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Vehicle sideslip angle is essential for active safety control systems.This paper presents a new hybrid Kalman filter to estimate vehicle
sideslip angle based on the 3-DoF nonlinear vehicle dynamic model combined withMagic Formula tire model.The hybrid Kalman
filter is realized by combining square-root cubature Kalman filter (SCKF), which has quick convergence and numerical stability,
with square-root cubature based receding horizon Kalman FIR filter (SCRHKF), which has robustness against model uncertainty
and temporary noise. Moreover, SCKF and SCRHKF work in parallel, and the estimation outputs of two filters are merged by
interacting multiple model (IMM) approach. Experimental results show the accuracy and robustness of the hybrid Kalman filter.

1. Introduction

Active safety control systems can improve the handling and
stability of vehicle effectively and then reduce the probability
of traffic accidents. For instance, March and Shim [1] devel-
oped an integrated control system of an active suspension
system (ASS) and active front steering (AFS) to enhance
vehicle handling and stability in which the active suspension
system was mainly used to control the normal force of
the vehicle. Mashadi and Majidi [2] proposed a sliding-
mode controller that cooperates with active front steering
and direct yaw moment control (DYC) to prevent vehicle
from spinning and drifting out of lane. However, on the
premise that we can access the vehicle states information
accurately, which include the longitudinal acceleration, the
lateral acceleration, the vehicle sideslip angle, the yaw rate,
and other states information, then the control logic of these
vehicle active safety control systems can work effectively.
Some of the required vehicle states information is easy to be
measured by the sensors which are equipped on the mass
production vehicle, but others are difficult to detect for both
technical and economical reasons, such as the sideslip angle.
As a consequence, estimation of the sideslip angle based

on the measured vehicle states information has important
theoretical and practical significance.

Estimation of vehicle sideslip angle, or equivalently the
lateral velocity, has been well investigated in the literature,
and the estimation approach can be classified into two
categories: kinematics-based approach designed according
to kinematics motion and model-based approach designed
according to the physical vehicle model. Tseng et al. [3]
adopted integration method based on kinematical relation-
ship of lateral velocity rate, longitudinal velocity, yaw rate, and
lateral acceleration to estimate the lateral velocity. Farrelly
andWellstead [4] proposed a kinematics-based approach that
integrated lateral and longitudinal kinematics motion with
the pole placement method to estimate the lateral velocity.
The kinematic model is unobservable when the yaw rate
is zero, and so the resulting observer only functions when
the yaw rate is nonzero. Ungoren et al. [5] combined the
approach proposed by [4] with a model-based approach to
avoid unobservability during near-zero yaw rate conditions.
The kinematics-based approach is considered reliable for
a transient manoeuvre, but its integration operation can
inevitably cause progressive drifting issues resulting from
sensor errors.
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Compared with kinematics-based approach, the model-
based approach has the merit of being independent of sensor
errors. Pi et al. [6] proposed a model-based approach based
on a simplified single-track model with a linear adaptive
tire-force model to estimate the sideslip angle. The vehicle
lateral force is calculated by the linear adaptive tire-force
model and fed into the extended Kalman filter (EKF), which
provides the final estimation of the sideslip angle. Antonov
et al. [7] established a planar two-track model with the
empiric Magic Formula as a basis for the estimator design
and utilized unscented Kalman filter (UKF) to estimate the
longitudinal velocity and lateral velocity. Baffet et al. [8]
presented a nonlinear cascaded observer method for vehicle
sideslip angle and tire-road forces. The first block contains
a sliding-mode observer whose principal role is to estimate
tire-road forces, and then the estimated tire-road forces are
used as input to the second block, in which the EKF estimates
the sideslip angle. Ren et al. [9] proposed an UKF based on
a 3-DoF vehicle model with the piecewise linear tire model
to estimate the instantaneous vehicle speed. Shraim et al.
[10] adopted a high order sliding-mode observer based on
the dynamic model of the wheel for the estimation of the
longitudinal forces, and then a sliding-mode observer based
on the supertwisting algorithm for the estimation of sideslip
angle and vehicle speed was proposed. Gadola et al. [11]
proposed an EKF-based sideslip angle estimation using a
simple single-trackmodel and a set of curveswhich described
the relationship of the lateral forces, the tire slip angle, and
the vertical load. Xin et al. [12] proposed a cubature Kalman
filter (CKF) based on 3-DoF vehicle model to estimate
vehicle velocity, sideslip angle, and yaw rate.Themodel-based
approach strongly depends on the accuracy of the physical
vehicle model while the practical vehicle is a nonlinear time-
varying high order dynamic system.Therefore, it is necessary
to design the sideslip angle estimator which has robustness
against model uncertainty and temporary disturbing noise.

Square-root cubature Kalman filter (SCKF) presented
by Arasaratnam and Haykin [13] is a nonlinear filter for
high-dimensional state estimation. SCKF introduces a third-
degree spherical-radial cubature rule to numerically approx-
imate the multidimensional integrals encountered in the
nonlinear Bayesian filter and has proper approximate accu-
racy and high convergence speed. However, the estimation
accuracy and stability of SCKF may be reduced due to
model uncertainty and temporary noise [14–16]. Square-root
cubature based receding horizon Kalman filter (SCRHKF)
has robustness against model uncertainty and temporary
noise [17], while the convergence speed of this filter is
worse than SCKF due to the use of a finite number of
measurements. Namely, the two filters have complementary
features with each other. This paper proposes the hybrid
Kalman filter, which integrates the advantage of SCKF and
SCRHKF and overcomes the disadvantage of the filters, to
estimate the vehicle sideslip angle. In the hybrid Kalman
filter, SCKF and SCRHKFwork in parallel, and the estimation
outputs of two filters are merged by interacting multiple
model (IMM) approach. This approach can always make the
estimation output of the hybrid Kalman filter smoothly track
the estimation output of the filter with the smallest estimation
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Figure 1: Schematic diagram of 3-DOF vehicle dynamics model.

error. Then, in the real vehicle experiment environment, the
performance of the proposedmethod is verified under double
lane change and slalom conditions.

This paper is organized as follows. Section 2 provides the
3-DoF vehicle dynamic model. Section 3 shows the proposed
hybrid Kalman filter. Section 4 introduces our experiments
and results. Finally, Section 5 draws the main conclusion of
our work.

2. The Dynamic Model

The proposed method is based on a nonlinear 3-DoF vehicle
body model with a precise nonlinear tire model “Magic
Formula,” which consists of the longitudinal motion, lateral
motion, and yaw motion. In order to reduce the size of
the state vector, the following modeling assumptions are
made:

(i) The vehicle body is modeled as being rigid and
lumped at the mass center of gravity.

(ii) The vehicle is moving on a flat horizontal plane.
(iii) The heave, pitch, and roll motion are ignored.
(iv) The aerodynamic drag forces are ignored.
(v) The steer angles of the front left and front right wheels

are equal.

As shown in Figure 1, 𝑂𝑥𝑦𝑧 is the fixed coordinate on
the ground, and 𝐵𝑥𝑦𝑧 is the fixed coordinate on the vehicle,
with 𝑥-axis in the vehicle longitudinal direction, 𝑦-axis in
the lateral direction, 𝑧-axis in the vertical direction, and the
origin at the vehicle center of gravity (CoG). The yaw angle
around the 𝑧-axis is taken as positive in the anticlockwise
direction. The differential equations of the longitudinal,
lateral, and yaw motions are expressed as

V̇
𝑥

= 𝑎
𝑥

+ 𝑟V
𝑦

,

𝑎
𝑥

=
1

𝑚
[(𝐹
𝑥𝑓𝑙

+ 𝐹
𝑥𝑓𝑟

) cos 𝛿
𝑓

− (𝐹
𝑦𝑓𝑙

+ 𝐹
𝑦𝑓𝑟

) sin 𝛿
𝑓

+ 𝐹
𝑥𝑟𝑙

+ 𝐹
𝑥𝑟𝑟

] ,
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V̇
𝑦

= 𝑎
𝑦

− 𝑟V
𝑥
,

𝑎
𝑦

=
1

𝑚
[(𝐹
𝑥𝑓𝑙

+ 𝐹
𝑥𝑓𝑟

) sin 𝛿
𝑓

+ (𝐹
𝑦𝑓𝑙

+ 𝐹
𝑦𝑓𝑟

) cos 𝛿
𝑓

+ 𝐹
𝑦𝑟𝑙

+ 𝐹
𝑦𝑟𝑟

] ,

̇𝑟 =
1

𝐼
𝑧

[𝑎 (𝐹
𝑥𝑓𝑙

+ 𝐹
𝑥𝑓𝑟

) sin 𝛿
𝑓

+ 𝑎 (𝐹
𝑦𝑓𝑙

+ 𝐹
𝑦𝑓𝑟

) cos 𝛿
𝑓

− 𝑏 (𝐹
𝑦𝑟𝑙

+ 𝐹
𝑦𝑟𝑟

) −
𝑐

2
(𝐹
𝑥𝑓𝑙

− 𝐹
𝑥𝑓𝑟

) cos 𝛿
𝑓

+
𝑐

2
(𝐹
𝑦𝑓𝑙

− 𝐹
𝑦𝑓𝑟

) sin 𝛿
𝑓

−
𝑐

2
(𝐹
𝑥𝑟𝑙

− 𝐹
𝑥𝑟𝑟

)] ,

𝛽 = arctan(
V
𝑦

V
𝑥

) ,

(1)

where V
𝑥
and V
𝑦
are the longitudinal and the lateral velocity

at the CoG; 𝑎
𝑥
and 𝑎

𝑦
are the longitudinal and the lateral

acceleration at the CoG; 𝑟 is the yaw rate; 𝑚 is the vehicle
mass; 𝛿

𝑓
is the steer angle of front wheels; 𝐼

𝑧
is the vehicle

moment of inertia about 𝑧-axis; 𝑎 is the distance from the
front axle to CoG; 𝑏 is the distance from the rear axle to CoG;
𝑐 is the track width; 𝛽 is the vehicle sideslip angle; and 𝐹

𝑥𝑖𝑗

and 𝐹
𝑦𝑖𝑗

are the longitudinal and lateral tire force, where 𝑖𝑗 ∈

{𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟}. Meanwhile, the first subscript of (⋅)
𝑖𝑗
denotes

the front and rear axles, and the second denotes the left and
right sides of the vehicle.

The tire forces of each wheel are described by a nonlinear
tire model “Magic Formula.” For the sake of simplicity, we
neglect the aligning torque and theminor effects due to wheel
camber. The tire model expresses the longitudinal force 𝐹

𝑥

and the lateral force𝐹
𝑦
as a function of the wheel longitudinal

slip 𝜆 and the wheel sideslip angle 𝛼, respectively.The general
form of the tire model is given by [18, 19]

𝑌 (𝜀) = 𝐷 sin {𝐶 arctan [𝐵𝜀 − 𝐸 (𝐵𝜀 − arctan (𝐵𝜀))]} , (2)

where the input 𝜀 represents 𝜆 or 𝛼, which can be expressed
as a function of 𝛿

𝑓
, V
𝑥
, V
𝑦
, 𝑟, 𝑎
𝑥
, and 𝑎

𝑦
; the output variable

𝑌(𝜀) stands for either 𝐹
𝑥
or 𝐹
𝑦
; the coefficients 𝐵, 𝐶, 𝐷, and

𝐸 are expressed as a function of the dynamic normal force 𝐹
𝑧
.

Considering pitch and roll load transfer, the dynamic
normal forces of each wheel are calculated by

𝐹
𝑧𝑓𝑙

= 𝑚𝑔
𝑏

2𝑙
− 𝑚𝑎
𝑥

ℎ

2𝑙
− 𝑚𝑎
𝑦

ℎ𝑏

𝑐𝑙
,

𝐹
𝑧𝑓𝑟

= 𝑚𝑔
𝑏

2𝑙
− 𝑚𝑎
𝑥

ℎ

2𝑙
+ 𝑚𝑎
𝑦

ℎ𝑏

𝑐𝑙
,

𝐹
𝑧𝑟𝑙

= 𝑚𝑔
𝑎

2𝑙
+ 𝑚𝑎
𝑥

ℎ

2𝑙
− 𝑚𝑎
𝑦

ℎ𝑎

𝑐𝑙
,

𝐹
𝑧𝑟𝑟

= 𝑚𝑔
𝑎

2𝑙
+ 𝑚𝑎
𝑥

ℎ

2𝑙
+ 𝑚𝑎
𝑦

ℎ𝑎

𝑐𝑙
,

(3)

where ℎ is the CoG height and 𝑙 is the wheel base.

The sideslip angle of each wheel can be calculated by

𝛼
𝑓𝑙

= arctan(
V
𝑦

+ 𝑎𝑟

V
𝑥

− 𝑟𝑐/2
) − 𝛿
𝑓

,

𝛼
𝑓𝑟

= arctan(
V
𝑦

+ 𝑎𝑟

V
𝑥

+ 𝑟𝑐/2
) − 𝛿
𝑓

,

𝛼
𝑟𝑙

= arctan(
V
𝑦

− 𝑏𝑟

V
𝑥

− 𝑟𝑐/2
) ,

𝛼
𝑟𝑟

= arctan(
V
𝑦

− 𝑏𝑟

V
𝑥

+ 𝑟𝑐/2
) .

(4)

The longitudinal speed of the wheel center can be calcu-
lated by

V
𝑥𝑓𝑙

= (V
𝑥

−
𝑟𝑐

2
) cos 𝛿

𝑓
+ (V
𝑦

+ 𝑟𝑎) sin 𝛿
𝑓

,

V
𝑥𝑓𝑟

= (V
𝑥

+
𝑟𝑐

2
) cos 𝛿

𝑓
+ (V
𝑦

+ 𝑟𝑎) sin 𝛿
𝑓

,

V
𝑥𝑟𝑙

= V
𝑥

−
𝑟𝑐

2
,

V
𝑥𝑟𝑟

= V
𝑥

+
𝑟𝑐

2
.

(5)

The wheel longitudinal slip is defined as

𝜆
𝑖𝑗

=
𝑤
𝑖𝑗

𝑅
𝑤

− V
𝑥𝑖𝑗

max {𝑤
𝑖𝑗

𝑅
𝑤

, V
𝑥𝑖𝑗

}

, (6)

where 𝑤
𝑖𝑗
is the angular velocity and 𝑖𝑗 ∈ {𝑓𝑙, 𝑓𝑟, 𝑟𝑙, 𝑟𝑟}; 𝑅

𝑤
is

the effective rolling radius.
In summary, we can calculate the input of the tire model

that the wheel longitudinal slip 𝜆, the wheel sideslip angle
𝛼, and the dynamic normal force 𝐹

𝑧
based on the states

𝛿
𝑓
, V
𝑥
, V
𝑦
, 𝑟, 𝑎
𝑥
, and 𝑎

𝑦
are described by the nonlinear 3-

DoF vehicle body model, and then the longitudinal force 𝐹
𝑥

and the lateral force 𝐹
𝑦
, which can be used as the input of

the nonlinear 3-DoF vehicle body model, are calculated by
the tire model. Hence, the tire model and the nonlinear 3-
DoF vehicle bodymodel are merged together into a complete
vehicle model, which in the continuous state-space form
reads as

𝑥̇ (𝑡) = 𝑓̃ (𝑥 (𝑡) , 𝑢 (𝑡)) ,

𝑧 (𝑡) = ℎ (𝑥 (𝑡) , 𝑢 (𝑡))

(7)

with the input, state, and measurement vectors given by

𝑢 (𝑡) = [𝛿
𝑓

(𝑡) 𝑤
𝑓𝑙

(𝑡) 𝑤
𝑓𝑟

(𝑡) 𝑤
𝑟𝑙

(𝑡) 𝑤
𝑟𝑟

(𝑡)]
T

,

𝑥 (𝑡) = [V
𝑥

(𝑡) V
𝑦

(𝑡) 𝑟 (𝑡)]
T

,

𝑧 (𝑡) = [𝑎
𝑥

(𝑡) 𝑎
𝑦

(𝑡) 𝑟 (𝑡)]
T

.

(8)

To get the discrete form representation of the system, the
zero-order-hold assumption for the system input vector 𝑢(𝑡)
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during the sampling time Δ𝑇 and the classical forward Euler
integration are used. Meanwhile, introducing the stochastic
process noise 𝑤

𝑘
and the stochastic measurement noise V

𝑘
,

we obtain the discrete form of the system for the filter design
as follows:

𝑥
𝑘+1

= 𝑥
𝑘

+ 𝑓̃ (𝑥
𝑘
, 𝑢
𝑘
) Δ𝑇 + 𝑤

𝑘
= 𝑓 (𝑥

𝑘
, 𝑢
𝑘
) + 𝑤
𝑘
,

𝑧
𝑘

= ℎ (𝑥
𝑘
, 𝑢
𝑘
) + V
𝑘
,

(9)

where 𝑤
𝑘
and V
𝑘
are uncorrelated zero-mean white Gaussian

noise processes and the covariance of the two processes is
denoted by 𝑄 and 𝑅, respectively.

3. The Hybrid Kalman Filter

The hybrid Kalman filter is shown in Figure 2. It consists
of interaction/mixing, SCKF, SCRHKF, model probability
update, and estimation fusion. In the hybrid Kalman fil-
ter, the SCKF and SCRHKF are processed to estimate the
vehicle sideslip angle based on the nonlinear 3-DoF vehicle
model, respectively, and the state estimate and its covariance
of the two filters are combined by interacting multiple
model (IMM) approach. Assuming 𝑚

1 denotes the model-
based SCKF, 𝑚

2 denotes the model-based SCRHKF, and
𝑀 = {𝑚

1

, 𝑚
2

} denotes the model set consisting of 𝑚
1 and

𝑚
2.

3.1. Square-Root Cubature Kalman Filter. SCKF is a square-
root extension of the standard CKF and uses the least-
squaresmethod for theKalman gain and triangularization for
covariance updates to improve the numerical stability. SCKF
introduces a third-degree spherical-radial cubature rule to
calculate the cubature point 𝜉

𝑖
and the corresponding weight

𝜔
𝑖
:

𝜉
𝑖

= √
𝑚

2
[1]
𝑖
,

𝜔
𝑖

=
1

𝑚
,

𝑖 = 1, 2, . . . , 𝑚,

(10)

where 𝑚 = 2𝑛 and 𝑛 is the system state dimension; [1] is the
set of points composed of the full array of the unit vector 𝑒 =

[1, 0, . . . , 0]
T’s elements, and [1]

𝑖
is the 𝑖th point from set [1].

Assume at time 𝑘 − 1 that the Cholesky decomposition
of the covariance 𝑃

𝑘−1|𝑘−1
is known; that is, 𝑃

𝑘−1|𝑘−1
=

𝑆
𝑘−1|𝑘−1

𝑆
T
𝑘−1|𝑘−1

; the steps of SCKF are presented as follows
[13].

(1) Time Update
Evaluate the cubature point:

𝑋
𝑖,𝑘−1|𝑘−1

= 𝑆
𝑘−1|𝑘−1

𝜉
𝑖

+ 𝑥̂
𝑘−1|𝑘−1

. (11)

Evaluate the propagated cubature points through the
state function:

𝑋
∗

𝑖,𝑘|𝑘−1
= 𝑓 (𝑋

𝑖,𝑘−1|𝑘−1
, 𝑢
𝑘−1

) . (12)

Estimate the predicted state:

𝑥̂
𝑘|𝑘−1

=
1

𝑚

𝑚

∑

𝑖=1

𝑋
∗

𝑖,𝑘|𝑘−1
. (13)

Estimate the square-root factor of the predicted error
covariance:

𝑆
𝑘|𝑘−1

= Tria ([𝜒
∗

𝑘|𝑘−1
𝑆
𝑄,𝑘−1

]) , (14)

whereTria(⋅)denotes a general triangularization algo-
rithm (e.g., the QR decomposition) and is a lower
triangular matrix; 𝑆

𝑄,𝑘−1
denotes a square-root factor

of 𝑄
𝑘−1

such that 𝑄
𝑘−1

= 𝑆
𝑄,𝑘−1

𝑆
T
𝑄,𝑘−1

and the
weighted, centered matrix

𝜒
∗

𝑘|𝑘−1
=

1

√𝑚

⋅ [𝑋
∗

1,𝑘|𝑘−1
− 𝑥̂
𝑘|𝑘−1

𝑋
∗

2,𝑘|𝑘−1
− 𝑥̂
𝑘|𝑘−1

⋅ ⋅ ⋅ 𝑋
∗

𝑚,𝑘|𝑘−1
− 𝑥̂
𝑘|𝑘−1

] .

(15)

(2) Measurement Update

Evaluate the cubature points:

𝑋
𝑖,𝑘|𝑘−1

= 𝑆
𝑘|𝑘−1

𝜉
𝑖

+ 𝑥̂
𝑘|𝑘−1

. (16)

Evaluate the propagated cubature points through the
measurement function:

𝑍
𝑖,𝑘|𝑘−1

= ℎ (𝑋
𝑖,𝑘|𝑘−1

, 𝑢
𝑘
) . (17)

Estimate the predicted measurement:

𝑧̂
𝑘|𝑘−1

=
1

𝑚

𝑚

∑

𝑖=1

𝑍
𝑖,𝑘|𝑘−1

. (18)

Estimate the square-root of the innovation covariance
matrix:

𝑆
𝑧𝑧,𝑘|𝑘−1

= Tria ([𝑍
𝑘|𝑘−1

𝑆
𝑅,𝑘

]) , (19)

where 𝑆
𝑅,𝑘

denotes a square-root factor of𝑅
𝑘
such that

𝑅
𝑘

= 𝑆
𝑅,𝑘

𝑆
T
𝑅,𝑘

and the weighted, centered matrix

𝑍
𝑘|𝑘−1

=
1

√𝑚

⋅ [𝑍
1,𝑘|𝑘−1

− 𝑧̂
𝑘|𝑘−1

𝑍
2,𝑘|𝑘−1

− 𝑧̂
𝑘|𝑘−1

⋅ ⋅ ⋅ 𝑍
𝑚,𝑘|𝑘−1

− 𝑧̂
𝑘|𝑘−1

] .

(20)

Estimate the cross-covariance matrix:

𝑃
𝑥𝑧,𝑘|𝑘−1

= 𝜒
𝑘|𝑘−1

𝑍
T
𝑘|𝑘−1

, (21)

where the weighted, centered matrix

𝜒
𝑘|𝑘−1

=
1

√𝑚

⋅ [𝑋
1,𝑘|𝑘−1

− 𝑥̂
𝑘|𝑘−1

𝑋
2,𝑘|𝑘−1

− 𝑥̂
𝑘|𝑘−1

⋅ ⋅ ⋅ 𝑋
𝑚,𝑘|𝑘−1

− 𝑥̂
𝑘|𝑘−1

] .

(22)
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Figure 2: The architecture of the hybrid Kalman filter, where 𝑢
𝑖|𝑗

𝑘−1
(𝑖 | 𝑗 = 1 | 2, 2 | 1) is the model mixing probability; 𝑥̂

𝑖

𝑘−1|𝑘−1
(𝑖 = 1, 2) and

𝑃
𝑖

𝑘−1|𝑘−1
(𝑖 = 1, 2) are the estimation states and the covariance matrices for 𝑚

𝑖

(𝑖 = 1, 2) at time 𝑘 − 1; 𝑢
𝑖

𝑘
(𝑖 = 1, 2) is for 𝑚

𝑖

(𝑖 = 1, 2) at time 𝑘;
Λ
𝑖

𝑘
(𝑖 = 1, 2) is the likelihood function for 𝑚

𝑖

(𝑖 = 1, 2) at time 𝑘; 𝑥̂
𝑖

𝑘|𝑘
(𝑖 = 1, 2) and 𝑃

𝑖

𝑘|𝑘
(𝑖 = 1, 2) are the estimation states and the covariance

matrices for 𝑚
𝑖

(𝑖 = 1, 2) at time 𝑘; 𝑧
𝑘
is the measurement at time 𝑘; 𝑥̂

𝑘|𝑘
and 𝑝

𝑘|𝑘
are the combined state estimate and its covariance.
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Figure 3: Concept of SCRHKF.

Estimate the Kalman gain:

𝑊
𝑘

=

(𝑃
𝑥𝑧,𝑘|𝑘−1

/𝑆
T
𝑧𝑧,𝑘|𝑘−1

)

𝑆
𝑧𝑧,𝑘|𝑘−1

. (23)

Estimate the updated state:

𝑥̂
𝑘|𝑘

= 𝑥̂
𝑘|𝑘−1

+ 𝑊
𝑘

(𝑧
𝑘

− 𝑧̂
𝑘|𝑘−1

) . (24)

Estimate the square-root factor of the corresponding
error covariance:

𝑆
𝑘|𝑘

= Tria ([𝜒
𝑘|𝑘−1

− 𝑊
𝑘
𝑍
𝑘|𝑘−1

𝑊
𝑘
𝑆
𝑅,𝑘

]) . (25)

3.2. Square-Root Cubature Based Receding Horizon Kalman
Filter. SCRHKF has an FIR structure, and the current esti-
mation states of SCRHKF are based on a finite number of
measurements over the recent time horizon [20]. Figure 3
shows the concept of the SCRHKF, which consists of the
hidden horizon and the active horizon. The sizes of the
receding horizon and receding interval are set up as 𝑁 which
is the system dimension. The RHKF is processed in the
hidden horizon.The states and the inverse covariance matrix
at time 𝑡

𝑁(𝑖+1)
, which are used as the initial values of the active

horizon from 𝑡
𝑁(𝑖+1)

to 𝑡
𝑁(𝑖+2)

, can be estimated based on
the final estimation states at time 𝑡

𝑁𝑖
and the measurements

from 𝑡
𝑁𝑖

to 𝑡
𝑁(𝑖+1)

in this horizon. After processing the hidden
horizon, the active horizon and another hidden horizon are
carried out. In the active horizon, the SCKF is processed

to calculate the final estimation states from 𝑡
𝑁(𝑖+1)

to 𝑡
𝑁(𝑖+2)

based on the outputs of the hidden horizon at time 𝑡
𝑁(𝑖+1)

.
The steps of SCRHKF are presented as follows.

(1) Initialization of Hidden Horizon

Initialize the states, the inverse covariance, and the
pseudo error state:

𝑥
∗

𝑁𝑖
= 𝑥̂
𝑁𝑖

,

Ω
𝑁𝑖

= 0
𝑛×𝑛

,

𝜉̂
𝑁𝑖

= 0
𝑛×1

.

(26)

(2) Time Update of Hidden Horizon

Estimate the predicted inverse covariance:

Ω
−

𝑗
= [𝐼 − 𝐹

−T
𝑗−1

Ω
𝑗−1

𝐹
−1

𝑗−1
(𝑄
−1

+ 𝐹
−T
𝑗−1

Ω
𝑗−1

𝐹
−1

𝑗−1
)
−1

]

⋅ 𝐹
−T
𝑗−1

Ω
𝑗−1

𝐹
−1

𝑗−1
,

(27)

where 𝐹
𝑗

= (𝜕𝑓/𝜕𝑥)|
𝑥=𝑥
∗

𝑗

and 𝑗 = 𝑁𝑖 + 𝜂 (𝜂 ∈ 𝑅, 1 ≤

𝜂 ≤ 𝑁).
Estimate the predicted pseudo error state:

𝜉̂
−

𝑗
= [𝐼 − 𝐹

−T
𝑗−1

Ω
𝑗−1

𝐹
−1

𝑗−1
(𝑄
−1

+ 𝐹
−T
𝑗−1

Ω
𝑗−1

𝐹
−1

𝑗−1
)
−1

]

⋅ 𝐹
−T
𝑗−1

𝜉̂
𝑗−1

.

(28)
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(3) Measurement Update of Hidden Horizon

Estimate the update inverse covariance:

Ω
𝑗

= Ω
−

𝑗
+ 𝐻

T
𝑗

𝑅
−1

𝐻
𝑗
, (29)

where 𝐻
𝑗

= (𝜕ℎ/𝜕𝑥)|
𝑥=𝑥
∗

𝑗

.

Estimate the update pseudo error state:

𝜉̂
𝑗

= 𝜉̂
−

𝑗
+ 𝐻

T
𝑗

𝑅
−1

(𝑧
𝑗

− ℎ (𝑥
∗

𝑗
)) . (30)

(4) Initialization of Active Horizon

Initialize the states and the covariance:

𝑃
𝑁(𝑖+1)

= Ω
−1

𝑁(𝑖+1)
,

𝑥
∗

𝑁(𝑖+1)
= 𝑥
∗

𝑁(𝑖+1)
+ Ω
−1

𝑁(𝑖+1)
𝜉̂
𝑁(𝑖+1)

.

(31)

(5) Estimation State of Active Horizon

Estimate the final estimation states by formulas (11)∼
(25).

3.3. InteractingMultipleModel Approach. TheIMMapproach
carries out a “soft switching” between themodel-based SCKF
and the model-based SCRHKF by the model probability. The
steps of IMM are presented as follows [21].

(1) Model Mixing Probability Calculation

Calculate the model mixing probability:

𝑢
𝑖/𝑗

𝑘−1
=

𝑝
𝑖𝑗

𝑢
𝑖

𝑘−1

𝜇
𝑗

𝑘|𝑘−1

, (32)

where 𝜇
𝑖

𝑘−1
= 𝑝{𝑚

𝑖

𝑘−1
| 𝑦
𝑘−1

} is the model probability
at time 𝑘 − 1; 𝑝

𝑖𝑗

= 𝑝{𝑚
𝑗

𝑘
| 𝑚
𝑖

𝑘−1
} is the Markov

transition probability from 𝑚
𝑖 to 𝑚

𝑗; 𝜇
𝑗

𝑘|𝑘−1
is the

predicted probability; and 𝜇
𝑗

𝑘|𝑘−1
= ∑
2

𝑖=1
𝑝
𝑖𝑗

𝜇
𝑖

𝑘−1
.

(2) Interaction/Mixing

Consider the following:

𝑥̂
0𝑗

𝑘−1|𝑘−1
=

2

∑

𝑖=1

𝑢
𝑖/𝑗

𝑘−1
𝑥̂
𝑖

𝑘−1|𝑘−1
,

𝑃
0𝑗

𝑘−1|𝑘−1
=

2

∑

𝑖=0

𝑢
𝑖/𝑗

𝑘−1
{𝑃
𝑖

𝑘−1|𝑘−1

+ [𝑥̂
𝑖

𝑘−1|𝑘−1
− 𝑥̂
0𝑗

𝑘−1|𝑘−1
] [𝑥̂
𝑖

𝑘−1|𝑘−1
− 𝑥̂
0𝑗

𝑘−1|𝑘−1
]
T

} .

(33)

(3) Filtering

The SCKF and SCRHKF are processed to estimate the
vehicle sideslip angle, respectively.

Steering angle (rad)
Longitudinal acceleration (m·s−2)
Lateral acceleration (m·s−2)

1 2 3 4 50

Time (s)

−10

0

10

20

Figure 4: Estimation input under double lane change manoeuvre.

(4) Model Probability Update

Update the probability model:

𝜇
𝑗

𝑘
=

𝜇
𝑗

𝑘|𝑘−1
Λ
𝑗

𝑘

∑
2

𝑖=1
𝜇
𝑖

𝑘|𝑘−1
Λ
𝑖

𝑘

, (34)

where Λ
𝑗

𝑘
= exp{−(1/2)(𝑧

𝑗

𝑘
− 𝑧̂
𝑗

𝑘|𝑘−1
)
T

𝑃
𝑗

𝑧
𝑘
𝑧
𝑘

(𝑧
𝑗

𝑘
−

𝑧̂
𝑗

𝑘|𝑘−1
)}/√|2𝜋𝑃

𝑗

𝑧
𝑘
𝑧
𝑘

|.

(5) Estimation Fusion

Consider the following:

𝑥̂
𝑘|𝑘

=

2

∑

𝑗=1

𝜇
𝑗

𝑘
𝑥̂
𝑗

𝑘|𝑘
,

𝑃
𝑘|𝑘

=

2

∑

𝑗=1

𝜇
𝑗

𝑘
{𝑃
𝑗

𝑘|𝑘
+ [𝑥̂
𝑗

𝑘|𝑘
− 𝑥̂
𝑘|𝑘

] [𝑥̂
𝑗

𝑘|𝑘
− 𝑥̂
𝑘|𝑘

]
T

} .

(35)

4. Experimental Results

The performance of the proposed estimator has been verified
by a rear-wheel-drive Hongqi H7 test vehicle. The vehicle is
additionally equipped with the Oxford Technical Solutions
RT3000 measurement unit and the rotary potentiometer
coupled with the steering column using a simple belt and
pulley system. Different driving manoeuvres are performed
on a flat and dry asphalt surface for testing the estimator
performance. All the geometrical and physical data of the car
are listed in Table 1.

As previously explained, the signals used for testing the
proposed estimator include (i) the longitudinal and lateral
vehicle velocity, the longitudinal and lateral vehicle acceler-
ation, the vehicle sideslip angle, and the yaw rate acquired
from the RT3000 unit, (ii) the steering angle captured by the
rotary potentiometer, and (iii) front and rear wheel speeds
obtained from the vehicle CAN bus system. The covariance
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Figure 5: Double lane change manoeuvre results: (a) longitudinal velocity, (b) lateral velocity, (c) vehicle sideslip angle, and (d) yaw rate.
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Figure 6: Estimation input under slalom manoeuvre.

Table 1: Vehicle parameters.

Vehicle parameters Symbols Values
Vehicle mass 𝑚 1993 (kg)
Distance from the front axle to CoG 𝑎 1.376 (m)
Distance from the rear axle to CoG 𝑏 1.608 (m)
The track width 𝑐 1.615 (m)
The CoG height ℎ 0.552 (m)
Vehicle moment of inertia 𝐼

𝑧
3668 (kg⋅m2)

Effective rolling radius of the tire 𝑅
𝑤

0.312 (m)

matrices of the stochastic process noise 𝑤
𝑘
and the stochastic

measurement noise V
𝑘
are set to 𝑄 = 0.001 ∗ 𝐼

3×3
and 𝑅 =

0.05∗𝐼
3×3

, and thematrix of theMarkov transition probability
is

Φ = [
0.98 0.02

0.02 0.98
] . (36)

The initial model probabilities for themodel-based SCKF
and the model-based SCRHKF are identical with 𝜇

1

0
=

𝜇
2

0
= 0.5. The initial states of the estimator are identical to

the measured values from the RT3000 unit, and the initial
covariance matrix is chosen as 𝑃

0
= 0 ∗ 𝐼

3×3
.

First, the double lane change manoeuvre is implemented
and the lateral acceleration is more than 0.8 g, which is
shown in Figure 4. Figures 5(a)–5(d) show a comparison
of the estimated results versus the measured values for the
manoeuvre. The results based on the hybrid Kalman filter
follow the trend of measured values quite well and they are
always within an acceptable range, while the estimated lateral
velocity and sideslip angle using SCKF generate some large
errors due to themodelingmismatch in nonlinear region and
sensor noise. Moreover, in order to quantitatively evaluate
the effectiveness of the proposed method, the root mean-
squared error between the estimated and measured values
is computed. According to the statistical results shown in
Table 2, the proposed method has the maximum root mean-
squared error 0.0777 and mean values 0.0258, while the

maximum and mean root mean-squared errors of the SCKF
are 0.1840 and 0.0690, respectively.

Second, the slalom manoeuvre is implemented and the
vehicle undergoes the fast and large steering angle action,
which is shown in Figure 6. Figures 7(a)–7(d) show a
comparison of the estimated results versus the measured
values for the manoeuvre and similar results can be obtained
compared with double lane change manoeuvre. The SCKF
is influenced by the modeling mismatch and sensor noise
and shows some large errors for the estimated lateral velocity
and sideslip angle. However, the hybrid Kalman filter has
high convergence speed for the fast and large vehicle lateral
motion and great robustness against model mismatch and
sensor noise, and therefore the filter can accurately track
the measured values except the peak region of the lateral
acceleration, in which the vehicle reaches the limit of tire-
road adhesion and the estimated lateral velocity and sideslip
angle of the hybrid Kalman filter have acceptable errors.
According to the statistical results shown in Table 2, the
proposed method has the smallest maximum 0.0739 and
mean values 0.0251; the maximum and mean values of the
SCKF are 0.1271 and 0.0446, respectively.

5. Conclusions

This paper has presented novel estimation methods based
on the nonlinear 3-DoF vehicle model with the tire model
“Magic Formula” andmaking use of typical sensory informa-
tion found in stock ESC sensor packs to estimate the vehicle
sideslip angle accurately. The proposed method combines
the merit of SCKF that has high convergence speed and
numerical stability with the merit of SCRHKF that has great
robustness against model uncertainty and temporary noise.
Then, the real vehicle test is implemented to validate the
performance of the proposed method. The comparison with
SCKF shows that it can provide more accurate estimation for
the active safety control systems.

In future works, the proposed method can be improved
to adapt to various road conditions. Moreover, active safety
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Figure 7: Slalom manoeuvre results: (a) longitudinal velocity, (b) lateral velocity, (c) vehicle sideslip angle, and (d) yaw rate.
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Table 2: Root mean-square error of state estimation.

Manoeuvre State RMSE
SCKF Hybrid Kalman filter

Double lane change

Longitudinal velocity 0.0315 0.0149
Lateral velocity 0.1840 0.0777
Sideslip angle 0.0099 0.0023

Yaw rate 0.0505 0.0082

Slalom

Longitudinal velocity 0.0177 0.0146
Lateral velocity 0.1271 0.0739
Sideslip angle 0.0075 0.0040

Yaw rate 0.0260 0.0081

control systems based on the proposed method should be
researched.
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