
Pergamon 
Computers Math. Applic. Vol. 35, No. 8, pp. 9-14, 1998 

Copyright©1998 Elsevier Science Ltd 
Printed in Great Britain. All rights reserved 

0898-1221/98 $19.00 + 0.00 
PII: S0898-1221(98)00041-8 

A Fast and Robust  R N S  Algori thm 
for Evaluating Signs of Determinants  

V.  S. DIMITROV, G.  A.  JULLIEN AND W .  C.  MILLER 
VLSI Research Group, University of Windsor 

401 Sunset Avenue, Windsor, Ontario, Canada N9B 3P4 

(Received September 1997; accepted October 1997) 

A b s t r a c t - - A  new and efficient number theoretic algorithm for evaluating signs of determinants 
is proposed. The algorithm uses computations over small finite rings. It is devoted to a variety of 
computational geometry problems, where the necessity of evaluating signs of determinants of small 
matrices often arises. 

K e y w o r d s - - A l g o r i t h m s ,  Residue number systems, Computational geometry. 

1. I N T R O D U C T I O N  

Recent work has focused on performing efficient single precision arithmetic computation of signs 
of determinants. The problem has arisen in many computational geometry algorithms [1-6], for 
example, to determine if a point belongs to a given half-space or a given ball; it is very important 
to have fast and robust algorithms to perform such tests. 

The numerical stability of this problem requires special attention, and is specifically addressed 
in this new technique. For the case of 2 x 2 matrices, the problem can be stated as follows. 

Let D = [ xl 9, ] be a 2 x 2 determinant whose entries are b-bit integers; evaluate the sign of D [ z2 92 J 
using only b-bit arithmetic. 

The previous results [1,7] on this subject have been obtained by the use of some simple geo- 
metric considerations; specifically: 

(1) the entries of the matrix are integers, and 
(2) we are looking for a single-precision arithmetic solution. 

Therefore, it is natural to try to find an efficient algorithm based on a number system which 
is particularly suited to work with integers. Residue number systems (RNS) [8] fall into this 
category. The most visible advantage of this class of number systems is their ability to perform 
addition, subtraction, and multiplication in a parallel, carry-free manner using independent com- 
putational channels for calculations over small finite rings. Division within this system has been 
recognized as a difficult and time-consuming operation [9,10]; however, for matrices of small size 
(i.e., 2 x 2 or 3 x 3), we need only perform addition, subtraction, and multiplication. Therefore, 
one can very easily compute the residue format of the determinant. The final step, namely, 
sign detection, is the most difficult task. Here we will use a routine from the recently proposed 
algorithm by Hitz and Kaltofen [9]. 

The asymptotic complexity of our algorithm is lower than that of previously published al- 
gorithms, and we can show this using straightforward analytic number theory considerations. 
However, what is more important is that the algorithm can be used in massive computational 

Typeset by . 4 ~ T s X  



10 V . S .  D I M I T R O V  e t  a l .  

geometry problems such as computations of Voronoi diagrams for the case of a large number 
of 'generators' (points), in some extreme cases more than one million [5]. Since our algorithm 
consists almost entirely of look-up table operations on fairly small look-up tables, it is very well 
suited for VLSI implementation. The computational example presented at the end of this paper 
clarifies the idea and highlights some of the opportunities for further improvements. 

A very interesting feature of our algorithm is the fact that it detects negative determinants 
usually much faster than positive ones, and this can be useful in some particular cases. 

2. D E F I N I T I O N S  

We shall use the same notation as in [9]. 
~ 2n-1 < m~2n be a set of 2n small, possibly Let m 1 ,m2 , . . . ,m~2n  E Z ,  1 < m~ < m~2 < . . .  < m ~ 

consecutive primes (we will clarify the term 'small' later). It is enough to choose these numbers to 
be only pairwise relatively prime, but it complicates the complexity analysis without improving 
the asymptotic performance of the algorithm. 

Let us group these 2n moduli into two vectors of size n: 

' and = mS, = rn~, = rn12n. ?'[~1 -~- ~[~ i , f l 2 2  - ~  ?1~13 ' " " " , ~ n  -'~ m 2 n - 1  m n  + l ~ n + 2  ~T~2n 

The RNS defined by these moduli is called an extended RNS [9]; the system defined by the 
first n moduli is the base RNS, and the RNS defined by the remaining moduli is the extens ion  

RNS. The respective dynamic  range for the base and the extension RNS is: 

n 2 n  

i = l  i = n + l  

where the range for the entire extended RNS is MM. An integer X, 0 < X < M M  with 
residues xl = X mod m l , . . . ,  x2n = X rood m2n, will be represented in the extended RNS by 

( X l ,  • • • , X n ;  X n + l ,  • • • , X 2 n ) .  

The representation in the associated mixed radix sy s t em (MRS) will be denoted by 

V l ,  • • • , V n ;  V n + l ~  • • • ,  V 2 n )  

where 
2 n  i 

X = Z v~Pi_I,  P 0 = I ,  Pi = H m j ,  f o r l _ < i < 2 n  
i = l  j----1 

and 0 < vi < m~, for 1 < i < 2n. Hitz and Kaltofen [9] mention several important properties of 
the extended RNS. For our purposes, i.e., evaluating signs of determinants, the most important 
property is that the multiplication of two base RNS numbers in the extended RNS will never 
produce an overflow because M 2 < MM. 

3. T H E  A L G O R I T H M  F O R  2 × 2 M A T R I C E S  

Given a determinant D = [xl ~1] x2 ~2 = x l y2  - y l x2 ,  where xl, x2, yl, Yb are b-bit integers, we 

want to evaluate the sign of D using only b-bit arithmetic. Of course, the direct computation 
may cause overflow. 

Let us select the prime moduli rn~ of the base RNS with the proviso that: 

n 

M = H m~ _> 2 2b. (1) 

It follows from the Prime Number Theorem [11] that n = O (b / l ogb ) .  The definition of the 
extended RNS guarantees that M > M > 2 2b. Therefore, the total dynamic range covered by 
the extended RNS is at least 4b-bits. 



RNS Algorithm 11 

3.1. Descr ip t ion  of  the  Algor i thm 

We propose the following algorithm. 
Inpu t :  xx, x2, Yx, Y2: b-bit integers; 
O u t p u t :  the sign of xly2 - x2yl. 

Step 1. Represent the entries in extended RNS (using the dynamic range, M, defined in 
equation (1)): 

X 1 ~ ( x l m o d m l , x l m o d m 2 , . . . , x l m o d m 2 n ) - ~  (x~l),x~ 2) x~ 2n)) , - ' ' ,  

and similarly for x2, Ya, and Y2. 
Step 2. Compute the vector: 

/ 

- .  = (z(1), z("), z<"+l), z(,+2),...' 
\ ,  , ,  j 

base residues extens ionres idues  

where z (i) = (x 1 "  (~) Y2(i) _ x~i)y~i)) rood mi. 
Step 3. Perform the base extension for the vector z* = (z (1), z(2),.. . ,  z(n)). Let the result 

obtained be: Z~e ) = (z(1),z(2),.. z(n) z(n+l) z(n+2) _.(2n)~ "' ' (e) ' (e) ' ' ' ' ' Z ( e )  )" 
Step 4. Test the vectors (z (n+l), z (n+2) ., z (2n)) and (_(n+l) _(n+2) _(2n)~ "" ~z(e) 'z(e) , . . . , z (e  ) ) for equality. 

If all components agree, then output 'nonnegative determinant'; otherwise output 
'negative determinant'. If at least one of the components of z is nonzero, then the 
'nonnegative determinant' is 'positive'; otherwise it is zero. 

3.2. Proof  of  Correctness 

We want to compare the numbers xlY2 and x2yl, where they are strictly smaller than 2 2b. If the 
result of the subtraction (the value of the determinant) is positive, this maps to the range [0, M) 
and the extension residues from Step 2 will be identical to the extension residues from Step 3 
since the number is uniquely represented by z*. On the other hand, if the subtraction is negative, 
then this result maps to the range (M, MM)  in the extended RNS representation. In this case, 
z* does not uniquely represent the result, and the extension residues from Steps 2 and 3 will no 
longer be equal. 

3.3. Complexity Analysis 

Now we analyze the complexity of the algorithm. 
Step 1 requires O(b/logb) divisions to obtain the residues. Note that this is the only step 

where we need b-bit arithmetic. 
Step 2 requires O(b/log b) operations to calculate the components of z. 
Step 3 is the most important part of the algorithm, and it deserves special attention. The 

conversion from base RNS to the extension RNS needs the following computational operations: 

(1) given z* = (z (1), z (2 ) , . . . ,  z(n)), compute Z* = Ein_l viPi-1; 
(2) evaluate, in succession, for every modulus mj with n + 1 _< j < 2n: 

Z*modmj  = viPi-1 modmj --- v imodmj) (P~_lmodmj  modmj.  (2) 
\i--~1 / 

The constants Pi-1 mod mj can be precomputed and kept in a look-up table, while the products 
viPi-1 may be computed in parallel [9] on n × n RNS processor elements. Finally, the summation 
mod rnj can be performed in binary trees with O(log n) = O(log log b) depth. The total runtime 
estimation of this step is O(bloglogb/logb) operations, and this determines the asymptotic 
complexity of the algorithm. 

Step 4 requires at most O(b/log b) comparisons. 
In summarizing, we may estimate that the overall runtime is O(b log log b~ log b) operations. 



12 V . S .  DIMITROV etal .  

3.4. A Numerical  Example 

We exemplify the procedure with one numerical example. 
Consider the case b = 8, that  is, the entries are 8-bit integers. Let us choose the matrices: 

= [255 250] 
At L249 244J 

and 
250 2551 

A 2 =  [244 249J" 

Obviously, their determinants have opposite signs. 
For this value of b, we may select the set of moduli given in Table 1. 
Therefore, we work with n = 4 base moduli, namely, ( m l , m 2 , m 3 , m 4 )  = (11, 17,23,31) and 

four extension moduli (ms, ms, roT, ms) = (13, 19, 29, 37). 

Table 1. Extended RNS moduli for the case b ---- 8. 

m l  m2 m3 m4 rrt5 m6 m? m8 

11 17 23 31 13 19 29 37 

The dynamic range for the base RNS is M = 133331, and for the extension RNS M = 265031. 
The total dynamic range of the extended RNS is M M  = 35336848261 ~ 235"°4. 
The values of P~ modmj ,  i = 0, 1, 2, 3; j = 5, 6, 7, 8 are precomputed and stored as given in 

Table 2. 

Table 2. Precomputed values of Pi mod mj .  

mod 13 mod 19 mod 29 mod 31 

P 0 - - 1  1 1 1 1 

P1 = 11 11 11 11 11 

P2 -- 187 5 16 13 2 

P3 = 4301 11 7 9 9 

The final preprocessing step we need is the determination of the coefficients vi, necessary in 
Step 3 of the algorithm (i.e., equation (2)). In the case of the above moduli, these coeificients 
can be evaluated as follows: 

U1 = Zl modml ,  

v2 = 14(z2 - Vl) modm2, 

v3 = 8(z3 - V l  - l lv2)mod m3, 

v4 -- 27(z4 - Vl - llv2 - v3)mod m4. 

Now let us consider the application of our algorithm for the matrix A1. 
Step 1 transforms this matrix into an extended RNS format: 

[ (2,0,2,7,8,8,23,33) (8,12,20,2,3,3,18,28) ] 
A1 -~ [ (7,11, 19, 1, 2, 2, 17, 27) (2, 6,14, 27, 10, 16, 12, 20) J" 

Step 2 computes the residue format of the determinant of AI: 
t 

det(A1) --* (3, 4, 16, 1, 9, 8, 28, 7). 

Neither of these steps requires communication between different computational channels and can 
be performed in parallel. 

Step 3 must evaluate the sign of the number obtained in Step 2. To do this, we select the first 
four residues, namely, (zl, z2, z3, z4) -- (3, 4, 16, 1), compute the corresponding Vl, v2, vs, and v4, 



RNS Algorithm 13 

and extend the residues of this number modulo ms, ms, mT, and ms. We can express this in 
pseudo code as follows: 

fo r ( j=5 ; j<=  8; j++)  { 
s=0; for (i=0; i<=3; i++) { 
g = ( ( v [ i + l ]  7. m[j])  * P[i]  [ j ] )  7, re[j] ; s+=g;sT,---m[j] ;} 

i f ( s  !=z [ j ]  ) r e t u r n (  ' n e g a t i v e  de t e rminan t '  ) ; } 
r e t u r n (  ' p o s i t i v e  de te rminan t  ' ) ; 

The computed residues modulo ms, ms, m7, and ms form a vector (12, 16, 17, 27), which is 
different from (9, 8, 28, 7); therefore, the determinant is negative. Its true value (-30)  remains 
unknown at the end of the algorithm. In fact, the algorithm terminates immediately after deter- 
mining that  Z5 ~ 9. 

In the case of matrix As -- [ 244 249 J' the residue format of the determinant is 

det(A2) --, (8, 13, 7, 30, 4, 11, 1, 30). 

Starting with the vector (8, 13, 7, 30) and repeating the same procedure, we find residues (4, 11, 
1, 30) modulo ms, ms, mz, and ms; equality with the last four components of the residue format 
of det(A2) indicates a positive determinant. 

This example reveals one of the main features of the algorithm. To detect negative deter- 
minants, one needs to find at least one modulus (say mk) ,  for which the obtained value of the 
residue zk will disagree with the corresponding s (obtained in the main cycle of the above proce- 
dure). For example, if the determinant is negative, we may expect that  in about 92.3 percent of 
the cases (12/13), it will be detected on the first test, namely, a test that  uses ms = 13. Therefore, 
the above procedure can be slightly improved if we change the main cycle to f o r ( j = 8 ; j > = 5 ; j - - ) .  
In this case, we start  the testing with the largest modulus (in this example, 37), and this increases 
the chance to detect a negative determinant on the first test to 97.3 percent (36/37). 

If the determinant is positive, however, we have to perform the complete test to make sure that  
all of the extension residues match. The algorithm therefore seems to be particularly effective if 
one has to check the signs of many determinants and knows in advance that  the majority of the 
determinants will be negative. 

What  about negative entries? The problem is easily solved. If xly~ and x2yl  have different 
signs, we have nothing to do; otherwise we compare a = Ixllly21 and b = Ix211yll. 

3 . 5 .  3 x 3 M a t r i c e s  

In this case, we may apply the same method. We will mention two things. 

1. Now the moduli must be chosen to satisfy the condition I-Ii"_-1 mi >_ 5 • 23b, which is a 
sufficient guarantee against overflow. This can be shown as follows. Let 

I a l l  a12 a13 1 
A- -  [a21 a22 a23J 

La31 a32 a33J 

be a 3 x 3 matrix with b-bit integer entries. Now we have six summands of the form 
ealj la2j2a3js,  where 6 = =El and ( j l , j 2 , J 3 )  are all permutations of the set {1, 2, 3}. Since 
the summands can neither be all positive or all negative, the worst case occurs when the 
first five of them have, say, a positive sign, and the sixth has a negative sign. If the moduli 
satisfy the condition I-I~n=l m~ > 5.23b, then the exactness of the algorithm is guaranteed 
for this worst case scenario. 

In some applications, this condition might be unnecessarily pessimistic. Let us consider 
the following problem. 



14 v. 8. DIMITROV et al. 

Given a set of three points in the Euclidean plane A = (Xl,Yl), B = ( z2 ,y2) ,  and 

C = (x3, Y3); determine if this particular order, namely, (A, B, C), forms a clockwise or 
counter-clockwise triple. Clearly, this is equivalent to finding the sign of the determinant  

1 1 1 ]  

Xl x2 • X 3 

Yl Y2 Y3 

The existence of ones in the first row relaxes the dynamic range condition to I L = I  m~ > 
5 . 2  2b. 

2. The computat ional  complexity has the same asymptot ic  performance as in the case of 
matrices of size 2 x 2 (i.e., O(b log log b~ log b)). 

4. C O N C L U S I O N S  

In this paper,  we have presented a new algorithm for evaluating of the sign of determinants  for 
matrices of small size; this problem frequently arises in many  computational  geometry algorithms. 
Our approach is based on a residue number system computation,  which combines the advantages 
of parallelism and modularity. The only required operations are additions, subtractions, and 
multiplications over very small finite rings, which makes possible their implementat ion using 

look-up tables. The technique is particularly suitable fro VLSI hardware implementation, where 
one may exploit the independent computational  power of RNS arithmetic. 

R E F E R E N C E S  

1. K.L. Klarkson, Safe and effective determinant evaluation, In Prec. 33 rd Annual IEEE S~wp. Found. Corn- 
put. Sci., pp. 387-395, (1992). 

2. S. Fortune and V. Milenkovic, Numerical stability of algorithms for line arrangements, In Proc. 7 th Annual 
ACM Syrup. Comput. Geom., pp. 334-342, (1991). 

3. S. Fortune and C.J. Van Wyk, Efficient exact arithmetic for computational geometry, In Prec. 9 th Annual 
S~rmp. Comput. Geom., pp. 163-172, (1993). 

4. M. Karasik, D. Lieber and L.R. Nackman, Efficient Delaunay triangulations using rational arithmetic, ACM 
Trans. Graph. 10, 71-91 (1991). 

5. K. Sugihara and M. Iri, Construction of the Voronoi diagram for 'one million' generators in single-precision 
arithmetics, In Prec. of the IEEE, Special Issue on Comput. Geom. 80, 1471-1484 (1992). 

6. K. Sugihara and M. Iri, Two design principles of geometric algorithms in finite precision arithmetic, AppL 
Math. Left. 2 (2), 203-206 (1989). 

7. F. Avnaim, J.-D. Boissonnat, O. Devillers, F.R. Preparata and M. Yvinec, Evaluating signs of determinants 
using single-precision arithmetic, Algorithmica 11, 111-132 (1997). 

8. M.A. Soderstrand, W.K. Jenkins, G.A. Jullien and F.J. Taylor, Residue Number System Arithmetic: Modern 
Applications in Digital Signal Processing, IEEE Press, (1986). 

9. M. Hitz and E. Kaltofen, Integer division in residue number systems, IEEE Trans. Computers 44, 983-989 
(1995). 

10. W.A. Chren, Jr., A new residue number system division algorithm, Computers Math. Applic. 19 (7), 13-29 
(1990). 

11. E. Bach, Analytic Methods in the Analysis and the Design of Number-Theoretic Algorithms, MIT Press, 
(1985). 


