to treat the phase noise problem in
the time-domain.) In [46, 49] it is argued that, in first order, (20.37) has a solution of the
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form y(t) + z(t), with α determined by (20.42), and where the orbital deviation z(t) satisfies
||z||∞ < Const.||b||∞ (and even z(t) → 0 (t→∞)). However, the phase shift function α(t) may
increase with time (Clearly, if N = 1, B ≡ 1, b(t) ≡ ε, and v>1 (t) ≡ κ, then α(t) = κεt).

Determination of v1. Note that for finding α, we clearly have to know v1. In [48] this crucial
vector is called Perturbation Projection Vector, or PPV. It represents a transfer between the
perturbation of the DAE and the resulting phase shift.
In [49] v1 is determined by performing first an eigenvalue/eigenvector analysis of the monodromy
matrix of the adjoint problem to obtain v1(0), and followed by time integration (backward in
time). For distincting the proper initial value v1(0) from other eigenvectors that have eigenvalues
close to 0, one can exploit the bi-orthogonality relation (20.25), because v1(0) must have a non-
trivial C-inner-product with u1(0).
Another, direct, approach is found in [48]. It nicely fits a Finite Difference Method approach
and again exploits the bi-orthogonality relation (20.25) in an elegant way.

Phase noise analysis. For deterministic perturbations one has to integrate (20.42). Because
of this action in the time domain, all Fourier components of n(t) are treated in a combined way.
However, for stochastic noise, such a detail is not necessary. In [46, 49] expressions for the
power due to the noise are derived that depend on the asymptotic behaviour (i.e. for large
t) of the variance var[α(t)]. The authors derive power spectrum expressions that depend on
the Fourier components of the PSS-solution xPSS, on the DC-component of v1(t), and on the
power spectrum of b. The power of the j-th harmonic of xPSS is preserved in the power of the
‘asymptotic’ j-th harmonic of y (i.e. the shifted xPSS). Consequently, by summing over j, we
see that also the total power is preserved.

Orbital deviation. In fact, the orbital deviation function z can be analysed by a proper
linear perturbation analysis (but with linearised equations which now have non periodic co-
efficients!). Because n also affects the phase shifted function, around which one linearises for
studying the orbital devations, there is no simple summation formula known for cumulative
noise contributions.

Other approaches. Finally, we briefly mention some alternative approaches for determining
phase noise. In [53] a technique based on careful sampling is described to find phase noise effects
due to specific noise sources. In [?] phase noise is considered from a parameter dependency
point of view and an averaging technique is described that works well on (but is also restricted
to) finite time intervals and is of interest in behavioural modeling. In [112] a less accurate, but
faster phase noise model is described that neglects the occurrence of α at the right-hand side
in (20.42).

21 Algorithms for the PSS problem

In this section we describe some algorithms for solving PSS problems (i.e. for solving the
noiseless, time varying, large signal). A general overview of numerical methods for highly
oscillating problems can be found in [185].
As time integrator we restrict ourselves to a θ-method (0 ≤ θ ≤ 1): for the explicit ODE
system ẏ(t) = f(x(t), t), one step to compute the approximate yn+1 at time point tn + h from
the previous approximate yn at tn reads

yn+1 − yn

h
= θf(yn+1, tn + h) + (1− θ)f(yn, tn) .

This class of methods includes the explicit Euler-forward method (θ = 0), the Trapezoidal Rule
(θ = 0.5) and the implicit Euler-backward scheme (θ = 1). For other methods, f.i. BDF-like
ones, see [256, 257].
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Figure 32: The trajectory of a solution, cut with a hyperplane.

Direct time integration methods

Ordinary time integration usually starts from the DC solution. For forced (non-autonomous)
problems the time integration usually is very slow, because the step-size will be determined
by the highest oscillating component of the solution. For these problems, the Finite Difference
Method (FDM), the Shooting Method (SM), the Harmonic Balance (HB), or the Envelope
approach provide much more efficient alternatives. However, in analysing autonomous, free
oscillating, problems, time integration also shows a nice property in securing to find stable
limit cycles. For this reason, in this subsection, we will concentrate on finding a free oscil-
lating solution, by exploiting time integration. With extrapolation techniques one can speed
up convergence. In the past this approach has been applied by [224] (even already for circuit
problems) and [184]. In [226] extrapolation techniques were generalized to sequences of vec-
tors and has resulted in methods like Minimal Polynomial Extrapolation (MPE) and Reduced
Rank Extrapolation (RRE). It is worth noting that all these methods can be implemented very
elegantly within existing circuit simulators.

The basic Poincaré Method. The basic method for solving (19.6)-(19.7) is called the
Poincaré-map method. First we note that the length of the period can be estimated by looking
for periodic recurring features in the computed circuit behaviour. A possible recurring fea-
ture is the point at which a specific condition is satisfied. This is equivalent to carrying out a
Poincaré-map iteration, see [109], section I.16. The idea is to cut the transient solution x(t)
by a hyperplane. The hyperplane is defined by an affine equation of the form x>(t)n = α, for
some vector n and scalar α. This equation is called the switch equation. The situation is visu-
alised in Figure 32. The basic Poincaré-map method can now be described as follows. Let an
approximate solution x0 and a required accuracy tolerance ε > 0 be given. The approximated
solution x̃ and period T̃ is computed by:

i := 0, t0 := 0, x0 := some initial guess for x
repeat

Starting with t = ti, x(ti) = xi, in-
tegrate (19.6) until (x(t), n) = α and
d(x(t), n)/dt > 0.
xi+1 := x(t), ti+1 := t
δ := ||xi+1 − xi||
i := i+ 1

until δ ≤ ε

T̃ := ti − ti−1, x̃ := xi

The MPE accelerated Poincaré-map method. Let x(t) be the solution of (19.6) with
x(0) = x0, and T0 is the smallest t > 0 such that (x(t), n) = α and d(x(t), n)/dt > 0. Thus T0

depends on x0 as well.
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Now we can define a function F : IRn → IRn by

F (x0) := x(T0). (21.1)

The successive approximations of the Poincaré-map method satisfy the recursion relation

xn+1 = F (xn). (21.2)

This recursion is only in terms of the circuit state x; the period T does not appear explicitly in
this iteration. Suppose that the sequence (21.2) converges linearly to some fixed point x̃ of F .
A vector-extrapolation method to accelerate the basic method operates on the first k vectors of
a sequence {xn}, and produces an approximation y to the limit of {xn}. This approximation
is then used to restart (21.2) with y0 = y and the basic method generates a new sequence
y0, y1, y2, . . .. Again, the acceleration method can be applied to this new sequence, resulting in
a new approximation z of the limit. The sequence x0, y, z, . . . converges much faster to the limit
of {xn} than the sequence {xn} itself. Typically, if {xn} converges linearly, then {x0, y, z, . . .}
converges super-linearly.
A well-known acceleration method is minimal polynomial extrapolation (MPE). Rather than
describing MPE here in detail, the reader is referred to [226]. For results with this approach
we refer to [122–124].

Finite Difference Method

The Finite Difference Method (FDM) solves the problem on a fixed time grid. Given is a number
M , a series of M stepsizes {∆ti}, implying a set of intermediate time-levels {ti} (0 ≤ i ≤M−1),
where each ti is the end point of the interval with length {∆ti}. We assume that all ti are
contained in an interval of length T , that starts at A = kT (for some k ≥ 0). Thus

A t
M-1

= A+Tt t
0 1

∆ ∆
0 1

Figure 33: Discretization of interval of length T , starting at A.

t0 = A+ ∆t0, A = kT, (21.3)
tM−1 = A+ T, (21.4)

ti = A+
i∑

k=0

∆tk, i = 1, . . . ,M − 1 (21.5)

∆k = ∆tk = tk − tk−1, k = 1, . . . ,M − 1 (21.6)
∆0 = ∆t0 = t0 − (tM−1 − T ) (21.7)

Note that in general M will be available just at the start of the PSS-analysis. The periodicity
is reflected in the definition of ∆0.
We will write ∆i = ∆s

iT , for ∆s
i ∈ [0, 1]. Then

∑M−1
k=0 ∆s

k = 1. Clearly, with ti = siT , solutions
x̂(s) of the rescaled problem satisfy x̂(si) = x(ti). Thus we will drop the ˆ and simply include
the factor 1/T in the expressions when needed.
In the Finite Difference Method, M and the {∆s

i} will remain fixed during a complete (PSS-
)Newton iteration.
For the next subsections we define

C(x) := ∂q(x)/∂x, G(t, x) := ∂j(t, x)/∂x (21.8)

and we will write

Ci = C(x(ti)), C
(m)
i = C(x(m)(ti)), (21.9)

Gi = G(ti, x(ti)), G
(m)
i = G(ti, x(m)(ti)). (21.10)
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The Basic FD-Method

The resulting discrete system of equations can be written as

FD(x, T ) = 0, (21.11)
p>x− c = 0, (21.12)

where FD : IRMN ×R→ IRMN is given by

FD
0(x, T ) =

q(x(t0))− q(x(tM−1))
∆0

+ [θj(x(t0)) + (1− θ)j(x(tM−1))],

=
1
T

q(x(t0))− q(x(tM−1))
∆s

0

+ [θj(x(t0)) + (1− θ)j(x(tM−1))], (21.13)

FD
i(x, T ) =

q(x(ti))− q(x(ti−1))
∆i

+ [θj(x(ti)) + (1− θ)j(x(ti−1))],

=
1
T

q(x(ti))− q(x(ti−1))
∆s

i

+ [θj(x(ti)) + (1− θ)j(x(ti−1))],

1 ≤ i ≤M − 1. (21.14)

In (21.12), p ∈ IRMN is some given vector, usually a unit vector, in which case (21.12) only
affects one time level. This last equation will only be imposed when dealing with free oscillators.
The above also offers the option to consider the frequency, f = 1/T , as natural unknown, rather
than T . In that case

FD(x, f) = 0, (21.15)
p>x− c = 0, (21.16)

where FD : IRMN → IRMN is given by

FD
0(x, f) = f

q(x(t0))− q(x(tM−1))
∆s

0

+ [θj(x(t0)) + (1− θ)j(x(tM−1))], (21.17)

FD
i(x, f) = f

q(x(ti))− q(x(ti−1))
∆s

i

+ [θj(x(ti)) + (1− θ)j(x(ti−1))],

1 ≤ i ≤M − 1. (21.18)

In the RF-case, one has f À 1 and thus 1
T 2 À 1. Hence, the f -variant behaves better scaled

and we will restrict ourselve to that formulation.
Applying Newton-Raphson yields

(
Y (k) F (k)

p> 0

)(
xk+1 − xk

fk+1 − fk

)
= −

(
FD(xk, fk)
p>xk − c

)
(21.19)

in which

F (k) =
∂

∂f
FD(xk, fk), (21.20)

Y (k) =
∂

∂x
FD(xk, fk) = L+B. (21.21)

Here L and B are given by

L =

2
66666664

C
(k)
0

∆t0
+ θG(k)

0

−C
(k)
0

∆t1
+ (1− θ)G

(k)
0

C
(k)
1

∆t1
+ θG

(k)
1

. . .
. . .

− C
(k)
M−2

∆tM−1
+ (1− θ)G

(k)
M−2

C
(k)
M−1

∆tM−1
+ θG

(k)
M−1,

3
77777775

,

B =

2
666664

0 . . . 0 −C
(k)
M−1
∆t0

+ (1− θ)G
(k)
M−1

0 0

. . .
. . .

0 0

3
777775

. (21.22)
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For the fixed period problem, i.e. the non-autonomous case, we just drop the row for p> and
the column for F and come to

Y (k)(xk+1 − xk) = −FD(xk). (21.23)

Some simple remarks apply:

• C ≡ 0 and θ = 1: Then B = 0 and L is a block-diagonal matrix. The subsystems for each
time level are decoupled and the solutions are the solutions obtained at an ordinary time
integration, where the time dependent sources are evaluated at the proper time level. It
is clear that when C ≡ 0, no oscillation can occur.

• In ordinary transient analysis the DAE character implies the necessary requirement θ 6= 0.
However, for the PSS-problem with the Finite Difference Method, θ = 0 is a valid choice
(because it is quite similar to θ = 1, but viewed from the opposite time direction). For
example: choose M = 2,∆i = T/2, Ci = ∆iC,Gi = G, then the matrix L+B looks like

L+B =

[
C −C +G

−C +G C

]
(21.24)

For commuting C,G (for instance C = Diag(1, 0), G = Diag(1, 1)), the matrix L+B has
(non-zero) eigenvalues λC + iλ−C+G.

• However, the DAE nature forbids to choose θ = 0.5, because it makes the linear sys-
tem singular! For seeing this, assume Ci ≡ C, Gi ≡ G (constant), and an equidistant
discretization with stepsize ∆ (and with M odd). Define C ′ = C

∆ , G′ = 0.5G. Then

L =

2
66664

C′ + G′

−C′ + G′ C′ + G′

. . .
. . .

−C′ + G′ C′ + G′,

3
77775

, (21.25)

B =

2
66664

0 . . . 0 −C′ + G′

0 0

. . .
. . .

0 0

3
77775

, (21.26)

When C ′ is singular there is a non-trivial vector v such that C ′v = 0. Then also the large
system is singular because (L+B)w = 0 for

w = (v, −v, v − v, . . . , v, −v)> (21.27)

The trapezoidal rule looks to the mean of two subsequent function values and for this
reason one can always add a zig-zag solution to such a ”mean” value.
Hence in practice one will have to take θ > 0.5 and the choice is a trade-off between a
better time-integration, but a nearly singular matrix, and more damping (and less order
of time-integration), but with a better conditioned matrix.

We can rewrite the system (21.23) as

(L+ βB)x = y, (21.28)

in which β = 1. When studying linearizations around a PSS-solution responses to Fourier
source terms give rise to linear systems in which β is complex, but satisfies |β| = 1 (see Section
20).
Block-Gaussian elimination allows to re-use direct solver modules from a circuit simulator. This
way of decomposing the matrix meets a requirement that only memory for a limited number
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of full block matrices is used. In this way it is a sparse method. However, it may not be the
most optimal LU-decomposition from the point of view of numerical stability, because not the
most optimal pivots may be used. For several ideas we refer to [6] (Chapter 7), and [14, 15] (for
parallelizable algorithms).
The (block) lower-triangular matrix L is non-singular and can be used as preconditioner for the
matrix (L+B) when using a Krylov space method [206]. For this case one needs to be able to
determine L−1Bp for some vector p. For an iterative Krylov space method, the Krylov space
can be extended by re-using the LU-decompositions of Ci

∆t +Gi at each time-level.
For flat matrix circuit simulators, an efficient parallelizable GMRES-algorithm is described in
[15].

FD for oscillator problem

For the oscillator problem, the sub-matrix Y in (21.21) is the same that one also encounters
when applying the Finite-Difference Method to a forced Periodic Steady-State problem (with
a fixed period T ). From a software design point of view one would like to re-use software as
much as possible. Indeed, when solving (21.19) a Block-Gaussian elimination procedure that
uses Y −1 is attractive. Note that the complete Newton-matrix is non-singular. In the limit,
however, the sub-matrix Y in (21.21) becomes singular and one really needs (21.12) to gauge
the complete problem.
In [19, 87, 256] this problem was solved (in the frequency-domain) by introducing an artificial
element in the circuit, a voltage source, of which the applied voltage Eosc had to be determined
in such a way that the current through this source became 0. In that case the artificial element
can be eliminated from the circuit and the solution on the remaining circuit gives the oscillator
solution.
It is clear that such a voltage source can only be applied sucessfully at specific locations of the
circuit. It is a requirement that for each value E 6= Eosc a unique circuit solution results. When
E −→ Eosc, this unique circuit solution has to converge to the oscillator solution. In practice
the user has to indicate where the oscillation will be perceived. This is not a drawback, because
an IC-designer knows very well to choose a node where the oscillation occurs (as second node
one can always use the ground node).
The approaches in [19, 256] were considered more closely in [23, 150]. Here also recommendations
for increasing robustness were derived. In [121], a similar approach was followed in the time-
domain. We will consider these approaches more closely in the next subsections.

Artificial voltage source in the time-domain The additional voltage source will be put
between the nodes a and b. We assume the circuit unknowns to be ordered in such a way
that at each time level x(t) = (. . . , xa(t), xb(t), i(E)(t))>, where xa(t), xb(t) are the voltage
values at time level t at the nodes a and b respectively, and i(E)(t) is the current through the
artificial element E(a, b) [Thus i(E) is the (N + 1)-th unknown]. Let E(a, b)(ti) = εi. The
εi have to be determined in such a way that when the time profile of the voltage difference
between the nodes a and b is identical to the time-varying voltage difference of the oscillator
solution, the time profile of the current through the element is identically 0. In that case
x(t) = (. . . , xa(t), xb(t), 0)>, in which the part with the first N coordinates is identical to the
oscillator solution at time level t. Because the artificial source E is added to the circuit, i(E)
does not occur as a controlling electrical variable in the user defined expressions. This implies
that on each time level ti

Gi =




...
0 1

−1
. . . 1 −1 0



, Ci =




...
0 0

0
. . . 0 0 0




(21.29)

and

∂j(x(ti), εi)
∂εi

= −1,
∂q(x(ti), εi)

∂εi
= 0. (21.30)
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In addition, the added equation on time level ti is

i(E) = 0 (21.31)

When the complete set of unknowns is written as (x>(t0), . . . , x>(tM−1), f, E>)>, in which
E = (ε0, . . . , εM−1)>, Newton-Raphson can be formulated as




Y (k) F (k) Ẽ
p> 0 0
E 0 0







xk+1 − xk

fk+1 − fk

Ek+1 − Ek


 = −




FD(xk, fk, Ek)
p>xk − c

Exk


 (21.32)

Here

F (k) = ((
∂

∂f
FD

0 (xk, fk))>, . . . , (
∂

∂f
FD

M−1(x
k, fk))>)> (21.33)

Ẽ =




−θeN+1 0 . . . −(1− θ)eN+1

−(1− θ)eN+1 −θeN+1 0
...

. . . . . .
...

0 −(1− θ)eN+1 −θeN+1




(21.34)

E = Diag(e>N+1, . . . , e
>
N+1) (21.35)

Here x and p have length M(N + 1). Furthermore Y is a non-singular M(N + 1)×M(N + 1)
matrix that has a structure like in (21.21)-(21.22), but now based on the matrices Gi and Ci

in (21.29), respectively. F is a vector of length M(N + 1), Ẽ is a rectangular matrix of size
M(N + 1) ×M , and E is a rectangular matrix of size M ×M(N + 1) [M columns and M
row-blocks of length N + 1 each]. Note that, for θ = 1, one has Ẽ = −E>.
Similar to (21.19), the linear system (21.32) can be solved using Block-Gaussian elimination
that exploits the LU-decomposition of Y .

It seems natural to add the artificial voltage source to the same node as used for the gauge
condition (19.8). This might indicate a possible source for conflicting requirements, because
the gauge equation in its most simple form is a voltage or current condition (at a specific time
level).

• Let us first consider the situation of a voltage condition. The basic point is that the
(artificial) voltages εi are part of the Newton process and they will be tuned automatically
such that in the limit they will not violate the gauge equation. More detailedly, the p>

in (21.32) might appear as a row m in Y . Then the corresponding entry Fm is zero.
However, in Ẽ we will find a (minus) one in the same row. This causes both rows to be
independent. The corresponding εm will converge in one iteration, because of the linear
dependency.

• Considering the situation of a current condition for the gauge equation, we remark that
now p> can not occur as row in Y . There is also no conflict with Ẽ , because p> addresses
real circuit unknowns known by the user, while E addresses the additional (artificial)
circuit unknown i(E). Hence p> is also independent from the rows of E .

In practice, one will put a resistor R in series with the artificial source E: the complete element
Ê(a, b) will act like a (linear) resistor R(a, a′) (of value R) and E(a′, b). Because of the linearity
of R(a, a′), we can easily eliminate the unknown xa′(t) from the system. The effective Kirchhoff
Voltage Law at time level ti yields

xa − xb −Ri(E)− εi = 0 (21.36)

The effect is that Gi in (21.29) simply changes into

Gi =




...
0 1

−1
. . . 1 −1 −R




(21.37)
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The series resistance assures that no artificial voltage-shorts-inductor-loops are generated in
the circuit. Note that the equation for i(E) always has a non-zero diagonal element as pivot.
In practice, R = 1.

Two-step approach. The two-step approach [19, 87, 256] assumes that for given parameters
f,Ek, the driven non-linear problem FD(x(f,Ek)) = 0 is solved. For updating f,Ek, Newton-
Raphson can be used (”outer loop”) in which one can exploit the Jacobian-matrix of the inner
Newton-Raphson process for solving FD(x(f,Ek)) = 0

(
p> ∂x

∂f p> ∂x
∂E

E ∂x
∂f E ∂x

∂E

)(
fk+1 − fk

Ek+1 − Ek

)
= −

(
p>x− c

Ex

)
(21.38)

in which ∂x/∂f and ∂x/∂E are obtained by applying an ordinary sensitivity analysis to the
inner, driven, problem. Here the Jacobian-matrix Y = ∂FD/∂x of the inner Newton-Raphson
process is re-used in solving the systems

∂FD

∂f
+ Y

∂x

∂f
= 0, (21.39)

∂FD

∂E
+ Y

∂x

∂E
= 0. (21.40)

Normal projection of the Newton correction

In [27] the idea is recalled to project the Newton correction for the circuit solution to become
perpendicular to the orbit of the solution in some point t0. Because the time derivative is the
tangential derivative, this means that

∆x(t0) ⊥ x′(t0) (21.41)

More generally, we may require that the overall inner product of ∆x and x′(t) is zero. This is
similar to requiring

∑

i

(∆x(ti), x′(ti)) = 0. (21.42)

In [27] (21.41) is used to gauge the free oscillator problem rather than (21.12). Clearly, the
algorithm has to find a t0 where x′(t0) 6= 0 (which will have to be approximated in practice).
Near the limit solution this gauge excludes (small) time shifts. However, the algorithm does
not exclude the DC-solution.

Initialization

For the driven problem, an initial timeprofile for the Finite Difference Method can be found
by applying ordinary transient integration over several periods and collecting results at specific
timepoints.

For the oscillator problem, the (Accelerated) Poincaré Method can be used to determine ap-
proximations for f and for a circuit solution as well - from these also initial values for the
voltages as well as for the gauging value can be used. Note that FD uses a gauge value that
may be different from the one used as switch value in Poincaré.
Alternatives can be found from pole-zero analysis and determining the eigenvector solutions of
the dominant complex poles.
In the following, we will describe additional options when using Harmonic Balance.

Shooting method

For the Shooting Method (SM), we define FS : IRN → IRN by

FS(x0) = x(T ),
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with x : [0, T ] → IRN the solution of

d
dt
q(x) + j(t, x) = 0, for 0 ≤ t ≤ T, (21.43)

x(0) = x0. (21.44)

For (single) shooting (‘shooting-Newton’ in [233]) one has to solve

FS(x0)− x0 = 0.

Using the Newton method (PSS Newton Process), one needs to evaluate FS(x0) and the (mon-
odromy) matrix Φ(x0), defined by

Φ(x0) :=
dFS(x0)

dx0
∈ IRN×N .

The calculation of FS(x0) is in fact the result of a time integration. For instance, applying
Euler-backward yields discrete equations at each time level, that are solved by an internal
Newton method (Time-Level Newton Process):

(
1

∆t
C

(m−1)
i+1 +G

(m−1)
i+1

)
(x(m)

i+1 − x
(m−1)
i+1 ) =

−{q(ti+1, x
(m−1)
i+1 )− q(ti, xi)

∆t
− j(ti+1, x

(m−1)
i+1 )}. (21.45)

Hence, this requires the solution of a system of linear equations with coefficient matrix 1
∆tC+G.

In fact this is a familiar process that is available in each conventional analog circuit simulator.
The Newton matrix Φ(x0) for the PSS Newton Process can be determined using a recursive
procedure for the (matrix) quantities ∂xi/∂x0

(
1

∆t
C(ti+1, xi+1) +G(ti+1, xi+1)

)
∂xi+1

∂x0
=

1
∆t

C(ti, xi)
∂xi

∂x0
. (21.46)

Φ(x0) =
∂x(T )
∂x0

=
∂xM

∂x0
. (21.47)

The matrices C and G are rather sparse in contrast to the matrix Φ(x0) that is rather full. In
[142, 231–233] the linear equations for the PSS-Newton are solved by means of a matrix-free
method, by exploiting a Krylov-space method (GMRES or CGS). Here one needs to determine
the result of Φ(x0)p, for some vector p, in order to extend the Krylov space. This can elegantly
be done by a similar recursive procedure as above in (21.46), but now for a sequence of vectors.
The charm of this recursion is that it re-uses the existing LU-decompositions of the Time-Level
Newton Process; in addition the matrices C are needed. For GMRES a final least squares
problem has to be solved. In fact, this has to be done in some flat-matrix structure. Assuming
a k-dimensional Krylov space, the least squares problem is of order kN , where N is the number
of unknowns in a flat circuit.

We collect some differences between the Shooting Method and the Finite Difference Method.

• In contrast to the Finite Difference Method, for the Shooting Method the time discretiza-
tion can be chosen adaptively in a natural way, using the ordinary transient integration.

• The Shooting Method only needs an initial value to start from. But it may diverge rather
fast in case of poles that cause instabilities.

• The FDM always assures periodicity for each iterand; in the limit also the discretized
equations are satisfied. To contrast: each iterand of the Shooting Method satisfies the
discretized equations, while reaching periodicity is the target of the method.

• In practice, the FDM is more stable than the Shooting Method, but - per iterand - it is
much slower. The stability properties of shooting methods can be increased by applying
multiple shooting that can be applied to the free oscillator problem as well [256].
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The higher index case. From the remark concerning the higher index case at the end of
Section 20, it follows that the shooting matrix should start from consistent initial values. For-
tunately it can be shown [172], that it is sufficient to start the calculation of FS(x0) with 1(2)
Backward Euler steps in case of DAE index 1(2). Alternatively, if the independent eigenvec-
tors of the shooting matrix are known in the beginning, it is sufficient to calculate only the
rectangular part comprising them [8, 172, 220].

Improving global convergence. Since the region of attraction for the PSS Newton Process
is usually fairly small (see at the remarks concerning the differences between SM and FDM
above), it is desirable to apply continuation methods which ensure global convergence under not
too restrictive assumptions. A key issue here is that along the continuation path no bifurcations
occur, which would make it difficult to track the “proper” solution branch. In [8] it is argued
that this is best possible with an artificial homotopy

ρ(x, λ, a) := λ · (FS(x)− x) + (1− λ) · (x− a),

where λ, 0 ≤ λ ≤ 1, is the homotopy parameter, and a is a start vector for the homotopy.
Using a theorem of Sard (see e. g. [37]) it is shown in [8] that under some reasonable assumptions
for circuit models up to DAE index 2 the continuation path is smooth for almost any initial
value a. So it can be traced with some kind of predictor-corrector techniques, starting from
λ = 0 until the desired fixpoint FS(x) = x is obtained for λ = 1. The start vector a is obtained
here from running a standard transient analysis over one cycle. For autonomous systems a
gauging phase condition is added, while the frequency is an additional unknown.

Waveform Newton

In [137] the Waveform Newton Method has been described (for solving forced problems). Here
one linearizes each time around a previously calculated periodic waveform x(i). This results in
a linear DAE for the correction, in which the coefficients are periodic and depend on the last
calculated waveform. From this we derive, that the next iterand x(i+1) satisfies

d
dt

[C(x(i))x(i+1)] +G(t, x(i))x(i+1) =

−{ d
dt

[q(x(i))− C(x(i))x(i)] + [j(t, x(i))−G(t, x(i))x(i)]} (21.48)

Similar to the Shooting Method case one can solve this linear DAE easily for an initial value
of x(i+1) such that we have periodic solution. Note that we can start with a non-periodic
waveform. All next iterands will automatically be periodic.
One can show, that, on a fixed grid, the Finite Difference Method and the above approach can
generate the same solutions. However, the above approach, using the Shooting Method, allows
to use adaptive integration. In this way both nice features of FDM (always periodic iterands)
and of SM (adaptivity) are combined. As in FDM, each iterand is periodic, but only the limit
satisfies the differential equations.
A nice feature is that the algorithm very elegantly extends to a Periodic AC analysis (see Section
20).

Harmonic Balance

Harmonic Balance (HB) is a non-linear frequency-domain method for determining a periodic
steady-state solution. The Fourier coefficients of the PSS are the solution of a non-linear
algebraic system of equations, that is usually solved by applying Newton’s method. In the next
we describe the method in some detail.
We assume d independent fundamental (angular) frequencies λj . Let (.,.) denote the complex
inner-product and Z be the set of integers. We write x (and similarly j and q) in an expansion
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of complex exponentials

x =
∑

ωk∈Λ

Xke
ιωkt, with ωk ∈ Λ ≡ {ω| ω = (k, λ)}, (21.49)

k ≡ (k1, k2, . . . , kd)> ∈ K ⊂ Zd, λ ≡ (λ1, λ2, . . . , λd)>, λi > 0, (21.50)

where the (complex) Xk satisfies X−k = Xk.
Here λ and k are uniform for each component of x. The set K, containing integer tuples, is
symmetrical about 0, while also 0 ∈ K. K is assumed to be finite. With K we denote the
number of non-negative (angular) frequencies (i.e. ωk with ωk ≥ 0). We also assume that all
ωk are different and ω0 = 0.
The choice of the fundamental frequencies λj will depend on the kinds of (modified) sine-wave
sources used. We note that Λ should contain a sufficiently rich set of interdistortion frequencies
ωk like 2λ1, λ1 ± λ2, that are required in a distortion analysis. In practice, too restrictive
a choice of the finite set of K may give rise to aliasing problems when compared with the
analytical problem. For some sine-wave sources, a 1-D set of frequencies will be sufficient.
Let X = (X1, X2, . . . , XN )> be the Fourier transform of x. More specifically, using a real
notation, Xj = (Xj,R

0 , [Xj,R
1 , Xj,I

1 ], . . . , [Xj,R
K−1, X

j,I
K−1])

>, in whichXj
k ≡ Xj,R

k +ιXj,I
k represents

the k-th Fourier coefficient of xj .
With F , we denote the mapping of the Fourier transform, thus X = Fx and x = F−1X. The
F-transform of j (and similarly for q) is defined by J(X) = Fj(F−1X) = Fj(x). By this
Galerkin approach, the frequency-domain equivalent of (19.1) simply becomes

J(X) + ΩQ(X) = 0, in which (21.51)
Ω = Block Diag(ΩK , . . . ,ΩK), (21.52)

ΩK = Block Diag(0,
0 −ω1

ω1 0
, . . . ,

0 −ωK−1

ωK−1 0
). (21.53)

In the terminology of circuit analysis, the method of solving (19.1) by solving (21.51) is called
the Harmonic Balance method. It is clear that the system given by (21.51) is a non-linear
algebraic set of equations in the frequency-domain.
In general, the system is solved by performing a Newton-Raphson iteration. A DC-analysis
provides an initialization for the basic harmonic. For the other harmonics one can solve a set
of AC-problems in parallel, each being linearised around the same DC-solution. Because each
AC-problem is linear, this is very efficient. Note that this approach may be interpreted as
the first iteration of a non-linear block Gauss-Jacobi approach, using partitions between the
components of different harmonics.
Clearly, in HB, a Newton-Raphson matrix is much larger than in ordinary DC or Transient
Analysis. However, it still has a similar sparse structure as in the last two cases. Hence it is
not surprisingly that quite some attention is made in literature concerning iterative methods
applied to the linear system of equations arising in Harmonic Balance [18, 19, 166, 199, 200, 202].

Sources. The choice of the fundamental frequencies λj depends on the kinds of sources used.
For standard amplitude, frequency or phase modulated sources, a 2-D block of frequencies will
usually be necessary, as explained below.
We assume voltage and current sources. The DC-sources are time-independent, the AC-sources
may involve a simple sum of (co)sine-waves (SW-source). For Harmonic Balance the sources
may also show amplitude modulation (SWAM), frequency modulation (SWFM) or phase mod-
ulation (SWPM) behaviour. Denoting a source by s(t) and the carrier frequency and the signal
frequency by ωc and ωs, respectively, the following cases can be distinguished (here θ simply
denotes a phase shift).

Modulation x(t) = A(t) cos(ψ(t) + θ) Kmin = block[n,m]
A(t) ψ(t)

AM a+ b sin(ωst) ωct [1,1]
FM a

∫ t

0
ωc + c cos(ωst) dt [1,m], m ≥ c/ωs

PM a ωct+ d sin(ωst) [1,m], m ≥ d
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In the last column we have added the minimum rectangular subset of K in order to avoid
obvious errors due to aliasing (assuming λ1 = ωc, λ2 = ωs). In general ωc À ωs. The following
result, of which the proof is elementary, will be used in the sequel: SWAM, SWFM and SWPM
sources have a Fourier expansion with respect to the exponentials eι(nωc+mωs)t. For SWAM and
SWPM the coefficients are independent of ωc and ωs. For SWFM the coefficients depend on
c/ωs.

A more careful evaluation of the coefficients reveals that the only non-zero harmonics are for
(k1, k2) = (1,m). For SWAM m is also restricted to m ≤ 1, showing that a finite expansion
is obtained. For SWFM and SWPM the dominant part of the infinite expansions depends on
c/ωs and d, respectively.

Discrete Fourier Transform. Let Fη,µ denote the Fourier transform using fundamental
frequencies η, µ. We observe that in general, by the non-linearity of i and q, I(V ) and Q(V )
depend on the specific λ1, λ2 mentioned previously. However, in practice, I(V ) andQ(V ) appear
to be rather independent on λ1, λ2. This surprising phenomenon allows an efficient evaluation
of I(v) and q(v). To be more specific, let λ3, λ4 be two other fundamental frequencies that
satisfy the same assumptions as imposed on λ1, λ2, i.e. the corresponding set of frequencies
generated by K and λ3, λ4 should not contain multiple values. In practice the non-linearity in
i (and similarly in q) with respect to v is only ‘algebraic’ in the following sense

I(V )k = (Fλ1,λ2i([Fλ1,λ2 ]
−1V ))k, (21.54)

= (Fλ3,λ4i([Fλ3,λ4 ]
−1V ))k, (21.55)

for all λ1, λ2, λ3, λ4, which means that the Fourier coefficients are frequency independent. Non-
linear resistors are algebraic in the above sense when using the variables i and v; non-linear
capacitors when dealing with q and v (note that i = dq/dt); and non-linear inductors when
dealing with φ and i (note that v = dφ/dt). The expansions in eι(nωc+mωs)t of the SWAM,
SWFM, SWPM sources show that they also exhibit this algebraic behaviour.
The algebraic non-linearity offers a way to exploit λ3, λ4 which are different from the funda-
mental analysis frequencies λ1, λ2, in determining I(V ) and its partial derivatives in an efficient
and stable way using the Discrete Fourier Transform. For details we refer to [18, 139, 199, 234].
In [219] several bijective mappings between (enveloping sets of) higher dimensional spectral sets
K and a 1-dimensional equivalent (with no gaps) are considered that allow for proper usage of
the DFT.

Numerical aspects of Harmonic Balance Although HB is being successfully used for a
wide range of applications, there are still some mathematical issues which have to be solved.
One of them is error control and adaptivity, another one concerns DAE aspects.

• Accuracy of the HB solution is mainly determined by the sets k and λ in (21.50), which
have to be provided by the user, or are determined from the type of sources, as is decribed
above. In case of too few — or a not adequate set of — frequencies, alias effects may
occur, or HB does not even converge. Harmonic Balance is useful only for mildly non-linear
problems, i.e. when all quantities have a Fourier expansion that can be well approximated
by some finite one of limited length. Aliasing can be reduced by applying oversampling
[234]. A rigorous mathematical adaptivity concept is not implemented, in general. A
proposal is given in [76]; unfortunately, adaptivity here involves to reorganize the system
matrix from time to time, which does not fit well into existing implementations.

• In practice, HB has been applied successfully even for index-2 problems, and no severe
drawbacks or errors have been reported yet. There are however no theoretical investiga-
tions about the feasibility of this usage, and which impact may have a higher index on
numerics.

HB Oscillator Algorithm. In [19, 87, 150, 256] oscillator algorithms are given for Harmonic
Balance that resemble the approach described in Section 21 for the time domain. However,
there are some modifications:
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• The gauge condition is replaced by the requirement that the imaginary part of the first
harmonic at some predefined node has to be zero. Note that this allows the DC solution
to be solution of the system. Indeed, the DC solution appears to be a strong attractor
for the Newton process. Hence algorithms apply some additional deflation technique to
exclude this solution.

• In practice the artificial element is defined directly in the frequency domain. For all
harmonics but the first one the element acts as an ‘open’, i.e. the harmonic of the current
is set to 0. For the first harmonic it acts as a voltage source in series with a resistor.
For all analyses other than Harmonic Balance (that might be used for initialization), the
current through the element is set to zero too.

• For initialization the equations are linearized around the DC-solution like in AC analysis.
Kurokawa’s method [143] calculates the response solution for an ordinary sinusoidal source
with unit amplitude that replaces the artificial element and considers the admittance for
the source element. The result is considered as a function of the frequency f . Where
the imaginary part of the admittance becomes zero while the real part remains positive a
good approximation for the oscillator can be found (the equation itself can be solved by
applying for instance Newton-Raphson). For the circuit solution one uses the DC-solution
plus the AC solution for the first harmonic. All other harmonics are set to 0.
Alternatively one can solve a generalized eigenvalue problem (in practice one will consider
the inverse eigenvalue problem) for the linearized equations [23]. Because an autonomous
circuit can only start up oscillating when the DC-solution is unstable (Andronov-Hopf
bifurcation theorem), one looks for eigenvalues λ = δ ± jω, where δ > 0. The associated
eigenvector also indicates where the artificial element may be attached. In addition it
provides an estimate for the initial circuit solution. However, in practice, the f estimated
by Kurokawa’s method appears to be more accurate.

• The applied value of the artificial element is initialized by optimization techniques [87, 129,
256]. In [23, 150] techniques using affine damping improved convergence. Initial Global
Optimization techniques improved robustness even more by providing much better initial
estimates [151]. Note that the algorithm can be formulated as a full Newton process, but
also as a two-step process. In the latter case for each applied value as internal step a
driven Harmonic Balance process is executed until convergence. For updating the applied
value and the frequency, the Jacobian matrix of the Harmonic Balance process can be
reused for determining the sensitivities of the solution with respect to variations of the
applied value and the frequency. In fact, this very elegantly reuses options for parameter
sensitivity analysis.

Global convergence – a three stage approach. For getting global convergence properties,
the application of a continuation method is adequate. In case of non-autonomous (forced)
systems it is natural for this purpose to track a parameter dependent path in the frequency
domain with some path-following methods, as is done in the DC domain by performing a
DC transfer analysis. The parameter here may be a circuit parameter or the bias value of
an independent source, either. In case of local parametrization along the solution path, even
turning points in the parameter space can be tracked; and by watching the sign and magnitude
of Floquet multipliers, circuit stability properties along the solution path can be analyzed [220].

For autonomous oscillators the problem is more difficult since a good estimate for the frequency
is important. So it is suggested in [171] for this case to start path-following from Hopf’s
bifurcation point. The latter is computed from a path-following procedure in the DC-domain,
such that there is a three-stage approach for solving the whole problem:

1. Follow a path of DC steady states over a parameter λ — λ being a circuit parameter
or the value of an independent source — until a Hopf bifurcation point is found. The
latter is characterized by a sign change of the real part of a complex conjugate pair of
generalized eigenvalues.

2. These eigenvalues and the corresponding eigenvectors provide first order information
about frequency and Fourier coefficients of the oscillatory branch emanating from the
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DC path in Hopf’s point. Since this information is not very accurate, an alternative
method for getting the latter was developed [269].

3. From this start point, follow the path of periodic steady states over λ, until the final value
of λ is obtained.

Again it is worth to note that all these additional algorithmic steps can be implemented elegantly
using Schur complement techniques, once the basic types of analysis are available.
Recently, homotopy approaches were considered in [22, 157].

Envelope methods

In [239] an envelope method is described in some detail. The envelope method is a generalisation
of the Harmonic Balance method. It allows for multitone treatments, but in fact one of the
periods may be infinite. The method mixes time-domain and frequency-domain approaches.
We write (21.49) as

x(t) =
∑

ωk∈Λ

Xk(t)eιωkt, with ωk ∈ Λ ≡ {ω| ω = (k, λ)}, (21.56)

where the enveloping Fourier coefficients Xk(t) represent modulation on top of the carrier
sinusoids at frequencies ωk. In order to describe the effect of q(x) (and similarly of j(x)) we
introduce

x̃(τ1, τ2) =
∑

ωk∈Λ

Xk(τ1)eιωkτ2 , (21.57)

= F−1
τ2
X(τ1) (21.58)

(which in fact is a multivariate formulation; see also the next subsection). Here X(τ1) is the
Fourier transform in τ2 of x̃(τ1, τ2). Thus x(t) = x̃(t, t). For fixed τ1, the Fourier coefficients
Qk(x(τ1)) of q, when applied to x̃(τ1, τ2), can be determined using the Fourier Transform in
the τ2 variable

q(x̃(τ1, τ2)) =
∑

ωk∈Λ

Qk(X(τ1))eιωkτ2 , (21.59)

Qk(X) = Fτ2q(F−1
τ2
X). (21.60)

Clearly, q(x(t)) = q(x̃(t, t)). We will collect all Qk(X) in q(x) (and similarly for J(X)). If we
put the expansions of q and j in (19.1) we find a DAE for the X(t)

J(X(t)) +
d
dt
Q(X(t)) + ΩQ(X)(t) = 0, (21.61)

which can be solved using ordinary time integration methods. Stepping forward in time at each
time level a non-linear set of (complex-valued) algebraic equations has to be solved, that has
the size of a Harmonic Balance problem. In RF applications, the envelope solution of the DAE
(21.61) behaves much less oscillating (or is not oscillating at all) than that of (19.1). Hence,
despite the larger non-linear system of equations that has to be solved at each time level for
(21.61), much larger time steps can be used than for (19.1).
Because of the separation of modes in τ1 and τ2 variables, different scaling effects can be
separated. This is also the subject of the next subsection.

Analysis of high-quality oscillator circuits. Another kind of envelope following methods
has been suggested for analysis of oscillatory circuits whose quality factor Q is so high that
conventional methods like those described in [184, 224] failed. These circuits exchange a very
small amount of energy per cycle between the oscillator core and the driven, energy supplying
circuit part, which makes the problem extremely stiff. In a state space diagram, the trajectories
of one cycle are almost closed, even though the circuit is not yet in a steady state. So it seems
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reasonable to approximate the trajectory for this cycle by a really closed one, which can be
computed by solving a PSS problem. Once this approximative trajectory is found, a transient
analysis over a few cycles would correct this one into the real solution. From its dynamics a
new estimate for a later cycle can be extrapolated, and the next step of this “envelope” method
can be started [268]. In fact this method is again a mixed time-frequency approach.

A successful application of this idea is the startup analysis of quartz driven circuits [163, 218].
Since the quartz resonator oscillates very much like a harmonic oscillator, it can be substituted
for one PSS step by a sinusoidal current source of a certain magnitude. Its phase can be
arbitrarily set to zero, and a first guess for the frequency is just the resonator frequency of the
quartz crystal. Once the PSS solution is found, and is “corrected” by a subsequent transient
analysis over a few — 2, . . ., 4, say, — cycles, the dynamic behaviour can be extrapolated over
several hundred to thousand cycles, yielding a new value for the magnitude and the frequency of
the substitute current source. So this method cannot only be seen as some kind of continuation
method for the PSS problem, but also yiels reasonable timing information about the startup
process of the circuit.

Multivariate extension

In [20, 24, 201, 203–205] multivariate extensions are described that apply to multitone situations.
In fact, one introduces two or more independent time parameters, τ1,τ2 say. Then (19.1) is
rewritten to

d
dτ1

q(x̂) +
d

dτ2
q(x̂) + j(x̂) = b(τ1, τ2) ∈ IRN . (21.62)

x̂(0, τ2) = x̂(T1, τ2) (21.63)
x̂(τ1, 0) = x̂(τ1, T2). (21.64)

After solving this partial differential problem (21.62) (hyperbolic for dq/dx regular) on [0, T1] ∗
[0, T2] for x̂, the solution x(t) is found by x(t) = x̂(t (mod T1), t (mod T2)).
It is clear that the above separation in two or more independent time parameters restricts one
in formulating expressions. The aim is that on [0, T1] ∗ [0, T2] the solution x̂ behaves smoothly
and that only one period is met in each direction. In [205] the problem of frequency modulation
(FM) is considered more closely for the case of an oscillatory DAE

ω(τ2)
d

dτ1
q(x̂) +

d
dτ2

q(x̂) + j(x̂) = b(τ2). (21.65)

φ(t) =
∫ t

0

ω(τ2)dτ2 (21.66)

x(t) = x̂(φ(t), t) (21.67)

When (21.65) is solved, also the local frequency ω(τ2) is obtained (see also [24]). The derivative,
ω(τ2), of the ‘warping’ function φ, gives the extend of the stretch of the timescale in τ2.
For time integration methods of characteristics were studied recently [24, 186].

Optimal sweep following. An open question remains how ω(τ2) in (21.65) should be de-
termined. One way to proceed is to observe that the differential equation (21.65) defines a
two-dimensional manifold (called the sweep) in the state space IRN . The choice of ω does not
influence the sweep; however, it does influence the parametrisation of the sweep in terms of the
coordinates τ1 and τ2.
In [?], it is suggested to choose ω in such a way that

T∫

0

‖ d
dτ2

q(x̂)‖2 dτ1 (21.68)

becomes as small as possible. The rationale is that this will allow the largest stepsizes in the
(slowly varying) τ2-direction, thereby reducing computation time. It is shown in [?] that this
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is the case for

φ̇(τ2) = ω(τ2) =

T∫
0

(
b(τ2)− j(x̂), d

dτ2
q(x̂)

)
dτ1

T∫
0

‖ d
dτ2

q(x̂)‖2 dτ1

. (21.69)

Since this choice of ω is optimal with respect to the minimization of (21.68), the resulting
method is called Optimal Sweep Following.
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[2] ANZILL, W.; KÄRTNER, F.X.; RUSSER, P. [1994]: Simulation of the phase noise of oscillators in the
frequency domain, Int. J. Electron. Commun. (AEÜ) 48, 45–50.
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[227] SÖDERLIND, G. [2001]: Automatic control and adaptive time-stepping, Proc. ANODE 2001, Auckland.
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