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Decision making is hard. It o� en requires reasoning about uncertain environments, partial 
observability and action spaces that are too large to enumerate. In such complex decision-
making tasks decision-theoretic agents, that can reason about their environments on the basis 
of mathematical models and produce policies that optimize the utility for their users, can o� en 
assist us. 

In most research on decision-theoretic agents, the desirability of actions and their e� ects is 
codi� ed in a scalar reward function. However, many real-world decision problems have multiple 
objectives. In such cases the problem is more naturally expressed using a vector-valued reward 
function. Rather than having a single optimal policy, we then want to produce a set of policies 
that covers all possible preferences between the objectives. We call such a set a coverage set. In 
this dissertation, we focus on decision-theoretic planning algorithms that produce the convex 
coverage set (CCS), which is the optimal solution set when either: 1) the user utility can be 
expressed as a weighted sum over the values for each objective; or 2) policies can be stochastic. 

We propose new methods based on two popular approaches to creating planning algorithms 
that produce an (approximate) CCS by building on an existing single-objective algorithm. In 
the inner loop approach, we replace the summations and maximizations in the inner most 
loops of the single-objective algorithm by cross-sums and pruning operations. In the outer loop 
approach, we solve a multi-objective problem as a series of scalarized problems by employing 
the single-objective method as a subroutine. 

Our most important contribution is an outer loop framework that we call optimistic linear 
support (OLS). As an outer loop method OLS builds the CCS incrementally. We show that, 
contrary to existing outer loop methods, each intermediate result is a bounded approximation 
of the CCS with known bounds (even when the single-objective method used is a bounded 
approximate method as well) and is guaranteed to terminate in a � nite number of iterations. 

We apply OLS-based algorithms to a variety of multi-objective decision problems, and show 
that it is more memory-e�  cient, and faster than corresponding inner loop algorithms for 
moderate numbers of objectives. We show that exchanging subroutines in OLS is relatively easy 
and illustrate the importance on a complex planning problem. Finally, we show that it is o� en 
possible to reuse parts of the policies and values, found in earlier iterations of OLS, to hot-start 
later iterations of OLS. Using this last insight, we propose the � rst method for multi-objective 
POMDPs that employs point-based planning and can produce an ε-CCS in reasonable time. 

Overall, the methods we propose bring us closer to truly practical multi-objective decision-
theoretic planning.
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Chapter 1
Introduction

A central problem in artificial intelligence is the design of artificial autonomous agents.
An agent is “anything that can be viewed as perceiving its environment through sen-
sors and acting upon that environment through effectors” (Russell et al., 1995), i.e.,
an artificial agent typically is a computer program — possibly embedded in specific
hardware — that takes actions in an environment that changes as a result of these ac-
tions. An autonomous agent (Franklin and Graesser, 1997) can act autonomously, i.e.,
without constant human control or intervention, on a user’s behalf.1

Artificial autonomous agents can assist us in many useful ways. For example,
agents can perform the control of manufacturing machine, in order to produce products
for a company (Monostori et al., 2006; Van Moergestel, 2014), drive a car instead of a
human driver (Guizzo, 2011), trade goods or services on markets (Ketter et al., 2013;
Pardoe, 2011) and help provide security (Tambe, 2011). As such, autonomous agents
have enormous economic potential, as well as potential for improving our quality of
life.

In order to perform tasks, autonomous agents require the capacity to reason about
their environment and consequences of their actions — and the desirability thereof.
The study of this reasoning is called decision theory. Decision theory uses probabilistic
models of the environment. Typically these models include the states the environment
can be in, the possible actions that agents can perform in each state, and how the state
of the environment is affected by these actions. Furthermore, the desirability of actions
and their effects are codified in numerical feedback signals. These feedback signals are
typically referred to as reward or payoff functions.

Decision-theoretical models enable autonomous agents to plan how to act. The
models encode how the environment behaves as a result of the actions agents and
which observations and rewards agents can expect. Agents can use this information
to formulate a policy that specifies agent behavior as a function of what the agents
observe.

1For a detailed discussion on the definition of autonomous agents, see e.g., the discourses by Russell
et al. (1995) and Franklin and Graesser (1997).

1



2 Chapter 1. Introduction

In most research on planning in decision problems, the desirability of actions and
their effects are codified in a scalar reward function (Busoniu et al., 2008; Oliehoek,
2010; Thiébaux et al., 2006; Wiering and Van Otterlo, 2012). The planning task in
such scenarios is to find a policy that maximizes the expected (cumulative) reward.

However, many real-world decision problems have multiple objectives. For exam-
ple, for a computer network we may want to maximize performance while minimizing
power consumption (Tesauro et al., 2007). In such cases the problem is more natu-
rally expressed using a vector-valued reward function. When the reward function is
vector-valued, the value of a policy is also vector-valued. Typically, there is no single
policy that maximizes the value for all objectives simultaneously. For example, in the
computer network example, we can achieve higher performance by using more power.
Rather than producing a single optimal policy, as in single-objective planning, it may
therefore be crucial to produce a set of policies that offer different trade-offs between
the objectives.

In this dissertation, we focus on multi-objective decision-theoretic planning. In a
multi-objective planning scenario, the agents are given a model of the environment
and asked to provide a set of policies from which to elect a policy to execute. We first
motivate the need for specialized multi-objective planning methods in this scenario,
and introduce our perspective on what it means to solve a multi-objective decision
problem. Then we introduce the research questions, the scope of this dissertation and
provide an overview of the contributions in this dissertation.

1.1 Motivating Scenarios
The existence of multiple objectives in a decision problem does not automatically im-
ply that we require specialized multi-objective methods to solve it. If the decision
problem can be scalarized, i.e., the vector-valued reward function can be converted to
a scalar reward function, the problem may be solvable with existing single-objective
methods. Such a conversion involves two steps (Roijers et al., 2013a). The first step
is to specify a scalarization function that expresses the utility of the user for different
trade-offs between the objectives.

Definition 1. A scalarization function f , is a function that maps a multi-objective value
of a policy π of a decision problem, Vπ, to a scalar value V π

w :

V π
w = f(Vπ,w),

where w is a so-called weight vector that parameterizes f .

The second step of the conversion is to define a single-objective version of the decision
problem such that the utility of each policy π equals the scalarized value of the original
multi-objective decision problem V π

w .
Though it is rarely stated explicitly, all research on automated multi-objective deci-

sion making rests on the premise that there are decision problems for which one or both
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of these conversion steps are impossible, infeasible, or undesirable. Here, we discuss
three motivating scenarios in which this is indeed the case, thereby demonstrating the
need for specialized multi-objective methods. These scenarios are depicted schemati-
cally in Figure 1.1.

Figure 1.1a provides an overview of the unknown weights scenario. In this sce-
nario, w is unknown at the moment when planning must occur: the planning phase.
For example, consider a company that mines different resources from different mines
spread out through a mountain belt. The workers of the company live in villages at
the foot of the mountains. In Figure 1.2, we depict the problem this company faces:
in the morning one van per village needs to transport workers from that village to a
nearby mine, where various resources can be mined. Different mines yield different
quantities of resource per worker. The market prices per unit of resource vary through
a stochastic process and every price change can change the optimal assignment of
vans. Furthermore, the expected price variation increases with time. It is therefore
critical to act based on the latest possible price information in order to maximize per-
formance. Because computing the optimal van assignment takes time, redoing this
computation every time the prices change is highly undesirable. Therefore, we need
a multi-objective method that computes a set containing an optimal solution for every
possible value of the prices, w. We call such a set a coverage set, as it “covers” all
possible preferences of the user (i.e., the possible values of the prices in our example)
with respect to the objectives (as specified by f ). Although computing a coverage set
is computationally more expensive than computing a single optimal policy for a given
price, it needs to be done only once. Furthermore, the planning phase (Figure 1.1a)
can take place in advance, when more computational resources are available.

In the selection phase, when the prices (w) are revealed and we want to use as
little computation time as possible, we can use the coverage set to determine the best
policy by simple maximization. Finally, in the execution phase, the selected policy is
employed.

In the unknown weights scenario a priori scalarization is undesirable, because it
would shift the burden of computation towards a point in time where it is not available.
The scalarization f is known, and the weights w will become available in the selection
phase, where a single policy is selected for execution. However, there are also settings
in which w or even f will never be made explicit. We call this scenario the decision
support scenario.

In the decision support scenario (Figure 1.1b), scalarization is infeasible through-
out the entire decision-making process because of the difficulty of specifying w and/or
f . For example, when a community is considering the construction of a new metro line,
economists may not be able to accurately compute the economic benefit of reduced
commuting times. The users may also have “fuzzy” preferences that defy meaningful
quantification. For example, if construction of the new metro line could be made more
efficient by building it in such a way that it obstructs a beautiful view, then a human
designer may not be able to quantify the loss of beauty. The difficulty of specifying the
exact scalarization is especially apparent when the designer is not a single person but a
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known weights scenario.
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committee or legislative body whose members have different preferences and agendas,
such as the politicians and interest groups involved in the metro line example. In such
a system, the multi-objective planning method is used to calculate a coverage set with
respect to the constraints that can safely be imposed on f and w. For example, we can
safely assume that gaining value in one objective, without reducing the value in any of
the others cannot reduce the utility of the user (i.e., the scalarized value).

As shown in Figure 1.1b, the decision support scenario proceeds similarly to the
unknown weights scenario in the planning phase. In the selection phase however, the
user or users select a policy from the coverage set according to their preferences di-
rectly, rather than explicitly computing a numerical utility by applying the scalarization
function to each value vector.

In the decision support scenario, one could still argue that scalarization before plan-
ning or learning is possible in principle. For example, the loss of beauty can be quanti-
fied by measuring the resulting drop in housing prices in neighborhoods that previously
enjoyed an unobstructed view. However, the difficulty with explicit scalarization is not
only that doing so may be impractical but, more importantly, that it forces the users to
express their preferences in a way that may be inconvenient and unnatural. This is be-
cause selecting w requires weighing hypothetical trade-offs, which can be much harder
than choosing from a set of actual alternatives. This is a well understood phenomenon
in the field of decision analysis (Clemen, 1997), where the standard workflow involves
presenting alternatives before soliciting preferences. In the same way, algorithms for
multi-objective decision problems can provide critical decision support; rather than
forcing the users to specify f and w in advance, these algorithms just prune policies
that would not be optimal for any f and w that fit the known constraints on the pref-
erences of the users, and produce a coverage set. By producing a coverage set that
contains optimal solutions across all f and w that fit the known constraints — rather
than just all w for a specified f , as in the unknown weights scenario — this cover-
age set now offers a range of alternatives from which the users can select according to
preferences whose relative importance is not easily quantified.

Finally, we present one more scenario that requires explicit multi-objective meth-
ods that we call the known weights scenario (Figure 1.1c). In this scenario we assume
that w is known at the time of planning and thus scalarization would be possible.
However, it may well be undesirable because of the difficulty of the second step in the
conversion. In particular, if f is nonlinear, then the resulting single-objective problem
may be much more complex than the original multi-objective problem. As a result,
finding the optimal policy may be intractable whilst the original multi-objective prob-
lem is tractable. This happens for example in the case of multi-objective Markov deci-
sion processes (MOMDPs2), where a non-linear scalarization would lead to the loss of
the additivity property on which single-objective solution methods rely (Roijers et al.,
2013a).

2This abbreviation is also used for mixed-observability MDPs (Ong et al., 2010), which we do not
consider in this dissertation; we use the abbreviation MOMDPs solely for multi-objective MDPs.
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In contrast to the unknown weights and the decision support scenarios, in the
known weights scenario, the multi-objective method only produces one policy, which
is then executed, i.e., there is no separate selection phase.

The scenarios we have presented here require explicit multi-objective methods be-
cause a priori scalarization of the multi-objective decision problems, and subsequent
solving with standard single-objective methods, does not apply. In this dissertation, we
focus on the two multi-policy scenarios, i.e., the unknown weights and decision sup-
port scenarios, in which the goal of a multi-objective planning method is to produce
a coverage set, i.e., a set that contains at least one optimal solution for each possible
trade-off between the objectives (as expressed by f and w). From this coverage set,
the policy that maximizes user utility will be selected in the selection phase. The goal
of the planning algorithms presented in this dissertation is to maximize user utility, by
producing the best possible coverage set.

1.2 Utility-Based Approach
The goal of solving all — including multi-objective — decision problems is to maxi-
mize user utility. However, in the unknown weights and decision support scenarios, we
cannot optimize this directly, because at the time when planning takes place the scalar-
ization function, f , that maps the multi-objective values to a scalar utility, and/or its
parameters, w, are unknown. Therefore, we must compute a coverage set (as in Figure
1.1). This coverage set is a set of policies such that, for every possible scalarization, a
maximizing policy is in the set.

In this dissertation, we argue that we should derive which policies are to be included
in the coverage from what we know about f . We call this the utility-based approach.
The utility-based approach stands in contrast to the axiomatic approach in which it
is axiomatically assumed that the coverage set is the so-called Pareto front, which we
define formally in Section 2.1. In short, the Pareto front is the set of all policies that are
Pareto optimal. A policy is Pareto optimal when there is no other policy that has at least
equal value in all objectives and has a higher value in at least one objective. Indeed,
the Pareto front contains at least one optimal policy for most, if not all, scalarization
functions that occur in practice. However, we argue that while the Pareto front is
sufficient it is often not necessary to compute the entire Pareto front. In fact the only
context in which the full Pareto front is required is for the known weights or decision-
support scenarios, where the scalarization function is non-linear, and a strict conditions
are imposed on the type of policies that are allowed. Therefore — as we will show —
a utility-based approach often results in a much smaller coverage set, which is less
computationally intensive to compute and appropriate to the needs of the user.

Another upshot of the utility-based approach is that it is possible to derive how
much utility is maximally lost if it is not possible to compute an exact coverage set
(Zintgraf et al., 2015). Such bounds on the loss of quality due to approximation is often
crucial for a meaningful interpretation of the quality of heuristic methods, especially
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when comparing algorithms (Oliehoek et al., 2015). Furthermore, the bounds provide
insight for the users into the quality and reliability of the selected final policy.

1.3 Focus
This dissertation is about multi-objective decision making using autonomous agents.
As such it is positioned within the field of decision theory. According to the Oxford
dictionary, decision theory is defined as:

The mathematical study of strategies for optimal decision-making between
options involving different risks or expectations of gain or loss depending
on the outcome.

Specifically, we study “strategies for optimal decision-making” given that there are
multiple objectives. However, within the field of decision-making there are many de-
cision problems “involving different risks or expectations of gain or loss depending on
the outcome” which we could study. We limit the scope of our inquiry, by starting at
(relatively) simple multi-objective decision problems, and adding more complicating
aspects. We focus on the following aspects:

• Single agent versus cooperative multi-agent decision problems
Multi-agent problems are more complex than single-agent problems, because
they require coordinating the actions between the agents, and the amount of pos-
sible joint actions grows exponentially with the amount of agents.3

• Single-shot versus sequential environments
In single-shot environments policies specify how to select a (joint) action for a
single timestep, while in sequential settings the agents interact with the environ-
ment repeatedly, and have to consider the effect of their actions upon the future
state of the environment.

• Fully observable versus partially observable environments
In a fully observable environment the true state of the environment is known to
the agents, while in a partially observable environment only a (possibly noisy)
observation signal that correlates with the state of the environment is available
to the agents.

Planning in single-agent single-shot settings is trivial, but other combinations of these
aspects are not. We therefore focus on the following decision problems:

• Multi-objective coordination graphs (MO-CoGs)
MO-CoGs are multi-objective multi-agent fully observable single-shot decision

3In this dissertation, we only consider cooperative multi-agent problems. We briefly discuss non-
cooperative models in Section 6.2.3.
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problems. MO-CoGs model the coordination problem that cooperative teams
of agents face while making a single joint decision in the face of multiple ob-
jectives. The main challenge in this problem is the scalability in the number
of agents, as the number of possible joint actions grows exponentially in this
number.

• Multi-objective Markov decision processes (MOMDPs)
MOMDPs are single-agent fully observable sequential decision problems. In
this problem setting, an agent observes the state of the environment and must
reason about the effects of its actions upon the environment in order to obtain a
favorable expected (discounted) sum of rewards over time. The main challenge
in this problem is reasoning about these effects of actions upon the environment
given the possibly stochastic transitions between states of the environment.

• Multi-objective partially observable Markov decision processes (MOPOMDPs)
MOPOMDPs are single-agent partially observable sequential decision problems,
and differ from MOMDPs only in the aspect of observability. Partial observ-
ability significantly complicates planning, to the extent that finding an optimal
solution set is typically no longer tractable, and we therefore have to settle for
approximate solution sets.

For the different problem settings, we aim to find planning methods that provide a cov-
erage set. In this dissertation, we focus on methods that are either exact, or can produce
bounded approximations of the coverage set, i.e., methods that produce ε-approximate
coverage sets, where ε is the maximal loss of utility for the user due to approximation.
As such, heuristic multi-objective planning methods based on evolutionary algorithms
(Handa, 2009a,b; Soh and Demiris, 2011a) or local search (Kooijman et al., 2015; Inja
et al., 2014) are beyond the scope of this dissertation.

Another aspect that is beyond the scope of this dissertation is learning (Sutton and
Barto, 1998; Wiering and Van Otterlo, 2012). In a learning setting, the model of the
environment is unknown to the agent. Therefore, the agent must learn about its en-
vironment through interaction. However, the planning methods and learning methods
are not entirely disjoint; when the agent explicitly learns a model of the environment
through its interaction, it can use a planning method in order to produce a coverage
set. Such model-based learning has been investigated extensively in single-objective
settings, and has recently been introduced to multi-objective settings as well (Wiering
et al., 2014). As such, the methods proposed in this dissertation can be employed as
planning subroutines inside a model-based learning algorithm. Furthermore, our meth-
ods could be applied in the Bayesian reinforcement learning approach (Vlassis et al.,
2012) — in which learning in an MDP can be modeled as a planning in a POMDP.
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1.4 Research Questions
In this research we aim to answer the following question: “Can we create fast multi-
objective planning algorithms for cooperative decision problems that are: either single-
or multi-agent, single-shot or sequential, and fully or partially observable?”

We do so by trying to find fast multi-objective planning algorithms for the problem
settings discussed in Section 1.3. Note that these problem settings do not exhaust the
possible combinations of the different aspects mentioned in the research question. This
is partially because some of the other combinations are either trivial or too difficult, but
more importantly, because we aim to find fast multi-objective methods that are appli-
cable to as wide a range of multi-objective decision problems as possible. Specifically,
we aim to create methods that are as modular and as generic as possible.

1.5 Contributions and Outline
In this section we outline the the organization of this dissertations, and the contributions
we present. Also, we indicate which of these contributions have been published before
and in which papers and articles.

In this introduction (Chapter 1), we have introduced and motivated multi-objective
decision-theoretic planning problems and motivated the need for specialized multi-
objective planning methods by using three scenarios. Furthermore, we have introduced
the utility-based approach to multi-objective decision making. The motivating scenar-
ios and the utility-based approach were introduced in (Roijers et al., 2013a), and further
discussed in (Roijers et al., 2015d; Zintgraf et al., 2015; Whiteson and Roijers, 2015).

Chapter 2 provides an extensive introduction to decision-theoretic planning in gen-
eral, and multi-objective decision-theoretic planning in particular. First, we discuss
what it means to solve a multi-objective decision problem, and how different assump-
tions about the scalarization function and the types of policy allowed lead to different
coverage sets. Then we outline which decision problems are common in literature, both
single-objective and multi-objective and how they relate. Finally, we make the case for
a specific coverage set called a convex coverage set (CCS) which we use throughout
this dissertation, based on the utility-based approach. We argue that it is often suffi-
cient and less costly to compute a CCS than a Pareto coverage set (PCS) or Pareto
front, which is often assumed to be the optimal solution set in literature. This chapter
uses our earlier taxonomy of multi-objective decision problems (Roijers et al., 2013a).

Chapter 3 presents the optimistic linear support (OLS) algorithm. OLS is a generic
multi-objective method that solves a multi-objective decision problem as a series of
scalarized, i.e., single-objective, problems. In order to do so it repeatedly calls a single-
objective subroutine that is specific to the decision problem at hand.

We refer to the approach of solving a multi-objective problem as a series of single-
objective problems as the outer loop approach. The outer loop approach stands in
contrast to the inner loop approach, which solves a multi-objective problems using a
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series of multi-objective operations, such as solving a series of smaller multi-objective
problems. A practical upshot of the outer loop approach is that any single objective
algorithm can be used, when made OLS-compliant, making any improvement in the
state-of-the-art for a single objective decision problem an improvement for its multi-
objective counterpart.

The first version of OLS was proposed in (Roijers et al., 2014b) and (Roijers et al.,
2015b), and requires an exact single-objective subroutine. This limitation was coun-
tered in (Roijers et al., 2014a) by allowing approximate single-objective solvers to
be used as well. OLS was further improved in terms of both theoretic and practical
runtime by allowing the reuse of values and policies found in earlier calls to the single-
objective subroutine in (Roijers et al., 2015a,c).

Chapter 4 considers the multi-objective coordination graph (MO-CoG). In this
chapter we propose five algorithms for MO-CoGs: two inner loop methods based on
exact single-objective solvers: convex multi-objective variable elimination (CMOVE)
and convex AND/OR tree search (CTS), and two outer loop methods based on OLS
that use these same exact single-objective solvers as subroutines: variable elimination
linear support (VELS) and AND/OR tree search linear support (TSLS). Finally, we
propose variational optimistic linear support (VOLS), an OLS-based method that uses
a variational single-objective coordination graph solver called weighted mini-buckets
(WMB) as a subroutine. Because variational methods scale much better than the exact
single-objective solvers, VOLS can be used to solve much larger MO-CoGs than was
previously possible. However, because WMB computes only bounded approximate
solutions, so does VOLS. In VOLS we leverage the insight that the algorithm can hot-
start each call to WMB by reusing the reparameterizations output by WMB on earlier
calls, leading to additional improvements in both runtime and approximation quality.

All our proposed algorithms compute a CCS rather than a PCS, which we show
to be favorable both theoretically and experimentally in many situations. We compare
both the runtime and the memory complexities of the the inner loop and the outer loop
methods, and compare runtimes experimentally. We indicate which methods are better
for which problem settings.

The algorithms we contribute in Chapter 4 have been published earlier in (Roijers
et al., 2013b,c, 2014b, 2015a,b).

Chapter 5 analyses the usage of OLS for sequential single-agent decision problems.
First, we consider the fully observable setting, i.e., MOMDPs, using a problem domain
with large state and action spaces called the maintenance planning problem (MPP).
We show how to construct multi-objective planning methods based on single-objective
methods via OLS, as previously published in (Roijers et al., 2014a). Because the
single-objective version of the MPP is in itself a difficult problem for which the state-
of-the-art is highly problem-specific (Scharpff et al., 2013), it is beneficial to be able
efficiently replace the single-objective subroutines in OLS to bring the state-of-the-art
in multi-objective methods up-to-date. We run new experiments for an algorithm that
combines OLS with the recent CoRe algorithm (Scharpff et al., 2016), which improved
the state-of-the-art for the single-objective version of the MPP. We compare this to the
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previous state-of-the-art, which was to use OLS in combination with SPUDD. Further-
more, we examine the possibility of using an approximate solver (i.e., UCT∗) instead
of an exact solver (as previously published in (Roijers et al., 2014a)).

Then, we shift our attention to the partially observable sequential single-agent set-
ting, i.e., MOPOMDPs. MOPOMDPs have not been studied very much in literature,
due to their high complexity. We propose the first MOPOMDP method that is rea-
sonably scalable and produces a bounded approximation of the CCS, which we call
optimistic linear support with alpha reuse (OLSAR). This algorithm was previously
proposed in (Roijers et al., 2015c).

Chapter 6 enumerates the main conclusions and contributions of this dissertation,
discusses the implications for further work in multi-objective decision making, and
identifies opportunities for future work.





Chapter 2
Background

This chapter provides background on multi-objective decision-theoretic planning for
different multi-objective decision problems. First, in Section 2.1, we treat the decision
problems as a black box, i.e., each policy π has an associated multi-objective value Vπ,
without discussing how the policy is defined, or how it induces its value. We show what
it means to solve a multi-objective decision problem in terms of the set of all allowed
policies and how this can be derived — following the utility-based approach — from
what is known about the scalarization function, f . We show that different assump-
tions about f lead to different solution concepts. Then, in Section 2.2, we make the
decision problems more concrete by introducing a simple concrete decision problem
called a multi-objective bandit problem, and its single-objective equivalent. Using this
problem, we illustrate that in multi-objective decision problems, (dis)allowing stochas-
tic policies can have a large impact on the attainable value, while this is typically not
the case for single-objective problems. We then discuss decision problems with more
structure, and discuss how they relate to each other. Finally, in Section 2.3, we provide
a taxonomy of multi-objective decision problems and solution concepts based on the
different assumptions about f and the set of allowed policies, Π, and make the case
for a specific solution concept, called the convex coverage set. The convex coverage
set applies to a large class of settings, has important computational advantages, and we
will use this solution concept for the remainder of this dissertation.

2.1 Multiple Objectives
In this dissertation, we focus on different (cooperative) multi-objective decision prob-
lems.

Definition 2. A cooperative single-objective decision problem (SODP), consists of:

• a set of allowed (joint) policies Π,

• a value function that assigns a real numbered value, V π ∈ R, to each joint policy
π ∈ Π, corresponding to the desirability, i.e., the utility, of the policy.

13
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Definition 3. In a cooperative multi-objective decision problem (MODP), Π is the
same as in an SODP, but

• there are d ≥ 2 objectives, and

• the value function assigns a value vector, Vπ ∈ Rd, to each joint policy π ∈ Π,
corresponding to the desirability of the policy with respect to each objective.

We denote to value of policy π in the i-th objective as V π
i .

Both Vπ and Π may have underlying structure corresponding to the structure of
the environment, which we will discuss in Section 2.2. For now, we only assume Π is
known and that we can, at least in theory, compute the value of each policy.

In an SODP the value function provides a complete ordering on the joint policies,
i.e., for each pair of policies π and π′, V π must be greater than, equal to, or less than
V π′ . In contrast, in an MODP, the presence of multiple objectives means that the value
function Vπ is a vector rather than a scalar. Such value functions supply only a partial
ordering. For example, it is possible that, V π

i > V π′
i but V π

j < V π′
j . Consequently,

unlike in an SODP, we can no longer determine which values are optimal without
additional information about how to prioritize the objectives, i.e., about what the utility
of the user is for different trade-offs between the objectives.

In the unknown weights and decision support scenarios (Figure 1.1), the parameters
of the scalarization function w, or even f itself, are unknown during the planning
phase. Therefore, in order to optimize the utility for the user, the agent has to provide
a solution set. Given a solution set, the user can then pick the policy that maximizes
his utility in the selection phase.

We want the solution set to contain at least one optimal policy for every possible
scalarization (in order to guarantee optimality), but we also want the solution set to be
as small as possible, in order to make the selection phase as efficient as possible.

In this dissertation, we advocate the utility-based approach (Roijers et al., 2013a)
for determining which policies the solution set should contain. The utility-based ap-
proach rests on the following premise: before the execution phases of the scenarios of
Figure 1.1, one policy is selected by collapsing the value vector of a policy to a scalar
utility, using the scalarization function (Definition 1). The application of the scalar-
ization function may be implicit or hidden, e.g., it may be embedded in the thought-
process of the user, but it nonetheless occurs. The scalarization function is thus an
integral part of the notion of utility, i.e., what the agent should maximize. Therefore,
if we find a set with an optimal solution for each possible weight setting of the scalar-
ization function, we have solved the MODP.

The utility-based approach stands in contrast to the axiomatic approach to opti-
mality in multi-objective decision problems that is followed in a lot of multi-objective
research. The axiomatic approach begins with the axiom that the optimal solution set
is the Pareto front (which we define later in this section). This approach is limiting
because, as we demonstrate in Section 2.3, there are many settings for which other
solution sets are more suitable.
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2.1.1 Undominated Sets
We will now derive the appropriate solution sets, as a subset of Π, for different as-
sumptions about f and w. The first thing we do is remove all policies that can never
be optimal for any allowed choice of f and w. Such policies are called dominated.
For a dominated policy, for every choice of f and w within the provided constraints,
there is some other policy in Π that has a higher scalarized value. When we remove all
dominated policies from Π, we call the resulting set the undominated set (U). When
we refer to the set all allowed scalarization functions as F , i.e., the family of permitted
scalarization functions, we can define U as follows.

Definition 4. The undominated set (U) of an MODP, is the set of all policies and
associated value vectors that are optimal for some w of a scalarization function f ∈ F .

U(Π) =
{
Vπ : π∈Π ∧ ∃f∈F ∃w ∀π′∈Π f(Vπ,w) ≥ f(Vπ′ ,w)

}
.

For convenience, we assume that payoff vectors in U(Π) contain both the value
vectors and associated policies.

A minimal assumption is that f is monotonically increasing, i.e., if the value for
one objective V π

i , increases while all V π
j 6=i stay constant, the scalarized value V π

w can-
not decrease. This assumption ensures that objectives are desirable, i.e., all else being
equal, having more of them is always better. When FMI is the set of strictly mono-
tonically increasing scalarization functions, the undominated set is called the Pareto
front.

Definition 5. The Pareto front is the undominated set for arbitrary strictly monotoni-
cally increasing scalarization functions, FMI .

PF (Π) =
{
Vπ : π∈Π ∧ ¬∃π′∈Π Vπ′�P Vπ

}
,

where �P indicates Pareto dominance (P-dominance): greater or equal in all objec-
tives and strictly greater in at least one objective.

Computing P-dominance requires only pairwise comparison of value vectors (Feng
and Zilberstein, 2004).1

A highly prevalent case is that in addition to f being monotonically increasing, we
also know that it is linear, i.e., the parameter vectors w are weights by which the values
of the individual objectives are multiplied.

Definition 6. The (monotonically increasing) linear scalarization function is a weighted
sum of the objectives, for a weight vector w.

f = w ·Vπ

In the context of linear scalarization functions, we denote the weight for objective i as
wi. Because f is monotonically increasing ∀i wi ≥ 0.

1P-dominance is often called pairwise dominance in the POMDP literature.
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Figure 2.1: The CH and CCS versus the PF / PCS.

In the mining example from Figure 1.2, f is linear: resources are traded on an
open market and all resources have a positive unit price. In this case, the scalariza-
tion is a linear combination of the amount of each resource mined, where the weights
correspond to the price per unit of each resource.

Many more examples of linear scalarization functions exist in the literature (e.g.,
(Lizotte et al., 2010)). Because we assume the linear scalarization is monotonically
increasing, we can represent it without loss of generality as a convex combination of
the objectives: i.e., the weights are positive and sum to 1. In this case, the undominated
set is the convex hull (CH)2:

Definition 7. The convex hull (CH) is the undominated set for non-decreasing linear
scalarizations f(Vπ,w) = w ·Vπ:

CH(Π) =
{
Vπ : π∈Π ∧ ∃w∀π′ w ·Vπ ≥ w ·Vπ′

}
,

where w adheres to the simplex constraints, i.e., ∀i wi ≥ 0 and
∑

iwi = 1.

That is, the CH contains all solutions that attain the optimal value for at least one w.
Vectors not in the CH are called C-dominated. In contrast to P-domination, C-

domination cannot be tested by using pairwise comparisons because it can take two
or more value vectors to C-dominate a value vector, Vπ. The difference between the
CH and the PF is illustrated in Figure 2.1. On the left the values of all policies in Π
of a 2-objective MODP are represented as points in value-space. The red (such as B
and C) and blue (D) points are both in the PF and in the CH. The black point (A) is in
the PF, but not in the CH. The gray points are nor in the PF nor in the CH, e.g., E is
not in the PF/CH because it is P-dominated by A. On the right, the scalarized values,
Vw = w ·V, of the policies in Π are shown as a function of w of the linear scalarization
function. Each line on the right corresponds to a point on the left. For example, the
black line corresponds to the scalarized value for A as a function of w and the blue

2Note that the term convex hull is overloaded. In geometry (e.g., (Jarvis, 1973)), the convex hull is a
superset of what we mean by the convex hull in this dissertation.
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line corresponds to D. Note that because of the simplex constraints w2 = 1 − w1.
C-domination of a policy π means that there is no w such that V π

w = max
π′∈Π

w · Vπ′ .

Note that this is true for the black line (corresponding to point A; the point that is in
the PF but not the CH): even though there is no single other policy that is better for
every w, there is always some policy for every w. For D, represented by the blue
line, we observe that it is in the CH, because there is exactly one w for which it is
optimal. However, note that at that w there are two other policies that achieve the
same scalarized value (i.e., B and C).

2.1.2 Coverage Sets
The undominated set, U(Π), contains all policies that are optimal for some f ∈ F
and a parameterization, w, thereof. Although this set contains no policies that are
dominated, it may well contain redundant policies. In fact, we only need a set with
at least one optimal policy for every f and w. We call such a lossless subset of U a
coverage set, as it covers every f and w with an optimal policy.

Definition 8. A coverage set (CS), CS(Π), is a subset of U , such that for each possible
w, there is at least one optimal solution in the CS, i.e.,

∀f∈F ∀w ∃π
(
Vπ∈CS(Π) ∧ (∀π′ f(Vπ,w)≥f(Vπ′,w) )

)
.

Note that a CS is not necessarily unique. Typically we seek the smallest possible
CS. For convenience, we assume that payoff vectors in the CS contain both the value
vectors and associated policies.

For arbitrary monotonically increasing scalarization functions, we call the CS a
Pareto coverage set (PCS). Due to the minimal constraints on f however, we can only
remove policies that have the exact same value as another policy.

Definition 9. A Pareto coverage set (PCS), PCS(Π)⊆PF (Π), is a lossless subset of
PF (Π), i.e., it only needs to contain each unique value-vector in the PF once:

Vπ = Vπ′ →
(
Vπ ∈ PCS(Π) ∨Vπ′∈ PCS(Π) ∨Vπ 6∈PF (Π)

)
.

Note that the PF itself is a PCS, but that there may be smaller PCSs.
A lossless subset of the CH with respect to linear scalarizations is called a con-

vex coverage set (CCS). That is, a CCS retains at least one policy from the CH that
maximizes the scalarized payoff, w ·Vπ, for every w:

Definition 10. A convex coverage set (CCS), CCS(Π) ⊆ CH(Π), is a CS for linear
non-decreasing scalarizations, i.e.,

∀w∃π
(
Vπ ∈ CCS(Π) ∧ ∀π′ w ·Vπ ≥ w ·Vπ′

)
.
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Because linear non-decreasing functions are a specific type of monotonically increas-
ing function, there is always a CCS that is a subset of the smallest possible PCS.

Because we aim to optimize the utility for the user, we have solved an MODP once
we have found a coverage set, as it contains at least one optimal policy for each f and
w, and in the selection phase, the user cannot lose utility by having a CS(Π) instead of
U(Π). For example, for linear scalarizations and the example MODP of Figure 2.1, we
do require all the policies shown in red, but we do not require the blue policy, because
for every w there is a red policy with at least equal scalarized value.

2.1.3 Approximate Coverage Sets
A coverage set constitutes an optimal solution with respect to user utility. However, in
practice it might not always be feasible to compute an exact PCS or CCS. For example,
there just might not be enough runtime to compute it, or it might be too large to deal
with during selection. In such cases we need to consider approximate versions of these
coverage sets. Following the utility based approach, we have to limit the loss of user
utility as much as possible. In order words, we focus on the maximum utility loss
(MUL) with respect to f and w, which are not known exactly in the planning phase.

We assume that we only know that f is monotonically increasing in all objectives
(leading to an approximate PCS), or that we also know f to be linear (leading to an
approximate CCS.3 A given approximate solution set, S, should thus contain a policy,
for every f and w, for which the MUL is at most a constant.

Definition 11. For a given solution set S and some family of scalarization functions
F , the maximum utility loss MUL(S,F) is the maximum scalarized value that is lost
due to approximation:

∀f∈F ∀w ∀Vπ∈CS(Π) ∃Vπ′∈S f(Vπ,w) ≤ f(Vπ′ ,w) +MUL(S,F),

where CS(Π) is the coverage set appropriate w.r.t. F .

Several approximate versions of PCSs have been proposed. One of the most pop-
ular is the ε-PCS (Zitzler et al., 2003).4 There are multiple definitions of the ε-PCS;
here, we provide the definition of the so-called additive ε-PCS.5

Definition 12. A given solution set S is an ε-PCS if

∀Vπ∈PCS(Π) ∃Vπ′∈S : ∀i = 1, . . . , d : V π
i ≤ V π′

i + ε,

where d is the number of objectives.
3For discussions about what happens if other prior information is available, please refer to (Roijers

et al., 2014a) and (Zintgraf et al., 2015).
4The ε-PCS is called ε-approximate Pareto front in (Zitzler et al., 2003). We use ε-PCS for consis-

tency with the terminology in this dissertation.
5Besides an additive ε-PCS there is also a multiplicative ε-PCS. Please refer to (Zintgraf et al., 2015)

for details.
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Note that an ε-PCS may in fact not contain any undominated solutions — S ∩
PF (Π) may be an empty set — but at least the maximal difference between a value
vector in the PCS and the closest value vector in the ε-PCS is at most ε in all dimen-
sions. However, when we look at the MUL of an ε-PCS for arbitrary monotonically
increasing scalarizations, we immediately notice a problem: any increase in any ob-
jective may lead to an infinite increase in user utility. Therefore, it is impossible to
compute the MUL of an ε-PCS, without more information about f and w. For exam-
ple, if we know that f is Lipschitz-continuous with a Lipschitz-constant L, the MUL
is bounded by ε

√
dL (Zintgraf et al., 2015).

For linear scalarization functions, we have much more information, i.e., we know
the exact shape of f , and that w adheres to the simplex constraints. In this case it is
possible to formulate an ε-CCS where ε is the MUL.

Definition 13. A given solution set S is an ε-CCS if

∀w max
Vπ∈CCS(Π)

w · V π
i − max

Vπ′∈S
w · V π′

i ≤ ε,

where w is a linear weight vector adhering to the simplex constraints.6

Note that an ε-PCS is automatically an ε-CCS, though most probably not a minimally
sized one.

In Chapter 3 we propose a bounded approximate solution method for computing
CCSs in MODPs, i.e., methods that come with the guarantee that they can produce an
ε-CCS, for any value of ε, within finite time. Typically, the closer ε is set to 0, the
longer the algorithms take to terminate.

2.2 Overview of Concrete Decision Problems
Now that we have derived the solution to MODPs, as well as bounded approximations
thereof, we move to concrete MODPs to solve. In Section 1.3 we limited our scope
to cooperative multi-objective decision problems. Furthermore, we discussed three
aspects of decision problems: single- or multi-agent, single-shot or sequential, and
fully or partially observable. Note that the first option is always the more restrictive:
the most restrictive model would thus be a single-agent, single-shot, fully observable
MODP.

In this section, we discuss the different models that result from different combina-
tions of the three aspects, and place the models for which we propose new methods in
context. Before doing so however, we first treat a single multi-objective decision prob-
lem with very little structure that illustrates some fundamental differences between
solving single-objective and multi-objective decision problems. Specifically, we go

6w can always be made to adhere to the simplex constraints by dividing with a constant c. If w is
not on the simplex, the MUL reported here should be multiplied by this c.
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into how for cooperative SODPs, restricting the set of allowed policies Π by disal-
lowing stochasticity typically does not affect the optimal attainable utility, while in
MODPs the optimal utility is affected.

2.2.1 Bandit Problems
The simplest SODP is the multi-armed bandit problem (BP) (Sutton and Barto, 1998).
BPs have very little structure to exploit, and therefore planning is either trivial — when
the problem is small — or intractable — when the problem is too large. However, it is
a useful problem in order to illustrate the basic concepts of decision problems.

In a BP, an agent can select an action a from a discrete set of possible actions A.
The environment provides a reward (possibly stochastically) on the basis of this action,
i.e., each action has an associated expected reward R(a).

Definition 14. A multi-armed bandit problem (BP) is a tuple 〈A, R〉, where

• A is a discrete set of actions, also called arms, and

• R is the reward function, that specifies an expected reward R(a) ∈ R for each
action.

A policy, π, for a BP is a probability distribution over actions, A → [0, 1]. The value
of a policy π, V π, is the expected reward of the policy:

V π =
∑
a∈A

π(a)R(a).

A special case of a policy is the deterministic policy, in which one action will be chosen
with probability 1. In other words, a deterministic policy in a BP is a single action.
Policies that are not deterministic are called stochastic.

Planning in a single-objective BP is straight-forward. In the planning setting we
know the model, and therefore we can chose an optimal deterministic policy by simple
maximization. There is always a deterministic policy that is optimal, because there is
always an action a that maximizes the reward, and choosing a different action a′ cannot
improve the value. This does not imply that it is always possible to retrieve the optimal
policy in practice though; maximization can be infeasible when the number of actions
is too large. However, because BPs do not have any structure that can be exploited to
compute the optimal policy more efficiently, there is no way to mitigate that by clever
algorithms.

In the multi-objective case, i.e., a multi-objective multi-armed bandit problem (MOBP)
(Drugan and Nowé, 2013), we typically need more than one policy, and deterministic
policies no longer suffice.

Definition 15. A multi-objective multi-armed bandit problem (MOBP) is a tuple 〈A,R〉,
where
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• A is a discrete set of actions, and

• R is the reward function, that specifies an expected reward R(a) ∈ Rd for each
action, where d is the number of objectives.

In the MOBP case the value of a policy, Vπ =
∑

a∈A π(a)R(a), is vector-valued. This
means that there is no longer a single action that maximizes the immediate reward.

We now illustrate which policies are required for the PCS and CCS, using an exam-
ple MOBP. Imagine a 2-objective MOBP with three actions, a1, a2 and a3, for which
the corresponding rewards are:

• R(a1) = (3, 0),

• R(a2) = (1, 1), and

• R(a3) = (0, 3).

When we only allow deterministic policies (of which there are three), all policies
are Pareto optimal and in the PCS. However, when we determine the CCS, we see that
a2 is C-dominated, because there is no linear weight w for which w · (1, 1) is better
than both w · (3, 0) and w · (0, 3).

Now, let us allow stochastic policies. First, we observe that a stochastic policy can
P-dominate a deterministic policy. The deterministic policy of always performing ac-
tion a2 is dominated by the stochastic policy π(a1) = π(a3) = 0.5 with value (1.5, 1.5).
In fact, we can see that all policies for which π(a2) = 0 are Pareto optimal, and a PCS
necessarily consists of all of these policies. For the CCS we also see that all policies
for which π(a2) = 0 are C-undominated. However, all but two of these policies — the
deterministic policies π1, always selecting action a1, and π3 always selecting a3 — are
only optimal for the weight w = (0.5, 0.5) and π1 and π3 also maximize the scalarized
value for this w. Therefore, a minimally sized CCS would still only consist these two
deterministic policies. We therefore make the following observations:

Observation 1. The PCS of deterministic policies can contain policies that are domi-
nated by policies in the PCS of stochastic policies. The PCS of stochastic policies can
be infinitely large.

Observation 2. The CH of stochastic policies can be infinitely large, but a CCS can
still consist of a discrete set of policies.

Let us formalize the intuition of Observation 2. We can in fact show that for com-
puting a CCS, even when stochastic policies are allowed, we can restrict ourselves to
only deterministic policies.

Theorem 1. For an MODP that can be expressed as an MOBP, there is always a CCS
with only deterministic policies, even when stochastic policies are allowed.
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Proof. We observe that for all weights w in a linear scalarization function, we can
translate the MOBP to a single-objective BP, by redefining the reward function as the
inner product of w with the multi-objective reward function: for all a the reward be-
comes Rw(a) = w ·R(a). For the resulting BP we know that there exists an optimal
deterministic policy.

This is an important result, because it guarantees that we can define a finite-size
CCS. Furthermore, we generalize this proof for more complex planning problems in
the following chapters, when we introduce each specific MODP.

For the stochastic PCS, a theorem similar to Theorem 1 does not hold, and the PCS
can be infinitely large. However, in Section 2.3 we argue that we can mitigate this by
using a compact representation of a stochastic PCS using a deterministic CCS. For now,
we assume that solving an MOBP consists of either computing a deterministic PCS,
or a deterministic CCS. This can be done by putting all the values of the deterministic
policies in a set and subsequently removing all policies that are dominated. We refer to
the removal of dominated policies from a set as pruning (Feng and Zilberstein, 2004).

Planning in MOBPs is nothing more than pruning away all P-dominated or C-
dominated actions. The challenge in both BPs and MOBPs arises when the reward
function R is unknown to the agent, and information about these rewards can only be
attained through repeated interaction. This learning setting (Sutton and Barto, 1998;
Wiering and Van Otterlo, 2012) poses an interesting challenge because the agent should
balance exploring its options to learn more about R and exploiting what it already
knows in order to attain high rewards. However, the learning setting is beyond the
scope of this dissertation. Please refer to (Auer and Ortner, 2010; Kuleshov and Precup,
2014) for an overview of BP learning algorithms, and to (Drugan and Nowé, 2013;
Yahyaa et al., 2014) for MOBP algorithms.

MOBPs are problems with very little structure, making it an uninteresting problem
for planning; it is either possible to compute a CS by pruning or it is not, and it the
latter case, nothing can be done about it. Therefore, we focus attention on MODPs with
a more structure, that can be exploited algorithmically. In fact, the structured MODPs
that we treat in this dissertation can be reduced to MOBPs, by discarding all structure.
However, doing so typically makes these problems intractable.

2.2.2 Overview of Decision Problems
The MOBP is a very simple model, that is well-suited to model single-agent, single-
shot and fully observable decision problems. When we relax either the first or the
second of these constraints though, the planning problem will be more structured, and
planning becomes more complex.

An overview of SODPs, as a Venn diagram, is presented in Figure 2.2. The different
models in this diagram are: the (multi-armed) bandit problem (BP), the coordination
graph (CoG), the Markov decision process (MDP), the multi-agent Markov decision
process (MMDP), the partially observable Markov decision process (POMDP), and



2.2. Overview of Concrete Decision Problems 23

Figure 2.2: Venn diagram of cooperative (single-objective) decision problems

finally the decentralized partially observable Markov decision process (Dec-POMDP).
All these models have multi-objective counter-parts, that can be defined by replacing
the scalar reward function in these models by a vector-valued one.

The Models in this Dissertation

In this dissertation, we limit our scope to three specific MODPs models: multi-objective
coordination graphs (MO-CoGs), and multi-objective Markov decision processes (MOMDPs)
and multi-objective partially observable Markov decision processes (MOPOMDPs).

MO-CoGs are cooperative single-shot, fully observable, multi-agent decision prob-
lems. In MO-CoGs, agents must coordinate their behavior in order to find effective
policies. Key to making coordination between agents efficient is exploiting loose cou-
plings, i.e., each agent’s actions directly affect only a subset of the other agents. Such
loose couplings are expressed by a reward function, that decomposes into a sum over
(many) local reward functions in which only subsets of the agents participate. We
define the MO-CoG model formally in Chapter 4.

As we discuss in Chapter 4, it is possible to flatten a MO-CoG to an MOBP, by
ignoring the graphical structure of the reward function. Such a flattening can be seen
as defining a single central control agent that has the Cartesian product of the individual
action spaces of all agents as its action space. Because the size of this Cartesian product
grows exponentially with the number of agents tin the problem however, this approach
is typically intractable. It is however important to note that because this flattening is
possible, Theorem 1 applies.

MOMDPs are single-agent, fully observable, sequential decision problems. A pol-
icy in an MOMDP thus consists of a sequence of (probability distributions over) ac-
tions. This sequence executed actions that results from a policy affect the environment.
Therefore, the agents do not only have to consider their immediate reward, but also the
reward they will be able attain later, by changing the state of the environment to a
more favorable one. Because the effects of the actions are typically stochastic, find-
ing suitable policies for defining a coverage set requires reasoning over all possible
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future states of the environment. We define the MOMDP model formally in Chapter
5. While it is not straight-forward to flatten an MOMDP to an MOBP, it is known that
we can define a CCS consisting of deterministic policies even when stochastic policies
are allowed.

Also in Chapter 5, we discuss MOPOMDPs, which are single-agent, partially ob-
servable, sequential decision problems. While this partial observability poses an im-
portant additional challenge, it important to note that a reduction exists to a multi-
objective MDP, be it with a continuous state-space. Therefore, is possible to define
a CCS consisting of deterministic policies even when stochastic policies are allowed,
with respect to this continuous state. We discuss how this works in detail in Section
5.1.2.

Other Models

For the MO-CoG, MOMDP and MOPOMDP models we propose new algorithms in
the following chapters. However, there are more possible collaborative MODPs, that
extend SODPs from Figure 2.2. In particular, these models represent other combina-
tions of the aspects we discussed in Section 1.3:

• (Multi-objective) collaborative bayesian games (CBGs) (Oliehoek et al., 2012)
are multi-agent, single-shot, and partially observable decision problems.

• (Multi-objective) multi-agent Markov decision processes (MMDPs) (Boutilier,
1996) are multi-agent, sequential, and fully observable decision problems.

• (Multi-objective) decentralized partially observable Markov decision process
(Dec-POMDP) (Bernstein et al., 2002; Oliehoek, 2010) are multi-agent, sequen-
tial, and partially observable decision problems.

We do not propose new methods for these models in this dissertation, but we do discuss
the implications of our work for these models in Section 6.2.3 of Future Work.

2.3 Case for the Convex Coverage Set
Now that we have introduced different solution concepts for multi-objective decision
problems (MODPs) as well as specific instances of MODPs, we advocate a specific
solution concept, i.e., the convex coverage set (CCS) of deterministic policies. As ex-
plained in Section 2.1.2, the CCS is an exact solution when the scalarization function,
f (Definition 1), is linear. In this section, we show that the CCS is also a sufficient
set to easily construct all necessary values for a PCS of stochastic policies by using
a specific type of stochastic policy called a mixture policy (Vamplew et al., 2009).
Furthermore, we will show that we can restrict our attention to deterministic policies
when we have cooperative MODPs for constructing a CCS. In other words, the CCS
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Figure 2.3: The CCS of deterministic stationary policies, mixture policies and the PCS
of stochastic/non-stationary policies.

of deterministic policies, CCS(ΠD), applies to cooperative MODPs when either, the
scalarization function is linear, or policies can be stochastic, or both.

In scenarios in which multiple policies are required, e.g., the unknown weights and
decision support scenarios of Section 1.1, where stochastic policies are allowed, we
refer to the full set of all possible stochastic policies for an MODP as Π. However,
when we can make the following assumption, we do not require all of Π to establish a
CCS.

Assumption 1. Optimality of Deterministic Policies for Scalarized Instances
For any given w of a linear scalarization function (Definition 6), an MODP can be
scalarized resulting in an SODP for which there is an optimal deterministic policy.

If this assumption holds, we can employ stochastic policies instead of deterministic
non-stationary ones. In particular, we can employ a mixture policy (Vamplew et al.,
2009) πm that takes a set of N deterministic policies, and selects the i-th policy from
this set, πi with probability pi, where

∑N
i=0 pi = 1. This leads to policy values that are

a linear combination of the values of the constituent policies:

Vπm =
N∑
i=0

piV
πi .

When we consider the possible values we can attain through using these mixture poli-
cies on policies that are in the CCS (using the same values as for Figure 2.1) in Figure
2.3, we observe that we can create all the policy values on the red lines connecting the
red dots (such as B and C, which represent the CCS policy values). This is a highly use-
ful observation, as — as we discuss in the following chapters — in all the cooperative
MODPs we consider, we can restrict ourselves to deterministic policies for computing
a CCS.

Corollary 1. (Vamplew et al., 2009; Roijers et al., 2013a) In an MODP for which
Assumption 1 holds, there exists a CCS(ΠD) that includes only deterministic policies,
such that this set PM , is a PCS(Π).
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Proof. We can construct a policy with any value vector on the convex surface, e.g., the
red lines connecting the red dots (which represent the CCS policy values) in Figure 2.3,
by mixing policies on a CCS.7 Therefore, we can always construct a mixture policy that
dominates a policy, with a value under this surface, such as A. Furthermore, we show
by contradiction that there cannot be any policy above the convex surface. If there was,
it would be optimal for some w if f was linear. Consequently, due to Assumption 1,
there would be a deterministic policy with at least equal value. But since the convex
surface spans the values on theCCS, this leads to a contradiction. Therefore, no policy
can Pareto-dominate a mixture policy on the convex surface.

Thanks to Corollary 1, it is sufficient to compute a CCS, CCS(ΠD), of deter-
ministic policies to solve cooperative MODPs even when the scalarization function is
non-linear, as long as we can establish that Assumption 1 holds. We show this for all
MODPs of this dissertation in the following chapters. This leads us to the taxonomy of
Table 2.1, in which for each scenario we discussed in Section 1.1 and type of policies
allowed, for the different assumptions about the family of scalarization functions dis-
cussed in Section 2.1, the appropriate solution concept is provided. In this dissertation
we focus on the case in which multiple policies are required (the unknown weights and
decision support scenarios) and where either the scalarization function can be assumed
to be linear, or the policies can be stochastic, or both. The corresponding solution
concept is the CCS of deterministic policies, as highlighted in blue in the table.

In the rest of this dissertation, we focus on finding methods for computing the CCS
of deterministic policies. For convenience, we typically assume linear f . However,
please note that our methods also apply to merely monotonically increasing f , when-
ever stochastic policies are allowed.

7Note that we should always mix policies that are “adjacent” (such as B and C); the line between
any pair of the policies we mix should be on the convex surface.
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single policy multiple policies
(known weights) (unknown weights/decision support)

deterministic stochastic deterministic stochastic

linear
scalariza-
tion

one deterministic policy CCS of deterministic policies

monotoni-
cally
increasing
scalariza-
tion

one
deterministic
policy

one mixture
policy of two
or more
deterministic
policies

PCS of
deterministic
policies

CCS of
deterministic
policies

Table 2.1: The MODP problem taxonomy — the columns describe whether the prob-
lem necessitates a single policy or multiple policies (and in which scenarios it does so),
and whether those policies must be deterministic (by specification) or are allowed to
be stochastic. The rows describe whether the scalarization function is a linear (Defi-
nition 6), or whether this cannot be assumed and the scalarization function is merely
a monotonically increasing function. The contents of each cell describe what solution
set should be used as a solution concept (as defined in Section 2.1).





Chapter 3
Optimistic Linear Support

In this chapter we present one of our central contributions: the optimistic linear sup-
port (OLS) framework for cooperative multi-objective decision problems (MODPs).
Before we go into OLS, we first discuss two approaches to solving MODPs in Section
3.1, which we refer to as the inner and the outer loop approaches. In the former, a
single-objective algorithm for a specific decision problem (such as a CoGs, MDPs or
POMDPs) is adapted to apply to the corresponding MODP, by changing the summa-
tion and maximization operators into cross-sum and suitable pruning operators. In the
latter — to which OLS belongs — an MODP is solved as a series of scalarized (i.e.,
single-objective) problems, and single-objective algorithms are used as subroutines.

In Section 3.2, we analyze the outer loop approach, by identifying the similarities
between computing a CCS for MODPs, and computing the value function of a (single-
objective) POMDP. We observe that the scalarized value function of MODPs and the
value function of single-objective POMDPs exhibit the same favorable property, which
can be exploited in a similar way. However, we also observe that in the analogy be-
tween MODPs and POMDPs, the number of states in a POMDP corresponds to the
number of objectives in an MODP. While the scalability in the number of states in a
POMDP is typically the bottleneck, the number of objectives in an MODP is typically
much smaller and therefore not the bottleneck. In fact, there are many real-world prob-
lems with two or three objectives. Therefore, an algorithm that is efficient for POMDPs
with only a small number of states but does not scale well, may still be a good starting
point for creating an MODP algorithm.

In Section 3.3, we define the OLS framework, and explain the algorithm in detail.
OLS is a generic outer loop method, that takes inspiration from the POMDP literature.
It takes a single-objective method as a subroutine, and calls this method a finite number
of times in order to solve an MODP optimally. In Section 3.4, we analyze OLS theoret-
ically, and show that OLS has many advantages over inner loop algorithms, that extend
the same single-objective algorithms used by OLS as subroutines. Firstly, OLS comes
with strong guarantees with respect to time and space complexity. Secondly, OLS-
based algorithms can be much faster for small and medium numbers of objectives than

29
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Al (5.7, 6.9)

Bl (7.1, 5.7)

Cl (7.5, 5.4)

Dl (6.6, 6.7)

Ar (7.3, 7.6)

Br (5.9, 8.2)

Cr (8.8, 6.4)

Dr (6.6, 7.7)

Vl(al) Vr(ar)

Table 3.1: A simple MODP — select one element from each list and receive the asso-
ciated reward vector.

corresponding inner loop algorithms. And finally, in OLS, the single-objective sub-
routines can be used out of the box1, making any improvement for single-objective
methods an improvement for multi-objective methods.

After defining and analyzing OLS, we make two key improvements to OLS, that
improve its applicability for different MODPs. In Section 3.5, we show that OLS can
be used in combination with bounded approximate single-objective subroutines, and
show that if this is the case, OLS produces ε-CCSs (Definition 13). In Section 3.6, we
show that we can improve the runtime of OLS, by reusing the solutions found by earlier
calls to the single-objective subroutines to hot-start later calls to these subroutines.

3.1 Inner Loop versus Outer Loop
In this section, we present a “how-to” on creating algorithms that compute a CCS for
an MODP, starting from a method that computes the optimal policy (and associated
value) for the corresponding single-objective decision problem (SODP). We discuss
two popular approaches. The first, which we refer to as the inner loop approach,
adapts the inner workings of the single-objective algorithm by exchanging sums and
maximizations by cross-sums and pruning, which we will define soon. The second,
which we refer to as the outer loop approach, leaves the single-objective algorithm
intact, but creates a shell, i.e., an outer loop, around the single-objective method.

In order to illustrate the difference between inner and outer loop methods, we make
use of the following simple multi-objective decision problem (Table 3.1): there are
two local payoff functions called Vl(al) and Vr(ar) with for each local action (A,
B, C, or D), an expected reward. A deterministic policy takes one action al and
one action ar. The value of a deterministic policy is the sum of the local rewards.
We denote a deterministic policy as a = (al, ar) (a joint action), and the value of a
deterministic policy as V(a) = Vl(al) + Vr(ar). For example, for the deterministic
policy a = (Al, Ar), the value would be V(Al, Ar) = (13, 14.5).

1Though sometimes, adaptations can be made as we explain in Section 5.3.
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Figure 3.1: (a) All values and local rewards for the problem of Table 3.1. (b) The
optimal scalarized value function, V ∗CCS(w) = max

V∈CCS
w ·V.

A single-objective version of our toy problem would consist of two local payoff
functions with scalar values. When we are given a specific linear scalarization weight
w, we can scalarize the problem of Table 3.1, resulting in such a single-objective
problem. For example, when w = (0.5, 0.5), the rewards in Vl would become:
Vl,w(Al) = 6.3, Vl,w(Bl) = 6.4, Vl,w(Cl) = 6.45, and Vl,w(Dl) = 6.65. From such
a local payoff function, it is easy to pick the maximizing local action. Furthermore,
combining the maximizing actions from both lists provides the maximizing policy for
the full problem. A single-objective solver would thus be:

1. pick the maximum from each list, and

2. compute the sum.

Finding the maximum value can thus be expressed as:

max
a

Vw(a) = max
al

Vl,w(al) + max
ar

Vr,w(ar), (3.1)

and the maximizing policy can be found by using arg max instead of max. When we
call the number of elements in each list l, the single-objective algorithm returns the
optimal solution in O(l) time.

For the multi-objective version (Table 3.1), we want to compute the CCS. A naive
way to do so would be to first list all possible joint actions and associated value vec-
tors and compute the CCS from that list. The multi-objective values of all possible
deterministic policies are illustrated in black and purple in Figure 3.1. Because there
are l2 = 16 deterministic policies, but only 5 CCS policies, we might be doing a lot of
unnecessary work when we follow this approach. In the following two subsections, we
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provide two approaches to adapting single-objective methods in a smart way. In the
problem of Table 3.1, both approaches avoid full enumeration of deterministic policies.

3.1.1 The Inner Loop Approach
A key difference between SODPs and MODPs, is that while in single-objective prob-
lems the solution is a single policy that maximizes a scalar value, in multi-objective
problems, the solution is typically a set of policies and associated value vectors, i.e.,
coverage sets. For convenience we assume that the CSs contain both value vectors as
well as the policies that achieve these value vectors. We do not go into the implemen-
tation details of how this is achieved in this section.2

In order to work with solution sets, we first need to translate the problem to sets
rather than local reward functions:

Vl = {Vl(al) : al ∈ {Al, Bl, Cl, Dl}},

and accordingly for Vr.
In the inner loop approach, the required solution sets are produced by changing

the operators required for optimization in single-objective problems, to operators that
work on sets. The first single-objective operator that we must adapt in the inner loop
approach is the maximization operator. In the multi-objective setting the maximization
corresponds to computing a (local) coverage set. Computing a CS can be seen as
computing the maximal value for all weights of the scalarization function in parallel.
The multi-objective operator corresponding to maximization takes a set, such as Vl,
and prunes away all vectors that do not maximize the value for any weight w of the
scalarization function f , resulting in a local CS. Therefore, we call these operators
pruning operators. Note that when computing a PCS, we need a different pruning
operator than when computing a CCS. In its abstract form, i.e., when the operator
computes a local CS (either a CCS or PCS), we denote this operator as LCS.

The second single-objective operator we must adapt is the summation operator. The
corresponding multi-objective operator is the cross-sum operator, ⊕, which combines
two sets by computing the sum of all possible pairs with one element from each set:

A⊕ B = {A + B : A ∈ A ∧B ∈ B} . (3.2)

Having defined the appropriate operators, we can now translate Equation 3.1, to
reflect the inner loop method for the problem of Table 3.1:

CS = LCS(LCS(Vl)⊕ LCS(Vr)). (3.3)

Note that while there are only two maximization operations in Equation 3.1, there are
now three LCS operations. This is because while the sum of maximal local rewards

2We do go into these details for the specific MODPs we discuss in later chapters.
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in the single-objective problem form a single value when summed, the combination of
two sets may contain combinations that are dominated.

We have now defined the general schema for creating a multi-objective inner loop
method from a base single-objective method, i.e., replace the maximizations by prun-
ing operations, and replace the summations by cross-sums. Before we can use such a
method in practice however, we must:

(a) define appropriate implementations of LCS depending on what type of solution
set we are after, e.g., a CCS or a PCS,

(b) select the places in the algorithm where pruning is applied, and

(c) check whether the resulting inner loop method is indeed correctly outputting the
CS. In particular, we check that no necessary vectors for computing the CS pruned
prematurely, and that no excess vectors, i.e., vectors that are never optimal for any
allowed scalarization, retained in the output.

First, let us address (a). We provide a possible implementation of LCS for the
case of CCS computations in Algorithm 1. We use this implementation throughout
this dissertation, and refer to it as CPrune. CPrune is based on the algorithm for CCS
pruning3 by Feng and Zilberstein (2004), with one modification. In order to improve
runtime guarantees, CPrune first pre-prunes the input set, V , to a PCS using the PPrune
algorithm (Algorithm 2) at line 1. PPrune computes a PCS in O(d|V||PCS|) time by
running pairwise comparisons. Next, a partial CCS, V∗, is constructed as follows: a
random vector V from V ′ is selected at line 4. For V the algorithm tries to find a
weight vector w for which V is better than the vectors in V∗ (line 5), by solving the
linear program in Algorithm 3. If there is such a w, CPrune finds the best vector V′

for w in V ′ and moves it to V∗ (line 10–12). If there is no weight for which V is better,
it is C-dominated and thus removed from V ′ (line 7).
Theorem 2. The computational complexity of CPrune as defined by Algorithm 1 is

O(d|V||PCS|+ |PCS|P (d|CCS|)), (3.4)

where P (d|CCS|) is a polynomial in the size of the CCS and the number of objectives
d, which is the runtime of the linear program that tests for C-domination (Algorithm
4).

Concerning (c), i.e., whether the algorithm outputs the correct CS, we provide a
small proof sketch for our simple MODP problem of Table 3.1. (In later chapters we
provide more formal proofs.) First, note that for each w, CPrune retains at least one
optimal value vector, and removes all vectors that are not optimal for any w. Because

3The work by Feng and Zilberstein (2004) is from the POMDP literature. We explain the relation
between POMDPs and multi-objective decision making in Section 3.2. Note that many algorithms
for CCS pruning originate in other fields than POMDPs, such as graphics or geometry (e.g., Graham
(1972)).
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Algorithm 1: CPrune(V)

Input: A set of value vectors V
1 V ′ ← PPrune(V)
2 V∗ ← ∅
3 while V ′ 6= ∅ do
4 select random V from V ′
5 w← findWeight(V,V∗); // identify a w where V improves V∗

6 if w=null then
7 remove V from V ′ ; // there is no w where where V improves V∗

8 end
9 else

10 V′ ← arg maxV∈V ′ w ·V ; // find best value vector for w

11 V ′ ← V ′ \ {V′}
12 V∗ ← V∗ ∪ {V′}
13 end
14 end
15 return V∗

Algorithm 2: PPrune(V)

Input: A set of value vectors V
1 V∗ ← ∅
2 while V 6= ∅ do
3 V← the first element of V
4 foreach V′ ∈ V do
5 if V′ �P V then
6 V← V′ ; // Continue with V′ instead of V

7 end
8 end
9 Remove V, and all vectors P-dominated by V, from V

10 Add V to V∗
11 end
12 return V∗



3.1. Inner Loop versus Outer Loop 35

Algorithm 3: findWeight(V,V)

// Find a weight vector w, where the scalarized value of a new value

vector V is an improvement, i.e., w · V > max
V′∈V

w · V′, using a linear

program.

max
x,w

x

subject to w · (V −V′)− x ≥ 0,∀V′ ∈ V
d∑
i=1

wi = 1

if x > 0 return w else return null

linear scalarization distributes over addition, i.e., w · (Vl(al)+Vr(ar)) = w ·Vl(al)+
w ·Vr(ar), we know that no optimal values can be lost when performing CPrune on
the separate sets Vl and Vr, before taking the cross-sum. Furthermore, we know that
because CPrune is applied again after taking the cross-sum, no excess value vectors
can remain.

When we apply the inner loop method, i.e., Equation 3.3 where LCS = CPrune, to
the problem of Table 3.1 (and Figure 3.1(a)), we observe the following: when applying
CPrune to Vl and Vr, it removes one vector each. In other words, the local CCSs
both consist of three vectors. Therefore, the cross-sum of these CCSs consists of 9
vectors, which is significantly less than the 16 we would get if we took the cross-sum
before local pruning. However, in order to do the local pruning, we have to invest
effort, which in this (small) problem amounts to as much work as computing the cross-
sum. Therefore, we have to be careful when applying the inner loop approach; it is
not always worth the effort to prune everywhere we can. Selecting how much to prune
— by choosing either to not prune at all, apply only PPrune, or to apply CPrune, at
each possible point in the algorithm — is a non-trivial design choice that may be very
problem-specific. In Sections 4.3.1 and 4.3.3 for example, we analyze the different
design choices for an inner loop method for MO-CoGs.

Many algorithms in the literature on multi-objective decision problems, take an
inner loop approach (e.g., the methods by Rollón (2008) and Wilson et al. (2015)
for MO-CoGs, and Barrett and Narayanan (2008) and Moffaert and Nowé (2014) for
MOMDPs). However, it is also possible to create multi-objective methods by creating
a shell around a single-objective method, rather than making major changes to the
single-objective method itself, as we describe in the next subsection.
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3.1.2 The Outer Loop Approach
In an outer loop approach, an (approximate) coverage set is built incrementally, by
solving scalarized instances. In order to solve these scalarized instances, a subroutine
appropriate for the single-objective version of the MODP at hand is required. For ex-
ample, when we want to solve an MOMDP, an MDP solver is required as a subroutine.
The solutions produced for scalarized instances are kept in a partial CCS.

Definition 16. A partial CCS, S, is a subset of a CCS, which is in turn a subset of all
possible value vectors (V = {Vπ : π ∈ Π}), i.e., S ⊆ CCS ⊆ V .

The basic structure of an outer loop method is given in Algorithm 4. It starts from
an empty set (line 1), as a partial CCS. In each iteration, a scalarized instance (i.e.,
an SODP resulting from scalarizing the MODP with a given f and a w) is selected
(line 3), and solved using a single-objective subroutine (line 4). For each solution, i.e.,
an optimal policy π∗w, of a scalarized instance, the multi-objective value vector Vw is
retrieved. If Vw improves upon the partial CS, S — by improving the scalarized value
for some (allowed) f and w — it is added to S (lines 5–8). This process continues
until some stop criterion is reached, e.g., when it can be proven that S is a CS or time
runs out.

Algorithm 4: OuterLoopMethod(m, SolveSO)

Input: An MODP, m, and a corresponding single-objective solver SolveSO.
1 S ← ∅ ; // a partial CS
2 while stop criterion not reached do
3 mw ← select a w and scalarize m
4 π∗w ← SolveSO(mw)
5 Vw ← retrieve/compute the multi-objective value of π∗w
6 if Vw improves upon S then
7 S ← S ∪ {Vw} ; // add Vw (and associated π∗w) to S.
8 end
9 end

10 return S

The three main design choices when creating an outer loop method are:

(a) how to select scalarized instances to solve,

(b) which single-objective subroutine to use, and

(c) whether to compute the value vectors separately (by policy evaluation), or to adapt
the single-objective solver such that it returns both π∗w and Vw.

For example, in random sampling (RS) (which we use as a baseline in Roijers et al.
(2015c)), scalarized instances are selected randomly, by sampling one allowed w (and
f ) at each iteration and scalarizing the problem. The scalarized problem is then solved
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using, e.g., an out-of-the-box single-objective solver that produces an optimal policy
for mw, and the value vector, Vw retrieved by a standard policy evaluation algorithm.
At each iteration, it is checked whether Vw is already in S or not — note that Vw

cannot be dominated when the single-objective solver is optimal, because it is optimal
for at least one scalarized instance by definition — and if not, added to S. Typically,
this is done for a limited number of iterations, or until a fixed number Istop of iterations
has not produced a new value vector for S.

RS has two important advantages. Firstly, it quickly produces some result, and im-
proves upon it iteratively, i.e., it is an anytime algorithm. This is a major advantage
over many inner loop methods, as they typically need to run until completion to pro-
duce any useful results. Secondly, RS is extremely easy to implement, as long as a
suitable single-objective solver and policy evaluation method are available. However,
RS also has a major downside: it is optimal only in the limit. Because of its random-
ized nature, there is no guarantee that (within finite time) there will be no f and w left
for which an improvement still exists.

More sophisticated linear scalarization weight sampling-based methods (Kim and
de Weck, 2005; Van Moffaert et al., 2014) exist (in those articles referred to as weighted-
sum methods), in which scalarizations are sampled on the basis of, e.g., the relative
distance of the value vectors V or the hyper-volume metric. However, these methods
also do not provide runtime and optimality guarantees.

In Section 3.3, we present a novel algorithm which retains the advantages of RS
and other outer loop methods, but is provably optimal when the single-objective sub-
routines used are optimal, and produces bounded approximations when the subroutines
produce upper and lower bounds, and runs in finite time. In order to do this, we make
use of an analogy between finding the CCS for MODPs, and POMDP planning.

3.2 The Scalarized Value Function
In order to create outer loop methods that are provably optimal, run in finite time, and
make smart choices about which scalarized instances of the MODP to solve next, we
first need to define the scalarized value function with respect to the linear scalariza-
tion function (Definition 6). Note that focussing on linear scalarization is sufficient to
discover the CCS, even though the CCS can also be used in the context of non-linear
scalarization.

When we look at the linearly scalarized value Vw of a value vector V as a function
of w, it becomes a hyperplane above the weight simplex. For example, the scalarized
values for the vectors in the CCS of Table 3.1 are shown in Figure 3.1b. Because this
is a 2-objective problem, the weight for objective 0, w0, is equal to 1 − w1. When we
plot the scalarized value as a function of w1, each value vector becomes a line.

The maximal scalarized value function over a set of vectors, S , takes the maximum
over all the vectors in that set.

Definition 17. A scalarized value function over a partial CCS, S, is a function that
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takes a weight vector w as input, and returns the maximal attainable scalarized value
with any payoff vector in S:

V ∗S (w) = max
Vπ∈S

w ·Vπ.

If we take a complete CCS as S, the scalarized value function V ∗CCS(w) is the opti-
mal scalarized value function. By definition, for every w the optimal scalarized value
for the MODP is V ∗CCS(w). In Figure 3.1(b), the optimal scalarized value function is
represented by the bold line segments. Similar to the scalarized value function, we
define the set of maximizing value vectors and associated policies:

Definition 18. The optimal value vector set function with respect to S is a function
that gives the value vectors that maximize the scalarized value for a given w:

VS(w) = arg max
Vπ∈S

w ·Vπ,

Similarly, the optimal policy set ΠS(w), is the set of policies that constitute the value
vectors in VS(w).

Note that VS(w) and ΠS(w) are sets because for some w there can be multiple value
vectors that provide the same scalarized value.

Because V ∗S (w) is the maximum scalarized value for each w, it is the convex upper
surface of all of these lines (which represent the value vectors in S). Hence, V ∗S (w)
and V ∗CCS(w) are piecewise linear and convex (PWLC) functions.

When considering partially observable Markov decision processes (POMDPs) (Cheng,
1988; Kaelbling et al., 1998), the optimal value function is also a PWLC function. In
particular, the belief vectors b in POMDPs correspond to our weight vectors w and
the α-vectors correspond to our value vectors V. POMDPs and MODPs are thus re-
lated problems. This is an important observation, as many insights from the POMDP
literature can thus also be exploited in the context of computing CCSs for MODPs.
However, while scalability in the number of states in a POMDP is key to the succes
of a POMDP solver, the number of objectives in an MODP is typically small — there
are many MODPs with only two or three objectives. Therefore, scalability in the num-
ber of objectives is typically less important than scalability in other properties of an
MODP. In the next section, we build off a POMDP method that has poor scalability in
the number of POMDP states, but forms a good starting point for creating an MODP
method.

3.3 The OLS Algorithm
In this section, we present our main algorithmic contribution: optimistic linear support
(OLS). OLS is a novel outer loop algorithm for computing the CCS for MODPs.
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Like the random sampling (RS) method described in Section 3.1.2, OLS deals with
multiple objectives in the outer loop by employing a single-objective method as a sub-
routine, and building the CCS incrementally. With each iteration of its outer loop,
OLS thus adds at most one new vector to a partial CCS, S. To find this vector, OLS
selects a single linear scalarization weight, w. The key difference with RS is that OLS
selects this w intelligently. Specifically, OLS is optimistic: it selects the w that of-
fers the maximal possible improvement — an upper bound on the difference between
V ∗S (w) and the optimal scalarized value function V ∗CCS(w). After OLS identifies it,
this w is passed to the inner loop. In the inner loop, OLS calls a problem specific
single-objective solver to solve the single-objective decision problem that results from
scalarizing the MODP using the w selected by the outer loop. The policy that is opti-
mal for this scalarized problem and its value vector are then added to the partial CCS.

The departure point for creating OLS is Cheng’s linear support (CLS) (Cheng,
1988). CLS was originally designed as a pruning algorithm for POMDPs. Unfor-
tunately, this algorithm is rarely used for POMDPs in practice, as its runtime is ex-
ponential in the number of states. However, the number of states in a POMDP cor-
responds to the number of objectives in an MODP, and while realistic POMDPs typi-
cally have many states, many MODPs have only a handful of objectives. Therefore, for
MODPs, scalability in the number of objectives is typically less important than scala-
bility in other properties of the problem (such as the number of agents or the number
of states), making Cheng’s linear support an attractive starting point for developing
efficient MODP algorithms.

Because OLS takes an arbitrary single-objective problem solver as input, it can be
seen as a generic multi-objective method that applies to any cooperative MODP. We
show that OLS chooses a w at each iteration such that, after a finite number of itera-
tions, no further improvements to the partial CCS can be made and OLS can terminate.
Furthermore, we bound the maximum scalarized error of the intermediate results, so
that they can be used as bounded approximations of the CCS. After defining the al-
gorithm in this section, we show that OLS inherits any favorable properties from the
single-objective subroutines it uses in Section 3.4. In subsequent chapters, we instanti-
ate OLS by using different single-objective solvers for different instances of MODPs,
and show how this leads to novel state-of-the-art algorithms for a variety of problems.

In this section, we assume that the single-objective solver used as a subroutine by
OLS is exact, i.e., the scalarized instances are solved optimally. In other words, we
assume that OLS has access to a function called SolveSODP that computes the best
payoff vector for a given w. For now, we leave the implementation of SolveSODP
abstract. As mentioned in Section 3.1.2, we can either use an adapted single-objective
solver that returns the value vector, or we can use a separate policy evaluation step. In
Section 3.5 we relax the assumption that SolveSODP needs to be exact.

OLS exploits the PWLC property of the scalarized value function, V ∗S (w) (Defini-
tion 17). OLS incrementally builds up the CCS, by adding new value vectors that are
found at so-called corner weights, to an initially empty partial CCS, S. These corner
weights are the weights where V ∗S (w) changes slope in all directions. These must thus
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Figure 3.2: A run of OLS for the problem of Table 3.1. In each picture, V ∗S is indicated
by bold line segments, corner weights are indicated by vertical lines (gray for visited,
and red for pending), and CCS is shown as dotted lines. (a) OLS finds two payoff
vectors at the extrema, and a new corner weight wc = (0.4125, 0.5875) is found, with
maximal possible improvement ∆. (b) OLS finds a new vector at wc, and adds two
new corner weights to Q. (c and d) OLS finds another new vector and adds two new
corner weights to Q. (e) OLS does not find a new vector for the corner weight it
selects, reducing the maximal possible improvement at that corner weight to 0. (f) For
the remaining corner weights, no new vectors are found, ensuring S = CCS = CCS.
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Algorithm 5: OLS(m, SolveSODP, ε)

Input: A MODP m, a single-objective subroutine SolveSODP, and max. allowed error ε
1 S ← ∅ ; // a partial CCS

2 W ← ∅ ; // a set of visited weights

3 Q← an empty priority queue
4 foreach extremum of the weight simplex we do
5 Q.add(we,∞) ; // add the extrema to Q with infinite priority

6 end
7 while ¬Q.isEmpty() ∧ ¬timeOut do
8 w← Q.pop()
9 Vπ ← SolveSODP(m,w)

10 W ←W ∪ {w}
11 if Vπ 6∈ S then
12 Wdel ← remove the corner weights made obsolete by V from Q, and store them
13 Wdel ← {w} ∪Wdel ; // corner weights to remove

14 WVπ ← newCornerWeights(Vπ,Wdel,S)
15 S ← S ∪ {Vπ}
16 foreach w ∈WVπ do
17 ∆r(w)← calculate improvement using maxValueLP(w,S,W)
18 if ∆r(w) > ε then
19 Q.add(w, ∆r(w))
20 end
21 end
22 end
23 end
24 return S and the highest ∆r(w) left in Q

be weights where VS(w) and ΠS(w) (Definition 18) consist of multiple value vectors
and associated policies. Every corner weight is prioritized by the maximal possible
improvement of finding a new value vector at that corner weight. When the maximal
possible improvement is 0, OLS knows that the partial CCS is complete.

As an example of this process, we show the entire run of OLS for the problem of
Table 3.1 in Figure 3.2. The (corner) weights where the algorithm has already searched
for new payoff vectors are indicated by gray vertical lines, and the corner weights that
are still pending are indicated by red vertical lines.

OLS is shown in Algorithm 5. OLS takes as input: m, the MODP to be solved,
the single-objective subroutine, SolveSODP, and ε, the maximal tolerable error in the
result.

We first describe how OLS is initialized. Then, we define corner weights formally
and describe how OLS identifies them. Finally, we describe how OLS prioritizes corner
weights and how this can also be used to bound the error when stopping OLS before it
is done finding a full CCS.
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Initialization

OLS starts by initializing the partial CCS, S, which contains the payoff vectors in the
CCS that have been discovered so far (line 1 of Algorithm 5), as well as the set of
visited weights W (line 2). Then, OLS adds the extrema of the weight simplex, i.e.,
those points where all of the weight is on one objective, to a priority queue Q, with
infinite priority (line 5).

The First Iterations

The extrema that we added in the initialization are popped off the priority queue when
OLS enters the main loop (line 7), in which the w with the highest priority is selected
(line 8). Because the extrema have infinite priority, they are guaranteed to be popped
off the queue first. SolveSODP is called with w (line 9) to find V, the best payoff
vector for that w.

In the algorithm, we assume that SolveSODP returns the best value vector for w.
This can be done by adapting an out-of-the-box single-objective solver to return this
value vector, or by adding a separate policy evaluation step. In the latter case line 9 of
the algorithm could instead be written as:

π ← SolveSODP(m,w)
Vπ ← PolicyEval(m,π)

Throughout this dissertation, we assume that we can determine the exact value of Vπ

of the π that SolveSODP returns, i.e., the policy evaluation step is exact.
To illustrate the situation after initialization, Figure 3.2a shows S after two pay-

off vectors of the 2-objective list combination problem of Table 3.1 have been found
by applying SolveSODP to the extrema of the weight simplex. This leads to S =
{(16.3, 11.8), (11.6, 15.1)}. Each of these vectors must be part of the CCS because
it is optimal for at least one w: the one for which SolveSODP returned it as a solu-
tion. The set of weightsW that OLS has tested so far, i.e., the extrema of the weight
simplex, are marked with vertical gray line segments.

Corner Weights

After having evaluated the extrema, S consists of d (the number of objectives) payoff
vectors and associated joint actions. However, for many weights on the simplex, it does
not yet contain the optimal payoff vector. Therefore, after identifying a new vector Vπ

to add to S, OLS must determine which new weight vectors to add to Q, and with
what priority. Like Cheng’s linear support, OLS identifies the corner weights: the
weights at the corners of the convex upper surface, i.e., the points where the PWLC
surface V ∗S (w) changes slope. To define the corner weights precisely, we define P ,
the polyhedral subspace that is above V ∗S (w) (Bertsimas and Tsitsiklis, 1997). For
example, in Figure 3.1b, P is displayed as the shaded area above the optimal scalarized
value function. The corner weights are the vertices of P, which can be defined by a set
of linear inequalities:
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Algorithm 6: newCornerWeights(Vπ
new,Wdel,S)

Input: A new value vector, Vπ
new, a set of obsolete corner weights, Wdel, and the

current partial CCS, S
1 Vrel ←

⋃
w∈Wdel

VS(w) ; // involved value vectors (see Definition 18)

2 Brel ← the set of boundaries of the weight simplex involved in any w ∈Wdel;
3 Wnew ← ∅; // new corner weights

4 foreach subset X of d− 1 elements from Vrel ∪ Brel do
5 wc ← compute weight where the vectors/boundaries in X intersect with Vπ

new ;
6 if wc is inside the weight simplex then
7 if wc ·Vπ

new = V ∗S (wc) then
8 Wnew ←Wnew ∪wc

9 end
10 end
11 end
12 return Wnew

Definition 19. If S is the set of known payoff vectors, we define a polyhedron

P = {x ∈ <d+1 : S+x ≥ ~0,∀i, wi > 0,
∑
i

wi = 1},

where S+ is a matrix with the elements of S as row vectors, augmented by a column
vector of −1’s. The set of linear inequalities S+x ≥ ~0, is supplemented by the simplex
constraints: ∀i wi > 0 and

∑
iwi = 1. The vector x = (w1, ..., wd, Vw) consists of

a weight vector and a scalarized value at those weights. The corner weights are the
weights contained in the vertices of P , which are also of the form (w1, ..., wd, Vw).

Note that, due to the simplex constraints, P is only d-dimensional. Furthermore, the
extrema of the weight simplex are special cases of corner weights.

After identifying the new value vector Vπ, OLS identifies which corner weights
change in the polyhedron P by adding Vπ to S. Fortunately, this does not require re-
computation of all the corner weights, but can be done incrementally: first, the corner
weights in Q for which Vπ yields a better scalarized value than currently known are
deleted from the queue (line 12) and then the function newCornerWeights(Vπ,Wdel,
S) (line 14) calculates the new corner weights that involve Vπ.

The function newCornerWeights(Vπ,Wdel, S) (Algorithm 6) first calculates the
set of all relevant payoff vectors, Vrel, by taking the union of all the maximizing vec-
tors of the weights in Wdel for S (on line 1). In our implementation, we optimize this
step by caching VS(w) (Definition 18) and associated policies for all w in Q. If for
a corner weight, w, VS(w) contains fewer than d value vectors, then a boundary of
the weight simplex is involved. These boundaries are also stored (line 2). All pos-
sible subsets of size d−1 — of both vectors and boundaries — are taken. For each
subset the weight where these d − 1 payoff vectors (and boundaries) intersect with
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each other and V is computed by solving a system of linear equations (on line 5). The
intersection weights for all subsets together form the set of candidate corner weights:
Wcan. newCornerWeights(Vπ,Wdel, S) returns the subset of Wcan which are inside
the weight simplex and for which there is no vector V′ ∈ S that has a higher scalar-
ized value than V at that weight. OLS then adds the new corner weights returned by
newCornerWeights(Vπ, Wdel,S) to its queue, Q.

In Figure 3.2a, after computing the value vectors for the two extrema, one new cor-
ner weight is produced, labelled wc = (0.4125, 0.5875). In the subsequent iterations
where a new value vector is identified (Figure 3.2b-d), two new corner weights are
produced. For two objectives, there are always (at most) two new corner weights per
iteration, and two value vectors involved in each corner weights. For higher number
of objectives, it is in theory possible to construct a partial CCS, S that has a corner
weight for which all payoff vectors in S are in Vrel, leading to very many new corner
weights. In practice however, |Vrel| is typically very small, and only a few systems of
linear equations need to be solved, leading to a limited number of new corner weights.

After calculating the new corner weights WVπ at line 14 (in Algorithm 5), V is
added to S at line 15. Cheng showed that finding the best payoff vector for each corner
weight and adding it to the partial CCS, guarantees the best improvement to S:

Theorem 3. (Cheng, 1988) The maximum value of:

max
w,V∈CCS

min
V′∈S

w ·V −w ·V′,

i.e., the maximal improvement to S by adding a vector to it, is at one of the corner
weights.

Theorem 3 guarantees the correctness of OLS: after all corner weights are checked,
there are no new payoff vectors; thus the maximal improvement must be 0 and OLS
has found the full CCS (as is the case in Figure 3.2f).

Prioritization

Cheng’s linear support assumes that all corner weights can be checked inexpensively,
which is a reasonable assumption in a POMDP setting. However, since SolveSODP

is typically an expensive operation, testing all corner weights may not be feasible in
MODPs. For example, in MO-CoGs, a common choice for SolveSODP is the variable
elimination algorithm (which we discuss in detail in the next chapter), whose runtime
can be exponential in the size of the problem. Therefore, unlike Cheng’s linear support,
OLS pops only one w off Q to be tested per iteration. Making OLS efficient thus
critically depends on giving each w a suitable priority when adding it toQ. To this end,
OLS prioritizes each corner weight w according to its maximal possible improvement,
an upper bound on the improvement to V ∗S (w) that can be made by adding a single
new value vector. This upper bound is computed with respect to CCS, the optimistic
hypothetical CCS, i.e., the best-case scenario for the final CCS given that S is the
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current partial CCS and W is the set of weights already tested with SolveSODP. A
key advantage of OLS over Cheng’s linear support is thus that these priorities can be
computed without calling SolveSODP, obviating the need to run SolveSODP on all
corner weights.

Definition 20. An optimistic hypothetical CCS, CCS is a set of payoff vectors that
yields the highest possible scalarized value for all possible w consistent with finding
the vectors S at the weights inW .

In Figure 3.2a the CCS = {(16.3, 11.8), (11.6, 15.1), (16.3, 15.1)}. CCS is a superset
of S and the value of V ∗

CCS
(w) (indicated by the dotted line) is the same as V ∗S (w) at

all the weights inW . For a given w, maxValueLP(w,S,W) finds the scalarized value
of V ∗

CCS
(w) by solving the following linear program (LP):

max w · v
subject to W v ≤ V∗S,W ,

where V∗S,W is a vector containing V ∗S (w′) for all w′ ∈ W , and v is a vector of
variables of length d. Note that we abuse the notationW , which in this case is a matrix
whose rows correspond to all the weight vectors in the setW .4

Using CCS, we can define the maximal possible improvement of each w:

∆(w) = V ∗
CCS

(w)− V ∗S (w).

Figure 3.2a shows ∆(wc) with a dashed line. We use the maximal relative possible
improvement, ∆r(w) = ∆(w)/V ∗

CCS
(w), as the priority of each new corner weight

w ∈ WV. In Figure 3.2a, ∆r(wc)=
(0.4125,0.5875)·((16.3,15.1)−(11.6,15.1))

13.65625
=0.141968. When

a corner weight w is identified (line 14), it is added to Q with priority ∆r(w) as long
as ∆r(w) > ε (lines 17-19). In Figure 3.2 the corner weights in Q are indicated by red
vertical line segments.

After wc in Figure 3.2a is added to Q, it is popped off again (as it is the only
element of Q). SolveSODP(wc) generates a new value vector (13.9, 14.3), yielding
S = {(16.3, 11.8), (11.6, 15.1), (13.9, 14.3)}, as illustrated in Figure 3.2b. The new
corner weights are the points at which (13.9, 14.3) intersects with (16.3, 11.8) and
(11.6, 15.1). Testing these weights, as illustrated in Figure 3.2cd, results in 2 new pay-
off vectors, and two new corner weights each. After these two value vectors however,
checking the weight with the highest priority in Q does not result in a new vector, re-
ducing the maximal possible improvement at that weight to 0 (Figure 3.2e). Checking
the remaining 3 corner weights in Q, also does not lead to new value vectors, causing
OLS to terminate. Because the maximal improvement at these corner weights is 0 upon
termination, S = CCS due to Theorem 3. OLS called SolveSODP for only 9 weights
resulting exactly in the 5 payoff vectors of the CCS. The other 7 payoff vectors in V
(the black points of Figure 3.1) were never generated.

4 Our implementation of OLS reduces the size of the LP by using only the subset of weights inW
for which the policies involved in w, ΠS(w), have been found to be optimal. This can lead to a slight
overestimation of V ∗

CCS
(w).
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3.4 Analysis
We now analyze the computational and space complexity of OLS. Because OLS is a
generic algorithm that takes a single-objective solver (and possibly a policy evaluation
algorithm) as a subroutine, we provide the complexity bounds of OLS in terms of
the runtime and space complexities of these subroutines. We denote the runtime of
a single-objective solver as Rso and the runtime of policy evaluation as Rpe, and the
corresponding memory as Mso and Mpe.

Theorem 4. The runtime of OLS is

O( (|ε−CCS|+ |Wε−CCS|)(Rso +Rpe +Rnw +Rheur) ),

where |ε−CCS| is the size of the ε-CCS (Definition 13) outputted by OLS, |Wε−CCS| is
the number of corner weights of the scalarized V ∗ε−CCS(w) corresponding to the output
ε-CCS, Rnw the time it takes to run newCornerWeights, and Rheur the time it takes to
compute the value of the optimistic CCS using maxValueLP.

Proof. The runtime of one iteration of OLS is the cost of running the single-objective
solver plus policy evaluation, Rso + Rpe, plus the overhead per corner weight Rnw +
Rheur, multiplied by the number iterations. To count the number of iterations, we
consider two cases: calls to the single-objective solver that result in adding a new
vector to the partial CCS, S and those that do not result in a new vector but instead
confirm the optimality of the scalarized value V ∗S (w) at that weight. The former is the
size of the output of OLS, i.e., |ε−CCS|, while the latter is at most the number of corner
weights of the scalarized value function of that same output set, |Wε−CCS|.

Note that we can often adapt the implementation of SolveSODP to return the value
vector of the optimal policy for a weight, alongside this optimal policy, without an
increase in the complexity bounds of the single-objective solver. In this case Rpe be-
comes 0.

We have experienced that the overhead of OLS itself, i.e., computing new corner
weights, Rnw, and calculating the maximal relative improvement, Rheur, is very small
compared to the SolveSODP for the decision problems that we study in this dissertation.
In practice, newCornerWeights(u, Wdel, S) computes the solutions to only a small
set of linear equations (of d equations each). maxValueLP(w, S, W) computes the
solutions to linear programs, which is polynomial in the size of its inputs.5

If ε 6= 0, OLS does in practice not test all the corner weights of the polyhedron
spanned by the ε-CCS it outputs, as OLS only tests a corner weight if the maximal
possible improvement is larger than ε. However, this cannot be guaranteed in general.
Note that if ε = 0, OLS outputs an exact CCS, and needs to check every corner weight
in order to establish that it is in fact an exact CCS.

5When the reduction in Footnote 4 is used, only a very small subset of W is used, making it even
smaller.
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For d = 2, the number of corner weights is smaller than the size, |ε–CCS|, of
the output of OLS. Therefore, the runtime of OLS is O(|ε–CCS|(Rso +Rpe +Rnw +
Rheur)). For d = 3, the number of corner weights is 2|ε–CCS| (minus a constant)
because, when SolveSODP finds a new payoff vector, one corner weight is removed
and three new corner weights are added. For d = 3, the computational complex-
ity is thus still only O(|ε–CCS|(Rso + Rpe + Rnw + Rheur)). For d > 3, a loose
bound on |Wε–CCS| is the total number of possible combinations of d payoff vectors
or boundaries: O(

(|ε–CCS|+d
d

)
). However, we can obtain a tighter bound by observing

that counting the number of corner weights given a CCS is equivalent to vertex enu-
meration, which is the dual problem of facet enumeration, i.e., counting the number of
vertices given the corner weights (Kaibel and Pfetsch, 2003).

Theorem 5. (Avis and Devroye, 2000) For arbitrary d, |Wε–CCS| is bounded by

O(

(
|ε–CCS| − bd+1

2
c

|ε–CCS| − d

)
+

(
|ε–CCS| − bd+2

2
c

|ε–CCS| − d

)
).

Proof. This result follows directly from McMullen’s upper bound theorem for facet
enumeration (McMullen, 1970; Henk et al., 1997).

Theorem 6. The space complexity of OLS is

O(d|ε–CCS|+ d|Wε–CCS|+Mso +Mpe).

Proof. OLS needs to store every corner weight (a vector of length d) in the queue,
which is at most |Wε–CCS|. OLS also needs to store every vector in S (also vectors of
length d). Furthermore, when SolveSODP is called, the memory usage of this single-
objective solver is added to the memory usage of the outer loop of OLS. The same
holds for policy evaluation.

Because OLS adds few memory requirements to that of the single-objective solver
for small and medium numbers of objectives, OLS is almost as memory efficient as
the single-objective solver itself in these cases. This is a big difference with inner loop
methods, which need to retain sets of value vectors and partial policies, everywhere
that the single-objective method would have a single value and a single partial policy.

3.5 Approximate Single-Objective Solvers
Up until now, we have assumed that OLS takes an arbitrary exact single-objective
solver as a subroutine. In this section, we show that OLS can also be applied when
the single-objective subroutine is approximate. Furthermore, when the subroutine is
produces bounded approximations of at most ε error, OLS is guaranteed to produce an
ε-CCS.

First, we define what it means to have an ε-approximate algorithm as a single-
objective subroutine.
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Algorithm 7: AOLS(m, approxSolveSODP, ε)

Input: An MODP m, an approximate SODP subroutine ApproxSolveSODP, and max.
allowed error, ε.

1 S ← ∅ ; // a partial CCS

2 W ← ∅ ; // set of tuples of visited weights and upper bounds, V̄w
3 Q← an empty priority queue
4 foreach extremum of the weight simplex we do
5 Q.add(we,∞) ; // add the extrema to Q with infinite priority

6 end
7 while ¬Q.isEmpty() ∧ ¬timeOut do
8 w← Q.pop()
9 Vπ, V̄w ← approxSolveSODP(m,w)

10 W ←W ∪ {(w, V̄w)}
11 if Vπ 6∈ S then
12 Wdel ← remove the corner weights made obsolete by V from Q, and store them
13 Wdel ← {w} ∪Wdel ; // corner weights to remove

14 WVπ ← newCornerWeights(Vπ,Wdel,S)
15 remove vectors from S that are no longer optimal for any w when Vπ is added
16 S ← (S ∪ {Vπ})
17 foreach w ∈WVπ do
18 ∆r(w)← calculate improvement using maxValueLP(w,S,W)
19 if ∆r(w) > ε then
20 Q.add(w, ∆r(w))
21 end
22 end
23 end
24 end
25 return S and the highest ∆r(w) left in Q

Definition 21. An ε-approximate SODP solver is an algorithm that produces a policy
whose value is at least (1 − ε)V∗, where V ∗ is the optimal value for the SODP and
ε ≥ 0.

Given an ε-approximate SODP solver we can compute a set of policies for which
the scalarized value for each possible w is at least 1 − ε times the optimal scalarized
value, i.e., an ε-CCS (Definition 13). To this end we change the OLS algorithm in
order to handle approximate solvers, leading to the approximate OLS (AOLS) algorithm
(Algorithm 7). The differences with OLS (Algorithm 5) are highlighted in blue. We
go through the differences one by one.

Firstly, in Algorithm 7 we assume that the single-objective subroutine — in this al-
gorithm referred to as approxSolveSODP — returns both the value vector and policy6,

6We assume that the value Vπ is the correct value vector of π, i.e., the evaluation of the policy value
is exact.
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Vπ, and an upper bound on the scalarized value at the weight w for which it is called,
V̄w (line 9). This upper bound is stored alongside w (lines 2 and 10), and used instead
of the scalarized values in maxValueLP. Specifically, for a given w, maxValueLP finds
(line 18) the scalarized value of V ∗

CCS
(w) by solving:

max w · v
subject to W ′ v ≤ V̄∗S,W ,

where for each tuple (w, V̄w) ∈ W , there is a row in the matrixW ′ corresponding to
w with a corresponding element V̄w in the vector V̄∗S,W .

Secondly, because we have an approximate single-objective subroutine, the vectors
in the partial CCS S, may not be optimal for any w anymore when we add a new value
vector. Therefore, we first have to remove these vectors from S (line 15). We can
do this efficiently, by checking whether Vπ is better than a vector V′ ∈ S for all the
corner weights of V ∗S (w) for which V′ is optimal, as this bounds the area for which V′

is optimal w.r.t. to the other value vectors currently in S.

Correctness

We now establish the correctness of Algorithm 7, i.e., OLS with approximate single-
objective subroutines. Because the scalarized value of V ∗

CCS
(w) (as computed by

maxValueLP) obtained through using the ε of the approximate solveMDP is no longer
identical to V ∗S (w), we need to make an adjustment to Cheng’s theorem.

Theorem 7. There is a corner weight of V ∗S (w) that maximizes:

∆(w) = V ∗CCS(w)− V ∗S (w),

where S is an intermediate set of value vectors computed by AOLS (Algorithm 7).

This theorem is identical to Cheng’s, but, because S is no longer a subset of the CCS,
the proof is different.

Proof. ∆(w) is the difference between two PWLC functions: V ∗CCS(w) and V ∗S (w).
To maximize this function, we have three possible cases, shown in Figure 3.3: (a) the
maximum is at a weight that is neither a corner point of V ∗CCS(w), nor of V ∗S (w); (b)
it is at a corner point of V ∗CCS(w) but not of V ∗S (w); or (c) it is at a corner point of
V ∗S (w).

Case (a) can only apply if the slope of ∆(w) at w is 0, if this is so, then the
value of ∆(w) is equal to the value at the corner points where this slope changes.
Case (b) can never occur: if w is a corner point of V ∗CCS(w), and not of V ∗S (w), and
∆(w) = V ∗CCS(w) − V ∗S (w) is at a maximum, then because V ∗S (w) does not change
slope in w, the change in slope for V ∗CCS(w) must be negative. However, because we
know that V ∗CCS(w) is a PWLC function, this leads to a contradiction. Therefore, only
case (c) remains.
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(a) (b) (c)
Figure 3.3: Possible cases for the maximum possible improvement of S with respect
to the CCS.

Because the maximum possible improvement is still at the corner points of S,
even though S now contains ε-approximate solutions, the original scheme of calling a
single-objective subroutine for the corner weights still applies.

The approximate-subroutine version of OLS terminates when the maximal possible
improvement is less than or equal to ε · V ∗

CCS
(w). In other words, when there are no

corner weights with a possible improvement higher than the input slack ε.

Theorem 8. AOLS — as specified in Algorithm 7 — terminates after a finite number of
calls to an ε-approximate SODP solver approxSolveSODP and produces an ε-CCS.

Proof. The algorithm runs until there are no corner points left in the priority queue to
check, and returns S and the highest priority left inQ. Once a corner point is evaluated,
it is never considered again because the established value lies within (1− ε)V ∗

CCS
(w)

(as guaranteed by the ε-bound of approxSolveSODP). AOLS thus terminates after
checking a finite number of corner weights. All other corner weights have a possible
improvement less than or equal to εV ∗

CCS
(w). Therefore S must be an ε-CCS.

An equivalent, but subtly different version of the approximate OLS algorithm and
the corresponding correctness theorem, can be established accordingly, when the single-
objective subroutine provides an upper and lower bound (implying an ε), but it cannot
be know beforehand how strict these bounds will be:

Corollary 2. When an approximate single-objective solver produces a bounded ap-
proximate solution for each scalarized problem, with an error bound of at most ε,
AOLS produces an ε-CCS.

Proof. The proof is the same as for 8, by assuming that there is some ε for which
approxSolveSODP is ε-approximate, and establishing this on the fly, by inspecting the
difference between the upper and lower bounds found by the ε-approximate solver.

Note that the runtime and memory requirements, as established in Theorems 4 and
6, are not affected by the usage of an approximate single-objective subroutine instead
of an exact one, in any way other than changing the value of Rso, and Mso.
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3.6 Value reuse

Figure 3.4: Close corner
weights lead to close value
vectors.

One possible issue with using OLS in practice is that
for every corner weight w, the single-objective sub-
routine is called. When there are many corner weights,
this may take a long time, especially when the single-
objective solver need to start from scratch. However,
in many cases, we might be able to reuse part of the
work done in earlier iterations of OLS, in order to hot-
start the single-objective subroutine for a new w.

The key insight behind reuse in OLS, is that when
two corner weights, w and w′, are similar, the value
vectors for these weights found by the single-objective
solver are also likely to be similar, (e.g., in Figure 3.4).
Therefore, we also expect that similar policies are op-
timal for w′. If that is indeed the case, and we have a single-objective subroutine that
can start from a previous solution — or part of this previous solution — and gradually
improve, this may save us a lot of runtime.

In Algorithm 8, we show how this could be implemented. The differences with Al-
gorithm 7 are shown in blue. We aim to show the most general form of the algorithm,
and therefore use an abstract data type Iw that represents any possible information
from a previous call to approxSolveSODP for a weight w, that we may reuse in sub-
sequent iterations. Which information can be reused depends on the specifics of the
MODP, e.g., the full state-value function of a MO(PO)MDP (Chapter 5), or a repa-
rameterization used by variational methods for coordination graphs (Chapter 4). We
assume that this information is produced by the single-objective solver (line 10), and
is stored together with the previous search weights (lines 2 and 11). At every iteration,
all possibly reusable information from all previous iterations, I , is retrieved (line 9)
and used to hot-start the single-objective subroutine on line 10.

Without further assumptions, reuse is a heuristic, i.e., it may improve the runtime in
practice, but it does not show up in the complexity results for the algorithm. However,
if we can assume that I contains enough information for approxSolveSODP to check
that S is already sufficient for the new weight w, and that this check can be performed
in Rconfirm, we do not require a full run of the single-objective subroutine for corner
weights for which we will not find a new value vector, and can reduce the theoretical
runtime guarantees.

Theorem 9. The runtime of OLS with reuse is

O( (|ε−CCS|)(Rso +Rpe +Rnw +Rheur) + |Wε−CCS|Rconfirm ),

where Rconfirm is the time it takes to check the sufficiency of the solutions currently in
W and their value vectors S.
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Algorithm 8: OLS+R(m, approxSolveSODP, ε)

Input: An MODP m, an approximate SODP subroutine ApproxSolveSODP, and max.
allowed error, ε.

1 S ← ∅ ; // a partial CCS

2 W ← ∅ ; // a set of tuples of w, V̄w and Iw
3 Q← an empty priority queue;
4 foreach extremum of the weight simplex we do
5 Q.add(we,∞) ; // add the extrema to Q with infinite priority

6 end
7 while ¬Q.isEmpty() ∧ ¬timeOut do
8 w← Q.pop();
9 I ← Retrieve the reusable information for relevant previous iterations fromW;

10 Vπ, V̄w, Iw ← approxSolveSODP(m,w, I) ;
11 W ←W ∪ {(w, V̄w, Iw)};
12 if Vπ 6∈ S then
13 Wdel ← remove the corner weights made obsolete by V from Q, and store them
14 Wdel ← {w} ∪Wdel ; // corner weights to remove

15 WVπ ← newCornerWeights(Vπ,Wdel,S);
16 remove vectors from S that are no longer optimal for any w when Vπ is added;
17 S ← (S ∪ {Vπ});
18 foreach w ∈WVπ do
19 ∆r(w)← calculate improvement using maxValueLP(w,S,W);
20 if ∆r(w) > ε then
21 Q.add(w, ∆r(w));
22 end
23 end
24 end
25 end
26 return S and the highest ∆r(w) left in Q

This is especially important when the number of objectives is high, because — as
we have seen in Theorem 5 — |Wε−CCS| increases exponentially with the number of
objectives. Note however, that the greater the amount of information stored per w, the
more memory per corner weight OLS with reuse uses. We discuss problem-specific
instances of this algorithm, implementing reuse for the various problems we discuss in
this dissertation in the following chapters.



Chapter 4
Coordination

In cooperative multi-agent settings agents must coordinate their behavior in order to
optimize their common team payoff. Key to making coordination between agents ef-
ficient is exploiting the loose couplings common to such tasks: each agent’s actions
directly affect only a subset of the other agents. Multi-objective coordination graphs
(MO-CoGs) (Definition 27) express such independence in a graphical model for single-
shot decisions. In this chapter, we propose new methods for MO-CoGs that compute
the convex coverage set (CCS).

The single-objective version of MO-CoGs, i.e., coordination graphs (CoGs), is
well-studied, and many methods to exploit loose couplings exist, including variable
elimination (Rosenthal, 1977; Dechter, 1998; Guestrin et al., 2002; Kok and Vlassis,
2006), AND/OR tree search (Dechter and Mateescu, 2007; Marinescu, 2008; Mateescu
and Dechter, 2005; Yeoh et al., 2010), and variational methods (Wainwright and Jor-
dan, 2008; Liu and Ihler, 2011; Sontag et al., 2011; Ihler et al., 2012). For MO-CoGs,
several methods (Delle Fave et al., 2011; Dubus et al., 2009a; Marinescu et al., 2012)
that have previously been developed build upon a single-objective method using an in-
ner loop approach. These methods typically compute a Pareto coverage set (PCS). For
instance, Rollón (2008) introduces an inner-loop algorithm that we refer to as multi-
objective variable elimination (MOVE), which builds upon the variable elimination
algorithm and solves multi-objective coordination graphs by iteratively solving local
problems to eliminate agents from the graph. In this dissertation (i.e., Section 2.3)
however, we argue that the PCS is often not the most appropriate solution concept.
Therefore, we propose novel algorithms that compute the CCS rather than the PCS.
We define both inner and outer loop methods, and compare them to each other.

Before we can propose multi-objective methods however, we must first provide
background on the single-objective methods upon which these methods build, as well
as single-objective coordination graphs, in Section 4.1. Then, in Section 4.2, we define
multi-objective coordination graphs formally.

In Section 4.3 we propose novel inner loop methods that compute a CCS for MO-
CoGs. We propose convex multi-objective variable elimination (CMOVE) in Section

53
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4.3.1, that builds upon variable elimination, and convex tree-search (CTS) in Section
4.3.3 that builds upon AND/OR tree search. Both CMOVE and CTS are exact methods,
but while CMOVE is fast and uses a lot of memory, CTS focusses on situations in
which limited memory is available.

In Section 4.4, we propose our novel outer loop methods. Firstly, we propose
variable elimination linear support (VELS) that combines our outer loop approach —
OLS (Chapter 3) — with variable elimination, and tree search linear support (TSLS)
that combines AND/OR tree search with OLS. Because VELS and TSLS are based
on the same single-objective methods as CMOVE respectively CTS, comparing these
methods provides a fair comparison between outer and inner loop methods.

Finally, we introduce variational optimistic linear support (VOLS) that combines
OLS with variational methods. For VOLS, it is not clear how to create a correspond-
ing inner loop method, as variational methods do not have explicit maximization and
summation as their core operators. However, VOLS is an important addition to the
aforementioned outer loop methods; it is not exact — though it provides a bounded ap-
proximation — but makes up for this lack of optimality with very favorable empirical
runtime results.

The results of comparing our algorithms to PCS methods indicate that computing
the CCS is typically much less computationally intensive than computing a PCS. Fur-
thermore, the results indicate that the outer loop approach is typically much faster than
the inner loop approach for small and medium numbers of objectives. We conclude
with a summary of the available trade-offs that our novel algorithms pose with respect
to runtime, memory-usage, and quality of the output set in Section 4.5.

4.1 Coordination Graphs

Before going into MO-CoGs, we first provide background on the corresponding single-
objective problem, i.e., coordination graphs (CoGs) (Guestrin et al., 2002; Kok and
Vlassis, 2004), and methods for solving them. Our — and several existing — methods
for solving MO-CoGs build upon these single-objective methods.

In the context of coordination graphs, what we called reward for bandits is typically
called payoff in the literature. Payoff is usually denoted u (for utility). We adopt this
terminology in this dissertation when talking about coordination graphs.

Definition 22. A coordination graph (CoG) (Guestrin et al., 2002; Kok and Vlassis,
2004) is a tuple 〈D,A,U〉, where

• D = {1, ..., n} is the set of n agents,

• A = Ai × ... × An is the joint action space: the Cartesian product of the finite
action spaces of all agents. A joint action is thus a tuple containing an action
for each agent a = 〈a1, ..., an〉, and
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• U = {u1, ..., uρ} is the set of ρ scalar local payoff functions, each of which has
limited scope, i.e., it depends on only a subset of the agents. The total team
payoff is the sum of the local payoffs: u(a) =

∑ρ
e=1 u

e(ae).

In order to ensure that the coordination graph is fully cooperative, all agents share
the payoff function u(a). We abuse the notation e to both index a local payoff function
ue and to denote the subset of agents in its scope; ae is thus a local joint action, i.e.,
a joint action of this subset of agents. The decomposition of u(a) into local payoff
functions can be represented as a factor graph (Bishop, 2006) (Figure 4.1); a bipartite
graph containing two types of vertices: agents (variables) and local payoff functions
(factors), with edges connecting local payoff functions to the agents in their scope.1

The main challenge in a CoG is that the size of the joint action space, A, grows
exponentially with the number of agents. It will thus quickly become intractable to
enumerate all joint actions and their associated payoffs — which would be equivalent
to flattening a CoG to a multi-armed bandit problem (BP) (Definition 14). Key to
solving CoGs is therefore to exploit loose couplings between agents, i.e., each agent’s
behavior directly affects only a subset of the other agents.

Figure 4.1 shows the factor graph of an example CoG in which the team payoff
function decomposes into two local payoff functions, each with two agents in scope:

u(a) =

ρ∑
e=1

ue(ae) = u1(a1, a2) + u2(a2, a3).

The local payoff functions are defined in Table 4.1. We use this CoG as a running
example throughout this section.

The policies for a CoG represent which joint action to take. A deterministic policy
is a single joint action, and a stochastic policy is a probability distribution over joint
actions, A → [0, 1]. Note that because coordination between agents is essential, we
typically cannot restrict ourselves to independent distributions over local actions per
agent, as such independent policies cannot express that certain joint actions that can
result from drawing actions from these distributions should always be preferred to
others (that can result from the same distributions).

For a CoG, as for a BP, deterministic policies suffice.

1In the literature, many different names are in use for the CoG model, as it has applications to many
different problem domains. The constraint optimization problem (COP) (Yeoh et al., 2010) is identical
to a CoG. Other names in use for CoGs and COPs are weighted constraint satisfaction problems (WC-
SPs) (Rollón, 2008) and we have used collaborative graphical games (CoGG) (Roijers et al., 2013c) in
the past ourselves. Another equivalent model is the generalized additive independence (GAI) network
(Gonzales and Perny, 2004). (Although the graphical illustrations in GAI network papers are different
from those used in CoG literature — a bipartite graph with two different types of vertices: groups of
agents that participate in a local payoff function, and agents that form the overlap between two local
payoff functions — the (conditional independence) structure of the payoff functions is the same.) Fur-
thermore, the maximum a posteriori (MAP) assignment problem in probabilistic inference in graphical
models (Pearl, 1988) is an equivalent problem.
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                                    3  1                   2                  3

u                  u     1                            2

Figure 4.1: A CoG with 3 agents and 2 local payoff functions. The factor graph illustrates the
loose couplings that result from the decomposition into local payoff functions. In particular,
each agent’s choice of action directly depends only on those of its immediate neighbors, e.g.,
once agent 1 knows agent 2’s action, it can choose its own action without considering agent 3.

ȧ2 ā2

ȧ1 3.25 0

ā1 1.25 3.75

ȧ3 ā3

ȧ2 2.5 1.5

ā2 0 1

Table 4.1: The payoff matrices for u1(a1, a2) (left) and u2(a2, a3) (right). There are
two possible actions per agent, denoted by a dot (ȧ1) and a bar (ā1).

Theorem 10. For a CoG, there is always a deterministic policy that maximizes the
value.

Proof. We can a flatten CoG to a (very large) BP (Definition 14), i.e., we can see the
team of cooperative agents as a single centralized agent with a very large action space
(i.e., A), with associated payoffs u(a), and we know that for a BP there is always a
deterministic policy that maximizes the value.

Even though we can in theory flatten a CoG to a BP, this is typically not possible in
practice as the size of the action space is exponential in the number of agents, and there-
fore becomes too large to enumerate for all but small numbers of agents. Therefore we
need special solution methods that exploit the structure of the reward function.There
are many algorithms that do this; these can roughly be subdivided into four major
classes of algorithms: message passing (Bishop, 2006; Kok and Vlassis, 2006; Vlassis
et al., 2004), variable elimination (also called non-serial dynamic programming and
bucket elimination) (Dechter, 1998; Rosenthal, 1977), search-based methods (Dechter
and Mateescu, 2007; Furcy and Koenig, 2005; Marinescu, 2008), and variational meth-
ods (Liu and Ihler, 2013; Sontag et al., 2011).

In the following subsections, we summarize the three methods that we use as a
starting point to create new methods for MO-CoGs, and on which several existing
multi-objective algorithms are already based. Because message-passing algorithms
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typically do not have quality guarantees on the joint actions they produce; we focus
on the variable elimination algorithm, which is fast and produces optimal joint ac-
tions; one subclass of search-based algorithms called AND/OR tree search, which can
produce the optimal joint actions with limited memory-usage (Mateescu and Dechter,
2005); and variational methods, which are fast, but do not always produce optimal joint
actions. However, variational methods typically do return a bound on how much value
is lost when they do not produce the optimal joint action. Therefore, we can use these
methods as a basis for creating multi-objective methods that produce ε-CSs.

4.1.1 Variable Elimination
We first discuss the variable elimination (VE) algorithm, on which several multi-
objective extensions (e.g., Rollón and Larrosa (2006); Rollón (2008)) build, including
our own CMOVE (Section 4.3.1) and VELS (Section 4.4.1) algorithms.

VE exploits the loose couplings expressed by the local payoff functions to effi-
ciently compute the optimal joint action. The optimal joint action is that joint action,
a, that maximizes the team payoff, u(a). First, in the forward pass, VE eliminates
each of the agents in turn by computing the value of that agent’s best response to ev-
ery possible joint action of its neighbors. These best responses are used to construct
a new local payoff function that encodes the values of the best responses. The new
local payoff function then replaces the agent and the payoff functions in which it par-
ticipated. In the original algorithm, once all agents are eliminated, a backward pass
assembles the optimal joint action using the constructed payoff functions. Here, we
present a slight variant in which each payoff is ‘tagged’ with the action that generates
it, obviating the need for a backwards pass. While the two algorithms are equivalent,
this variant is more amenable to the multi-objective (inner loop) extension we present
in Section 4.3.1.

VE eliminates agents from the graph in a predetermined order. This order is typ-
ically determined heuristically (e.g., following Koller and Friedman (2009)), because
finding the optimal elimination order is itself NP-hard (Arnborg, 1985; Dechter, 1998).

Algorithm 9 shows pseudocode for the elimination of a single agent i. First, VE
determines the set, Ui, of local payoff functions connected to i, and the set, ni, of
neighboring agents of i (lines 1-2).

Definition 23. The set, Ui, of neighboring local payoff functions of i is the set of all
local payoff functions that have agent i in scope.

Definition 24. The set, ni, of neighboring agents of i is the set of all agents that are in
scope of one or more of the local payoff functions in Ui.

Then, VE constructs a new local payoff function, unew(ani), by computing the
value of agent i’s best response to each possible joint action ani of the agents in ni
(lines 3-12). To do so, it loops over all these joint actions Ani (line 4). For each ani , it
loops over all the actionsAi available to agent i (line 6). For each ai ∈ Ai, it computes
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Figure 4.2: (a) A CoG with 3 agents and 2 local payoff functions (b) after eliminating agent 3
by adding u3 (c) after eliminating agent 2 by adding u4.

the local payoff when agent i responds to ani with ai (line 7). VE tags the total payoff
with ai, the action that generates it (line 8) in order to be able to retrieve the optimal
joint action later. If there are already tags present, VE appends ai to these tags. In this
manner, the entire joint action is constructed incrementally. VE maintains the value of
the best response by taking the maximum of these payoffs, and storing this maximal
payoff in the new local payoff function, unew(ani), on line 11. After the value for each
ani is computed, VE eliminates the agent and all payoff functions in Ui and replaces
them with the newly constructed local payoff function (line 13).

Algorithm 9: elimVE(U , i)
Input: A set, U , of local payoff functions, and an agent i

1 Ui← set of local payoff functions involving i
2 ni← set of neighboring agents of i
3 unew ← a new factor taking joint actions of ni, ani , as input
4 foreach ani ∈ Ani do
5 S ← ∅ ; // set of action values for i
6 foreach ai ∈ Ai do
7 v ←

∑
uj∈Ui

uj(ani , ai)

8 tag v with ai
9 S ← S ∪ {v}

10 end
11 unew(ani)← max(S); // pick maximal value

12 end
13 return (U \ Ui) ∪ {unew}

Now, let us consider the example of Figure 4.1 and Table 4.1. The optimal payoff
maximizes the sum of the two payoff functions:

max
a

u(a) = max
a1,a2,a3

u1(a1, a2) + u2(a2, a3).
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The working of VE is illustrated in Figure 4.2, for the elimination order [3, 2, 1]. VE
eliminates agent 3 first, by pushing the maximization over a3 inward such that goes
only over the local payoff functions involving agent 3, in this case just u2:

max
a

u(a) = max
a1,a2

(
u1(a1, a2) + max

a3
u2(a2, a3)

)
.

VE solves the inner maximization and replaces it with a new local payoff function u3

that depends only on agent 3’s neighbors, thereby eliminating agent 3:

max
a

u(a) = max
a1,a2

(
u1(a1, a2) + u3(a2)

)
,

which leads to the new factor graph depicted in Figure 4.1b. The values of u3(a2) are
u3(ȧ2) = 2.5, using ȧ3, and u3(ā2) = 1 using ā3, as these are the optimal payoffs for
the actions of agent 2, given the payoffs shown in Table 4.1.

Because we ultimately want the optimal joint action as well as the optimal payoff,
VE needs to store the actions of agent 3 that correspond to the values in the new local
payoff factor. In our adaption of VE, the algorithm tags each payoff of u3 with the
action of agent 3 that generates it. We can thus think of u3(a2) as a tuple of value and
tags, where value is a scalar payoff, and tags is a list of individual agent actions. We
denote such a tuple with parentheses and a subscript: u3(ȧ2) = (2.5)ȧ3 , and u3(ā2) =
(1)ā3 .

VE next eliminates agent 2, yielding the factor graph shown in Figure 4.1c:

max
a

u(a) = max
a1

(
max
a2

u1(a1, a2) + u3(a2)

)
= max

a1
u4(a1).

VE appends the new tags for agent 2 to the existing tags for agent 3, yielding: u4(ȧ1) =
maxa2 u

1(ȧ1, a2)+u3(a2) =(3.25)ȧ2 +(2.5)ȧ2ȧ3 = (5.75)ȧ2ȧ3 and u4(ā1) = (3.75)ā2 +
(1)ā2ā3 = (4.75)ā2ā3 . Finally, maximizing over a1 yields the optimal payoff — (5.75)ȧ1ȧ2ȧ3
— with the optimal action contained in the tags.

The computational complexity of VE is exponential in the induced width, w,

Theorem 11. (Guestrin et al., 2002) The computational complexity of VE isO(n|Amax|w)
where |Amax| is the maximal number of actions for a single agent and w is the induced
width, i.e., the maximal number of neighboring agents of an agent plus one (the agent
itself), at the moment when it is eliminated.

The induced width is limited by the number of agents; when the factor graph is
fully connected, i.e., every agent shares a local payoff function with every other agent,
w is equal to n. In practice however, w is typically much smaller than n.

The space complexity of VE is also exponential in the induced width:

Theorem 12. (Dechter, 1998) The space complexity of VE is O( n |Amax|w).
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Figure 4.3: (a) a pseudo tree, (b) a corresponding AND/OR search tree.

This space complexity arises because, for every agent elimination, a new local
payoff function is created with O(|Amax|w) fields (possible input actions). Since it is
impossible to tell a priori how many of these new local payoff functions exist at any
given time during the execution of VE, this need to be multiplied by the total number
of new local payoff functions created during a VE execution, which is n.

While VE is designed to minimize runtime2 other methods focus on memory ef-
ficiency instead (Mateescu and Dechter, 2005). We discuss a class of more memory
efficient — but still exact — methods in the next section.

4.1.2 AND/OR tree search

AND/OR tree search (Dechter and Mateescu, 2007; Marinescu, 2008; Mateescu and
Dechter, 2005; Yeoh et al., 2010) is a class of algorithms for solving CoGs that can be
tuned to provide better space complexity guarantees than VE. However, this improve-
ment in space complexity does come at the price of a worse runtime complexity (Ma-
teescu and Dechter, 2005). In this section we provide a brief background on AND/OR
tree search. For a broader overview of AND/OR tree search for CoGs and related mod-
els please see the work of Dechter (2013) and Marinescu (2008). For multi-objective
versions of AND/OR tree search that compute a PCS, please see the work of Marinescu
(2009, 2011).

The first step in an AND/OR tree search algorithm, is to convert the CoG to a
pseudo tree (PT). Given a PT, each agent need only know which actions its ancestors
and descendants in the PT take in order to select its own action. For example, if an
agent i (a node) in the PT has two subtrees (T1 and T2) under it, all the agents in T1 are
conditionally independent of all the agents in T2 given i and the ancestors of i. Figure
4.3a shows the PT for the example CoG of Figure 4.1 and Table 4.1.

2In fact, VE is proven to have the best runtime guarantees within a large class of algorithms (Rosen-
thal, 1977).
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Next, AND/OR tree search algorithms perform a tree search that results in an
AND/OR search tree (AOST). Each agent i in an AOST is an OR-node. Its children
are AND-nodes, each corresponding to one of agent i’s possible actions, ai ∈ Ai. In
turn, the children of these AND-nodes are OR-nodes corresponding to agent i’s chil-
dren in the PT. Because each action (AND-node) of agent i has the same agents under
it as OR-nodes, the agents and actions can appear in the tree multiple times. Figure
4.3b shows an AOST corresponding to the PT of Figure 4.3a.

A specific joint action can be constructed by traversing the tree, starting at the root
and selecting one alternative from the children of each OR-node, i.e., one action for
each agent, and continuing down all children of each AND-node. For example, in
Figure 4.3b, the joint action < ā1, ȧ2, ȧ3 > is indicated in grey.

To retrieve the value of a joint action, we must first define the value of AND-nodes.

Definition 25. The value of an AND-node, vai , that represents an action ai of an agent
i is the sum of the local payoff functions, ue(ae), that have i in scope (i.e., i ∈ e) for
which ai, together with its AND-node ancestors’ actions, specifies a complete local
joint action, ae.

For example, in the AOST of Figure 4.3b, the total payoff of the CoG is u(a1, a2, a3)
= u1(a1, a2) + u2(a2, a3). The value of the grey AND-node ȧ3 is u2(ȧ2, ȧ3), as u3 is
the only payoff function that has agent 3 in scope and, together with its ancestral AND-
node, the grey ȧ2-node, ȧ3 completes a joint local action for u2.

To retrieve the optimal action, we must define the value of a subtree in the AOST:

Definition 26. The value of a subtree v(Ti) rooted by an OR-node i in an AOST is the
maximum of the value of the subtrees rooted by the (AND-node) children of i. The
value of a subtree v(Tai) rooted by an AND-node ai in an AOST is the value of ai
itself (Definition 25) plus the sum of the value of the subtrees rooted by the (OR-node)
children of ai.

The most memory-efficient way to retrieve the optimal joint action using an AOST
is performing a depth-first search and computing the values of the subtrees. By gen-
erating nodes on the fly and deleting them after they are evaluated, memory usage is
minimized. We refer to this algorithm simply as AND/OR tree search (TS). As in our
implementation of VE, our implementation of TS employs a tagging scheme, tagging
the value of a subtree with the actions that maximize it.

TS has much better space complexity than VE, i.e., only linear in the number of
agents n, but a worse computational complexity:

Theorem 13. (Mateescu and Dechter, 2005) The space complexity of TS is O(n),
where n is the number of agents.

Proof. Because TS performs depth-first search, creating and deleting nodes on the fly,
at most O(n) nodes need to exist at any point during execution of TS.
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Theorem 14. (Mateescu and Dechter, 2005) The computational complexity of TS is
O(n|Amax|m), where n is the number of agents, |Amax| is the maximal number of
actions of a single agent and m is the depth of the pseudo tree, and uses linear space,
O(n).

Proof. The number of nodes in an AOST is bounded byO(n|Amax|m). The tree creates
maximally |Amax| children at each OR-node. If every AND-node had exactly one
child, the number of nodes would be bounded by O(|Amax|m), as the PT is m deep.
However, if there is branching in the PT, an AND-node can have multiple children.
Each branch increases the size of the AOST by at most O(|Amax|m) nodes. Because
there are exactly n agents in the PT, this can happen at most n times. At each node in
the AOST, TS performs either a summation of scalars, or a maximization over scalars.

The PT-depthm is a different constant than the induced widthw, and is typically larger.
However, m can be bounded in w.

Theorem 15. (Dechter and Mateescu, 2007) Given a (MO-)CoG with induced width
w, there exists a pseudo tree for which the depth m ≤ w log n.

Note that this theorem hold for CoGs and MO-CoGs alike, because it concerns only
the structure of the graphs.

To obtain PTs in practice, we perform two steps: first, we use the same heuristic
as for VE to generate an elimination order and then transform it into a PT for which
m ≤ w log n holds — whose existence is guaranteed by Theorem 15 — using the
procedure proposed by Bayardo and Miranker.

Thus, combining Theorems 13, 14 and 15 shows that, when there are few agents,
TS can be much more memory efficient than VE with a relatively small negative effect
on the runtime.

4.1.3 Variational methods
The CoG solvers that we have described in the previous two subsections — VE and
TS — are both exact methods and their computational complexity is exponential in
induced width, or worse. In this section, we describe a class of algorithms called
variational algorithms. Variational algorithms are not exact, but can provide a bounded
approximate solution. In return for the loss of optimality, variational methods have
runtimes that are sub-exponential in practice.

Variational algorithms (Sontag et al., 2011; Wainwright and Jordan, 2008) bound
the maximal payoff of a single-objective coordination graph. We denote this upper
bound as ū. At each iteration of a variational algorithm, this upper bound is tightened,
by reparameterizing and possibly restructuring the CoG.

As an example of how upper bounds are computed, we use dual decomposition,
which is a popular and illustrative variational algorithm.
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Dual decomposition relaxes the full maximization into an easily evaluated bound
based on local payoff functions, ue ∈ U ,

max
a

u(a) = max
a

∑
ue∈U

ue(ae) ≤
∑
ue∈U

max
ae

ue(ae) = ū. (4.1)

Then, this bound is iteratively tightened by re-parameterizing the individual functions
in U , i.e., one finds a set of equivalent local payoffs U ′ such that the total payoff is
unchanged,

∀a u′(a) =
∑
u′e∈U ′

u′e(ae) =
∑
ue∈U

ue(ae) = u(a),

while minimizing the decomposed upper bound (the right-hand side of Equation 4.1).
Dual decomposition achieves the equality of u′(a) and u(ae), and the tightening of the
upper bound via Lagrangian multipliers. For each original local payoff function ue(ae)
with more than 1 agent in scope, dual decomposition creates a reparameterized local
payoff function u′e ∈ U ′ that is identically scoped, and is structured as:

u′e(ae) = ue(ae)−
∑
i∈e

λei (ai),

where, λei (ai) is the Lagrangian multiplier for agent i for the local payoff function
with scope e, and for each agent separately, dual decomposition creates a local payoff
function, u′i(ai) ∈ U ′:

u′i(ai) = ui(ai) +
∑
e3i

λei (ai),

where ui(ai) represents an original payoff function with only agent i in scope (if there
is no such local payoff function in U , we assume ui(ai) = 0), and

∑
e3i λ

e
i (ai) is a

sum over the Lagrangian multipliers used in the larger local payoff functions u′e(ae)
in which agent i participates. This ensures that the sum over all payoff functions in
U ′ is identical to the sum over all payoff functions in U for all joint actions a, as the
λei (ai) components of the functions with one agent and those with more than one agent
in scope cancel each other out.

After it is ensured that the total team payoff stays the same for a variational method,
the remaining problem of finding equivalent sets of local payoffs U ′ while minimizing
the upper bound, is a convex optimization problem and can be solved iteratively using
gradient-based or fixed-point techniques (Sontag et al., 2011).

The upper bound corresponds to an optimization of the individual ue(ae). If the op-
timal local actions for each individual local payoff function a∗e are all consistent with
some global joint action a∗, then a∗ is also the global optimum of u(a). In practice
however, the decomposition bound may not be able to find the global optimum. There-
fore, variational methods typically also assemble a joint action al that provides a lower
bound

u = u(al).
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Assembling al can for example be done by greedy assignment: for each local payoff
u′e(ae), we assign the elements of ae that are not already assigned in al by maximizing
the local function, conditioned on the already-assigned elements.

4.2 Multi-objective Coordination Graphs
When we extend the CoG to the multi-objective setting, it becomes harder to solve. We
have to not only consider stochastic policies, but a priori scalarization of the problem
can become infeasible, even when we know the exact scalarization function, f , and its
parameters w.

Definition 27. A multi-objective coordination graph (MO-CoG) is a tuple 〈D,A,U〉
in which D and A are as in a CoG but,

• U = {u1, ...,uρ} is a set of ρ, d-dimensional local reward functions.

The total team payoff is the sum of local vector-valued rewards: u(a) =
∑ρ

e=1 u
e(ae).

We use ui to indicate the value of the i-th objective.

Firstly, we observe that even when we know f , and its parameters w, but f is non-
linear, it is not possible to scalarize the MO-CoG a priori while retaining the same
structure for the reward function. This is because f does not distribute over the sum,

f(u(a),w) 6=
ρ∑
e=1

f(ue(ae),w),

when f is non-linear. However, when f is linear, the scalarization is possible:

w · u(a) =

ρ∑
e=1

w · ue(ae). (4.2)

This observation leads directly to a conclusion about the sufficiency of deterministic
policies for the CCS.

Corollary 3. For a MO-CoG, there is always a CCS with only deterministic policies,
even when stochastic policies are allowed.

Proof. A CCS is an optimal solution set for all possible linear scalarizations. For all
weights w in a linear scalarization function, we can translate the MO-CoG to a single-
objective CoG using Equation 4.2. For the resulting CoG we know that there exists
a deterministic policy that maximizes the scalarized value. Therefore, for all possible
linear scalarizations there exists a deterministic policy that is optimal, and thus there is
also a CCS consisting of only deterministic policies.
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ȧ2 ā2

ȧ1 (4,1) (0,0)

ā1 (1,2) (3,6)

ȧ3 ā3

ȧ2 (3,1) (1,3)

ā2 (0,0) (1,1)

Table 4.2: The two-dimensional payoff matrices for u1(a1, a2) (left) and u2(a2, a3) (right).

Secondly, we observe that allowing stochastic policies can improve the maximal
scalarized value for non-linear f . This follows directly from flattening the MO-CoG to
an MOBP, analogous to Theorem 10, and Observation 1. Therefore, the PCS of deter-
ministic policies is typically not a subset of the PCS of stochastic policies. However,
because Equation 4.2 fulfills the conditions of Assumption 1, we know that Theorem
1 holds, i.e., that a PCS of stochastic policies can be constructed from a CCS of deter-
ministic policies.

Existing solution methods for MO-CoGs (Delle Fave et al., 2011; Dubus et al.,
2009b; Marinescu, 2009, 2011; Rollón, 2008; Rollón and Larrosa, 2006), (as far as we
are aware) all focus on finding the PCS of deterministic policies, which is axiomatically
assumed to be the optimal solution set. From a utility-based perspective however, we
argue that this is often not the most suitable solution set; when we focus on the CCS
of deterministic policies, we have a sufficient solution set for when the scalarization
function, f , is linear, and can construct a sufficient solution set from this CCS when f
is non-linear, but stochastic policies are allowed.

In the following sections we propose novel algorithms for computing the CCS of
deterministic policies for MO-CoGs. To illustrate the workings of these algorithms,
we use an example MO-CoG with an identical structure to Figure 4.1 but with vector-
valued local payoff functions. These local payoffs are given in Table 4.2.

4.3 Inner Loop CCS Methods for MO-CoGs
In this section we propose two inner loop methods for computing the CCS. These
methods replace the summation and maximization operators by cross-sum and pruning
operators, as described in Section 3.1.1.

In order to apply the inner loop approach, we first need to be able to work with sets
of value vectors rather than single vectors. Therefore, we first translate the MO-CoG to
a set of value set factors (VSFs), F , instead of the set of local payoff functions U . Each
VSF, f e ∈ F , is a function mapping local joint actions, ae to sets of payoff vectors.
The initial VSFs are constructed from the local payoff functions, ue ∈ U , such that

f e(ae) = {ue(ae)}, (4.3)

i.e., each VSF maps a local joint action to the singleton set containing only that action’s
local payoff.
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Using these VSFs, we can now define the set of all possible (team) payoff vectors,
V in terms of F using the cross-sum operator over all VSFs in F for each joint action
a:

V(F) =
⋃
a

⊕
fe∈F

f e(ae),

where
⊕

fe∈F is the cross-sum (Definition 3.2) across all VSFs.
The CCS can now be calculated by applying a pruning operator CPrune (Algorithm

1) that removes all C-dominated vectors from a set of value vectors, to V:

CCS(V(F)) = CPrune(V(F)) = CPrune(
⋃
a

⊕
fe∈F

f e(ae)). (4.4)

A naive, non-graphical approach to compute the CCS would simply compute the
righthand side of Equation 4.4, i.e., it would compute V(F) explicitly by looping over
all actions, and for each action looping over all local VSFs, and then pruning that set
down to a CCS. This corresponds to flattening a MO-CoG to an MOBP (Definition 15)

Theorem 16. The computational complexity of computing a CCS of a MO-CoG con-
taining ρ local payoff functions, following the non-graphical approach (Equation 4.4)
is:

O(dρ|Amax|n + d|Amax|n|PCS|+ |PCS|P (d|CCS|) )

Proof. V is computed by looping over all ρ VSFs for each joint action a, summing
vectors of length d. If the maximum size of the action space of an agent is Amax there
are O(|Amax|n) joint actions. V contains one payoff vector for each joint action. V is
the input of CPrune, whose runtime is O(d|V||PCS|+ |PCS|P (d|CCS|)) (Theorem
2).

Because the non-graphical approach requires explicitly enumerating all possible
joint actions and calculating the payoffs associated with each one, it is intractable for all
but the smallest numbers of agents, as the number of joint actions grows exponentially
in the number of agents.

In the rest of this section, we show how to use VE (Section 4.1.1) and TS (Section
4.1.2) as a basis for new algorithms that compute the CCS and scale much better in the
number of agents than a non-graphical approach.3

4.3.1 Convex Multi-Objective Variable Elimination
In MO-CoGs, we can compute a CCS much more efficiently when we exploit the
MO-CoG’s graphical structure. Like in the VE algorithm for CoGs, we can solve the
MO-CoG as a series of local subproblems, by eliminating agents and manipulating the

3Note that for variational methods (Section 4.1.3) an inner loop approach does not apply because
they use reparameterization rather than summation and maximization. Therefore, we only propose an
outer loop method building on variational methods in Section 4.4.5.
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set of VSFs F which describe the MO-CoG. We call the resulting algorithm Convex
Multi-Objective Variable Elimination (CMOVE). CMOVE is an extension to Rollón
and Larrosa’s Pareto-based extension of VE, which we refer to as PMOVE (Rollón
and Larrosa, 2006).

The key idea of CMOVE is to compute local CCSs (LCCSs) when eliminating an
agent instead of a single best response (as in VE). When computing an LCCS, the
algorithm prunes away as many vectors as possible, minimizing the number of payoff
vectors that are calculated at the global level. Minimizing the number of payoff vectors
that are calculated greatly reduces computation time.

Eliminating agents

First, we describe the elim operator for eliminating agents from a set of VSF. This
operator corresponds to the elim operator used by VE (Algorithm 9) for eliminating
agents in single-objective CoGs. We first need to update our definition of neighboring
local payoff functions (Definition 23), to neighboring VSFs.

Definition 28. The set of neighboring VSFsFi of i is the set of all local payoff functions
that have agent i in scope.

The neighboring agents ni of an agent i are now the agents in the scope of a VSF in
Fi, except for i itself, corresponding to Definition 24. For each possible local joint
action of ni, we now compute an LCCS — a local CCS — that contains the payoffs
of the C-undominated responses of agent i, as the best response values of i. In other
words, it is the CCS of the subproblem that arises when considering only Fi and fixing
a specific local joint action ani .

To compute the LCCS, we must consider all payoff vectors of the subproblem, Vi,
and prune the C-dominated ones. This can be achieved by taking the cross-sum of all
the VSFs in the local subproblem, and then pruning.

Definition 29. If we fix all actions in ani , but not ai, the set of all payoff vectors is:
Vi(Fi, ani) =

⋃
ai

⊕
fe∈Fi f

e(ae), where ae is formed from ai and the appropriate part
of ani .

Using Definition 29, we can now formally define the LCCS as the CCS of Vi:

Definition 30. A local CCS, an LCCS, is the C-undominated subset of Vi(Fi, ani):

LCCSi(Fi, ani) = CCS(Vi(Fi, ani)).

Because the LCCSi is the CCS of a specified set of vectors, we can compute the
LCCS by standard pruning algorithms, such as CPrune (Algorithm 1). Using LCCSs,
we can create a new VSF, fnew, conditioned on the actions of the agents in ni:

∀ani fnew(ani) = LCCSi(Fi, ani).
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The elim operator replaces the VSFs in Fi in F by this new factor:

elim(F , i) = (F \ Fi) ∪ {fnew(ani)}.

Eliminating an agent reduces the number of agents and VSFs in the graph, and
forms the cornerstone operator of the CMOVE algorithm. Before defining the full
CMOVE algorithm, we first prove the correctness of elim. Particularly (as described
in Section 3.1.1), we must prove that no necessary vectors are lost when applying the
elim operator.

We show that the maximal scalarized payoff, for any w, cannot be lost as a result
of elim, i.e., no necessary payoff vectors for creating a CCS are lost.

Theorem 17. elim preserves the CCS, i.e.,

∀i ∀F CCS(V(F)) = CCS(V(elim(F , i))).

Proof. By definition the CCS of a MO-CoG, contains at least one payoff vector that
maximizes the scalarized value for every w. Therefore, for each vector u(a) that is
optimal for at least one w, there must be a vector that achieves the same scalarized
value for that w:

∀w
(
a = arg max

a∈A
w · u(a)

)
=⇒

∃a′ u(a′) ∈ CCS(V(F)) ∧ w · u(a) = w · u(a′). (4.5)

If and only if this is not the case, necessary values are lost.
First, we observe that for all joint actions a for which there is a w at which the

scalarized value of a is maximal, a vector-valued payoff u(a′) for which w · u(a′) =
w ·u(a) is in the CCS (by definition). Second, we observe that the linear scalarization
function distributes over the local payoff functions: w · u(a) = w ·

∑
e u

e(ae) =∑
ew · ue(ae). Thus, when eliminating agent i, we divide the set of VSFs into non-

neighbors (nn), in which agent i does not participate, and neighbors (ni) such that:

w · u(a) =
∑
e∈nn

w · ue(ae) +
∑
e∈ni

w · ue(ae).

Now, following Equation 4.5, the CCS contains maxa∈Aw · u(a) for all w. elim
pushes this maximization in:

max
a∈A

w · u(a) = max
a−i∈A−i

∑
e∈nn

w · ue(ae) + max
ai∈Ai

∑
e∈ni

w · ue(ae).

elim replaces the agent-i factors by a term fnew(ani) that satisfies w · fnew(ani) =
maxai

∑
e∈ni w · u

e(ae) — for all w — per definition, thus preserving the maximum
scalarized value for all w and thereby preserving the CCS.
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Instead of an LCCS, we could compute a local PCS (LPCS), that is, using a PCS
computation on Vi instead of a CCS computation. Note that, since LCCS ⊆ LPCS
⊆ Vi, elim not only reduces the problem size with respect to Vi, it can do so more
than would be possible if we only considered P-dominance. Therefore, focusing on
the CCS can greatly reduce the sizes of local subproblems. Since the solution of a
local subproblem is the input for the next agent elimination, the size of subsequent
local subproblems is also reduced, which can lead to considerable speed-ups.

Algorithm

Using elim, we now present the convex multi-objective variable elimination (CMOVE)
algorithm. In our implementation elim uses CPrune to compute the local CCSs. Like
VE, CMOVE iteratively eliminates agents until none are left. However, our implemen-
tation of elim computes a CCS and outputs the correct joint actions for each payoff
vector in this CCS, rather than a single joint action.

As previously mentioned, CMOVE is an extension to Rollón and Larrosa’s Pareto-
based extension of VE, which we refer to as PMOVE (Rollón and Larrosa, 2006). The
most important difference between CMOVE and PMOVE is that CMOVE computes a
CCS, which typically leads to much smaller subproblems and thus much better compu-
tational efficiency. In addition, we identify three places where pruning can take place,
yielding a more flexible algorithm with different trade-offs. Finally, we use the tagging
scheme instead of the backwards pass, as in Section 4.1.1.

Algorithm 10 presents an abstract version of CMOVE that leaves the pruning op-
erators unspecified. Depending on preference, these pruning operators can be filled in
with PPrune (Algorithm 2), or CPrune (Algorithm 1), or other algorithms for comput-
ing PCSs or CCSs. Depending on which pruning operators are used in which points in
the algorithm, Algorithm 10 correctly computes a correct CCS or PCS.4

CMOVE first translates the problem into a set of vector-set factors (VSFs), F on
line 1, according to Equation 4.3. Next, CMOVE iteratively eliminates agents using
elim (line 2–5). The elimination order can be determined using techniques devised for
single-objective VE (e.g., the method proposed by Koller and Friedman (2009) for this
purpose).

Algorithm 11 shows our implementation of elim, parameterized with two pruning
operators, prune1 and prune2. These pruning operators correspond to two different
pruning locations inside the operator that computes LCCSi: ComputeLCCSi(Fi, ani ,
prune1, prune2).

4If more information is known about the scalarization function, f (Definition 1), this could be incor-
porated in new pruning algorithms, that could be used here as well. E.g., if it is known that objective
1 is worth as least twice as much as objective 2, inside a linear scalarization function, this could be
incorporated into the pruning operators, without affecting the correctness of the algorithm. However,
what is possible in this respect highly depends on what information about f is available, and is beyond
the scope of this dissertation.
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Algorithm 10: CMOVE(U , prune1, prune2, prune3, q)

Input: A set of local payoff functions U and an elimination order q (a queue containing
all agents)

1 F ← create one VSF for every local payoff function in U
2 while ani ∈ Ani do
3 i← q.dequeue()
4 F ← elim(F , i, prune1, prune2)

5 end
6 f ← retrieve final factor from F
7 S ← f(a∅)
8 return prune3(S)

Algorithm 11: elim(F , i, prune1, prune2)

Input: A set of VSFs F , and an agent i
1 ni ← the set of neighboring agents of i
2 Fi ← the subset of VSF that have i in scope
3 fnew(ani)← a new VSF
4 foreach ani ∈ Ani do
5 fnew(ani)← ComputeLCCSi(Fi,ani , prune1, prune2)
6 end
7 F ← F \ Fi ∪ {fnew}
8 return F

ComputeLCCSi is implemented as follows: first we define a new cross-sum-and-
prune operator A⊕̂B = prune1(A⊕B). LCCSi applies this operator sequentially:

ComputeLCCSi(Fi, ani , prune1, prune2) = prune2(
⋃
ai

⊕̂
fe∈Fi

f e(ae)). (4.6)

prune1 is applied to each cross-sum of two sets, via the ⊕̂ operator, leading to incre-
mental pruning (Cassandra et al., 1997), i.e.,

A ⊕̂ B ⊕̂ C = prune1(A⊕ prune1(B ⊕ C)).

prune2 is applied at a coarser level, after the union. CMOVE applies elim iteratively
until no agents remain, resulting in a CCS. When there are no agents left, fnew on line
3 has no agents to condition on. In this case, we consider the “actions of the neighbors”
to be a single empty action: a∅.

Pruning can also be applied at the very end, after all agents have been eliminated.
We call this pruner prune3. After all agents have been eliminated, the final factor is
taken from the set of factors (line 6), and the single set, S contained in that factor is
retrieved (line 7). Note that we use the empty action a∅ to denote the field in the final
factor, as it has no agents in scope. Finally prune3 is called on S. In increasing level
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of coarseness, we thus have three pruning operators: incremental pruning (prune1),
pruning after the union over actions of the eliminated agent (prune2), and pruning
after all agents have been eliminated (prune3).

When either prune2 or prune3 (or both) compute CCSs, the CMOVE algorithms
correctly computes the CCS. When no pruning takes place for prune3 and prune1 =
prune2 = PPrune, the resulting algorithm computes the PCS rather than the CCS, and
is equivalent to the PMOVE algorithm proposed by Rollón and Larrosa (2006).

When comparing CMOVE to PMOVE we make the following observation: the
local coverage sets are input to the next subproblem in agent elimination sequence.
A smaller local coverage set thus results in a smaller next subproblem. Because it is
always possible to have a CCS that is a subset of the smallest possible PCS, the sub-
problems in CMOVE are thus always smaller than the corresponding subproblems in
PMOVE. A key insight behind CMOVE is that this results in faster computation over-
all for CMOVE compared to PMOVE. Furthermore, we discuss variants of CMOVE,
with different instantiations of the pruning operators, that lead to different trade-offs
between pruning and the size of the subproblems.

CMOVE Variants

There are several ways to implement the pruning operators that lead to correct instan-
tiations of CMOVE. Both PPrune (Algorithm 2) and CPrune (Algorithm 1) can be
used, as long as either prune2 or prune3 is CPrune. Note that if prune2 computes
the CCS, prune3 is not necessary.

In this dissertation, we consider two variants: Basic CMOVE, which does not
use prune1 and prune3 and only prunes at prune2 using CPrune, and Incremental
CMOVE, which uses CPrune at both prune1 and prune2. The latter invests more
effort in intermediate pruning, which can result in smaller cross-sums, and a result-
ing speedup. However, when only a few vectors can be pruned in these intermediate
steps, this additional speedup may not occur, and the algorithm creates unnecessary
overhead.5

Example

Consider the example in Figure 4.1a, using the payoffs defined by Table 4.2, and apply
CMOVE, using CPrune for prune2, and no pruning for prune1 and prune3, i.e., Basic
CMOVE.

First, CMOVE creates the VSFs f 1 and f 2 from u1 and u2. To eliminate agent
3, it creates a new VSF f 3(a2) by computing the LCCSs for every a2 and tagging
each element of each set with the action of agent 3 that generates it. For ȧ2, CMOVE
first generates the set {(3, 1)ȧ3 , (1, 3)ā3}. Since both of these vectors are optimal for

5We can also compute a PCS first, using prune1 and prune2, and then compute the CCS with
prune3. However, this is useful only for small problems for which a PCS is cheaper to compute than a
CCS.
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some w, neither is removed by pruning and thus f 3(ȧ2) = {(3, 1)ȧ3 , (1, 3)ā3}. For ā2,
CMOVE first generates {(0, 0)ȧ3 , (1, 1)ā3}. CPrune determines that (0, 0)ȧ3 is domi-
nated and consequently removes it, yielding f 3(ā2) = {(1, 1)ā3}. CMOVE then adds
f 3 to the graph and removes f 2 and agent 3, yielding the factor graph shown in Figure
4.1b.

CMOVE then eliminates agent 2 by combining f 1 and f 3 to create f 4. For f 4(ȧ1),
CMOVE must calculate the LCCS of:

(f 1(ȧ1, ȧ2)⊕ f 3(ȧ2)) ∪ (f 1(ȧ1, ā2)⊕ f 3(ā2)).

The first cross sum yields {(7, 2)ȧ2ȧ3 , (5, 4)ȧ2ā3} and the second yields {(1, 1)ā2ā3}.
Pruning their union yields f 4(ȧ1) = {(7, 2)ȧ2ȧ3 , (5, 4)ȧ2ā3}. Similarly, for ā1 tak-
ing the union yields {(4, 3)ȧ2ȧ3 , (2, 5)ȧ2ā3 , (4, 7)ā2ā3}, of which the LCCS is f 4(ā1) =
{(4, 7)ā2ā3}. Adding f 4 results in the graph in Figure 4.1c.

Finally, CMOVE eliminates agent 1. Since there are no neighboring agents left,
Ai contains only the empty action. CMOVE takes the union of f 4(ȧ1) and f 4(ā1).
Since (7, 2){ȧ1ȧ2ȧ3} and (4, 7){ā1ā2ā3} dominate (5, 4){ȧ1ȧ2ā3}, the latter is pruned, leav-
ing CCS = {(7, 2){ȧ1ȧ2ȧ3}, (4, 7){ā1ā2ā3}}.

Analysis

We now analyze the correctness and complexity of CMOVE.

Theorem 18. CMOVE correctly computes a CCS.

Proof. The proof works by induction on the number of agents. The base case is the
original MO-CoG, where each f e(ae) from F is a singleton set. Then, since elim

preserves the CCS (see Theorem 17), no necessary vectors are lost. Furthermore, no
excess payoff vectors are retained; when the last agent is eliminated, only one factor
remains; since it is not conditioned on any agent actions and is the result of an LCCS
computation, it must contain one set: the CCS.

Theorem 19. The computational complexity of CMOVE is

O( n |Amax|wa (wf R1 +R2) +R3 ), (4.7)

where wa is the induced agent width, i.e., the maximum number of neighboring agents
(connected via factors) of an agent when eliminated, wf is the induced factor width,
i.e., the maximum number of neighboring factors of an agent when eliminated, and R1,
R2 and R3 are the cost of applying the prune1, prune2 and prune3 operators.

Proof. CMOVE eliminates n agents and for each one computes an LCCS for each
joint action of the eliminated agent’s neighbors, in a field in a new VSF. CMOVE
computes O(|Amax|wa) fields per iteration, calling prune1 (Equation 4.6) for each
adjacent factor, and prune2 once after taking the union over actions of the eliminated
agent. prune3 is called exactly once, after eliminating all agents (line 8 of Algorithm
10).
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R1, R2, and R3 — the runtime of the pruning operators — depend on the size
of the local subproblems. Specifically, the runtime of CPrune is O(d|V||PCS| +
|PCS|P (d|CCS|)) (Theorem 2), where |V| is the number of vectors inputted to CPrune.
How big these input sets are, depends on how much pruning has been done in earlier
iterations and at finer levels. Specifically, the input set of prune2 is the union of what
is returned by a series of applications of prune1, while prune3 uses the output of the
last application of prune2. We therefore need to balance the effort of the lower-level
pruning with that of the higher-level pruning, which occurs less often but is dependent
on the output of the lower level. The bigger the LCCSs, the more can be gained from
lower-level pruning.

CMOVE is exponential only in wa, and not in the number of agents as in the non-
graphical approach (Theorem 16). In this respect, our results are similar to those pro-
vided for PMOVE by Rollón (2008). However, those earlier complexity results do not
make the effect of pruning explicit. Instead, the complexity bound makes use of ad-
ditional problem constraints, which limit the total number of possible different value
vectors. Specifically, in the analysis of PMOVE, the payoff vectors are integer-valued,
with a maximum value for all objectives. Such bounds can be very loose or even im-
possible to define in practice, e.g., when the payoff values are real-valued in one or
more objectives. For this reason, we provide a description of the computational com-
plexity that makes explicit the dependence on the effectiveness of pruning, i.e., in terms
of R1, R2, and R3. While such complexity bounds are not better in the worst case —
when no pruning is possible — they do allow greater insight into the runtimes of the
algorithms we evaluate.

Besides the computational complexity, another important aspect of the behavior of
MO-CoGs is the space complexity. In fact, as we show empirically in Section 4.3.4,
memory is often the bottleneck for solving MO-CoGs:

Theorem 20. The space complexity of CMOVE is

O( d n |Amax|wa |LCCSmax|+ d ρ |Amax||emax| + |LCCSmax||Fmax| ),

where |LCCSmax| is maximum size of a local CCS, ρ is the original number of VSFs,
|emax| is the maximum scope size of the original VSFs, and the |Fmax| is the maximal
number of VSFs that get replaced by a new VSF.

Proof. CMOVE computes a local CCS — using CPrune — for each new VSF for each
joint action of the eliminated agent’s neighbors. There are maximally wa neighbors.
There are maximally n new VSFs. Each payoff vector stores d real numbers.

The size of the input of CPrune depends on the number of VSFs, |Fmax|, that get
replaced by a new VSF, and the size of the local CCSs in the VSFs that are replaced,
i.e., the size of the cross-sum in Equation 4.6. Note that, in the case of incremental
pruning (prune1 = CPrune), the size of this cross-sum is limited even further, by
pruning after each cross-sum of 2 local CCSs.
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There are ρ VSFs created during the initialization of CMOVE. All of these VSFs
have exactly one payoff vector containing d real numbers, per joint action of the agents
in scope. There are maximally |Amax||emax| such joint actions.

For PMOVE, the space complexity is equivalent to Theorem 20, but with the size of
a local PCS, |LPCSmax|, instead of |LCCSmax|. Because an LCCS is a subset of the
corresponding LPCS6, CMOVE is thus strictly more memory efficient than PMOVE.

Note that Theorem 20 is a rather loose upper bound on the space complexity, as
not all VSFs, original or new, exist at the same time. However, it is not possible to to
predict a priori how many of these VSFs exist at the same time, resulting in a space
complexity bound on the basis of all VSFs that exist at some point during the execution
of CMOVE.

4.3.2 Experiments: CMOVE versus PMOVE
In order to test the efficiency of CMOVE, we compare basic CMOVE and incremental
CMOVE to PMOVE7 and the non-graphical approach (described at the beginning of
Section 4.3) for problems with varying numbers of agents and objectives. We also
analyze how these runtimes correspond to the sizes of the PCS and CCS, as well as the
induced width.

Because CMOVE and PMOVE are inner loop methods based on the same schema,
i.e., VE, these experiments indicate how inner loop methods that compute the CCS
compare to inner loop methods that compute the CCS. Furthermore, we see how the
different variants of CMOVE compare to each other.

We use two types of experiments. The first experiments are done with random
MO-CoGs in which we can directly control all variables. In the second experiment,
we use Mining Day, a more realistic benchmark, that is more structured than random
MO-CoGs but still randomized.

Random Graphs

To generate random MO-CoGs, we employ a procedure that takes as input: n, the
number of agents; d, the number of payoff dimensions; ρ the number of local payoff
functions; and |Ai|, the action space size of the agents, which is the same for all agents.
The procedure then starts with a fully connected graph with local payoff functions
connecting to two agents each. Then, local payoff functions are randomly removed,
while ensuring that the graph remains connected, until only ρ local payoff functions
remain. The values for the different objectives in each local payoff function are real
numbers that are drawn independently and uniformly from the interval [0, 10].

6Our implementation of CPrune (Algorithm 1) uses PPrune as a pre-processing step (on line 1).
7We compare to PMOVE using only prune2 = PPrune, rather than prune1 = prune2 = PPrune,

as was proposed in the original article (Rollón and Larrosa, 2006) because we found the former option
slightly but consistently faster.
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Figure 4.4: (a) Runtimes (ms) in log-scale for the nongraphical method, PMOVE and CMOVE
with standard deviation of mean (error bars), (b) the corresponding number of vectors in the
PCS and CCS, and (c) the corresponding spread of the induced width as a boxplot.

We compare algorithms on the same set of randomly generated MO-CoGs for each
separate value of n, d, ρ, and |Ai|.

To compare basic CMOVE, incremental CMOVE, PMOVE, and the non-graphical
method, we test them on random MO-CoGs with the number of agents ranging between
10 and 85, the average number of factors per agent held at ρ = 1.5n, and the number
of objectives d = 2. This experiment was run on a 2.4 GHz Intel Core i5 computer,
with 4 GB memory. Figure 4.4 shows the results, averaged over 20 MO-CoGs for
each number of agents. The runtime (Figure 4.4a) of the non-graphical method quickly
explodes. Both CMOVE variants are slower than PMOVE for small numbers of agents,
but the runtime grows much more slowly than that of PMOVE. At 70 agents, both
CMOVE variants are faster than PMOVE on average. For 75 agents, one of the MO-
CoGs generated caused PMOVE to time out at 5000s, while basic CMOVE had a
maximum runtime of 132s, and incremental CMOVE 136s. This can be explained by
the differences in the size of the solutions, i.e., the PCS and the CCS (Figure 4.4b). The
PCS grows much more quickly with the number of agents than the CCS does. For two-
objective problems, incremental CMOVE seems to be consistently slower than basic
CMOVE.

While CMOVE’s runtime grows much more slowly than that of the nongraphical
method, it is still exponential in the number of agents, a counterintuitive result since
the worst-case complexity is linear in the number of agents. This can be explained by
the induced width of the MO-CoGs, in which the runtime of CMOVE is exponential.
In Figure 4.4c, we see that the induced width increases linearly with the number of
agents for random graphs.

We therefore conclude that, in two-objective MO-CoGs, the non-graphical method
is intractable, even for small numbers of agents, and that the runtime of CMOVE in-
creases much less with the number of agents than PMOVE does.

To test how the runtime behavior changes with a higher number of objectives, we
run the same experiment with the average number of factors per agent held at ρ = 1.5n
and increasing numbers of agents again, but now for d = 5. This and all remain-
ing experiments described in this section were executed on a Xeon L5520 2.26 GHz
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Figure 4.5: Runtimes (ms) for the non-graphical method, PMOVE and CMOVE in log-scale
with the standard deviation of mean (error bars) (left) and the corresponding number of vectors
in the PCS and CCS (right), for increasing numbers of agents and 5 objectives.

computer with 24 GB memory. Figure 4.5 (left) shows the results of this experiment,
averaged over 85 MO-CoGs for each number of agents. Note that we do not plot
the induced widths, as this does not change with the number of objectives. These re-
sults demonstrate that, as the number of agents grows, using CMOVE becomes key
to containing the computational cost of solving the MO-CoG. CMOVE outperforms
the nongraphical method from 12 agents onwards. At 25 agents, basic CMOVE is 38
times faster. CMOVE also does significantly better than PMOVE. Though it is one
order of magnitude slower with 10 agents (238ms (basic) and 416ms (incremental)
versus 33ms on average), its runtime grows much more slowly than that of PMOVE.
At 20 agents, both CMOVE variants are faster than PMOVE and at 28 agents, Basic
CMOVE is almost one order of magnitude faster (228s versus 1, 650s on average), and
the difference increases with every agent.

As before, the runtime of CMOVE is exponential in the induced width, which
increases with the number of agents, from 3.1 at n = 10 to 6.0 at n = 30 on average,
as a result of the random MO-CoG generation procedure. However, CMOVE’s runtime
is polynomial in the size of the CCS, and this size grows exponentially, as shown in
Figure 4.5 (right). The fact that CMOVE is much faster than PMOVE can be explained
by the sizes of the PCS and CCS, as the former grows much faster than the latter. At
10 agents, the average PCS size is 230 and the average CCS size is 65. At 30 agents,
the average PCS size has risen to 51, 745 while the average CCS size is only 1, 575.

Figure 4.6 (left) compares the scalability of the algorithms in the number of objec-
tives, on random MO-CoGs with n = 20 and ρ = 30, averaged over 100 MO-CoGs.
CMOVE always outperforms the nongraphical method. Interestingly, the nongraphical
method is several orders of magnitude slower at d = 2, grows slowly until d = 5, and
then starts to grow with about the same exponent as PMOVE. This can be explained
by the fact that the time it takes to enumerate of all joint actions and payoffs remains
approximately constant, while the time it takes to prune increases exponentially with
the number of objectives. When d = 2, CMOVE is an order of magnitude slower than
PMOVE (163ms (basic) and 377 (incremental) versus 30ms). However, when d = 5,
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Figure 4.6: Runtimes (ms) for the non-graphical method, PMOVE and CMOVE in logscale
with the standard deviation of mean (error bars) (left) and the corresponding number of vectors
in the PCS and CCS (right), for increasing numbers of objectives.

both CMOVE variants are already faster than PMOVE and at 8 dimensions they are
respectively 3.2 and 2.4 times faster. This happens because the CCS grows much more
slowly than the PCS, as shown in Figure 4.6 (right). The difference between incremen-
tal and basic CMOVE decreases as the number of dimensions increases, from a factor
2.3 at d = 2 to 1.3 at d = 8. This trend indicates that pruning after every cross-sum,
i.e., at prune1, becomes (relatively) better for higher numbers of objectives. Although
we were unable to solve problem instances with many more objectives within reason-
able time, we expect this trend to continue and that incremental CMOVE would be
faster than basic CMOVE for problems with very many objectives.

Overall, we conclude that, for random graphs, CMOVE is key to solving MO-
CoGs within reasonable time, especially when the problem size increases in either the
number of agents, the number of objectives, or both.

Mining Day

In Mining Day, a mining company mines gold and silver (objectives) from a set of
mines (local payoff functions) located in the mountains (see Figure 1.2). The mine
workers live in villages at the foot of the mountains. The company has one van in each
village (agents) for transporting workers and must determine every morning to which
mine each van should go (actions). However, vans can only travel to nearby mines
(graph connectivity). Workers are more efficient if there are more workers at the mine:
there is a 3% efficiency bonus per worker such that the amount of each resource mined
per worker is x · 1.03w, where x is the base rate per worker and w is the number of
workers at the mine. The base rate of gold and silver are properties of a mine. Since
the company aims to maximize revenue, the best strategy depends on the fluctuating
prices of gold and silver. To maximize revenue, the mining company wants to use the
latest possible price information, and not lose time recomputing the optimal strategy
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Figure 4.7: Runtimes (ms) for basic and incremental CMOVE, and PMOVE, in log-scale with
the standard deviation of mean (error bars) (left) and the corresponding number of vectors in
the PCS and CCS (right), for increasing numbers of agents.

with every price change. Therefore, we must calculate a CCS.
To generate a Mining Day instance with v villages (agents), we randomly assign

2-5 workers to each village and connect it to 2-4 mines. Each village is only connected
to mines with a greater or equal index, i.e., if village i is connected to m mines, it is
connected to mines i to i + m − 1. The last village is connected to 4 mines and thus
the number of mines is v+ 3. The base rates per worker for each resource at each mine
are drawn uniformly and independently from the interval [0, 10].

In order to compare the runtimes of basic and incremental CMOVE against PMOVE
on a more realistic benchmark, we generate Mining Day instances with varying num-
bers of agents. Note that we do not include the non-graphical method, as its runtime
mainly depends on the number of agents, and is thus not considerably faster for this
problem than for random graphs. The runtime results are shown in Figure 4.7 (left).
Both CMOVE and PMOVE are able to tackle problems with over 100 agents. However,
the runtime of PMOVE grows much more quickly than that of CMOVE. In this two-
objective setting, basic CMOVE is better than incremental CMOVE. Basic CMOVE
and PMOVE both have runtimes of around 2.8s at 60 agents, but at 100 agents, basic
CMOVE runs in about 5.9s and PMOVE in 21s. Even though incremental CMOVE
is worse than basic CMOVE, its runtime still grows much more slowly than that of
PMOVE, and it beats PMOVE when there are many agents.

The difference between PMOVE and CMOVE results from the relationship be-
tween the number of agents and the sizes of the CCS, which grows linearly, and the
PCS, which grows polynomially, as shown in Figure 4.7 (right). The induced width
remains around 4 regardless of the number of agents. These results demonstrate that,
as the CCS grows more slowly than the PCS with the number of agents, CMOVE can
solve MO-CoGs more efficiently than PMOVE as the number of agents increases.

From these — as well as the Random Graphs results — we conclude that CMOVE
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scales much better than PMOVE. Furthermore, we conclude that Basic CMOVE is
faster than incremental CMOVE (at least for 8 objectives or less).

4.3.3 Convex AND/OR Tree Search
In Section 4.1.2, we described how the optimal joint action in a CoG can be found
using an AND/OR Search tree (AOST), such as in Figure 4.3b, using AND/OR tree
search (TS). In such an AOST, there are two types of nodes: OR nodes that represent
agents, and AND nodes that represent actions. The TS algorithm traverses the tree,
taking maximizations over the values of the subtrees rooted by the AND node children
of an OR node, and summations over the values of subtrees rooted by the OR node
children of an AND node. In this subsection, we show how the inner loop approach
can be applied to create multi-objective methods from this algorithm.

First, we note that AND/OR tree search algorithms have been extended to compute
a PCS by Marinescu (2009). When we apply this inner loop approach to compute the
PCS to TS, it yields an algorithm we call Pareto TS (PTS).8 To define PTS, we must
update Definition 26 to be a set of Pareto-optimal payoffs. We refer to such a subtree
value set as an intermediate PCS (IPCS).

Definition 31. The intermediate PCS of a subtree, IPCS(Ti) rooted by an OR-node i
is the PCS of the union of the intermediate PCSs of the children, ch(i), of i:

IPCS(Ti) = PPrune(
⋃

aj∈ch(i)

IPCS(Taj)).

The intermediate PCS of a subtree, IPCS(Tai) rooted by an AND-node ai is the PCS
of the value of ai itself (Definition 25) plus the (pruned) cross-sum of the intermediate
PCSs of the subtrees rooted by the (OR-node) children of ai:

IPCS(Tai) = PPrune(

 ⊕̂
j∈ch(ai)

IPCS(Tj)

⊕ {vai}).
Thus, PTS replaces the max operator in TS by a pruning operator, just as PMOVE
replaces the max operator in VE by a pruning operator.

As we argued for CMOVE, computing a CCS rather than a PCS is often faster and
sufficient for many real-world problems. To compute the CCS in a memory-efficient
way, we propose convex TS (CTS). CTS simply replaces PPrune by CPrune in Def-
inition 31. Thus, CTS is like PTS but with a different pruning operator. It can also
be seen as CMOVE but with VE replaced with TS. The advantage of CTS over PTS
is analogous to that of CMOVE over PMOVE: it is highly beneficial to compute local
CCSs instead of local PCSs because the intermediate coverage sets are input to the next

8Marinescu (2009) applies this approach to different algorithms from the class of AND/OR tree
search algorithms as base algorithms. Here, we use TS, as it is the most memory-efficient.



80 Chapter 4. Coordination

subproblem in a sequential search scheme, regardless of whether that scheme is VE or
TS; this is both more runtime and memory efficient.

Like in CMOVE, we can apply incremental pruning (Cassandra et al., 1997), i.e.,
pruning after every cross-sum. Incremental pruning is more memory efficient, as it
greatly reduces the sizes of the cross-sums.

While CTS is more memory efficient than CMOVE, it still requires computing
intermediate coverage sets that take up space. While these are typically only about as
large as the CCS, their size is bounded only by the total number of joint actions.

Analysis

Using the time and space complexity results for TS, we can establish the following
corollaries about the time and space complexity of CTS.

Corollary 4. The time complexity of CTS is O(n|Amax|mR), where R is the runtime
of CPrune.

Proof. O(n|Amax|m) bounds the number of nodes in the AOST. For each node in the
AOST CPrune is called.

The runtime of CPrune in terms of the size of its input is given by Definition 2.
The size of the input of CPrune depends on the size of the intermediate CCSs of the
children of a node. In the case of an AND-node, this input size is O(|ICCSmax|c),
where c is the maximum number of children of an AND-node.9 For OR-nodes this is
O(|Amax||ICCSmax|).

Corollary 5. The space complexity of CTS is

O(n|ICCSmax|+ |Amax||ICCSmax|+ |ICCSmax|c),

where |ICCSmax| is the maximum size of an intermediate CCS during the execution
of CTS.

Proof. Like in TS, only O(n) nodes of the AOST need to exist during any point during
execution, and each node contains an intermediate CCS. After computing a cross-sum
at most |ICCSmax|c vectors are generated before pruning.

Note that when incremental pruning is applied, the full cross-sums (of size |ICCSmax|c)
are never generated. Instead, the cross-sums of only 2 (instead of c) ICCSs are com-
puted. CTS is much more memory efficient than CMOVE, which has a space com-
plexity that is exponential in the induced width (Theorem 20).

9Note that c is in turn upper bounded by n but this is a very loose bound.
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Figure 4.8: (left) Runtimes in ms of CTS, basic CMOVE and PMOVE on random
3-objective MO-CoGs with varying numbers of agents n and ρ = 2.0n local payoff
factors. (right) The corresponding CCS and PCS sizes of the MO-CoGs. (right) The
corresponding induced widths of the MO-CoGs.

4.3.4 Experiments: CTS versus CMOVE

In this subsection we empirically compare CMOVE and CTS in settings where there
is little available memory. In order to test the memory-efficiency, we limit the memory
the algorithms is allowed to use, using the -Xmx runtime option for the JAVA Virtual
Machine. All experiments use our JAVA implementation (version 1.6 SE), and the
corresponding MacOS X Virtual Machine. All experiments in this subsection were run
on a 2.4 GHz Intel Core i5 computer, with 4 GB memory.

To obtain the PTs for CTS, we use the same heuristic as CMOVE and VELS to
generate an elimination order. We then transform this elimination order into a PT for
which m ≤ w log n holds (whose existence is guaranteed by Theorem 15), using the
procedure suggested by Bayardo and Miranker .

We employ the same generation procedure for random graphs as in Section 4.3.2.
Because connections between agents in these graphs are generated randomly, the in-
duced width varies between different problems. On average, the induced width in-
creases with the number of local payoff functions, even when the ratio between local
payoff factors and the number of agents remains constant.

In order to test the sizes of problems that the different MO-CoG solution methods
can handle within limited memory, we generate very challenging random graphs with
a varying number of agents n, three objectives, and ρ = 2.0n local payoff functions.
We limited the maximal available memory to 10MB.

Figure 4.8 (left) shows that within 10 MB, PMOVE and CMOVE can solve MO-
CoGs of respectively 20 and 30 agents. Because the local coverage sets while running
CMOVE are smaller than those while running PMOVE, CMOVE requires less memory
and therefore can tackle problems with higher numbers of agents. In this figure, we
show only basic CMOVE and not incremental CMOVE because the runtimes of basic
CMOVE are better, and incremental CMOVE was not able to solve larger problem
instances.
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Figure 4.9: An example of a 4 by 4 Mining Field instance. The additional mines m are
marked with a ‘+’.

Solving MO-CoGs with 35 agents or more, the induced width (shown in the right
of Figure 4.8) becomes to large, and a memory-efficient approach is required. CTS and
PTS are more memory efficient than CMOVE and PMOVE. However, as Figure 4.8
(middle) shows, the CCSs are much smaller than the PCSs. For example, at 35 agents,
the CCSs consist of only 102 payoff vectors on average, while the PCSs consist of 1602
payoff vectors on average. Therefore, while PTS runs out of memory at 40 agents, CTS
can solve problems with larger numbers of agents. In fact, we were unable to generate
Random Graphs that made CTS run out of memory. We therefore conclude that CTS
can tackle larger problems than PTS.

When comparing runtimes, we observe that CTS requires more runtime; 3.0 times
more than CMOVE at 35 agents. However, CTS can handle more agents within the
memory constraints. We therefore conclude that while CMOVE is faster than CTS,
CTS offers a solution for MO-CoGs where CMOVE runs out of memory.

Mining Field

We compare the performance of basic and incremental CMOVE and CTS on a variation
of Mining Day that we call Mining Field. We use Mining Field in order to ensure an
interesting problem for the memory-restricted setting. In Mining Day (see Section
4.3.1), the induced width depends only on the parameter specifying the connectivity of
the villages and does not increase with the number of agents and factors. Therefore,
whether or not CMOVE is memory-efficient enough to handle a particular instance
depends primarily on this parameter and not on the number of agents.

In Mining Field, the villages are not situated along a mountain ridge but are placed
on an s × s grid. The number of agents is thus n = s2. We use random placement
of mines, while ensuring that the graph is connected. Because the induced width of
a connected grid is s and we generate grid-like graphs, larger instances have a higher
induced width. The induced width thus no longer depends only on the connectivity
parameter but also increases with the number of agents and factors in the graph.

An example Mining Field instance is provided in Figure 4.9 (left). We choose the
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distance between adjacent villages on the grid to be unit length. On this map, we then
place the mines (local payoff functions). We connect all agents using an arbitrary tree
using 2-agent local payoff functions (mines). In the figures, the mines that span this
tree are unmarked and connected to the mines with black edges. We require s2 − 1
factors to build the tree. Then we add m additional mines, by (independently) placing
them on a random point on the map inside the grid. When a mine is placed, we connect
it to the villages that are within a r = 1√

2
+ η radius of that mine on the map. We

chose η = 0.2. Therefore, the maximum connectivity of a factor (mine) created in this
fashion is 4. In the figure, these mines are marked with a ‘+’. The rewards per mine
per worker, as well as the number of workers per village, are generated in the same
way as in Mining Day.

To compare the runtimes and memory requirements of basic and incremental CMOVE
and CTS on Mining Field, we tested them on a 7 × 7 instance (49 agents) with 3 ob-
jectives, and 10MB available memory. We increase the number of additional mines m
from 2 (50 factors in total) onwards, by steps of 2. Using this setup, it was not possible
to solve any of the problem instances using PMOVE and even PTS, which ran out of
memory for all problems.

Figure 4.9 (middle) shows that within 10 MB, basic CMOVE can solve MO-CoGs
of only 49 local payoff functions or less. Contrary to our Random Graph results how-
ever, incremental CMOVE can solve larger problem instances than basic CMOVE. An
explanation for this is, is that in the Mining Field experiment, the induced width (Fig-
ure 4.9 (right)) increases much more slowly than in the Random Graph experiment
of Figure 4.8. We thus expect that the part that for the Mining Field experiment, the
dominant factor in the memory requirements of CMOVE (Theorem 20) is the compu-
tation of the cross-sums of Equation 4.6, whilst in Random Graphs the dominant part
is the storage of the new VSFs. This also explains why after 55 local payoff functions,
both CTS — whose main memory requirement is the computation of the cross-sums
— and incremental CMOVE run out of memory. We therefore conclude that incre-
mental CMOVE is more memory-efficient than basic CMOVE, and that for problems
with a low induced width CTS and incremental CMOVE use a comparable amount of
memory.

Summarizing, we have shown that CMOVE and CTS offer different trade-offs be-
tween memory and runtime. Basic CMOVE is faster than Incremental CMOVE which
is in turn faster than CTS. However, Basic CMOVE also uses most memory. Incre-
mental CMOVE and CTS use less memory, and can therefore tackle larger problems.
CMOVE (both basic and incremental) scales poorly in the induced width in terms of
memory usage. CTS can solve MO-CoGs with a much higher induced width. How-
ever, both the memory requirements of CTS and of CMOVE depend on the size of the
cross-sums between local/intermediate CCSs. In the following Section, we propose
methods that scale much better in the size of these local/intermediate CCSs.
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4.4 OLS for MO-CoGs
In the previous section, we showed how to create CCS methods by taking an inner loop
approach and using a single-objective search schema such as VE or TS. Furthermore,
we have shown that when ample memory is available CMOVE is faster, and therefore
better, while if memory is limited, CTS can solve MO-CoGs that CMOVE cannot. In
this section, we create novel CCS methods using an outer loop rather than an inner loop
approach. Not only are outer loop methods easier to create than inner loop methods —
as the single-objective search algorithms themselves do not have to change — and can
take any single-objective CoG solver as a subroutine, but they also have better compu-
tational and space complexity bounds for small and medium numbers of objectives.

4.4.1 Variable Elimination Linear Support
Rather than dealing with the multiple objectives in the inner loop of the VE search
schema, as CMOVE does, we can also employ our outer loop approach, i.e., the opti-
mistic linear support we defined in Section 3.3, and employ VE as a subroutine. We
refer to the resulting algorithm as variable elimination linear support (VELS).

Because VELS uses the OLS outer loop, VELS builds the CCS incrementally, i.e.,
with each iteration of its outer loop, it adds at most one new vector to a partial CCS.
To find this vector, VELS selects a single w (the one that offers the maximal possible
improvement), and passes that w to the inner loop. In the inner loop, VELS uses VE
(Section 4.1.1) to solve the single-objective coordination graph (CoG) that results from
scalarizing the MO-CoG using the w selected by the outer loop. The joint action, a,
that is optimal for this CoG and its payoff vector, u(a) are then added to the partial
CCS. Having dealt with the multiple objectives in the outer loop of OLS, VELS thus
relies on VE to exploit the graphical structure in the inner loop.

VELS is implemented as OLS(m, SolveSODP, ε) (Algorithm 5), where,

• m is a MO-CoG, and

• SolveSODP consists of two steps: first calling VE to retrieve the optimal action,
a for a scalarized instance of m, and then evaluating this action to retrieve the
corresponding payoff vector u(a).

The computational and space complexities can immediately be derived from combin-
ing the computational and space complexities of OLS (Theorems 4 and 6) with those
of VE (Theorems 11 and 12).

Corollary 6. The computational complexity of VELS

O( (|ε−CCS|+ |Wε−CCS|)(n|Amax|w + dρ+Rnw +Rheur) ),

where |Amax| is the maximal number of actions for a single agent and w is the induced
width, ρ is the number of factors, and Rnw and Rheur are the time it costs to run
newCornerWeights, and maxValueLP, as defined in Section 3.3.
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Proof. This follows directly from filling in the runtime of VE, n|Amax|w, for Rso, and
the look-up and summation of ρ local payoff vectors of length d for Rpe, in Theorem
4.

The overhead of OLS itself, i.e., computing new corner weights, Rnw, and calcu-
lating the maximal relative improvement, Rheur, is small compared to the VE calls.
Rnw + Rheur and dρ are thus negligible in practice. When comparing the runtime of
CMOVE and VELS, we observe that in the former, the runtime of VE is multiplied by
the runtime of the pruning operators (R1 andR2 in Theorem 19), while in the latter, the
runtime of VE is multiplied by (|ε−CCS|+ |Wε−CCS|). Considering that |Wε−CCS| is
linear in |ε−CCS| for d = 2 and d = 3, while CPrune is polynomial in the size of the
local CCSs, we thus expect VELS to be much faster for these numbers of objectives.
However, because |Wε−CCS| grows exponentially with the number of objectives (The-
orem 5) we expect CMOVE to be faster than VELS for larger number of objectives.

Corollary 7. The space complexity of VELS is

O(d|ε–CCS|+ d|Wε–CCS|+ n |Amax|w).

Proof. This follows directly from filling in the memory requirements of VE, n|Amax|w,
for Mso, in Theorem 4. The memory requirements for computing the payoff vector,
u(a), given a are negligible.

Because OLS adds few memory requirements to that of VE, VELS is almost as
memory efficient as VE and thus considerably more memory efficient than CMOVE
(Theorem 20).

4.4.2 Experiments: VELS versus CMOVE
We now empirically evaluate VELS in comparison to CMOVE. We no longer com-
pare against the non-graphical method and PMOVE as these are clearly dominated by
CMOVE. Where we refer to CMOVE in this section, we mean basic CMOVE, as this
was fastest for the tested scenarios. Like before, we use both random graphs and the
Mining Day benchmark. All experiments in this subsection were run on a 2.4 GHz
Intel Core i5 computer, with 4 GB memory.

Random Graphs

To test VELS on randomly generated MO-CoGs, we use the same MO-CoG generation
procedure as in Section 4.3.2. To determine how the scalability of exact and approxi-
mate VELS compares to that of CMOVE, we tested them on random MO-CoGs with
increasing numbers of agents. The average number of factors per agent was held at
ρ = 1.5n and the number of objectives at d = 2. Figure 4.10 shows the results, which
are averaged over 30 MO-CoGs for each number of agents. Note that the runtimes on
the left, on the y-axis, are in log-scale but the set sizes on the right are not.
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Figure 4.10: (left) The runtimes of CMOVE and VELS with different values of ε,
for varying numbers of agents, n, and ρ = 1.5n factors, 2 actions per agent, and 2
objectives and (right) the corresponding sizes of the ε-CCSs.

These results demonstrate that VELS is more efficient than CMOVE for two-
objective random MO-CoGs. The runtime of exact VELS (ε = 0) is on average 16
times less than that of CMOVE. CMOVE solves random MO-CoGs with 85 agents in
74s on average, whilst exact VELS can handle 110 agents in 71s.

While this is already a large gain, we can achieve an even lower growth rate by
permitting a small ε. For 110 agents, permitting a 0.001 error margin yields a gain of
more than an order of magnitude, reducing the runtime to 5.7s. Permitting a 0.01 error
reduces the runtime to only 1.3s. We can thus reduce the runtime of VELS by a factor
of 57, while retaining 99% accuracy. Compared to CMOVE at 85 agents, VELS with
ε = 0.01 is 109 times faster.

These speedups can be explained by the slower growth of the ε-CCS, as we see in
Figure 4.10 (right). For small numbers of agents, the size of the ε-CCS grows only
slightly more slowly than the size of the full CCS. However, from a certain number
of agents onwards, the size of the ε-CCS grows only marginally while the size of the
full CCS keeps on growing. For ε = 0.01, the average ε-CCS grew from 2.95 payoff
vectors to 5.45 payoff vectors between 5 and 20 agents, and then only marginally to
5.50 at 110 agents. By contrast, the full CCS grew from 3.00 to 9.90 vectors between
5 and 20 agents, but then keeps on growing to 44.50 at 110 agents. A similar picture
holds for the 0.001-CCS, which grows rapidly from 3.00 vectors at 5 to 14.75 vectors
at 50 agents, then grows slowly to 16.00 at 90 agents, and then stabilizes, to reach
16.30 vectors at 120 agents. Between 90 and 120 agents, the full CCS grows from
35.07 vectors to 45.40 vectors, making it almost 3 times as large as the 0.001-CCS and
9 times larger than the 0.01-CCS .

To test the scalability of VELS with respect to the number of objectives, we tested
it on random MO-CoGs with a constant number of agents and factors n = 25 and
ρ = 1.5n, but increased the number of objectives, for ε = 0 and ε = 0.1. We compare
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Figure 4.11: (left) the runtimes of CMOVE and VELS (ε = 0 and ε = 0.1), for varying
numbers of objectives (right) the size of the ε-CCS for varying numbers of objectives.

this to the scalability of CMOVE. We kept the number of agents (n = 25) and the
number of local payoff functions (ρ = 37) small in order to test the limits of scalability
in the number of objectives. The number of actions per agent was 2. Figure 4.11
(left) plots the number of objectives against the runtime (in log scale). Because the
CCS grows exponentially with the number of objectives, as can be seen in Figure 4.11
(right), the runtime of CMOVE is also exponential in the number of objectives. VELS
however is linear in the number of corner weights, which is exponential in the size
of the CCS, making VELS doubly exponential. Exact VELS (ε = 0) is faster than
CMOVE for d = 2 and d = 3, and for d = 4 approximate VELS with ε = 0.1 is
more than 20 times faster. However for d = 5 even approximate VELS with ε = 0.1 is
slower than CMOVE.

Unlike when the number of agents grows, the size of the ε-CCS (Figure 4.11
(right)) does not stabilize when the number of objectives grows, as can be seen in
the following table:

|ε–CCS| ε = 0 ε = 0.001 ε = 0.01 ε = 0.1

d = 2 10.6 7.3 5.6 3.0

d = 3 68.8 64.6 41.0 34.8

d = 4 295.1 286.1 242.6 221.7

We therefore conclude that VELS can compute a CCS faster than CMOVE for 3 ob-
jectives or less, but that CMOVE scales better in the number of objectives. VELS
however, scales better in the number of agents.10 We note that these conclusions are
conform expectations, because when we compare the runtimes of CMOVE and VELS

10Note that all the runtime figures in this subsection are in logscale.
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Figure 4.12: (left) plot of the runtimes of CMOVE and VELS with different values of
ε, for varying n (up to 500). (right) loglogplot of the runtime of VELS on 250, 500,
and 1000 agent mining day instances, for varying values of ε.

(Theorem 19 and Corollary 6), CMOVE is polynomial in the size of the (local) CCSs,
where VELS is merely linear in the size of the CCS and the number of corner weights
(which is in turn linear in the size of the CCS for d = 2 and d = 3).

Mining Day

We now compare CMOVE and VELS on the Mining Day benchmark using the same
generation procedure as in Section 4.3.2. We generated 30 Mining Day instances for
increasing n and averaged the runtimes (Figure 4.12 (left)). At 160 agents, CMOVE
has reached a runtime of 22s. Exact VELS (ε = 0) can compute the complete CCS
for a MO-CoG with 420 agents in the same time. This indicates that VELS greatly
outperforms CMOVE on this structured 2-objective MO-CoG. Moreover, when we
allow only 0.1% error (ε = 0.001), it takes only 1.1s to compute an ε-CCS for 420
agents, a speedup of over an order of magnitude.

To measure the additional speedups obtainable by further increasing ε, and to
test VELS on very large problems, we generated Mining Day instances with n ∈
{250, 500, 1000}. We averaged over 25 instances per value of ε. On these instances,
exact VELS runs in 4.2s for n = 250, 30s for n = 500 and 218s for n = 1000 on
average. As expected, increasing ε leads to greater speedups (Figure 4.12 (right)).
However, when ε is close to 0, i.e., the ε-CCS is close to the full CCS, the speedup
is small. After ε has increased beyond a certain value (dependent on n), the decline
becomes steady, shown as a line in the log-log plot. If ε increases by a factor 10, the
runtime decreases by about a factor 1.6.

Thus, these results show that VELS can compute an exact CCS for unprecedented
numbers of agents (1000) in well-structured problems. In addition, they show that
small values of ε enable large speedups, and that increasing ε leads to even bigger
improvements in scalability.
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4.4.3 AND/OR Tree Search Linear Support
VELS is considerably more memory efficient than CMOVE. However, CTS is more
memory efficient than either of them. In order to become even more memory efficient
than CTS — as well as faster for small numbers of objectives we define tree search
linear support (TSLS).

TSLS employs OLS with TS as the single-objective solver subroutine. TSLS is
equal to VELS but with VE replaced by TS. Because TSLS is an outer-loop method, it
runs TS in sequence, requiring only the memory used by TS itself and the overhead of
the outer loop, which consists only of the partial CCS (Definition 16) and the priority
queue. Consequently, TSLS is even more memory efficient than CTS, while being
faster for small and medium numbers of objectives.

Corollary 8. The computational complexity of TSLS is

O((|ε−CCS|+ |Wε−CCS|) (n |Amax|m +Rnw +Rheur)),

where m ≤ w log n and ε ≥ 0.

Proof. The proof is the same as that of Theorem 6 but with the time complexity of VE
replaced by that of TS (Theorem 14).

In terms of memory usage, the outer loop approach (OLS) has a large advantage
over the inner loop approach, because the overhead of the outer loop consists only
of the partial CCS (Definition 16) and the priority queue. VELS (Theorem 6) thus
has much better space complexity than CMOVE (Theorem 20). TSLS has the same
advantage over CTS as VELS over CMOVE. Therefore, TSLS has very low memory
usage, since it requires only the memory used by TS itself plus the overhead of the
outer loop.

Corollary 9. The space complexity of TSLS is O(d|ε-CCS|+ d|Wε-CCS|+n)), where
m ≤ w log n and ε ≥ 0.

Proof. The proof is the same as that of Corollary 7 but with the space complexity of
VE replaced by that of TS (Theorem 13).

As mentioned in Section 4.1.2, TS is the most memory-efficient member of the
class of AND/OR tree search algorithms. Other members of this class offer different
trade-offs between time and space complexity. It is possible to create inner loop algo-
rithms and corresponding outer loop algorithms on the basis of these other algorithms.
The time and space complexity analyses of these algorithms can be performed in a
similar manner to Corollaries 4 and 5 (CTS), and 8 and 9 (TSLS). The advantages of
the outer loop methods compared to their corresponding inner loop methods however
remain the same as for TSLS and CTS. Therefore, in this dissertation we focus on com-
paring the most memory-efficient inner loop method against the most memory-efficient
outer loop method.
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4.4.4 Experiments: TSLS versus VELS and CTS

In this section, we compare TSLS to CTS, and VELS and CMOVE11. In order to test
the memory-efficiency, we limit the memory the algorithms is allowed to use, using
the -Xmx runtime option for the JAVA Virtual Machine. All experiments use our JAVA
implementation (version 1.6 (SE)), and the corresponding MacOS X Virtual Machine.
As before, we use both random graphs and the Mining Field benchmark.

To obtain the PTs for CTS and TSLS, we again use the same heuristic as CMOVE
and VELS to generate an elimination order and then transform it into a PT for which
m ≤ w log n holds, using the procedure suggested by Bayardo and Miranker .

Random Graphs

First, we test our algorithms on random graphs, employing the same generation pro-
cedure as in Section 4.3.2. Because connections between agents in these graphs are
generated randomly, the induced width varies between different problems. On aver-
age, the induced width increases with the number of local payoff functions, even when
the ratio between local payoff factors and the number of agents remains constant.

In order to test the sizes of problems that the different MO-CoG solution methods
can handle within limited memory, we generate random graphs with two objectives, a
varying number of agents n, and with ρ = 1.5n local payoff functions, as in previous
sections. We limited the maximal available memory to 1kB and imposed a timeout of
1800s.

Figure 4.13a shows that VELS can scale to more agents within the given memory
constraints than the other non-memory efficient methods. In particular, PMOVE and
CMOVE can handle only 30 and 40 agents, respectively, because, for a given induced
width w, they must store O(|Amax|w) local CSs. At 30 agents, the induced width
(Figure 4.13c) is at most 6, while at 40 agents the induced width is at most 8. VELS
can handle 65 agents, with an induced width of at most 11, because most of its memory
demands come from running VE in the inner loop, while the outer loop adds little
overhead. VE need only store one payoff in each new local payoff function that results
from an agent elimination, whereas PMOVE and CMOVE must store local coverage
sets. Thus, using an outer loop approach (VELS) instead of the inner loop approach
(CMOVE) already yields a significant improvement in the problem sizes that can be
tackled with limited memory.

However, scaling beyond 65 agents requires a memory-efficient approach. Figure
4.13a also shows that, while CTS and TSLS require more runtime, they can handle
more agents within the memory constraints. In fact, we were unable to generate a MO-
CoG with enough agents to cause these methods to run out of memory. TSLS is faster
than CTS, in this case 4.2 times faster, for the same reasons that VELS is faster than
CMOVE.

11As in Section 4.4.2, where we write CMOVE, we mean basic CMOVE.
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Figure 4.13: (a) Runtimes in ms of TSLS, VELS, CTS, CMOVE and PMOVE on
random 2-objective MO-CoGs with varying numbers of agents n and ρ = 1.5n local
payoff factors. (b) Runtimes of approximate TSLS for varying amounts of allowed
error ε, compared to (Exact) VELS, for the same problem parameters as in (a). (c) The
corresponding induced widths of the MO-CoGs in (b).

However, speed is not the only advantage of the outer loop approach. When we
allow a bit of error in scalarized value, ε, we can trade accuracy for runtime (Figure
4.13b). At 65 agents, exact TSLS (ε = 0), had an average runtime of 106s, which is
51 times slower than VELS. However, for ε = 0.0001, the runtime was only 70s (33
times slower). For ε = 0.01 it is 11s (5.4 times slower), and for ε = 0.1 it is only
6s (2.9 times slower). Furthermore, the relative increase in runtime as the number of
agents increases is less for higher ε. Thus, an approximate version of TSLS is a highly
attractive method for cases in which both memory and runtime are limited.

Mining Field

We compare the performance of VELS against TSLS on Mining Field (as defined in
Section 4.3.4). We no longer consider CTS and CMOVE because these inner loop
methods have consistently higher runtime than their corresponding outer loop methods,
and worse space complexity. We use Mining Field (as described in Section 4.3.4) in
order to ensure an interesting problem for the memory-restricted setting.

To compare the runtimes and memory requirements, VELS, and TSLS on Mining
Field, we tested them on a 7×7 instance (49 agents), with 1MB available memory. For
TSLS, we use three different values of ε: 0 (exact), 0.01 and 0.1. We use a time limit
of 1.8× 106s (30 minutes). We increase the number of additional mines m from 2 (50
factors in total) onwards, by steps of 2.

Figure 4.14 shows the comparison between VELS and TSLS. VELS runs out of
memory only at 16 additional factors, at an induced width of 6. Compared to the
random-graph results in Section 4.4.4, the induced widths of the problems that VELS
can handle are lower in Mining Field. We suspect that this is because, on a grid-shaped
problem, the number of factors with the highest induced width that need to exist in
parallel during the execution of the algorithms is higher.
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Figure 4.14: (left) Runtimes in ms of TSLS (for varying amounts of allowed error ε),
VELS (ε = 0), and CMOVE on 2-objective Mining Field instances with varying num-
bers of additional minesm ∈ [2..14] and a grid size of s = 7. (right) The corresponding
induced widths of the Mining Field instances.

TSLS does not run out of memory on any of the tested instances. In face, we were
unable to generate instances for which TSLS does run out of memory. However, it
does run out of time. For ε = 0, TSLS first exceeds the time limit at m = 10 additional
mines. For ε = 0.01, this happens at m = 14. For ε = 0.1, TSLS ran out of time
at m = 16. The differences in runtime between TSLS and VELS are larger than for
random graphs and therefore it is more difficult to compensate for the slower runtime
of TSLS by choosing a higher ε. How much slower TSLS is compared to VELS thus
seems to depend on the structure of the MO-CoG.

These Mining Field results confirm the conclusion of the random-graph experi-
ments that TSLS can be used to solve problem sizes beyond those that VELS can han-
dle within limited memory. An approximate version of TSLS is an appealing choice
for cases in which both memory and runtime are limited.

4.4.5 Variational Optimistic Linear Support
VELS and TSLS are both exact outer loop methods, that offer different trade-offs with
respect to speed and memory usage. Furthermore, it is also possible to sacrifice accu-
racy for runtime by allowing some slack ε to limit the number of calls to VE or TS.
However, because VE and TS are exact single-objective solvers, this does not change
the fact that VELS and TSLS have an exponential runtime in the induced width. To
address this, we can instead also use an approximate single-objective solver as a sub-
routine.

In this subsection we propose using variational CoG solvers, as described in Section
4.1.3, as a basis for finding the CCS in a MO-CoG. As previously described, variational
methods rely on restructuring and reparameterization rather than local summation and
maximization (like VE and TS). Therefore, it is not obvious how to apply an inner loop
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approach. However, as an outer loop approach does not affect the inner workings of the
single-objective solvers, it is possible to use variational methods inside OLS. This is an
important advantage for OLS, as variational methods are amongst the state-of-the-art
solvers for CoGs.

Variational solvers for CoGs are bounded approximate algorithms. Therefore, we
must use the OLS schema that allows for approximate subroutines, as described in Sec-
tion 3.5. Using Algorithm 7, with a bounded-approximate variational method yields
a new algorithm we call variational optimistic linear support (VOLS). VOLS has two
important advantages over VELS and TSLS. Firstly, because variational methods scale
much better than VE and TS, VOLS achieves unprecedented scalability. In addition,
since the variational method we use, which is called weighted mini-buckets (WMB) (Liu
and Ihler, 2011), computes bounded approximations, VOLS does so too. Secondly, we
leverage the key insight that VOLS can hot-start each call to WMB by reusing the repa-
rameterizations output by WMB on earlier calls, as described in an abstract manner in
Section 3.6.

In the rest of this subsection we describe how to implement reuse in OLS using
variational methods in the VOLS algorithm. Specifically, we show how to use the
reparameterizations output by a variational method as well as the lower bound for
reuse in the next call to the variational solver. In Section 4.4.6 we compare VOLS
empirically to CMOVE and VELS, and show that it scales much better than these
methods at very little cost to the quality of the found solutions.

VOLS uses a variational subroutine as its instantiation of approxSolveSODP, to
solve scalarized instances of the MO-CoG. This subroutine takes a scalarized MO-
CoG as input. As output, the subroutine produces a lower-bound joint action al, which
we use to construct the approximate CCS. It also produces an upper bound ū on the
optimal value, which we use to bound the quality of the final approximate CCS, and
to prioritize instances in the series of single-objective problems to solve. Furthermore,
the variational method manipulates the set of scalarized local payoff functions Uw to
output a reparameterization, i.e., a set of manipulated local payoff functions U ′w for
which all joint actions have the same (scalar) payoff:

∀a
∑
ue∈Uw

ue(ae) =
∑
ug∈U ′w

ug(ag). (4.8)

We can re-use the reparameterization, i.e., U ′w, to hot-start the reparameterization
of a new scalarized instance for a new weight vector z. Specifically, if we define the
difference graph between two scalarization weights w and z as

Uw→z = {uew→z(ae) = (z−w) · ue(ae) : ue(ae) ∈ U},

then adding this difference graph to the reparameterization U ′w yields a valid reparam-
eterization for z:

Ûz = U ′w ∪ Uw→z.
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When w is close to z, the magnitude of the local payoff functions in Uw→z is small,
and Ûz is close to U ′w. Intuitively, Ûz is therefore likely to be closer to the eventual
reparameterization U ′z that the variational subroutine will produce for Uz, than Uz itself
would be, and fewer iterations of the variational method will be required to further
tighten the bounds and find U ′z. Using the difference graph Uw→z in order to hot-
start the next call to a variational subroutine in OLS works for any variational single-
objective CoG solver.

Using the definition of the difference graph, we can define variational optimistic
linear support (VOLS) formally. VOLS — defined in Algorithm 12 — takes a MO-
CoG 〈D,A,U〉 and any variational single-objective coordination graph subroutine as
input. In this section we refer to the variational subroutine as variationalSOSolver.

Following the OLS framework, VOLS keeps a set S, that becomes an approximate
CCS (line 1), a set of upper bounds on the optimal values that VOLS finds for scalar-
ized instances (for individual w), Uold (line 2), and starts looking for solutions, i.e.,
approximately optimal joint actions and payoffs, for the extrema of the weight simplex
(line 3–4).

In order to enable the reuse of reparameterizations and lower bounds found by the
variational subroutine, VOLS keeps a set R (line 5) with tuples of weights w, and
reparameterizations and joint actions that implement the lower bounds produced at
those w by variationalSOSolver in iterations of the main loop.

In the main loop (lines 6–17), VOLS iteratively pops a corner weight w off the
priority queue Q and solves the corresponding scalarized MO-CoG, Uw, as in standard
OLS. However, instead of just calling the single-objective solver for Uw directly, VOLS
first looks for the reparameterization U ′v found in earlier iterations (on line 8), for the
weight closest to w. Because, the value for all joint actions remains the same when
after reparameterizing Uv to U ′v (Equation 4.8), adding the difference graph, Uv→w

results in a graph, Ûw = U ′v ∪ Uv→w, for which

∀a
∑
ue∈Uw

ue(ae) =
∑
uh∈Ûw

uh(ah).

In other words, reusing the reparameterization for v on the scalarized graph for w
does not affect the scalarized payoff, uw(a), for any a, and Ûw is thus a valid repa-
rameterization Uw. The aim of applying this reparameterization is for Ûw to be closer
to the eventual output graph U ′w of the variational solver. Our key insight is that by
doing so, the runtime of the variational single-objective solver can be drastically re-
duced if the reparameterization U ′v was found at a weight v close to w. We verify this
experimentally in Section 4.4.6.

Besides the reparameterization U ′v ∪ Uv→w, variationalSolver is also provided
with the joint action av that achieves the lower bound of the previous weight v. This
joint action can be reused as an initial guess for the joint action at w. If at any time dur-
ing the execution of variationalSolver for U ′v∪Uv→w, the upper bound is achieved
by av, the variational solver can stop. Such lower bound reuse is thus highly effec-
tive when the variational single-objective solver can produce optimal solutions for the
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Algorithm 12: VOLS(〈D,A,U〉 , variationalSOSolver)

Input: A MO-CoG1 S ← ∅; // approximate CCS of multi-objective payoff vectors u(a)
2 Uold ← ∅; // set of previous w and ūw, for determining optimistic estimates for new

corner weights
3 Q← an empty priority queue ; // a priority queue with corner weights to search
4 Add extrema of the weight simplex to Q with infinite priority;
5 R← ∅ ; // set of reparameterizations, joint actions, and associated weights
6 while ¬Q.isEmpty() ∧ ¬timeOut do
7 w← Q.dequeue(); // retrieve a weight vector
8 U ′v,av← select previous reparameterization and joint action found for the closest

weight v to w fromR;
9 U ′w, al, ūw ← variationalSOSolver(U ′v ∪ Uv→w) ; // a variational single

objective solver.
10 R ← R∪ {(w,U ′w,al)} ; // store the reparameterization of the scalarized graph for

reuse
11 Uold ← Uold ∪ {(w, ūw)}; // store upper bound for w, for determining the next

max. possible improv.
12 if u(al) 6∈ S then
13 S ← S ∪ {u(al)} ; // add lower bound payoff and associated action, u(al), to

the approximate CCS
14 W ← compute new corner weights and max. possible improvements (w,∆w)

using Uold and S;
15 Q.addAll(W );
16 end
17 end
18 return S;

scalarized problem as it can circumvent the decoding phase of variational algorithms,
which is often very computationally intensive.

The single-objective variational solver (called on line 9) produces three outputs:
the new reparameterized graph U ′w, an upper bound on the optimal scalarized payoff,
ūw, and the approximately optimal joint action al. Note that al implies a lower bound
on the optimal payoff in w, i.e., w · u(al). All of these are stored (lines 10 and 11).

If u(al) is not already in S , then it is added to it and new corner weights are identi-
fied. VOLS calculates the maximum possible improvement for the new corner weights
by solving a linear program (line 14) based on the corner weights for which the vari-
ational subroutine has been called, and the upper bounds found at those weights, as
described in Section 3.6. Finally — as is standard in OLS — the new corner weights
are added to the priority queue Q (line 15), with the maximal possible improvements
as priority. Because the maximum possible improvement to the scalarized payoff is
guaranteed to be at one of the corner weights of S even when the single-objective
subroutine is approximate (Theorem 7), VOLS terminates when Q is empty.
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Upon termination, we can use Uold to determine the approximation quality ε, of the
approximate CCS, S using the following corollary of Corollary 2:

Corollary 10. VOLS returns S, an ε-CCS, where

ε = max
(w,ūw)∈Uold

(
ūw − u∗S(w)

)
.

Variational solvers for single-objective CoGs typically have no runtime guaran-
tees, but are anytime and provide bounded approximations. Because OLS inherits the
runtime guarantees of the single-objective solvers it employs, VOLS has no runtime
guarantees either. In our implementation we stop the single-objective solver after a
limited number of iterations. However, when the lower bound becomes equal to the
upper bound during an iteration of the variational single-objective solver, it can termi-
nate before this maximum is reached.

Because VOLS employs reuse of the reparameterizations, the memory require-
ments are are proportional to the number of weights for which a reparameterization
is stored. This storage happens on line 10, in the main loop of OLS. This hap-
pens for every weight for which the variational single-objective CoG is called, i.e.,
(|ε−CCS|+ |Wε−CCS|) times. The reparameterizations we use in our implementation
are of (roughly) the same size as the original graphs. However, different variational
solvers can have different reparameterization sizes.

When the memory burden of reuse becomes too big there are two possible ways
to get around it: either not to do reuse, and use the variational method inside standard
OLS (Algorithm 5), or to store the reparameterizations on disk rather than in memory.

To summarize, VOLS is a bounded approximate method that employs variational
CoG solvers inside OLS with reuse (Algorithm 8). These variational CoG solvers
have been proven to be very effective, but have no optimality or runtime guarantees.
They are however anytime, and can be stopped after a number of iterations. Because
VOLS does not have runtime guarantees, we have to test its effectivity empirically.
Furthermore, though reuse can easily be motivated intuitively — as we have done in
this subsection — it does not come with any guarantees that it is in fact faster to do so.
The effectiveness of reuse must therefore be evaluated empirically as well.

4.4.6 Experiments: VOLS versus VELS

In this subsection, we compare the performance of VOLS that of VELS, as well as a
version of VOLS without reuse. We no longer compare against CTS, CMOVE, and
TSLS, as these methods are slower than VELS. All experiments in this subsection use
our JAVA implementation (version 1.6 (SE)). This work was carried out on the Dutch
national e-infrastructure with the support of SURF Cooperative, on a virtual machine
on the HPC Cloud service, with an 2.7 GHz Intel processor. We use random graphs as
well as the Mining Day benchmark.
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Figure 4.15: (left) The runtime (in logscale) of VOLS versus the runtime (in logscale)
of VELS as a function of the number of agents n with ρ = 1.8n and d = 3. The error
bars represent SDOM. (middle) The quality (ε) of the approximate CCSs produced by
VOLS with and without reuse for the same MO-CoGs. (right) The ratio of the runtimes
and ε of VOLS with and without reuse for the same MO-CoGs.

Random Graphs

In this section, we compare the performance of VELS and VOLS on randomly gen-
erated MO-CoGs. For the single-objective subroutine, we use weighted mini-buckets
(WMB) (Ihler et al., 2012; Liu and Ihler, 2011), with an i-bound of i = 1. i = 1
is the highest degree of approximation.12 We limit the maximal number of iterations
of the single-objective subroutine at 100. The MO-CoGs are generated following the
procedure explained in Subsection 4.3.2.

We compare VELS and VOLS on random 3-objective MO-CoGs with increasing
numbers of agents n with ρ = 1.8n factors per agent. We use more objectives and a
higher ρ than we used in the previous (sub)sections, in order to create more challenging
problems, i.e., problems with a more rapidly increasing induced width and with larger
CCSs. We generated 25 MO-CoGs for each number of agents and ran both algorithms
on the same instances.

Figure 4.15 (left) shows that exact VELS (ε = 0) is faster than VOLS for the ran-
dom graphs with up to 55 agents. However, the runtime of VELS (for any ε) increases
exponentially with the induced width, whilst that of VOLS does not. At 70 agents,
VOLS is more than an order of magnitude faster than exact VELS, and at 150 agents
VOLS is still faster than exact VELS is at 70 agents.

Of course, VOLS only produces an ε-CCS, whereas exact VELS produces an exact
one. However, when we measure ε using Corollary 10, we find that it is consistently
1.1% of the value or less. Note that this ε needs to be determined after VOLS finishes,
as VOLS does not guarantee it can reach a given ε, but instead is just limited at a
maximum number of iterations of its single-objective subroutine. When we introduce
comparable ε into VELS, by allowing a slack of ε of 1% (i.e., ε = 0.01), we see
that VELS remains faster than VOLS up until 75 agents. However, the runtime of

12The code was provided to us by dr. Alexander Ihler.
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Figure 4.16: The runtime of the variational subroutine for different weights with reuse,
divided by the runtime without reuse in logscale, as a function of the difference with
the closest weight ∆w, for a MO-CoG with n = 125 with ρ = 1.8 and d = 3.

VELS still increases exponentially with the induced width. Furthermore, VELS uses
exponential memory, while VOLS does not. In Figure 4.15 (left), we see that VELS
with ε = 0.01 can solve problems up until 85 agents, but then runs out of memory. This
is a significant memory limitation, as we used a virtual machine with 4GB memory (the
default setting for JAVA). In comparison, VOLS uses very little memory —comparable
to the size of the input graph — and does not run out of memory. Therefore, we
conclude that VOLS scales much better than VELS, even when VELS is allowed a
comparable ε to the ε-bounds that VOLS guarantees in practice.

When we zoom in on the ε-bound that VOLS guarantees for MO-CoGs with rising
numbers of agents in Figure 4.15 (middle), ε appears to decrease as a function of
the size of the problem. At 150 agents, VOLS (with reuse) produced an ε-CCS with
a ε of only 0.27% of the scalarized payoff. We thus conclude that VOLS’ improved
scalability in practice comes at only a negligible cost in terms of payoff, even for larger
graphs.

To test the effect of reuse on runtime, we compare the runtime of VOLS with
and without reuse. We ran both versions on the same 25 instances for each number
of agents. Figure 4.15 (left) shows that VOLS with reuse requires consistently less
runtime across all numbers of agents. Across all numbers of agents, VOLS with reuse
is a factor 1.22 faster. Furthermore, Figure 4.15 (middle) shows that VOLS with reuse
produces ε-CCSs with a consistently smaller ε. Figure 4.15 (right), shows the ratio
of the runtimes of VOLS with, and without reuse (the runtime with reuse divided by
the runtime without reuse), and the ratio of the ε produced by VOLS with and without
reuse. While the runtime ratio gradually increases, meaning less benefit from reuse, the
ε ratio gradually decreases, meaning better accuracy. Furthermore, VOLS with reuse
has lower runtime and ε overall. Therefore, we conclude that for random graphs, reuse
contributes positively to VOLS’ performance.
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Figure 4.17: Plot of the runtimes of VOLS (with and without reuse) and VELS (ε = 0)
with different values of ε, for varying n.

In order to test our hypothesis that reuse is more effective when the reparameteriza-
tion reused for a weight w was found at a weight z closer to w, we tested the effect of
reuse on the runtime of the single-objective subroutine inside VOLS. For this purpose,
we used a single MO-CoG with d = 3, n = 125 and ρ = 1.8n. For each weight w
in the sequence, we executed the variational subroutine with and without reuse. The
average total runtime with reuse was 0.10s while it was 0.16s without reuse. Fig-
ure 4.16 shows the ratio between the runtime with and without reuse as a function of
∆w = |z −w|, i.e., the Euclidean distance between the current weight on the weight
on which the reused reparameterization is based. This figure shows that the runtime
is positively correlated with ∆w. However, there are also a lot of weights for which
reuse has little or no effect, and even outliers for which reuse has a negative effect on
the runtime. These outliers contribute disproportionally to the average runtime: al-
though they make up only 5% the weights, they are responsible for 48% of the total
runtime of VOLS with reuse. For comparison, the first 5% of the calls, i.e., those with
the 5% largest ∆w, account for only 9% of the runtime. We therefore conclude that
our hypothesis seems correct on average, but that a small ∆w is not a guarantee for a
low runtime.

Mining Day

In order to compare VOLS and VELS on a highly structured problem, with limited
induced width, we use the Mining Day benchmark. We use the same generation proce-
dure as in Section 4.3.2, with 2-5 workers per village and a connectivity of 2-4 mines
per village. We generated 25 Mining Day instances for increasing n and averaged the
runtimes.

Because the induced width of this problem is limited by the maximum number
of mines per village, the induced width does not increase with the number of agent.



100 Chapter 4. Coordination

Furthermore, because we use a maximum connectivity of 4, the induced width is also
low.

In Figure 4.17, we see that exact VELS (ε = 0) outperforms VOLS — both with
and without reuse. At 220 — at which point we stopped running VOLS — VOLS was
147 (with reuse) respectively 42 (without reuse) times slower than VELS. We therefore
conclude that in problems with a low induced width, VOLS does not scale better than
VELS in the number of agents.

When we inspect how VOLS with reuse compared to VOLS without reuse, we see
that VOLS without reuse seems to perform better in terms of runtime than VOLS with
reuse. However, the ε of VOLS with reuse is better than without reuse: the maximal
ε for VOLS with reuse was 1.5 × 10−6 and has an average of 1.5 × 10−9, against a
maximum of 1.0×10−3 and an average of 8.7×10−6 for VOLS. We therefore conclude
that for Mining Day, reuse makes VOLS slower rather than faster, although it slightly
improves the ε.

4.5 Conclusion
In this chapter, we proposed several novel algorithms for computing a CCS for MO-
CoGs. These new methods either follow an inner loop approach (CMOVE and CTS),
or an outer loop approach based on OLS (VELS, TSLS, and VOLS).

When we compare our inner loop methods to corresponding inner loop methods
that compute the PCS, we find that our CCS methods scale much better in the size
of the MO-CoG as well as in the number of objectives. Therefore, we conclude that
computing a CCS should be preferred over computing a PCS whenever possible. As
we have argued in Chapter 2, the CCS applies to both the case when the scalarization
function is linear and to the case when stochastic policies are allowed.

When we compare inner loop methods to corresponding OLS-based methods, i.e.,
methods that use the same single-objective search schema as a basis, we find that inner
loop methods scale better in the number of objectives, while OLS-based methods scale
better in the number of agents. We argue that the latter is usually more important in
practice.

When compared our exact methods, i.e., CMOVE, CTS, VELS and TSLS. CMOVE
and VELS are fastest. For 2 and 3 objectives, VELS is faster than CMOVE. VELS also
scales better in the number of agents. However, CMOVE scales better in the number of
objectives. Both CMOVE and VELS use an exponential (in the induced width) amount
of runtime, while CTS and TSLS use an amount of memory independent of the induced
width. Between CTS and TSLS, TSLS is most memory efficient.

When exact CCSs are not required, VELS and TSLS (but not CMOVE and CTS)
can produce ε-CCSs for any pre-specified ε. Doing so can result in a decrease in
runtime of orders of magnitude, even for small ε.

When it is not necessary to pre-specify a given ε, VOLS outperforms the other
methods in terms of runtime and memory use. As we have seen from our random
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graph experiments, VELS and TSLS use an amount of runtime and memory that is
exponential in the induced width, while VOLS does not. However, when the induced
width is limited (as in Mining Day) VELS is typically faster than VOLS, even when
VELS solves the MO-CoG exactly (ε = 0).

To summarize, we have proposed five different CCS algorithms for MO-CoGs.
These methods are typically much faster than corresponding PCS methods. Compared
to each other, our methods provide different trade-offs between runtime, memory, and
output quality (ε).





Chapter 5
Sequential Decision-Making

In the previous chapter, we have considered problems in which a single (joint) action
is performed in order to obtain a reward. However, many decision problems consist
of a sequence of decisions. This sequence of decisions typically takes place in an
environment that is affected by these decisions. Therefore, the agents do not only have
to consider their immediate reward, but also the reward they will be able obtain later,
by changing the state of the environment to a more favorable one.

In this dissertation, we consider two multi-objective sequential single-agent deci-
sion-theoretic models. The first model is fully observable and extends the single-
objective Markov decision process (MDP) (Bellman, 1957b; Puterman, 1994; Sutton
and Barto, 1998; Wiering and Van Otterlo, 2012). The second is partially observ-
able and extends the partially observable Markov decision process (POMDP) (Cas-
sandra, 1998; Kaelbling et al., 1998; Spaan, 2012). The single-objective version of
these models are widely used and applied in areas such as: communication networks
(Altman, 2002), planning and scheduling (Scharpff et al., 2013), games (Szita, 2012)
and robotics (Kober and Peters, 2012). The multi-objective models have been gain-
ing traction relatively recently. There is a significant body of work on multi-objective
Markov decision problems (MOMDPs) (Roijers et al., 2013a), and recently, there have
been several papers on multi-objective partially observable Markov decision problems
(MOPOMDPs) (Soh and Demiris, 2011a,b; Roijers et al., 2015c; Wray and Zilberstein,
2015).

In this chapter we propose new methods for MOMDPs and MOPOMDPs based on
OLS. We focus on challenging instances of these models, and show that state-of-the-
art methods for single-objective planning can be effectively employed as subroutines
in OLS in order to create multi-objective methods, with relatively little effort. This is a
major advantage, for it implies that if the state-of-the-art for single-objective methods
improves, then — via OLS — so does the state-of-the-art in multi-objective methods.

For MOMDPs, we focus on finite-horizon problems with a very large state-space.
Specifically, we employ the multi-objective version of the maintenance planning prob-
lem (MPP) (Scharpff et al., 2013; Roijers et al., 2014a; Scharpff et al., 2015, 2016)
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as an illustrative example problem. The main challenge in both the single- and multi-
objective MPP is the size of the state and action spaces. For this problem, a highly
problem-specific solution method exists which makes use of a SPUDD (Hoey et al.,
1999) encoding. An inner loop method that uses such a problem-specific encoding
(and SPUDD itself) as a base for a multi-objective method, takes a lot of time to cre-
ate. Furthermore, the construction of the inner loop method has to be redone for every
different problem that requires such a problem-specific solution method or when a
state-of-the-art method for the single-objective version of a problem is invented. In
Section 5.2, we show that we can create effective multi-objective methods based on
OLS that do not have these disadvantages. We illustrate this by exchanging SPUDD
and its encoding by the CoRe algorithm which we proposed recently (Scharpff et al.,
2016). Furthermore, we show that by using an approximate solver, i.e., UCT∗ instead
of an exact solver, ε-CCSs can be found in a fraction of the runtime it takes to compute
an exact CCS.

For POMDPs, we focus on infinite-horizon problems. Creating planning meth-
ods for single-objective POMDPs is an active field of research (Kurniawati et al.,
2008; Pineau et al., 2006; Poupart et al., 2011), and as such, is regarded a hard and
open problem. Therefore, extending the POMDP model to the multi-objective set-
ting, i.e., multi-objective POMDPs (MOPOMDPs), results in a very computationally
challenging problem. Maybe this is one of the reasons why only a few papers about
MOPOMDPs exist. In Section 5.3, we propose the first planning method for multi-
objective POMDPs that computes a CCS and scales reasonably well. In order to do
so, we use point-based planning methods (Shani et al., 2013), and specifically Perseus
(Spaan and Vlassis, 2011), as a single-objective subroutine. We show that it is highly
beneficial to employ reuse (Section 3.6) of the value functions found in previous OLS
iterations. In order to enable this reuse — and to avoid separate policy evaluations,
which can be expensive in POMDPs — we show how to create OLS-compliant ver-
sions of point-based planning methods, that use a multi-objective representation of the
value function.

The rest of this chapter is structured as follows. We introduce MDPs, MOMDPs,
POMDPs and MOPOMDPs in Section 5.1. In Section 5.2, we show how we can create
efficient methods for large MOMDPs, using the MPP as an illustrating problem. In
Section 5.3 we propose OLS with Alpha Reuse (OLSAR), which is our main contribu-
tion for MOPOMDPs. We conclude in Section 5.4, with a summary of our results.

5.1 Background

In this section we provide the requisite background on the MOMDP and MOPOMDP
models. However, we first describe their single-objective counterparts.
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5.1.1 Markov decision processes

First, we describe the fully observable setting.

Definition 32. A (single-objective) Markov decision process (MDP) (Wiering and
Van Otterlo, 2012) is a tuple 〈S,A, T, R〉 where,

• S is the state space, i.e., the set of possible states the environment can be in,

• A is the action space, i.e., the set of actions the agent can take,

• T : S×A×S → [0, 1] is the transition function, giving the probability of a next
state given an action and a current state,

• R : S × A × S → R is the reward function, specifying the expected immediate
expected scalar reward corresponding to a transition.

At each timestep t the agent observes the current state of the environment s ∈ S .
When the agent takes an action a ∈ A the environment transitions to a new state s′.

The state in an MDP is Markovian, i.e., the current state s of the environment
and the current action of the agent a are a sufficient statistic for predicting the next
transition probabilities T (s′|s, a) and the associated expected immediate reward. The
agent’s history, i.e., the states and actions that led to the current state, do not provide
additional information in that respect.

The agent’s goal in an MDP is to find a policy that maximizes the expected sum of
future rewards. Informally, a policy is a set of decision rules that for each point in time
and state of the MDP, prescribes how to choose an action to perform. The expected
sum of future rewards given a policy, π, is called the value of π, V π. In a finite-horizon
setting there is a limited number of timesteps, h, and the sum is typically undiscounted:

V π = E[
h∑
t=0

R(st, at, st+1)|π, µ0],

where µ0 is the distribution over initial states s0. In a discounted infinite-horizon set-
ting, the number of timesteps is not limited, but there is a discount factor, 0 ≤ γ ≤ 1,
that specifies the relative importance of future rewards with respect to immediate re-
wards:

V π = E[
∞∑
t=0

γtR(st, at, st+1)|π, µ0].

There are different choices for what to condition a policy on. We refer to the set of
all possible policies for an MDP as Π. A stationary policy is one that conditions the
actions only on the current state, S×A → [0, 1], i.e., for each state there is a probability
distribution over actions. We refer to the set of all possible stationary policies as ΠS .



106 Chapter 5. Sequential Decision-Making

Non-stationary policies can besides the state also condition on the timestep t.1 Another
special type of policy is a deterministic policy. A deterministic policy only assigns 0
or 1 probabilities to actions for each value of what it conditions on. A deterministic
stationary policy thus specifies a single action in each state S → A. We refer to the set
of all possible deterministic policies as ΠD, and the set of all deterministic stationary
policies as ΠDS .

For infinite horizon MDPs we can restrict the search to deterministic stationary
policies in order to find an optimal policy. For finite horizon MDPs we can restrict
restrict the search to deterministic non-stationary policies.

Theorem 21. (Boutilier et al., 1999; Howard, 1960) For any infinite-horizon single-
objective MDP, there exists a deterministic stationary policy, π∗ ∈ ΠDS that is optimal.

Theorem 22. (Boutilier et al., 1999) For any finite-horizon single-objective MDP,
there exists a deterministic policy π∗ ∈ ΠD that is optimal.

The existence of an optimal deterministic policy drastically reduces the size of the
space of policies that need to be considered. In the case of finite-horizon MDPs there
are |ΠD| = |A|h|S| policies to consider, and for infinite-horizon MDPs even |ΠDS| =
|A||S|, while there would be infinitely many if we consider stochastic policies as well.
Optimal policies in MDPs can be found efficiently using e.g., dynamic programming
techniques (Bellman, 1957a) or linear programming (Manne, 1960).

Definition 33. A multi-objective Markov decision process (MOMDP) (Roijers et al.,
2013a) is a tuple 〈S,A, T, R〉 where,

• S, A, and T are the same as in an MDP,

• R : S ×A× S → Rd is the reward function, specifying the expected immediate
vector-valued reward corresponding to a transition.

When only deterministic policies are allowed and the scalarization function, f , is
nonlinear, non-stationary policies can be better than the best stationary ones. There-
fore, unlike in single-objective MDPs, it is not always the case that we only need to
consider deterministic stationary policies.

Theorem 23. (White, 1982) In infinite-horizon MOMDPs, deterministic non-stationary
policies can Pareto-dominate deterministic stationary policies that are undominated by
other deterministic stationary policies.

To see why, consider the following infinite-horizon MOMDP with discount factor
γ, which was adapted from an example by White (1982): there is only one state, s and
three actions a1, a2, and a3, which yield rewards (3, 0), (0, 3), and (1, 1), respectively.
The transitions (for all actions) from state s all lead back to the same state. If we

1Note that there are also other options to condition on, e.g., the entire history of states and actions.
For sake of brevity we not consider these here.
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Figure 5.1: The policy values of π1, π2, π3, and πns for the example MOMDP by
White (1982), for γ = 0.95. The blue line indicates the possible values for all possible
mixture policies that use π1 and π2 as base policies.

allow only deterministic stationary policies, then there are only three possible policies
π1, π2, π3, each corresponding to always taking one of the actions, all of which are
Pareto optimal. These policies have the following values: Vπ1 = (3/(1 − γ), 0),
Vπ2 = (0, 3/(1−γ)), and Vπ3 = (1/(1−γ), 1/(1−γ)). However, if we now consider
the set of possibly non-stationary policies, we can construct a policy πns that alternates
between a1 and a2, starting with a1, whose value is Vπns = (3/(1− γ2), 3γ/(1− γ2)).
Consequently, this policy Pareto-dominates π3, πns �P π3 when γ ≥ 0.5 (Figure
5.1) and thus we cannot restrict our attention to stationary policies. Note that similar
examples can be constructed for the finite-horizon setting.

For linear f however, we can restrict our attention to only deterministic stationary
policies (Roijers et al., 2013a):

Theorem 24. For an infinite-horizon MOMDP m, any CCS(ΠDS) of deterministic
stationary policies is also a CCS(Π) for stochastic non-stationary policies.

Proof. This proof is similar to that of Theorem 1 and Theorem 3. If f is linear, we
can translate the MOMDP to a single-objective MDP, for each possible w. This is
done by treating the inner product of the reward vector and w as the new rewards, and
leaving the rest of the problem as is. Since the inner product distributes over addition,
the scalarized returns remain additive. Thus, for every w there exists a translation to
a single-objective MDP, for which an optimal deterministic and stationary policy must
exist, due to Theorem 21. Consequently, when the optimal deterministic stationary
policy for w is πw, there cannot exist a non-stationary and/or stochastic policy, π′, such
that w ·Vπ′ > w ·Vπw . Because this holds for every possible w, a CCS with respect
to all deterministic stationary policies is also a CCS for all stochastic non-stationary
policies.



108 Chapter 5. Sequential Decision-Making

Any deterministic stationary CCS is thus sufficient for solving infinite-horizon
MOMDPs with linear f , even when stochastic and non-stationary policies are allowed.
For finite-horizon MOMDPs a similar theorem holds but for deterministic (possibly
non-stationary) policies only:

Theorem 25. For a finite-horizon MOMDPm, anyCCS(ΠD) of deterministic policies
is also a CCS(Π) for stochastic policies.

Proof. The proof is identical to that of Theorem 24.

In the proof of Theorem 24 we show than an MOMDP can be scalarized with a lin-
ear weight w, resulting in an MDP. Because this fulfills the conditions of Assumption
1), we can use a deterministic CCS as a compact representation of a PCS for stochastic
policies (Corollary 1). In Figure 5.1 for example, the values in the PCS of stochastic
policies for the abovementioned MOMDP example by White (1982) are indicated by
the blue line; these values can all be attained by mixing π1 and π2.

5.1.2 Partially Observable Markov Decision Problems
So far we have assumed that the state of the environment can be observed by the agent.
However, in many planning problems this is not the case. For example, imagine a
robot that has only a front camera as sensor input and needs to go to a given location in
an office building. When driving around, many locations in such a building may look
identical (especially in the hallways). Therefore the agent controlling the robot has
to rely on the memory of its previous observations to disambiguate the state as much
as possible. The partially observable Markov decision process (POMDP) (Kaelbling
et al., 1998) is a decision-theoretic model that incorporates partial observability into a
single-agent sequential decision problem.

Definition 34. A POMDP is a tuple 〈S,A, T, R,Ω, O〉 where,

• S, A, T , and R are the same as in an MDP,

• Ω, is the set of possible observations, and

• O is the observation function, giving the probability of each observation given
an action and the resulting state, i.e., O(o|a, s′) is the probability of observing
o ∈ Ω when taking action a resulting in state s′ (regardless of the state in which
action a was taken). It is thus a mapping: A× S × Ω→ [0, 1].

Because the agent cannot observe the entire state, the history of previous observa-
tions yields information about the present state that is not contained in the latest obser-
vation. In other words, the observations the agent receives are not Markovian, and only
conditioning on the last observation could lead to loss of optimality. This makes the
planning problem in POMDPs much harder than in an MDP. In fact, infinite-horizon
POMDPs are in general undecidable (Madani et al., 2003). However, there is some
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leverage that can be used for planning. Specifically, it turns out that the belief state of
an agent is a sufficient statistic for the (action-observation) history of an agent, and can
be used as a Markovian state signal.

Definition 35. The belief state b(s), specifies for each state s ∈ S the probability of
being in that state s.

In a POMDP, an agent can maintain such a belief b(s) (Åström, 1965). We call the
belief of an agent at timestep 0, b0(s). The agent updates its belief when it takes an
action a, makes an observation o, according to the following update rule:

bt+1(s′) =
O(o|s′, a)

P (o|bt, a)

∑
s∈S

T (s′|s, a)bt(s),

where,
Pb(o|bt, a) =

∑
s′∈S

O(o|s′, a)
∑
s∈S

T (s′|s, a)bt(s).

We can use the belief updates to specify a transition function for belief-states, Tb(b′|a, b).
Specifically, in a given belief bt, the next belief bt+1 only depends on the action a
and the observation o, and the probability of an observation is P (o|bt, a). Further-
more, we can also specify a reward function Rb(b, a) =

∑
s∈S b(s)R(s, a), where

R(s, a) =
∑

s′∈S R(s, a, s′)T (s′|s, a). Together, the belief-state, Rb, and Tb can be
used to specify a belief-MDP.

Theorem 26. (Spaan, 2012) For each POMDP 〈S,A, T, R,Ω, O〉, there is an equiv-
alent belief-MDP 〈Sb = ∆S,A, Tb, Rb〉, where ∆S is the belief simplex, i.e., all valid
probability distributions over S, A is the same set of actions as in the POMDP, and
Tb and Rb are as specified above. An optimal policy for this belief-MDP is an optimal
policy for the POMDP, and the optimal value function for the belief-MDP is equal to
the optimal value function for the POMDP.

Corollary 11. For any discounted infinite-horizon (single-objective) POMDP, there
exists an optimal deterministic stationary policy conditioned on the belief. For any
finite-horizon (single-objective) POMDP, there exists an optimal deterministic policy
conditioned on the belief.

Proof. This follows directly from Theorems 21, 22, and 26.

The value function for a single-objective POMDP, V (b), can thus be defined in
terms of the belief state. The value function can be represented by a set V of α-vectors.
Each vector α (of length |S|) gives a value for each state s. The value of a belief b
given V is:

V (b) = max
α∈V

b · α. (5.1)

Equation 5.1 implies the following observation:
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Observation 3. (Sondik, 1971) The value function of a POMDP is a piecewise-linear
and convex (PWLC) function in b.

Each α-vector is associated with an action. Therefore, a set of α-vectors V also
provides a policy πV that for each belief takes the maximizing action in Equation 5.1.

Because infinite-horizon POMDPs are in general undecidable, the exact optimal
value function and accompanying α-vectors cannot be found exactly within finite time.
An ε-approximate value function can in principle be computed using techniques like
value iteration (VI) (Monahan, 1982) and incremental pruning (Cassandra et al., 1997).
Unfortunately, these methods scale poorly in the number of states. However, point-
based methods (Shani et al., 2013), which approximate the value function for the entire
belief simplex by iteratively computing the best α-vector only for a set B of sampled
beliefs, scale much better. We explain how this works in Section 5.3.1.

Definition 36. An MOPOMDP is a tuple 〈S,A, T,R,Ω, O〉 where,

• S, A, T , Ω, and O are the same as in a POMDP,

• R : S ×A× S → Rd is the reward function, specifying the expected immediate
vector-valued reward corresponding to a transition.

For MOPOMDPs, we observe that because of the equivalence between POMDPs
and belief MDPs (Theorem 26 and Corollary 11), Theorem 24 also extends to POMDPs,
i.e.,

Corollary 12. For an MOPOMDP, any CCS of deterministic stationary policies —
with respect to belief-state — is also a CCS for stochastic non-stationary policies.

Furthermore, because MOPOMDPs can be scalarized to a POMDP equivalently to
scalarizing a MOMDP, i.e., by taking the inner product of a weight vector w and the
reward function R as the scalarized reward function, and leaving the rest of the problem
intact, the CCS of deterministic policies can be used as a compact representation of the
PCS of stochastic policies (Corollary 1).

The only current method available for computing a CCS for a MOPOMDP is based
on an old method for MOMDPs. White and Kim (1980) proposed a method to trans-
late a multi-objective MDP into a POMDP, which can also be applied to a MOPOMDP
and yields a single-objective POMDP. Intuitively, this translation assumes there is only
one “true” objective. Since the agent does not know which objective is the true one,
this yields a single-objective POMDP whose state is a tuple 〈s, i〉 where s is the orig-
inal MOPOMDP state and i ∈ {1 . . . d} indicates the true objective. The resulting
POMDP’s state space is of size |S|d. The observations provide information about s
but not about i. The resulting POMDP can be solved with standard methods but only
those that do not require an initial belief, as such a belief would fix not only a dis-
tribution over s but also over i, yielding a policy optimal only for a given w. Since
this precludes the effective usage of solvers like point-based methods, it is a severe
limitation.
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For PCSs, no theorem like Corollary 12 exists. In fact, the only current research
we are aware of that aims to find a PCS for a given MOPOMDP is by Soh and Demiris
(2011a,b) who use evolutionary methods to approximate the PCS. However, evolution-
ary methods are heuristic algorithms that provide no guarantees regarding the quality
of the approximation. Furthermore, as we discuss in Section 2.3, finding a PCS is
often not necessary. In Section 5.3, we show how to employ the class of point-based
planning algorithms (Shani et al., 2013) — to which many state-of-the-art planning
methods for POMDPs belong — as subroutines in OLS, to create planning methods
for MOPOMDPs and how these methods can provide bounds on the quality of the
approximation.

5.2 OLS for Large Finite-Horizon MOMDPs
In this section, we show how to tackle challenging real-world MOMDPs using OLS.
The problem we use to illustrate this is called the maintenance planning problem
(MPP) (Scharpff et al., 2013; Roijers et al., 2014a; Scharpff et al., 2015, 2016). We
first introduce the MPP and explain why it is a computationally hard problem. Then
we briefly discuss the existing single-objective methods for the MPP, explain the intu-
ition behind how these are able to solve the MPP efficiently, and how to use them as
subroutines inside OLS. Finally, we compare the different subroutines in combination
with OLS on instances of the MPP.

5.2.1 The Maintenance Planning Problem
The maintenance planning problem (MPP) (Scharpff et al., 2013; Roijers et al., 2014a;
Scharpff et al., 2015, 2016) is a task-based planning problem in which a government
needs to have road maintenance tasks performed. The government wants to minimize
maintenance costs that it will ultimately have to pay (objective 1) while minimizing
the hindrance of these maintenance tasks to traffic (objective 2). In order to do so, they
place fines on causing traffic delay.

In order achieve their objectives, the local government uses a public tender to at-
tract a group of contractors. Each contractor bids on a set of predetermined main-
tenance tasks. The tender is based on a dynamic-VCG mechanism (Bergemann and
Valimaki, 2006; Cavallo, 2008). In this mechanism, the rewards for a contractor are a
given weighted sum (i.e., a linear scalarization with a given weight w) of the payment
it receives from the government minus the costs of the maintenance tasks and the fines.
Because of the mechanism, the optimal strategy for each contractor is to be truthful
about the costs, and to cooperate in planning a policy for performing the maintenance
tasks. In other words, because of the mechanism, the problem becomes a fully coop-
erative multi-agent MDP. Therefore, we will refer to the contractors as the agents, and
to the multi-agent MDP as the single-objective MPP. A condition for being able to use
the mechanism however, is that the optimal policy can be computed.
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The government has estimates of the costs for each contractor based on previous
tenders. However, in previous tenders, there was too much traffic delay. Therefore,
the government wants to incentivize performing a policy that results in less hindrance
for traffic by adding to the fines on traffic delay, i.e., they want to investigate the effect
on the value of the optimal policies (i.e., the total costs and the total traffic delay) by
changing w. This can be modelled as finding the CCS a multi-objective multi-agent
MDP. After finding the CCS, the local government can select a w for which the optimal
policy of the contractors corresponds to the value vector the government selected from
the CCS. We refer to this multi-objective multi-agent MDP as the multi-objective MPP.

It is important that the CCS can be computed exactly. Otherwise, the dynamic-
VCG mechanism no longer guarantees that rational agents are truthful (Scharpff et al.,
2013), and we can no longer model the MPP as a multi-objective MMDP. Therefore,
we focus on using exact planning methods. However, approximate methods could still
be used by the local government to get a global idea about the values in the CCS.

In the multi-objective MPP, each task has a minimal completion time. Depending
on conditions that become known at the moment the task is started, a task may delay
with a given amount of time. The probability of delay is known.

The hindrance for traffic depends on which tasks are performed concurrently. For
instance, concurrent maintenance in a busy area causes more hindrance than when
maintenance tasks are performed sequentially.

The maintenance tasks for a given agent i are a fixed predetermined set. For each
task, a, there are

• a number of consecutive time steps required to complete the task, d ∈ Z+,

• the probability that a task will delay, p ∈ [0, 1],

• the additional duration if the task is delayed, d̂ ∈ Z+, and

• a cost function, c(a, t), that captures the cost of maintenance (e.g., personnel,
materials, etc.) per time step t ∈ [1, . . . , h].

The reward for executing a maintenance task is a (time-independent) payment, minus
these costs. This is the first objective in the multi-objective MPP. Note that the costs
may differ for each time step (e.g., it may be more expensive to perform a task at night
or during holiday periods). The total cost of the execution of a task is the sum of
the costs for each time step the task is being executed including delays. Agents are
restricted to executing a single task per time step and they can only plan activities if
they are guaranteed to finish them within the plan horizon. Because the payments are
independent of time, while the costs are dependent of time, the agents want to schedule
their tasks at the cheapest time-slots. However, there is also an incentive for agents to
cooperate and not schedule too many tasks in parallel, because of the fines that are
incurred by traffic hindrance.

The hindrance caused by maintenance is given by the function `(At, t), expressed
in traffic time lost (TTL). In this function, At is used to denote any combination of
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maintenance tasks performed at time t, by one or more agents. This function is typi-
cally based on traffic simulations, but can also be computed using heuristic rules. TTL
is the second objective in the multi-objective MPP.

In the multi-objective MPP, the state is defined as the activities yet to be performed
(for all agents together), the time left to perform them, and the availability of the indi-
vidual agents (as they may currently be executing a task). The possible actions for a
single agent are starting a task that has not been performed yet (if not busy), continue
a task (if busy), or do nothing (if not busy). For more details on the MPP please refer
to (Scharpff et al., 2013).

The main challenge in the MPP is that both the size of the state space and the size
of the action space are exponential in the number of agents (Boutilier, 1996). Further-
more, contrary to decentralized models (Becker et al., 2003; Nair et al., 2005; Witwicki
and Durfee, 2010), the policy for each agent needs to condition on the entire (expo-
nentially sized) state space in order to be optimal, as agents can predict the actions of
other agents better based on the full state than based on only their own local state (as in
decentralized models) (Scharpff et al., 2016). Therefore, planning needs to take place
in a centralized manner, i.e., as if a single agent controls all others. It is, in general, not
possible to tell how much value would be lost if a decentralized approach were taken
as an approximation. Fortunately though, this does not mean that is impossible to ex-
ploit the structure of the MPP. It is however necessary to formulate tailored solution
methods to the specific properties of the MPP.

5.2.2 Solving MPP instances
In the single-objective version of the MPP, a monetary value is assigned to each hour
of traffic time lost (TTL), thereby linearly scalarizing the problem. For this single-
objective problem, we discuss three solution methods as proposed by Scharpff et al.
(2013), Roijers et al. (2014a) and (Scharpff et al., 2016). We later use these methods
as the single-objective subroutine in OLS, in order to solve the multi-objective MPP.
The single-objective methods are

• SPUDD + compact encoding — The stochastic planning using decision dia-
grams (SPUDD) algorithm (Hoey et al., 1999), is a value iteration algorithm that
employs algebraic decision diagrams (ADDs) to represent value functions and
policies. ADDs are compact representations that use state features — such as
whether a task has already been performed or not in the MPP — to describe
the value function. By doing so, many states are (implicitly) grouped together,
leading to compact representations of the value function (or policy). SPUDD
implements dynamic programming (Bellman, 1957a) via manipulation of these
ADDs. Therefore, SPUDD can handle large state spaces well, as long as these
state spaces are structured.

However, the MPP has a large action space as well as a large state space. There-
fore, Scharpff et al. (2013) propose an encoding of the single-objective MDP
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that reduces the size of the action space (at the cost of slightly increasing the
size of the state space). In this encoding, one time step is split up in one time
step per agent. At each such a “sub time step” an agent commits to carrying out
an action from its own available actions (i.e., tasks to perform, continue or do
nothing), and augmenting this commitment to the state. In this manner, an MDP
that SPUDD can handle is created.

SPUDD is an exact single-objective planning method, and can thus be used in
conjunction with the dynamic-VCG mechanism.

• CoRe — We have recently proposed a new method (Scharpff et al., 2016) that
exploits several of the properties of the single-objective MPP problem: firstly, we
observe that if we separate the state space into local states per agent (i.e., which
tasks an agent has left to perform, and whether it is currently busy), the transi-
tions in these local states only depend on the actions of that local agent, i.e., there
is transition independence. Secondly, we observe that the rewards that depend
on more than one agent (i.e., the traffic delay increase/decrease due to concur-
rent execution of tasks) are sparse, as only tasks that are performed on roads
that are relatively close affect each other, i.e., there is only sparse interaction
between agents. Finally, we observe that because the tasks are only performed
once, the interaction between agents can cease to exist when the particular tasks
that interact have been performed.

We proposed a new optimal solver for transition-independent multi-agent MDPs
(such as the MPP), called CoRe (Scharpff et al., 2016). CoRe decomposes the
returns into local subsets that it represents compactly in so-called conditional
return graphs (CRGs). Using CRGs the value of a joint policy and the bounds
on partially specified joint policies can be efficiently computed. CoRe employs
a branch-and-bound policy search schema building on CRGs.

Like SPUDD, CoRe is an exact planning method, and can thus be used in con-
junction with the dynamic-VCG mechanism. CoRe can solve much larger MPP
instances than SPUDD. Therefore, it is vitally important to be able to use CoRe
as a basis for a multi-objective method instead of SPUDD.

• UCT∗ + compact encoding — The UCT∗ algorithm (Keller and Helmert, 2013)
combines the popular upper-confidence bounds applied to trees (UCT) planning
algorithm (Kocsis and Szepesvári, 2006) with heuristic AND/OR search (AO∗),
in order to create a fast Monte Carlo tree search algorithm. We use this algo-
rithm, together with the aforementioned encoding of the single-objective MDP
by Scharpff et al. (2013), as an anytime approximate alternative to SPUDD, i.e.,
we stop it after a limited amount of runtime and use the best policy found so far.

UCT∗ is an approximate planning method. Therefore, it cannot be used in prac-
tice on the MPP to make the dynamic-VCG mechanism work. However, it does
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provide approximations that the government could use to get an idea about the
range of the values in the CCS quickly.

It would be difficult to create a multi-objective MPP solver using an inner loop
approach for all three of the above-mentioned single-objective solvers; it is not clear
how ADDs and their manipulations could be extended to apply to sets of value vectors
inside SPUDD, and in UCT∗ and CoRe it is unclear how the bounds that make these
algorithms fast would function with vector-valued rewards.

When we employ the above-mentioned algorithms as subroutines inside OLS, we
do not need to change the inner workings of these algorithms. Instead, we obtain an
optimal policy (for SPUDD and CoRe) or an approximate policy (for UCT∗), and run
policy evaluation to obtain the corresponding value vector. In the next subsection, we
compare the resulting multi-objective solution methods empirically.

5.2.3 Experiments: MPP

In order to demonstrate the efficacy of our algorithms, we test and compare OLS+
SPUDD, OLS+UCT∗, and OLS+CoRe on instances of the multi-objective MPP.2 We
use Joris Scharpff’s MPP generator to create instances of this problem. We employ
a JAVA implementation of OLS that calls the SPUDD package3 for OLS+SPUDD
or the PROST package4 (Keller and Eyerich, 2012) for UCT∗. These packages are
freely available online. For CoRe we use our own JAVA implementation (as we did in
Scharpff et al. (2016)).

Because we cannot let UCT∗ run until all states have been evaluated, we can only
obtain partial policies. In our experiments we ‘repair’ partial policies, i.e., supplement
these policies by taking a conservative action; in the MPP this means inserting “do
nothing” actions.

All experiments in this subsection were conducted on DAS4 cluster5 of Delft Uni-
versity of Technology, with a 2.4 GHz dual quad-core processor and 24 GB memory.

Comparing OLS-based methods

We use the single-objective subroutines of Section 5.2.2 in combination with OLS,
and compare the resulting OLS+SPUDD and OLS+CoRe algorithms on instances of
the MPP that both can solve within 30 minutes. These are 2- and 3-agent problems.6

The results are shown in Table 5.1. Note that because SPUDD cannot solve many
3-agent problems, there are signicantly fewer instances for that number of agents.

2These are new experiments that were performed in collaboration with Joris Scharpff. The experi-
ments will appear in his forthcoming dissertation as well.

3https://cs.uwaterloo.ca/˜jhoey/research/spudd/index.php
4http://prost.informatik.uni-freiburg.de/
5http://www.asci.tudelft.nl/pages/about-asci/das.php
6Scharpff et al. (2016) show that CoRe can also handle 4-agent problems, but SPUDD cannot.
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N = 2 N = 3

Algorithm Runtime (s) |CCS| ε Runtime (s) |CCS| ε

OLS+SPUDD 184.032 6.592 - 1997.079 7.591 -

OLS+CoRe 591.167 6.592 - 1160.516 7.591 -

OLS+UCT∗ (0.01s) 2.212 3.460 0.321 2.723 3.227 0.371

OLS+UCT∗ (0.1s) 3.432 4.615 0.209 4.572 3.561 0.263

OLS+UCT∗ (1s) 8.656 5.798 0.073 14.918 5.621 0.168

OLS+UCT∗ (10s) 39.906 6.690 0.002 85.191 7.364 0.022

OLS+UCT∗ (20s) 57.173 6.690 0.002 139.571 7.727 0.014

Table 5.1: Average runtimes, CCS sizes, and ε for 71 2-agent instances and 22 3-agent
instances of the multi-objective MPP with 2 to 4 tasks per agent, and plan horizons
between 3 and 10.

For 2-agent problems, which both algorithms can solve completely, OLS+SPUDD
takes a factor 3.2 less time than OLS+CoRe. However, OLS+CoRe scales better in the
number of number of agents, and is a factor 1.7 faster for the 3-agent instances. When
we zoom in on the runtimes, as a function of the plan horizon in Figure 5.2, we observe
that for 2 agents, the runtimes seem exponential in the plan horizon, and OLS+SPUDD
is consistently faster than OLS+CoRe. For 3-agent problems however, OLS+CoRe is
consistently faster than OLS+SPUDD. We therefore confirm that OLS+CoRe is better
when there are more than 2 agents.

Finally, we compare the exact methods to the approximate OLS+UCT∗ method.
Because UCT∗ does not provide ε-bounds, we cannot guarantee a bounded approxi-
mation. However, when we give each run of UCT∗ a fixed amount of runtime to solve
a scalarized MPP, we can measure ε empirically by comparing the approximate CCSs
outputted by OLS+UCT∗ to the true CCS outputted by OLS+SPUDD and OLS+CoRe.
From Table 5.1, we observe that OLS+UCT∗ can produce results with little error in less
than 10% of the runtime. E.g., for the 3-agent instances with 10 seconds per scalarized
instance for UCT∗ achieves ε = 2.2% in 85s while CoRe needs 1160s on average to
compute the exact CCS. Note that for some of the smaller instances, i.e., few agents
and a small plan horizon, UCT∗ sometimes finds the optimal policy for the scalarized
problems before its time-limit is reached and terminates before its time is up. This
happened for 2 agents and 10s or 20s per call to UCT∗. Therefore, we conclude that
OLS+UCT∗ can be used to provide quick approximations if necessary. However, be-
cause we can only measure ε w.r.t. to the true CCS, we cannot know ε when we apply
only OLS+UCT∗ (if it does not produce the exact CCS).
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Figure 5.2: Average runtimes of OLS+SPUDD and OLS+CoRe on 2-agent instances
and 3-agent instances of the multi-objective MPP with 2 to 4 tasks per agent, as a func-
tion of the plan horizon. NB: there are less data points for the larger planning horizons
as this plot contains only those instances that both OLS+SPUDD and OLS+CoRe could
solve.

5.3 OLS with Alpha Reuse for MOPOMDPs

In this Section we aim to create planning methods for multi-objective partially observ-
able Markov decision processes (MOPOMDPs) (Soh and Demiris, 2011a,b; Roijers
et al., 2015c; Wray and Zilberstein, 2015). Little research has been conducted on plan-
ning methods for MOPOMDPs; the naive approach to translate the MOPOMDP to a
single-objective POMDP with an augmented state space (White and Kim, 1980), which
we discussed in Section 5.1.2, precludes the use of POMDP methods that exploit an
initial belief such as point-based methods (Shani et al., 2013), because specifying an
initial belief fixes the scalarization weights. Another naive approach would be to use
Random Sampling (RS) of scalarization weights in an outer loop approach (as dis-
cussed in Section 3.1.2). However, because POMDP planning is expensive, such an
approach is undesirable, as it lacks guarantees with respect to approximation quality,
and it might solve many scalarized instances that contribute little or nothing to the im-
provement of the output approximate CCS. Lastly, the evolutionary approach proposed
by Soh and Demiris (2011a,b) does not have any guarantees with respect to approxima-
tion quality either, and computes the PCS of deterministic policies, and not the CCS,
which we argue (see Section 2.3) is often a more desirable solution concept.

In this section, we propose a new MOPOMDP solution method called optimistic
linear support with alpha reuse (OLSAR). Our approach is based on optimistic linear
support (OLS) (Chapter 3), and therefore selects its scalarization weights in such a way
as to maximally reduce the maximal possible error of the intermediate CCS at each
iteration, and — using a bounded approximate single-objective solver — produces an
ε-CCS.
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OLSAR contains two key components that — in addition to the usage of OLS
— are essential to making it tractable for MOPOMDPs. First, it uses a novel OLS-
compliant version of the point-based solver Perseus (Spaan and Vlassis, 2011). OLS-
compliant Perseus solves a given scalarized POMDP and simultaneously computes
the resulting policy’s multi-objective value. Doing so avoids the need for the separate
policy evaluation step that is often employed by OLS (e.g., as in Section 5.2). Since
POMDP policy evaluation is computationally expensive, the use of OLS-compliant
Perseus is key to OLSAR’s efficiency. Second, rather than solving each scalarized
POMDP from scratch, OLSAR reuses the α-matrices that represent each policy’s multi-
objective value to form an initial lower bound for subsequent calls to OLSAR-compliant
Perseus. In this section we show how reuse — which we discussed in an abstract man-
ner in Section 3.6 — can be implemented in the context of MOPOMDPs.

The rest of this section is structured as follows: first, we briefly discuss single-
objective point-based planning methods in Section 5.3.1; Perseus (Spaan and Vlassis,
2011) in particular. Then, in Section 5.3.2 we introduce the OLSAR algorithm, as
well as the OLS-compliant Perseus algorithm that OLSAR uses as a subroutine. In
Section 5.3.3 we empirically test OLSAR, and show that the usage of OLS is key to
keeping MOPOMDPs tractable and that reuse leads to dramatic reductions in runtime
in practice.

5.3.1 Point-based POMDP methods
An infinite-horizon single-objective POMDP (Kaelbling et al., 1998; Madani et al.,
2003) is a sequential decision problem that incorporates uncertainty about the state of
the environment, and is specified as a tuple 〈S,A,R, T,Ω, O, γ〉. As we discussed in
Section 5.1.2, an agent typically maintains a belief b over which state it is in. The value
function for a single-objective POMDP, Vb, is defined in terms of this belief and can
be represented by a set A of α-vectors. Each vector α (of length |S|) gives a value for
each state s. The value of a belief b given A is:

Vb = max
α∈A

b · α. (5.2)

Each α-vector is associated — or tagged, as we did in MO-CoGs in Chapter 4 — with
an action. Therefore, a set of α-vectorsA also provides a policy πA that for each belief
takes the maximizing action in Equation 5.2.

While infinite-horizon POMDPs are in general undecidable (Madani et al., 2003),
an ε-approximate value function can in principle be computed using techniques such
as value iteration (VI) (Monahan, 1982) and incremental pruning (Cassandra et al.,
1997). Unfortunately, these methods scale poorly in the number of states.

Point-based methods (Shani et al., 2013), which perform approximate backups by
computing the best α-vector only for a set B of sampled beliefs, scale much better in
the number of states than VI and incremental pruning. Point-based methods perform
a series of so-called point-based backups. For each b ∈ B, a point-based backup is
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performed by first computing for each a and o, the back-projection ga,oi of each next-
stage value vector αi ∈ Ak:

ga,oi (s) =
∑
s′∈S

O(a, s′, o)T (s, a, s′)αi(s
′). (5.3)

Because ga,oi (s) are identical for all b ∈ B, these ga,oi (s) can be cached and shared
between different b. However, once new αi(s) are computed, new ga,oi (s) also need to
be computed.

For each b, the back-projected vectors ga,oi are used to construct |A| new α-vectors
(one for each action):

αb,ak+1 = ra + γ
∑
o∈Ω

arg max
ga,o

b · ga,o. (5.4)

Finally, the αb,ak+1 that maximizes the inner product with b (in Equation 5.2) is retained
as the new α-vector for b:

backup(Ak, b) = arg max
αb,ak+1

b · αb,ak+1. (5.5)

Point-based methods typically perform several point-based backups using Ak for dif-
ferent b to construct the set of α-vectors for the next iteration, Ak+1 in order to enable
efficient caching of the ga,oi (s) vectors. By constructing the α-vectors only from the
ga,o that are maximizing for the given b, point-based methods avoid generating the
much larger set of α-vectors that an exhaustive backup of Ak would generate.

In this section, we use the popular Perseus (Spaan and Vlassis, 2011) point-based
planning algorithm as a basis for creating a multi-objective method. Perseus is given
in Algorithm 13. It takes as input an initial lower bound A on the value function in
the form of a set of α-vectors, a set of sampled beliefs, a scalarization weight w, and
a precision parameter η. The initial lower bound vectors in A are typically determined
heuristically. Perseus repeatedly improves upon this lower bound (lines 3-10) by find-
ing an α-vector that improves upon the value, Vb = b · α, for each sampled belief.
However, this does not imply that a point-based backup is performed for each b in the
sampled belief set B. Instead, Perseus selects a random belief from the set of sampled
beliefs (line 6) and, if possible, finds an improving α-vector for it (line 7). When such
an α-vector also improves the value for another belief point in B, this belief point is
ignored until the next iteration (line 9). This results in an algorithm that generates few
α-vectors in early iterations, but improves the lower bound on the value function, and
gets more precise, i.e., generates more α-vectors, in later iterations. This is an impor-
tant aspect of the algorithm, as the number of α-vectors inAk at the start of iteration k
is the determining factor for the runtime of that iteration.

5.3.2 Optimistic Linear Support with Alpha Reuse
We now propose our main contribution for MOPOMDPs: optimistic linear support
with alpha reuse (OLSAR). This algorithm employs the OLS schema with reuse (Al-
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Algorithm 13: Perseus(A, B, η)

Input: A POMDP1 A′ ← A;

2 A ← {− ~∞}; // worst possible vector in a singleton set

3 while maxb maxα′∈A′ b · α′ − (maxα∈A b · α) > η do

4 A ← A′; A′ ← ∅ ; B′ ← B;

5 while B′ 6= ∅ do

6 Randomly select b from B’;

7 α← backup(A, b);

8 A′ ← A′ ∪ { arg max
α′∈(A∪{A})

b · α′};

9 B′ ← {b ∈ B′ : max
α′∈A′

b · α′ < max
α∈A

b · α}; // Continue with only

those b ∈ B′ for which the value has not yet improved

10 end
11 end
12 return A′;

gorithm 8). Specifically, it reuses the multi-objective value of the policies, i.e., the sets
A, found in earlier calls to the single-objective subroutine. In order to do so however,
we first need to define how we represent the multi-objective value as a function of the
belief.

A MOPOMDP is a POMDP with a vector-valued reward function R instead of a
scalar one. The value of a MOPOMDP policy given an initial belief b0 is thus also
a vector Vb0 . The scalarized value given w is then w · Vb0 . When we look at the α-
vectors for a MOPOMDP, each element of an α-vector, i.e., each α(s), is itself a vector,
indicating the value in all objectives. Thus, each α-vector is actually an α-matrix, A,
in which each row A(s) represents the multi-objective value vector for state s. The
multi-objective value of taking the action associated with A under belief b (provided
as a row vector) is then bA. When w is also given (as a column vector), the scalarized
value of taking the action associated with A under belief b is bAw.

Given a set of α-matrices A that approximates the multi-objective value function,
we can thus extract the scalar value given a belief b for every w:

Vb(w) = max
A∈A

bAw. (5.6)

Because each α-matrix is tagged with a certain action, a policy πw
A can be distilled

from A given w. We denote the multi-objective value for a given b0 under policy π as
Vπ
b0

= b0A.
Now that we have defined the representation of the (multi-objective) value in terms

of α-matrices, we can define OLSAR. We first describe OLSAR abstractly and specify
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the criteria that the single-objective POMDP method that OLSAR calls as a subrou-
tine, which we call solveScalarizedPOMDP, must satisfy to be OLSAR-compliant.
Then, we describe an instantiation of solveScalarizedPOMDP that we call OLSAR-
Compliant Perseus. Finally, we discuss OLSAR’s theoretical properties, which lever-
age existing theoretical guarantees of point-based methods and those of OLS (as given
in Chapter 3).

Algorithm

OLSAR implements the OLS algorithm with reuse for MOPOMDPs. It thus maintains
an approximate CCS, S, and thereby an approximate scalarized value function V ∗S .
The vectors Vb0 in S are computed using sets of α-matrices. OLSAR finds these sets
of α-matrices by solving a series of scalarized problems, each of which is a POMDP
over the belief space for a different weight w. Each scalarized problem is solved by
a single-objective solver we call solveScalarizedPOMDP, which computes the value
function in terms of α-matrices of the MOPOMDP scalarized by w.

OLSAR, given in Algorithm 14, takes an initial belief b0 and a convergence thresh-
old η as input. The approximate CCS, and the priority queue of corner weights are
computed as in Algorithm 8, in Chapter 3. The reuse of the α-matrices in OLSAR is
implemented by maintaining Aall: a set of all α-matrices. These α-matrices are re-
turned by calls to solveScalarizedPOMDP to reuse (line 5) and B, a set of sampled
beliefs (line 6).

Following the OLS schema, OLSAR repeatedly pops a corner weight off the queue.
For each popped w, it selects the α-matrices from Aall to initialize Ar, a set of α-
matrices that form a lower bound on the (multi-objective) value (line 9). Initially,
this lower bound is typically an admissible heuristic. In the single-objective case, this
usually consists of a minimally realizable value heuristic, in the form of α-vectors.
In order to enable α-reuse for the multi-objective version, these heuristics must be
in the form of α-matrices. For example, if we denote the minimal reward for each
objective i as Ri

min, one lower bound heuristic α-matrix Amin is the vectors consisting
of Ri

min/(1− γ) for each objective and state.
OLSAR selects the maximizing α-matrix for each belief b ∈ B and the given w

and puts them in a set Ar. Using Ar, OLSAR calls solveScalarizedPOMDP. After
obtaining a new set of α-matrices Aw from solveScalarizedPOMDP, OLSAR calcu-
lates Vb0; the maximizing multi-objective value vector for b0 at w (line 11). If Vb0

is an improvement to S (line 14), OLSAR adds it to S and calculates the new corner
weights and their priorities.

A key insight behind OLSAR is that if we can retrieve the α-matrices underlying
the policy found by solveScalarizedPOMDP for a specific w, we can reuse these
α-matrices as a lower bound for subsequent calls to solveScalarizedPOMDP with
another weight w′. Especially when w and w′ are similar, we expect this lower bound
to be close to the α-matrices required for w′.

The corner weights that OLS selects lie increasingly closer together as the algo-
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Algorithm 14: OLSAR(b0, η)

Input: A POMDP1 S ← ∅; // partial CCS of multi-objective value vectors Vb0
2 WVold ← ∅; // searched weights and scalarized values

3 Q← priority queue with weights to search;
4 Add extrema of the weight simplex to Q with infinite priority;
5 Aall← admissible heuristic lower bound in the form of α-matrices ;
6 B ← set of sampled belief points (e.g., by random exploration);
7 while ¬Q.isEmpty() ∧ ¬timeOut do
8 w← Q.dequeue(); // Retrieve a weight vector

9 Ar← {A : A∈Aall ∧ ∃b∈B bAw ≥ max
A′∈Aall

bA′w} ; // the best α-matrices

found in earlier iterations for each b ∈ B for w

10 Aw ← solveScalarizedPOMDP(Ar, B,w, η);
11 Vb0 ← maxA∈Aw b0Aw;
12 Aall ← Aall ∪ Aw;
13 WVold = WVold ∪ {(w, w ·Vb0)};
14 if Vb0 6∈ S then
15 S ← S ∪ {Vb0};
16 W ← compute new corner weights and maximum possible improvements

(w,∆w) using WVold and S;
17 Q.addAll(W );
18 end
19 end
20 return S;

rithm iterates. Consequently, the policies and value functions computed for those
weights lie closer together as well and solveScalarizedPOMDP needs less and less
time to improve upon the α-matrices that begin increasingly close to their converged
values. In fact, late in the execution of OLSAR, corner weights are tested that yield
no value improvement, i.e., no new α-matrices are found. These calls to the single-
objective point-based subroutine, solveScalarizedPOMDP, serve only to confirm that
the CCS has indeed been found, rather than to improve it. While such confirmation runs
of solveScalarizedPOMDP would be expensive in OLS without reuse, in OLSAR
they are cheap: the already present α-matrices suffice and solveScalarizedPOMDP

converges immediately (after one sweep over B). The α-matrix reuse can thus save a
lot of runtime late in execution, and is therefore key to the efficiency of OLSAR.

However, to exploit this insight, solveScalarizedPOMDPmust return the α-matrices
explicitly, and not just the scalarized value or the single-objective α-vectors, as stan-
dard single-objective solvers do. A naive way to retrieve the α-matrices is to per-
form a separate policy evaluation on the policy returned by solveScalarizedPOMDP.
However, since POMDP policy evaluation is expensive, we instead require the single-
objective point-based subroutine to be OLSAR-compliant: i.e., to return a set of α-
matrices, while computing the same scalarized value function as a single-objective
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solver.

OLS-Compliant Perseus

OLSAR requires an OLS-compliant implementation of solveScalarizedPOMDP that
returns the multi-objective value of the policy, in the form of a set of α-matrices, found
for a given w. This requires redefining the point-based backup such that it returns an α-
matrix rather than an α-vector. Because the new backup operations takes place inside
solveScalarizedPOMDP, we now perform a backup for a given b and w starting from
a set of α-matrices Ak.

As in Equation 5.3, the new backup first computes the back-projections Ga,o
i (for

all a, o) of each next-stage α-matrix Ai ∈ Ak. However, these Ga,o
i are now matrices

instead of vectors:

Ga,o
i (s) =

∑
s′∈S

O(a, s′, o)T (s, a, s′)Ai(s
′). (5.7)

For the given b and w, the back-projected matrices are used to construct |A| new
α-matrices (one for each action):

Ab,a
k+1 = ra + γ

∑
o∈Ω

arg max
Ga,o

bGa,ow. (5.8)

Note that the vectors Ga,ow can also be shared between all b ∈ B. Therefore, we
cache the values of Ga,ow.

Finally, the Ab,a
k+1 that maximizes the scalarized value given b and w is selected by

the backupMO operator:

backupMO(Ak, b,w) = arg max
Ab,a
k+1

bAa,b
k+1w. (5.9)

We can plug backupMO into any point-based method. In this dissertation, we use
Perseus because it is fast and can handle large sampled belief sets. The resulting OLS-
compliant Perseus is given in Algorithm 15. Note that this algorithm has the same
structure as Algorithm 13; the only differences are that the backups are now performed
given a b and w, the scalarized values are computed during Perseus are also computed
given b and w, and the resulting set A′ is a set of α-matrices rather than α-vectors.

Using solveScalarizedPOMDP = OCPerseus inside OLSAR yields a complete
algorithm that computes an approximate CCS for MOPOMDPs. Note however that
OCPerseus could be replaced by another OLS-compliant point planning method as
well.

Analysis

Point-based methods like Perseus have guarantees on the quality of the approximation.
These guarantees depend on the density δB of the sampled belief set, i.e., the maximal
distance from the closest b ∈ B to any other belief in the belief set (Pineau et al., 2006).
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Algorithm 15: OCPerseus(A, B,w, η)

Input: A POMDP1 A′ ← A;
2 A ← {− ~∞};
3 while maxb maxA′∈A′ bA

′w − (maxA∈A bAw) > η do
4 A ← A′; A′ ← ∅ ; B′ ← B;
5 while B′ 6= ∅ do
6 Randomly select b from B’;
7 A← backupMO(A, b,w);
8 A′ ← A′ ∪ { arg max

A′∈(A∪{A})
bA′w};

9 B′ ← {b ∈ B′ : max
A′∈A′

bA′w < max
A∈A

bAw};

10 end
11 end
12 return A′;

Lemma 1. (Pineau et al., 2006) The error ε on the lower bound of the value of an
infinite-horizon POMDP after convergence of point-based methods is:

ε ≤ δB(Rmax −Rmin)

(1− γ)2
, (5.10)

where Rmax and Rmin are the maximal and minimal possible immediate rewards.

Using Lemma 1 we can bound the error of the approximate CCS computed by
OLSAR.7

Corollary 13. OLSAR implemented with OCPerseus using belief set B converges in a
finite number of iterations to an ε-CCS, where ε ≤ δB(Rmax−Rmin)

(1−γ)2
.

Proof. This follows directly from Theorem 8 and Lemma 1.

A nice property of OLS is that it inherits any quality guarantees of the single-
objective solver it uses as a subroutine. Better initialization of OCPerseus due to α-
matrix reuse does not effect the guarantees in any way. On the contrary, it affects only
empirical runtimes. The next subsection presents experimental results that measure
these runtimes.

5.3.3 Experiments: MOPOMDPs
In this subsection, we empirically compare OLSAR to three baseline algorithms. The
first is random sampling (RS), described in Section 3.1.2, which does not use OLS

7Note that because ε is constant given a set of sampled beliefs B, we can use w · Vb0 instead of
w · Vb0 + ε on line 13 of Algorithm 14, because the relative priorities between corner weights in the
priority queue do not change by subtracting a constant.
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Figure 5.3: The error with respect to a reference set as a function of the runtime for
(left) Tiger 2 and (right) Tiger3. The shaded regions represent standard error. Note the
log scale in the y-axis. In order to avoid clutter in the plot (due to the log-scale) we
only show the standard error above the lines.

or α-matrix reuse. The second is random sampling with alpha reuse (RAR), which
does not use OLS. The third is OLS+OCPerseus, which does not use α-matrix reuse.
We do not present results for the augmented-state method of (White and Kim, 1980),
as this it proved to be prohibitively computationally expensive for even the smallest
problems. We tested the algorithms on three MOPOMDPs based on the Tiger (Cassan-
dra et al., 1994) and Maze20 (Hauskrecht, 2000) benchmark POMDPs. Because we
use infinite-horizon MOPOMDPs – which are undecidable – we cannot obtain the true
CCS. Therefore, we compare our algorithms’ solutions to reference sets obtained by
running OLSAR with many more sampled belief points and η set 10 times smaller.

Multi-Objective Tiger

In the Tiger problem (Cassandra et al., 1994), an agent faces two doors: behind one
is a tiger and behind the other is treasure. The agent can listen or open one of the
doors. When it listens, it hears the tiger behind one of the doors. This observation
is accurate with probability 0.85. Finding the treasure, finding the tiger, and listening
yield rewards of 10, 100, and -1, respectively. We use a discount factor of γ = 0.9.

While the single-objective Tiger problem assumes all three rewards are on the same
scale, it is actually difficult in practice to quantify the trade-offs between, e.g., risking
an encounter with the tiger and acquiring treasure. In two-objective MO-Tiger (Tiger2),
we assume that the treasure and the cost of listening are on the same scale but treat
avoiding the tiger as a separate objective. In three-objective MO-Tiger (Tiger3), we
treat all three forms of reward as separate objectives.

We conducted 25 runs of each method on both Tiger2 and Tiger3. We ran all
algorithms with 100 belief points generated by random exploration, η = 1 × 106, and
b0 set to a uniform distribution. The reference set was obtained using 250 belief points.
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On Tiger2 (Figure 5.3 (left)), OLS+OCPerseus converges in 0.87s on average, with
a maximal error in scalarized value across the weight simplex w.r.t. the reference set
of 5 × 10−6. OLSAR converges significantly faster (t-test: p < 0.01), in on average
0.53s, with similar error 4×10−6 (this difference in error is not significant). RAR does
not converge as it just keeps sampling new weights. However, we can measure error
w.r.t. the reference set. After 2s (about four times what OLSAR needs to converge),
RAR has an error with respect to the reference set of 4.5× 10−3 (a factor of 103 higher
than OLSAR after convergence). RS is even worse and does not come further than a
0.78 error after 2s. OLS+OCPerseus and OLSAR perform similarly in the first half:
they use about the same time on the first four iterations (0.35s). However, OLSAR is
significantly faster for the second half. Thus, on Tiger2, OLS-based methods are sig-
nificantly better than random sampling and α-reuse significantly speeds the discovery
of good value vectors.

The results for the Tiger3 problem are in Figure 5.3 (right). RS and RAR both
perform poorly, with RAR better by a factor of two. OLS+Perseus is faster than RAR
but OLSAR is the fastest and converges in about 2s. OLS+OCPerseus eventually con-
verges to the same error but takes 10 times longer. As before, OLS-based methods out-
perform random sampling. Furthermore, for this 3-objective problem, α-reuse speeds
convergence of OLSAR by an order of magnitude.

We also compared three variations of OLSAR: using all previously found α-matrices,
only reusing those found for the policy of the closest previous weight, and using
those α-matrices for policies whose multi-objective values make up the current corner
weight. However, no significant differences where found between their convergence
times or final error, neither in the 2- nor in the 3-objective Tiger problem.

Multi-Objective Maze20

In Maze20 (Hauskrecht, 2000), a robot must navigate through a 20-state maze. It
has four actions to move in the cardinal directions, plus two sensing actions to per-
ceive walls in the north-south or east-west directions. Transitions and observations are
stochastic. In the single-objective problem, the agent gets reward of 2 for sensing, 4 for
moving while avoiding the wall, and 150 for reaching the goal. In multi-objective Maze
20 (MO-Maze20), the reward for reaching the goal is treated as a separate objective,
yielding a two-objective problem.

To test performance of OLSAR on MO-Maze20, we first created a reference set by
letting OLSAR converge using 1500 sampled beliefs. This took 11 hours. Then we
ran OLSAR, OLS+OCPerseus, RAR, and RS with 1000 sampled beliefs. Due to the
computational expense, we conducted only three runs per method. Figure 5.4 shows
the results. OLSAR converges after (on average) 291 minutes (4.90hrs) at an error
of 0.09, less than 0.5% w.r.t. the reference set. We let OLS+OCPerseus run for 11
hours but it did not converge in that time. OLS+OCPerseus, RS, and RAR have similar
performance after around 300 minutes. However, until then, OLS+OCPerseus does
better (and unlike RS and RAR, OLS+OCPerseus is guaranteed to converge). OLSAR
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Figure 5.4: The error with respect to a reference set as a function of the runtime for
MO-Maze20. The shaded regions represent standard error. Note the log scale in the
y-axis. In order to avoid clutter in the plot (due to the log-scale) we only show the
standard error above the lines.

converges at significantly less error than what the other methods have attained after
400 minutes. We therefore conclude that OLSAR reduces error more quickly than the
other algorithms and converges faster than OLS+OCPerseus.

5.4 Conclusion

In this chapter we have proposed novel methods for multi-objective sequential decision
problems, i.e., MOMDPs and MOPOMDPs, using the OLS framework of Chapter 3.
First, we tackled a large MOMDP called the maintenance planning problem (MPP)
using OLS-based methods. Second, we proposed a new method for infinite-horizon
MOPOMDPs, that — as far as we are aware — is the first method to reasonably scale.

For the MPP, we have shown that it is possible to create multi-objective methods
on the basis of OLS and state-of-the single-objective subroutines that are tailored for
the MPP. We have shown that it is easy to replace these subroutines if the state-of-the-
art for a given problem improves. We compared exact CCS planning methods, i.e.,
OLS+SPUDD and OLS+CoRe, to an approximate planning method, i.e., OLS+UCT∗.
We showed that while the approximate subroutine does not provide bounds on the
quality of approximation, OLS+UCT∗ can quickly produce approximate CCSs with
low error, ε, in practice. We therefore conclude that the OLS framework offers a flex-
ible framework that is easy to use for large problems, especially when solvers for the
scalarized, i.e., single-objective, versions of these problems already exist.

For MOPOMDPs, we proposed, analyzed, and tested OLSAR, a novel algorithm
for MOPOMDPs that intelligently selects a sequence of scalarized POMDPs, by build-
ing on the OLS framework. OLSAR uses OCPerseus, a scalarized MOPOMDP solver
that returns the multi-objective value of the policies it finds, as well as the α-matrices
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that describe them. A key insight underlying OLSAR is that these α-matrices can
be reused in subsequent calls to OCPerseus, greatly reducing runtimes in practice.
Furthermore, because OCPerseus returns ε-optimal policies, OLSAR is guaranteed to
return an ε-CCS. Our experiments show that OLSAR greatly outperforms alternatives
that do not use OLS and/or α-matrix reuse. We therefore conclude that OLS and reuse
are key to keeping MOPOMDPs tractable.



Chapter 6
Conclusion

In this dissertation, we aimed to answer the following question: “Can we create fast
multi-objective planning algorithms for cooperative decision problems that are: either
single- or multi-agent, single-shot or sequential, and fully or partially observable?”
To answer this question affirmatively, we have discussed several models and proposed
algorithms for multi-objective decision-theoretic planning. In this final chapter, we first
reiterate our contributions and discuss their implications for the field of multi-objective
decision theory in Section 6.1. In Section 6.2, we critically review our own work and
outline several possibilities for future research.

6.1 Contributions

In this section we summarize our contributions. Our contributions are two-fold; we
have made contributions that apply to cooperative multi-objective decision problems
in general, and we have made problem-specific contributions. We start with the big
picture, and then go into the problem-specific contributions. For our contributions, we
briefly discuss what we think the implications are for future research in this research
direction.

6.1.1 The big picture

The research we presented in this dissertation is motivated by the need for solving
decision-problems with multiple objectives; not only are there many real-world prob-
lems that have multiple objectives, but we have also argued that these often cannot be
solved with existing single-objective techniques, because it is often impossible to a
priori scalarize, i.e., convert multi-objective problems to single-objective ones.

In order to make explicit under what circumstances special methods are needed to
solve multi-objective problems, we identified three scenarios in which it is impossible,
infeasible, or undesirable to scalarize a priori in Chapter 1. As well as providing mo-
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tivation for the need for multi-objective methods, these scenarios also represent three
main ways these methods are applied in practice.

We proposed a taxonomy that classifies multi-objective methods according to the
applicable scenario, the scalarization function (which projects multi-objective values
to scalar ones), and the type of policies that are allowed in Chapter 2. We showed how
these three aspects together determine the nature of an optimal solution, which can be
a single policy, or a coverage set containing multiple policies. We limited our scope to
problems for which multiple policies are required.

Our taxonomy is based on a utility-based approach, which sees the scalarization
function as part of the utility, and thus part of the problem definition. This contrasts
with the so-called axiomatic approach, which usually assumes the Pareto front is the
appropriate solution. We showed that the utility-based approach can be used to jus-
tify the choice for a solution set. Based on the utility-based approach we argued for
a particular solution set: the convex coverage set (CCS), which applies to two impor-
tant parts of the taxonomy. The first is the case in which the scalarization function is
linear, i.e., the inner product of a vector of positive weights, w, and the vector-valued
value of a policy in a multi-objective decision problem, and the second is when the
scalarization function is monotonically increasing in all objectives and stochastic poli-
cies are allowed. The CCS is the central solution concept of this dissertation, and
we propose several novel planning algorithms for determining the CCS in a variety of
multi-objective cooperative planning problems.

In Chapter 3, we discussed the two main approaches to create new CCS algorithms
building from an existing single-objective planning algorithm. The first approach, that
is often taken in the literature, we refer to as the inner loop approach. In this ap-
proach, the maximizations and summations — that are necessary to compute the opti-
mal policy and policy value of a single-objective decision problem — inside the inner
most loops of the single-objective algorithms are replaced with appropriate pruning
operators and cross-sums between sets of value vectors. Inner loop algorithms are as
problem-specific as the single-objective algorithms on which they are based. The sec-
ond approach is the outer loop approach, in which a series of scalarized problems are
solved using the single-objective method as a subroutine in order to incrementally build
up the CCS for a multi-objective problem. Because these single-objective subroutines
can be left unchanged, outer loop methods are generic frameworks: they can apply to
any (scalarizable) multi-objective decision problem. Important disadvantages of exist-
ing outer loop methods however, include that they often do not converge to the exact
CCS, except for in the limit, and that there are no quality bounds for the intermediate
approximate CCSs. Therefore, we propose a new outer loop method: the optimistic
linear support (OLS) framework.

The OLS framework takes inspiration from the POMDP literature (and specifically
Cheng’s linear support algorithm (Cheng, 1988)), to exploit the piecewise linearity
and convexity of the scalarized value function (under linear scalarization) in multi-
objective decision problems. OLS is an outer loop approach, and thus solves a series
of scalarized problems, for different (linear) scalarization weights w. At each itera-
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tion, OLS identifies the single weight vector w that can lead to the maximal possible
improvement on a partial CCS it has already identified, and calls a single-objective
subroutine to solve a scalarized instance of the problem for w. By doing so, OLS
is guaranteed to terminate in a finite number of iterations. Furthermore, when the
single-objective subroutine is exact, i.e., guaranteed to find the optimal policy for the
scalarized instance of the problem, OLS is guaranteed to return the exact CCS. Before
termination, OLS can bound the quality loss if the partial CCS it has identified so far
would be used to approximate the exact CCS, in terms of lost scalarized value. In other
words, it is an anytime algorithm, for which each intermediate CCS is an ε-CCS. We
have shown empirically (for MO-CoGs in Chapter 4) that it is often possible to produce
an ε-CCS in a fraction of the time it takes to produce an exact CCS, even for small ε.

When exact single-objective subroutines are not available, OLS can also function
in combination with approximate single-objective subroutines. When such an approx-
imate subroutine produces a bounded approximation with at most ε error, OLS is guar-
anteed to produce an ε-CCS upon termination. We have provided practical examples
of this in the context of MO-CoGs (Chapter 4) and MOPOMDPs (Chapter 5).

Often, OLS can be further improved by reusing the policies, value functions, or
other artifacts produced by the single-objective subroutines during earlier iterations
of OLS to hot-start the single-objective subroutines in later iterations. The precise
information that can be reused depends on the problem. We have shown the reuse of
a representation of the value function in the form of α-matrices in MOPOMDPs to be
particularly effective in Chapter 5.

When we compare inner loop algorithms and OLS-based algorithms that use the
same single-objective methods as a basis/subroutine, we observe that inner loop algo-
rithms typically scale better in the number of objective of a multi-objective decision
problem, and OLS-based algorithms scale better in the size of the scalarized problems
(such as the number of agents in a (MO-)CoG). We therefore conclude that inner loop
and outer loop methods are complementary in this respect. However, the inner loop
methods are typically not anytime, and need to run until completion before producing
a result. Additionally, contrary to inner loop methods, OLS imposes very little addi-
tional memory demands in addition to the memory demands of the single-objective
subroutines it employs. This can be a deciding factor when memory is limited, as we
have shown in the context of MO-CoGs in Chapter 4. Furthermore, while it is rela-
tively easy to replace a subroutine in OLS (as we show for example in Chapter 5 in the
context of large MOMDPs), it is typically far from trivial to create a new inner loop
method based on a different single-objective algorithm.

We conclude that OLS is a framework that can be applied in the context of differ-
ent multi-objective decision problems (with relatively little effort if a single-objective
subroutine is available), is faster than corresponding inner loop methods for small and
medium objectives, and typically uses less memory than inner loop methods.

We believe that the advantages of OLS can be exploited in many future CCS plan-
ning methods. Especially when real-world problems require the usage of problem-
specific solution methods, we argue that OLS provides a fast and relatively low-effort
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option for creating a multi-objective solution method.

6.1.2 Problem-specific contributions

In this dissertation, we have made contributions to three classes of decision problems:
multi-objective coordination graphs (MO-CoGs), multi-objective Markov decision pro-
cesses (MOMDPs) and multi-objective partially observable Markov decision processes
(MOPOMDPs).

Multi-objective coordination graphs

For MO-CoGs, we have proposed five novel algorithms: convex multi-objective vari-
able elimination (CMOVE), convex AND/OR tree search (CTS), variable elimination
linear support (VELS), AND/OR tree search linear support (TSLS) and variational op-
timistic linear support (VOLS). The first two are inner loop methods, while the last
three are outer loop methods that build on optimistic linear support (OLS).

We noted that it is possible to take the inner loop approach when building upon
single-objective methods whose core operations consist of maximizations and summa-
tions, such as variable elimination and AND/OR tree search. However, when the core
operations are different, such as for variational methods — in which reparameteriza-
tions and restructuring of the set of local payoff functions form the core operations —
it is not clear how to take an inner loop approach. It is always possible to take an outer
loop approach for MO-CoGs, as it can use a complete and unchanged single-objective
solver as a subroutine, and evaluate the multi-objective value of joint actions that are
produced by this subroutine. An example of this is our VOLS algorithm, which builds
on OLS and employs variational methods as subroutines. Because OLS inherits both
quality and memory guarantees from the single-objective subroutines it employs, OLS
opens up the way to creating multi-objective methods with favorable quality and mem-
ory properties from single-objective methods to which an inner loop approach does
not apply. We consider this an important advantage in the context of MO-CoGs as its
scalarized version, i.e., the single-objective CoG1, is a large and active field of research
that has produced many such methods. Furthermore, because it takes relatively little
effort to plug in a new subroutine into OLS, it offers an attractive framework to create
state-of-the-art multi-objective methods.

We compared the inner loop methods we propose to their corresponding OLS-
based methods. Specifically, we compared CMOVE to VELS and CTS to TSLS. We
showed both theoretically and empirically that OLS-based methods scale better in the
number of agents in terms of runtime, while inner loop methods scale better in the
number of objectives. We showed — both theoretically and empirically — that OLS-
based methods perform better overall in terms of memory requirements than inner loop
methods.

1Or equivalents of the CoG, such as finding the MAP in probabilistic graphical models (Pearl, 1988).
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We have shown that OLS-based algorithms are anytime, and that any intermediate
solution set during the execution of an OLS-based algorithm is an ε-CCS, as long as
the quality bounds of the single-objective method are known. We have used this result
to show empirically, e.g., using VELS, that we can produce ε-CCSs in a fraction of
the runtime that is required to produce an exact CCS. Furthermore, when the single-
objective subroutine, such as the variational subroutine in VOLS, is not exact, but
does produce an ε-approximate solution, that OLS inherits this quality guarantee and
can produce an ε-CCS. This is a major advantage, as (MO-)CoGs are NP-hard, and
therefore most state-of-the-art solvers are approximate.

We have shown with VOLS, that it is possible to reuse parts of the solutions/artifacts
produced by single-objective variational subroutines in earlier iterations of OLS, in or-
der to hot-start the variational subroutine in later iterations. Specifically, VOLS reuses
the restructured and reparameterized set of local payoff functions that variational meth-
ods produce. We have shown empirically that this can lead to better runtime and/or
quality results.

When we compare our outer and inner loop methods in terms of runtime, mem-
ory usage, and quality guarantees, we note that exact methods (CMOVE, CTS, VELS
and TSLS) have runtimes that depend exponentially on the induced width. Of these
exact methods, VELS is typically fastest and when the number of objectives is low or
medium, and TSLS is most memory-efficient. For higher number of objectives, inner
loop methods are typically faster than outer loop methods; CMOVE scales better than
VELS in the number of objectives, but has poor memory guarantees; CTS has better
memory usage than CMOVE but is slower. OLS-based outer loop methods are always
more memory-efficient than their inner loop counterparts. Compared to exact methods,
VOLS scales much better in the number of agents, i.e., the runtime does not increase
exponentially with the number of agents. However, VOLS only produces an ε-CCS.

Summarizing, we have proposed an analyzed five novel algorithms for MO-CoGs
that compute a (approximate) CCS. Our methods offer different trade-offs between
runtime, memory usage, and quality guarantees.

Multi-objective MDPs

For MOMDPs, we have demonstrated the efficacy of OLS when the MOMDP is very
large. In order to illustrate this we have made use of the maintenance planning problem
(MPP) (Scharpff et al., 2013; Roijers et al., 2014a; Scharpff et al., 2015, 2016). The
MPP is notoriously hard due to its large state and action space. Therefore, the exist-
ing methods for the single-objective version of the MPP exploit the specific problem
structure of the MPP; the SPUDD and UCT∗ algorithms employ a problem-specific en-
coding (Scharpff et al., 2013) while the CoRe algorithm (Scharpff et al., 2016) — that
was proposed only recently — exploits the transition independence between features
of the state-space.

We have shown that it possible to create planning methods that compute the CCS
for problems like the MPP by using state-of-the-art, possibly problem-specific, single-
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objective solvers as subroutines inside OLS. Because it is relatively easy to exchange
subroutines (but not to create inner loop methods from new single-objective methods),
we conclude that especially for problems that require a problem-specific approach,
OLS is key to the creation of effective multi-objective planning methods.

Multi-objective POMDPs

In this dissertation, we proposed, analyzed, and tested optimistic linear support with
alpha reuse (OLSAR). Because OLSAR uses the OLS framework, it intelligently se-
lects a sequence of scalarized POMDPs to solve in order to solve MOPOMDPs. As
far was we are aware, this is the first MOPOMDP planning method that computes the
CCS and reasonably scales in the number of states of the MOPOMDP.

We have shown how to represent the value function (in the belief b and the scalar-
ization weight w) in terms of α-matrices. OLSAR uses this representation. The single-
objective subroutine we propose for OLSAR is OLS-compliant Perseus (OCPerseus),
a scalarized MOPOMDP solver that returns the multi-objective value of the policies
it finds, as well as the α-matrices that describe them. A key insight underlying OL-
SAR is that the α-matrices produced by OCPerseus can be reused in subsequent calls
to OCPerseus. This α-reuse greatly reduces runtimes in practice. Furthermore, since
OCPerseus returns ε-optimal policies, OLSAR is guaranteed in turn to return an ε-
CCS. Our experimental results show that OLSAR greatly outperforms alternatives that
do not use OLS and/or α-matrix reuse.

6.2 Discussion and Future Work

In this section, we critically review the work in this dissertation, and identify opportu-
nities for future work.

6.2.1 On the sufficiency of the taxonomy

In Chapter 2, we introduced a taxonomy based on the utility-based approach. We
assumed the existence of a utility or scalarization function, f .

In this dissertation we have restricted f to monotonically increasing functions in
all objectives. We argue that this is a minimal assumption because it simply states
that increasing the value with respect to one objective without diminishing the others,
cannot decrease the scalarized value. This — in our view — corresponds to what we
mean by ‘objective’. However, it is possible to have a preference ordering over value
vectors, without there being an f that corresponds to it. When preference is based on a
lexicographical ordering, i.e., even an infinitesimal improvement in an objective with a
higher priority is better than a large improvement in an objective with a lower priority,
and the rewards are vectors in <n, there is no f : <n → < that corresponds to this
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(Sen, 1995). Therefore, lexicographical orderings falls outside of our mathematical
formalism.

We have used one special case of f , namely the linear (and monotonically increas-
ing) scalarization function. However, there are more special cases of f corresponding
to different preference orderings described in the literature. For example, when certain
“fairness” constraints are imposed on f this leads to the Lorenz front (Perny et al.,
2013), which is a subset of the Pareto front. We have not identified this, or other, ad-
ditional constraints that can be imposed on f . However, it would be useful for future
work in multi-objective decision making to have an overview of such constraints, and
especially in what type of situations they occur.

6.2.2 Scalarized expectation of return versus expectation of scalar-
ized return

In Section 1.1 in Definition 1, we defined the scalarized value of a policy, π, to be
the result of applying the scalarization function f to the multi-objective value Vπ,
i.e., V π

w(s) = f(Vπ(s),w). Since Vπ(s) is typically itself an expectation, this means
that the scalarization function is applied after the expectation is computed, e.g., for
MOMDPs (Definition 33):

V π
w(s) = f(Vπ(s),w) = f(E[

∞∑
k=0

γkrk | π, s0 = s],w).

This formulation, which we refer to as the scalarization of the expected return (SER)
is standard in the literature. However, it is not the only conceivable option. It is also
possible to define V π

w(s) as the expectation of the scalarized return (ESR), e.g., for
MOMDPs:

V π
w(s) = E[f(

∞∑
k=0

γkrk,w) | π, s0 = s]

Which definition is used can critically affect which policies are preferred. For
example, consider the following 2-objective infinite-horizon MOMDP, illustrated in
Figure 6.1. There are four states (A, B, C, and D). The agent starts in state A and has
two possible actions: a1 transits to state B or C, each with probability of 0.5, and a2

transits to state D with probability 1. Both actions lead to a (0, 0) reward. In states B,
C and D there is only one action, which leads to a deterministic reward of (3, 0) for B,
(0, 3) for C, and (1, 1) for D.

The scalarization function just multiplies the two objectives together if the value in
both objectives is greater than 0, and is 0 otherwise. Thus for this MOMDP with only
positive rewards, the scalarized value under SER is,

V π
w(s) = V π

1 (s)V π
2 (s),
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Figure 6.1: An MOMDP with two objectives and four states.

and under ESR,

V π
w(s) = E[

( ∞∑
k=0

γkr1
k

)( ∞∑
k=0

γkr2
k

)
| π, s0 = s],

where rik is the reward for the i-th objective on timestep k (w is not needed in this
example since f involves no constants). If π1(A) = a1 and π2(A) = a2, then the
multi-objective values are Vπ1(A) = (1.5γ/(1 − γ), 1.5γ/(1 − γ)) and Vπ2(A) =
(γ/(1− γ), γ/(1− γ)).

Under SER, this leads to scalarized values of V π1(A) = (1.5γ/(1 − γ))2 and
V π2(A) = (γ/(1 − γ))2 and consequently π1 is preferred. Under ESR, however, we
have V π1(A) = 0 and V π2(A) = (γ/(1− γ))2 and thus π2 is preferred.

Intuitively, the SER formulation is appropriate when the policy will be used many
times and return accumulates across episodes, for example because the same user is
using the policy each time. Then, scalarizing the expected reward makes sense and π1

is preferable because in expectation it will accumulate more return in both objectives.
However, if the policy will only be used a few times or the return does not accu-

mulate across episodes, for example because each episode is conducted for a different
user, then the ESR formulation seems more appropriate. In this case, the expected re-
turn before scalarization is not of interest and π2 is preferable because π1 will always
yield zero scalarized return on any given episode.

Another question that is related to this issue is whether or not to allow stochastic
policies, i.e., when a policy will be used many times and return accumulates across
episodes, as we argued for the SER formulation, then it also seems logical to allow
stochastic policies in order to increase the scalarized expected return. When a policy
will only be used a few times or the return does not accumulate across episodes, as
we argued for the ESR formulation, it also seems inappropriate to allow stochastic
policies.
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To our knowledge, there is no literature on multi-objective decision-theoretic plan-
ning and learning that employs the ESR formulation, even though there are many real-
world scenarios in which it seems more appropriate. For example, in the medical
application of Lizotte et al. (2010), each patient gets only one episode to treat his or
her illness, and needs to balance the effectiveness of the treatment against the severity
of the side-effects. Therefore, the patient clearly interested in maximizing ESR, not
SER. Thus, we believe that developing methods for the ESR formulation is a critical
direction for future research in multi-objective decision making.

6.2.3 Other decision problems
For the MO-CoG, MOMDP and MOPOMDP models we propose new algorithms.
However, there are more possible collaborative MODPs, that extend SODPs from Fig-
ure 2.2 that have been studied in the literature. We briefly discuss those models here,
and how they are related to the previously discussed MODPs.

Firstly, collaborative Bayesian games (CBGs) (Oliehoek et al., 2012) are single-
shot, multi-agent models like CoGs. Unlike CoGs however, each agent receives a
private observation, called a type θ, before it needs to act. The distributions over types
for each agent are common knowledge. Deterministic policies in a CBG specify for
an action for each agent for every type of that agent. CBGs can be flattened to a large
CoG by for enumerating the possible mappings from types to actions for each agent and
seeing these mappings as that agent’s local action space,Ai. This same reduction could
be made for a multi-objective version of a CBG to a MO-CoG. CBGs are often used as
a subproblem in the sequential version of the problem, the Dec-POMDP (MacDermed
and Isbell, 2013).

The class of multi-agent, sequential, and partially observable collaborative mod-
els is called the multi-agent Markov decision process (MMDP) model in the single-
objective-setting. Similar to flattening a CoG into a BP, by treating the team of agents
as one central agent with a very large action space, an MMDP can be flattened to a very
large MDP, as we have mentioned in Section 5.2 for the maintenance planning prob-
lem. However, the joint state and action spaces of an MMDP are exponentially sized
in the number of agents, so solving an MMDP in such a centralized manner, is typi-
cally infeasible. Therefore, MMDPs can — in general — only be exactly solved for
small numbers of agents (e.g., Scharpff et al. (2015)). For larger MMDPs, approximate
methods are required. These approximate methods — an overview of which is given
by Spaan et al. (2011) — either rely on an artificial factorization of the value func-
tion (Guestrin et al., 2002), or decentralization, which leads to a partially observable
problem setting. At present, decentralized approximation methods typically do not
provide bounds with respect to the approximation quality due to decentralization. It
may be an interesting research possibility to try and construct methods that do provide
such bounds. Once such methods are invented, their quality bounds will immediately
transfer to the multi-objective setting, when they are used as a subroutine inside OLS.

The class of multi-agent, sequential, and partially observable collaborative mod-
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els is known as the decentralized partially observable Markov decision process (Dec-
POMDP) (Bernstein et al., 2002; Oliehoek, 2010) model in the single-objective setting.
Recently, major strides in solving Dec-POMDPs have been made. In particular, it has
been shown that there is a reduction from Dec-POMDP to a special type of centralized
POMDP called a non-observable Markov decision process (NOMDP) (MacDermed
and Isbell, 2013; Nayyar et al., 2013; Dibangoye et al., 2013; Oliehoek and Amato,
2014). This allows POMDP solution methods to be employed in the context of Dec-
POMDPs. For multi-objective Dec-POMDPs (MO-Dec-POMDPs), the reduction to
NOMDPs is potentially very useful as well. Specifically, an equivalent reduction from
an MO-Dec-POMDP to a multi-objective NOMDP (MONOMDP) could be made, for
which the OLSAR algorithm that we propose for MOPOMDPs in Section 5.3 would
apply.

6.2.4 Other aspects of decision problems
Aside from the aspects that are discussed in Section 1.3, there are several other orthog-
onal aspects that are studied in the literature, such as continuous time (Van Hasselt,
2012; de Sousa Messias, 2014) and non-Markovian states (Das et al., 1999). These
aspects are in principle compatible with our approach. Models in which there are
multiple self-interested or even adversarial agents (Brown et al., 2012; Wiggers et al.,
2015) however, are not compatible with our approach, as Assumption 1 — on which
our methods rely — does not hold in these settings. It would be interesting to investi-
gate whether an outer loop approach may still be interesting in self-interested settings
by analyzing the properties of the scalarized value function of these problems.

6.2.5 Reuse in OLS and scalability in the number of objectives
As we have mentioned several times in this dissertation, OLS works well when the
number of objectives is low. OLS scales poorly in the number of objectives because
the number of calls to the single objective solver depends on the number of corner
weights, which is exponential in the number of objectives (Theorem 5).

As we have seen in Section 5.3, when we employ reuse (Section 3.6), the effort for
corner weights for which no new value is found can be drastically reduced in practice
by hot-starting the single-objective subroutine. For MOPOMDPs this is even vital to
keep the planning problem tractable.

In this dissertation, we have not yet made a theoretical analysis of the effect of
reuse and its effect on the scalability in the number of objectives. Intuitively, when the
single-objective method terminates immediately after a hot-start when no new value
vector can be identified this reduces the runtime to the runtime of the single-objective
solver times the number of solutions in the final CCS. In practice however, the single-
objective solver will need some time to determine whether improvements can be found.
Furthermore, as we have seen in VOLS in Section 4.4.6, reuse is not always guaranteed
to improve the runtime for every run of the single-objective solver.
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In future work, we aim to provide an analysis of the effect of reuse upon runtime
— and specifically on the scalability in the number of objectives — in different OLS-
based methods when it can be proven that: the single-objective solver used terminates
in one iteration (as in OLSAR) or when an extra check to confirm the optimality of
a partial CCS for a new w can be introduced, and that reuse can only improve the
runtime of the single-objective solver.

6.2.6 Decision makers in the loop
In this dissertation we have assumed that we know the constraints on the scalarization
function, f , produce a coverage set by running a planning algorithm, and only in a
separate selection phase present that coverage set to the decision maker. There are
however two issues with this workflow: first, the coverage set might be too large for a
decision maker to analyze, and second, we might be doing a lot of unnecessary work
because the constraints on f are too loose.

An interesting way to mitigate both issues is to involve the decision maker while
planning, i.e., when we produce intermediate results during the planning phase, we
might elicit more preference information from the decision maker by asking questions
about these intermediate results (Benabbou and Perny, 2015). We believe that this
particularly compatible with OLS, as decision makers can be presented with values of
complete policies from the partial CCS, S, between iterations of OLS. The answers
that the user provides can be used by OLS to quickly reduce the interesting region of
the weight space, leading to large speed ups.
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objective optimization for security games. In AAMAS 2012: Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Systems-Volume 2,
pages 863–870.

Busoniu, L., Babuska, R., and De Schutter, B. (2008). A comprehensive survey of
multiagent reinforcement learning. IEEE Transactions on Systems, Man, and Cy-
bernetics, 38(2):156–172.

Cassandra, A., Littman, M., and Zhang, N. (1997). Incremental pruning: A simple,
fast, exact method for partially observable Markov decision processes. In UAI 1997:
Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence,
pages 54–61.

Cassandra, A. R. (1998). Exact and approximate algorithms for partially observable
Markov decision processes. PhD thesis, Brown University.

Cassandra, A. R., Kaelbling, L. P., and Littman, M. L. (1994). Acting optimally in
partially observable stochastic domains. In AAAI 1994: Proceedings of the Twelfth
National Conference on Artificial Intelligence, pages 1023–1028.



BIBLIOGRAPHY 143

Cavallo, R. (2008). Efficiency and redistribution in dynamic mechanism design. In
EC 2008: Proceedings of the 9th ACM conference on electronic commerce, pages
220–229.

Cheng, H.-T. (1988). Algorithms for partially observable Markov decision processes.
PhD thesis, University of British Columbia, Vancouver.

Clemen, R. T. (1997). Making Hard Decisions: An Introduction to Decision Analysis.
South-Western College Pub, 2 edition.

Das, T. K., Gosavi, A., Mahadevan, S., and Marchalleck, N. (1999). Solving semi-
Markov decision problems using average reward reinforcement learning. Manage-
ment Science, 45(4):560–574.

de Sousa Messias, J. V. T. (2014). Decision-Making under Uncertainty for Real Robot
Teams. PhD thesis, Instituto Superior Técnico, Lisbon, Portugal.
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Thiébaux, S., Gretton, C., Slaney, J. K., Price, D., Kabanza, F., et al. (2006). Decision-
theoretic planning with non-markovian rewards. Journal of Artificial Intelligence
Research, 25:17–74.

Vamplew, P., Dazeley, R., Barker, E., and Kelarev, A. (2009). Constructing stochas-
tic mixture policies for episodic multiobjective reinforcement learning tasks. In AI
2009: Proceedings of the Twenty-Second Australasian Joint Conference on Artificial
Intelligence, pages 340–349.

Van Hasselt, H. (2012). Reinforcement learning in continuous state and action spaces.
In Wiering, M. A. and Van Otterlo, M., editors, Reinforcement Learning: State-
of-the-Art, volume 12 of Adaptation, Learning, and Optimization, pages 207–251.
Springer Berlin/Heidelberg.

Van Moergestel, L. J. (2014). Agent Technology in Agile Multiparallel Manufacturing
and Product Support. PhD thesis, Utrecht University.

Van Moffaert, K., Brys, T., Chandra, A., Esterle, L., Lewis, P. R., and Nowé, A. (2014).
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Abstract

Decision making is hard. It often requires reasoning about uncertain environments,
partial observability and action spaces that are too large to enumerate. In such com-
plex decision-making tasks decision-theoretic agents, that can reason about their envi-
ronments on the basis of mathematical models and produce policies that optimize the
utility for their users, can often assist us.

In most research on decision-theoretic agents, the desirability of actions and their
effects is codified in a scalar reward function. However, many real-world decision
problems have multiple objectives. In such cases the problem is more naturally ex-
pressed using a vector-valued reward function. Rather than having a single optimal
policy, we then want to produce a set of policies that covers all possible preferences
between the objectives. We call such a set a coverage set.

In this dissertation, we focus on decision-theoretic planning algorithms that pro-
duce the convex coverage set (CCS), which is the optimal solution set when either: 1)
the user utility can be expressed as a weighted sum over the values for each objective;
or 2) policies can be stochastic.

We propose new methods based on two popular approaches to creating planning
algorithms that produce an (approximate) CCS by building on an existing single-
objective algorithm. In the inner loop approach, we replace the summations and max-
imizations in the inner most loops of the single-objective algorithm by cross-sums and
pruning operations. In the outer loop approach, we solve a multi-objective problem as
a series of scalarized problems by employing the single-objective method as a subrou-
tine.

Our most important contribution is an outer loop framework that we call optimistic
linear support (OLS). As an outer loop method OLS builds the CCS incrementally.
We show that, contrary to existing outer loop methods, each intermediate result is
a bounded approximation of the CCS with known bounds (even when the single-
objective method used is a bounded approximate method as well) and is guaranteed
to terminate in a finite number of iterations.

We apply OLS-based algorithms to a variety of multi-objective decision problems,
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and show that it is more memory-efficient, and faster than corresponding inner loop
algorithms for moderate numbers of objectives. We show that exchanging subroutines
in OLS is relatively easy and illustrate the importance on a complex planning problem.
Finally, we show that it is often possible to reuse parts of the policies and values, found
in earlier iterations of OLS, to hot-start later iterations of OLS. Using this last insight,
we propose the first method for multi-objective POMDPs that employs point-based
planning and can produce an ε-CCS in reasonable time.

Overall, the methods we propose bring us closer to truly practical multi-objective
decision-theoretic planning.



Samenvatting

Beslissingen nemen is moeilijk. Het is vaak nodig om te redeneren over onzekerheid
in de omgevingsdynamiek, partiële observeerbaarheid en actieruimtes die te groot zijn
om te enumereren. In zulke complexe beslistaken kunnen beslistheoretische agents,
die aan de hand van mathematische modellen over omgevingen kunnen redeneren en
policies kunnen formuleren die het nut voor de gebruiker optimaliseren, ons helpen.

In het meeste onderzoek over beslistheoretische agents wordt de wenselijkheid van
acties en de gevolgen daarvan geëncodeerd in een scalaire beloningsfunctie. Echter,
veel realistische beslisproblemen hebben meerdere doelen tegelijk, waardoor het natuur-
lijker is om vectoren als beloning te gebruiken. In plaats van een enkele optimale po-
licy, willen wij in dit geval een verzameling van policies genereren die alle mogelijke
voorkeuren met betrekking tot de doelen dekt. Wij noemen dit een coverage set.

In dit proefschrift, focussen wij op belistheoretische planalgoritmes die een convex
coverage set (CCS) produceren. De CCS is de optimale oplossing als: 1) het nut voor
de gebruiker uitgedrukt kan worden als een gewogen som over de verschillende doelen;
of 2) stochastische policies zijn toegestaan.

Wij stellen nieuwe methodes voor met behulp van twee methodes voor het creëren
van CCS-planalgoritmes op basis van bestaande enkeldoelige algoritmes. Bij binnen-
loopaanpak vervangen wij de sommaties en maximisaties in de binnenste loops van
het algoritme door cross sums en pruningoperaties. In de buitenloopaanpak, lossen we
een meerdoelig beslisprobleem op als een serie gescalariseerde problemen, waarbij we
het enkeldoelige algoritme als subroutine gebruiken.

Onze belangrijkste bijdrage is een buitenloop-framework dat we optimistic linear
support (OLS) noemen. Als buitenloopmethode bouwt OLS de CCS iteratief op. We
laten zien dat, in tegenstelling tot bestaande buitenloopmethodes, op elk tussenresultaat
van OLS een benaderingsgarantie gegeven kan worden (zelfs als de enkeldoelige sub-
routine zelf een benaderingsalgoritme is), en dat OLS binnen een eindig aantal iteraties
termineert.

We passen op OLS gebaseerde algoritmes toe op verschillende meerdoelige beslispro-
blemen en tonen aan dat OLS zuiniger met geheugen is, en sneller is dan overeenkom-
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stige binnenloopalgoritmes voor gematigte hoeveelheden doelen. We laten zien dat
het vervangen van subroutines binnen OLS relatief eenvoudig is, en tonen het belang
daarvan aan met een complex planprobleem. Als laatste laten we zien dat het vaak
mogelijk is om delen van in eerdere iteraties gevonden policies en waarden daarvan te
hergebruiken in latere iteraties, om de enkeldoelige subroutines een vliegende start te
geven. Gebruik makend van dit laatste inzicht, stellen wij de eerste planmethode voor
meerdoelige POMDPs voor die gebruik maakt van point-based planalgoritmes en een
ε-CCS kan produceren binnen redelijke tijd.

De methodes die wij in dit proefschrift voorstellen brengen ons dichter bij in de
praktijk makkelijk toepasbare meerdoelige beslistheoretische planalgoritmes.
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Overview of Publications

Conforming to the regulations of the University of Amsterdam, we provide an overview
of the publications of the author (Diederik M. Roijers) that were used as the basis for
this dissertation. In accordance with the regulations, we mention the contributions of
the author of this dissertation on these publications.

We note that it is difficult to attribute the ideas to a single author as we did a lot of
brainstorming and iterated many times to improve our initial ideas, for all our papers
and articles.

Core Publications
These are the papers on which this disseration is based:

• Roijers et al. (2013a) — In this article, we (Diederik M. Roijers, Peter Vamplew,
Shimon Whiteson and Richard Dazeley) survey the field of decision-theoretic
planning and learning in multi-objective Markov decision processes. We use
part of the literature survey in Section 5.1.1 of this dissertation. While writing
the survey article, Diederik Roijers and Shimon Whiteson focussed on the utility-
based approach, the scenario’s and the taxonomy (that we use in Chapters 1
and 2 in this dissertation), as well as some of the future work (including the
ESR formulation, that we use in Section 6.2.2). Most of the initial ideas for
these topics were first conceived by the Diederik Roijers. Note however, that we
did a lot of brainstorming and iterated many times to improve our initial ideas.
Peter Vamplew and Richard Dazeley focussed on the literature overview and the
applications. All authors provided feedback on all sections of the article.

• Roijers et al. (2013b) and Roijers et al. (2013c) — In these two papers we
(Diederik M. Roijers, Shimon Whiteson and Frans A. Oliehoek) first propose
the CMOVE algorithm (Section 4.3.1). Although the idea of CMOVE was al-
ready conceived in the project proposal, before Diederik Roijers was hired as the
main researcher on this topic, he contributed some of the core elements of the

157



CMOVE algorithm and the paper, such as the tagging scheme, the analysis in
terms of the size of the intermediate coverage sets, the implementation, and the
experiments.

• Roijers et al. (2014b) — In this paper, we (Diederik M. Roijers, Shimon White-
son and Frans Oliehoek) first proposed OLS (Chapter 3), in the context of MO-
CoGs (Chapter 4). Diederik Roijers was the primary researcher; the other au-
thors provided support and feedback.

• Roijers et al. (2014a) — In this paper, we (Diederik M. Roijers, Joris Scharpff,
Matthijs T.J. Spaan, Frans A. Oliehoek, Mathijs de Weerdt and Shimon White-
son) extend OLS to be able to handle bounded approximate single-objective sub-
routine (as we describe in Section 3.5), as well as a different outer loop method
that we do not treat in this dissertation. The (initial version of the) correct-
ness proof for approximate OLS was constructed in a brainstorm session with
Diederik Roijers, Joris Scharpff and Mathijs de Weerdt. In this paper, the work
was divided more or less evenly between the first two authors, Diederik Roijers
focussing more on the algorithmics, and Joris Scharpff more on the implemen-
tation and experiments; the other authors provided support and feedback.

• Roijers et al. (2015b) — In this article, we (Diederik M. Roijers, Shimon White-
son and Frans Oliehoek) collect our findings for MO-CoGs (Chapter 4) from our
earlier work (i.e., CMOVE and VELS), and propose the memory-efficient algo-
rithms CTS and TSLS. Diederik Roijers was the primary researcher; the other
authors provided support and feedback.

• Roijers et al. (2015c) —In this paper, we (Diederik M. Roijers, Shimon White-
son and Frans Oliehoek) propose the OLSAR algorithm (Section 5.3), and the
general idea for reuse in OLS (Section 3.6). Diederik Roijers was the primary
researcher; the other authors provided support and feedback.

• Roijers et al. (2015a) — In this paper, we (Diederik M. Roijers, Shimon White-
son, Alex Ihler and Frans Oliehoek) propose the VOLS algorithm (Section 4.4.5).
Diederik Roijers was the primary researcher; the other authors provided support
and feedback. Alex Ihler provided the single-objective solver code (WMB).

Other Papers
There are two more papers that have been (partially) used in this dissertation:

• Zintgraf et al. (2015) — In this paper, we (Luisa M. Zintgraf, Timon V. Kanters,
Diederik M. Roijers, Frans A. Oliehoek and Philipp Beau) use the utility-based
approach to prove a bound on the utility loss of ε-PCSs, and propose a gener-
alized MOMDP benchmark problem. The results of the proof were included in
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Section 2.1.3. Luisa Zintgraf focussed on the proof. Timon Kanters and Philipp
Beau focussed on the benchmark. Diederik Roijers and Frans Oliehoek provided
feedback and were involved in brainstorm sessions; this work was done in the
context of a student project supervised by Diederik Roijers and Frans Oliehoek.

• Scharpff et al. (2016) — In this paper, we (Joris Scharpff, Diederik M. Roijers,
Frans A. Oliehoek, Matthijs T.J. Spaan, and Mathijs M. de Weerdt) propose
the CoRe algorithm, which we use as a single-objective subroutine inside OLS
in Section 5.2. Joris Scharpff had the lead on this paper. Joris Scharpff and
Diederik Roijers did most of the research. Diederik Roijers’ focus was mainly
on the algorithmics. The other authors provided support and feedback.
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