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Abstract

Recent investigations have demonstrated global sea level rise as being due to climate
change impact. Probable changes in sea level rise need to be evaluated so that
appropriate adaptive strategies can be implemented. This study evaluates the
impact of climate change on sea level rise along the Iranian south coast. Climatic
data simulated by a GCM (General Circulation Model) named CGCM3 under two-
climate change scenarios A1b and A2 are used to investigate the impact of climate
change. Among the different variables simulated by this model, those of maximum
correlation with sea level changes in the study region and least redundancy among
themselves are selected for predicting sea level rise by using stepwise regression.
Two Discrete Wavelet artificial Neural Network (DWNN) models and a Discrete
Wavelet Adaptive Neuro-Fuzzy Inference System (DWANFIS) are developed to
explore the relationship between selected climatic variables and sea level changes.
In these models, wavelets are used to disaggregate the time series of input and
output data into different components. ANFIS/ANN are then used to relate the
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disaggregated components of predictors and predictand (sea level) to each other.
The results show a significant rise in sea level in the study region under climate
change impact, which should be incorporated into coastal area management.

1. Introduction

Recent investigations worldwide have demonstrated a global tempera-
ture (land and sea) increase of 0.76◦C from 1850–1899 to 2001–2005 (IPCC
2007). This temperature increase is greater in the northern hemisphere.
Global warming has significant effects on the living environment, which
may result in changes to river flow patterns and sea levels. It is predicted
that the global sea level rise by the end of the 21st century will be between
0.18 m and 0.4 m (Pfeffer et al. 2008). Analyses of tide gauge records and
satellite altimetry in open oceans show that the range of sea level changes
is different in various regions (Bindoff et al. 2007). Assessments of coastal
zone vulnerability to sea level rise and the implementation of adaptation
strategies are key issues in dealing with climate change impact. Projections
of global sea level changes under probable climate change scenarios have
shown that the risk of flooding is increasing over low-lying coastal regions
(Houghton et al. 2001).

Recent applications of Artificial Intelligence (AI) techniques have demon-
strated their great capability in dealing with stochastic time series such
as sea levels. When the underlying physical relationships in time series
are not fully understood, AI techniques can be effectively used for their
simulation. Two of these models, widely used in recent decades, especially
in the field of hydrological analyses and for prediction purposes, are artificial
neural network (ANN) and neuro-fuzzy inference system (ANFIS) models
(Salahshoor et al. 2010). ANNs have been widely and successfully used for
hydrological modelling as well as prediction purposes because of their ability
to discover patterns in data that cannot be explored by human researchers
and conventional statistical methods (Masters 1993).

The use of the ANFIS model, a hybrid of the ANN and fuzzy systems,
has gained considerable attention in recent years because it can provide the
opportunity to benefit simultaneously from the advantages of both ANN and
fuzzy systems (Rajaee et al. 2009). In spite of the great flexibility of ANN
and ANFIS, the results of their application to predicting sea level rise are
not very satisfactory, because signal fluctuations are highly non-stationary
and the physical hydrological process operates at a high level of uncertainty.
The pre-processing of input and/or output data before these are fed into
the prediction model is therefore necessary (Cannas et al. 2006).

The wavelet theory is an appropriate choice for data pre-processing, es-
pecially when dealing with non-stationary time series (Adamowski 2008a,b).
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The wavelet decomposes a non-stationary time series into different com-
ponents. This feature provides an interpretation of the series structure
and helps to extract significant information about its history using just
a few coefficients. Lu (2002) applied the wavelet transform to decompose
the inter-decadal/annual components of rainfall data in the rainy season.
Xingang et al. (2003) used wavelet analysis to investigate the rainfall
spectrum and its development over northern China in the rainy season.
Coulibaly & Burn (2005) employed wavelet analysis to interpret temporal
variability of annual Canadian stream flows and to explain the dynamic
relationship between these stream flows and climate variability in the
northern hemisphere. Partal & Küçük (2006) investigated the trends of
annual total precipitation series all over Turkey using a discrete wavelet
transform (DWT). Their results showed that the DWT components provide
a good explanation of the trend in the precipitation time series. All
these studies demonstrate the effectiveness of the wavelet transform for
investigating irregularly distributed multi-scale features of climate elements
in space and time. The wavelet-ANN hybrid provides an effective tool that
is used in time series forecasting problems, such as shallow groundwater level
and daily discharge forecasts (Wang & Ding 2003), drought prediction (Kim
& Valdés 2003), rainfall prediction (Partal & Kisi 2007, Nourani et al. 2009),
daily suspended sediment prediction (Partal & Cigizoglu 2008) and monthly
river flow prediction (Anctil & Tape 2004, Kisi 2008).
The objective of this paper is to investigate the impact of climate

change on future sea level variability over the southern coastline of Iran. For
this purpose, the outputs of a GCM model named CGCM3 under two
climate change scenarios A1b and A2, which show the most optimistic
and most pessimistic climatic changes in the future, are used. A set of
predictors which better represent the variations in sea level are selected for
sea level rise simulation among the GCM outputs using the stepwise method.
The combinations of ANN/ANFIS models and wavelet theory are used to
explore the relationship between predictors and predictand (sea level) and to
investigate the influence of global climate change on sea level changes. These
results of sea level simulation in the future are effectively used to determine
areas at risk of inundation. The introduction is followed by a description of
the proposed methodology, after which the case study and the data under
consideration are presented. Thereafter come the results of the study and
the discussion. The paper ends with a summary and conclusion.

2. Methodology

Recent records of sea level in different places all over the world show
the ascending trend of sea level changes due to the impact of climate
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change. This increase will affect human life and economy in coastal areas,
especially in flat regions with high flooding potential. Recent studies have
demonstrated the correlation of sea level changes with climatic variables.
This study aims to use climatic variables to evaluate the sea level rise along
the southern coast of Iran in the next 100 years under different climate
change scenarios. Two simulation approaches, which are a combination
of Wavelet theory with Artificial Neural Network and ANFIS models, are
considered for the sea level simulation. The structure of the proposed
methodology for investigating sea level changes under climate change
impacts is given in Figure 1. In this structure, following their preparation
and standardization, data are transformed using selected wavelet functions
so that they can be used more effectively in the simulation process. The
transformed data are then used to train the ANN and ANFIS models for
sea level simulation. The models developed in this step with ANN and
ANFIS are named DWANN and DWANFIS respectively. Invert wavelet
transformation and de-standardization are applied to the simulated values
to obtain actual values of sea level simulations. The steps of the proposed
methodology are explained in the following section based on Figure 1.

2.1. Data preparation

The first step in developing prediction models is data preparation and
checking data accuracy and adequacy. Data missing from sea level time
series were filled in based on neighbouring station data, using the inverse
squared distance method as follows:

Yx =

∑n
i=1 Pi ×Wi
∑n

i=1 Wi

, (1)

where Wi =
1

D2
i

is the weight of station i used for filling the gaps in the

data of station x, Pi is the recorded sea level at station i, Di is the distance
between stations i and x, and n is the number of stations used for filling
gaps in the data of station x.

For checking data adequacy, the Hurst (1951) coefficient, which evaluates
the sufficiency of the available length of data for forecasting a phenomenon,
is employed. The Hurst coefficient (K) is formulated as follows:

K =
log
(

R
σ

)

log
(

N
2

) , (2)

where σ is the standard deviation of the data, N is the length of the
data series and R is the difference between the maximum and minimum
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Figure 1. Structure of the proposed methodology for investigation of sea level
changes under climate change impacts

cumulative difference from the average value in the data time series. Values
of K > 0.5 show that the time series length is sufficient for prediction
(Kleinow 2002).

2.2. Trend analysis

The Mann-Kendall test is a non-parametric test for identifying trends in
time series data (Gilbert 1987). One benefit of this test is that the data need
not conform to any particular distribution. The data values are evaluated
as an ordered time series. Each data value is compared to all subsequent
data values. The initial value of the Mann-Kendall statistic, S, is assumed
to be 0 (i.e. no trend). If a data value from a later time period is higher
than a data value from an earlier time period, S is incremented by 1. On
the other hand, if the data value from a later time period is lower than
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a data value sampled earlier, S is decremented by −1. The net result of all
such increments and decrements yields the final value of S. Let x1, x2, . . .
xn, represent n data points, where xj represents the data point at time j.
Then, the Mann-Kendall statistic (S) is given by

S =

n−1
∑

k=1

n
∑

j=k+1

sign(xj − xk) , (3)

where

sign(xj − xk) =















1 if xj − xk > 0

0 if xj − xk = 0 . (4)

−1 if xj − xk < 0

A very high positive value of S is an indicator of an increasing trend,
and a very low negative value indicates a decreasing trend. However, it is
necessary to compute the probability associated with S and the sample size,
n, to statistically quantify the significance of the trend.

To calculate the associated probability, the variance of S, Var(S), is
calculated as follows:

Var(S) =
n(n− 1)(2n + 5)−∑g

p=1 tp(tp − 1)(2tp + 5)

18
, (5)

where n is the number of data points, g is the number of tied groups (a tied
group is a set of sample data having the same value) and tp is the number
of data points in the pth group. Then the normalized test statistic Z is
calculated as follows:

Z =















S−1
Var(S) if S > 0

0 if S = 0 . (6)

S+1
Var(S) if S < 0

The corresponding probability associated with Z is calculated based
on the standard normal distribution with a mean of zero and a standard
deviation of 1. The trend is decreasing when Z is negative and the
probability level of significance (typically 95%) is less than the corresponding
probability to S. When Z is positive and the corresponding probability of
S is greater than the level of significance, the trend is increasing. Otherwise
there is no significant trend.
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2.3. Predictor selection

The correlation between the climatic signals and the sea level changes
is investigated to determine the most appropriate predictors for sea level
simulation. Even though some climatic signals are well correlated with sea
level time series, they do not provide additional information for sea level
analysis because they move together with other selected signals. Therefore,
to select the more correlated signals and reduce the predictor’s redundancy,

stepwise regression is employed in this study.

Stepwise regression is a systematic method for adding and removing
terms from a multilinear model based on their statistical significance in
a regression. This procedure combines forward selection with backward
elimination. The method begins with an initial model and then compares
the explanatory power of incrementally larger and smaller models. If

SSRl1, ..., lp represents the sum of squares due to regression, when the
p factors Xl1 , . . . , Xlp are included in the multiple regression model,
SSRl(p+1)|l1, ..., lp will denote the increase in the regression sum of squares
that comes about by adding factor Xlp+1 as follows:

SSRl(p+1)
|l1, ..., lp = SSRl1, ..., lp+1 − SSRl1, ..., lp . (7)

The model with less SSRl(p+1)|l1, ..., lp is preferred. In stepwise regression,
backward elimination was performed after every forward selection step to
remove redundant variables from the model. At each step, a statistical
measure such as the p-value is used to investigate the significance of change
in the SSRl(p+1)|l1, ..., lp value with and without a potential term. The

forward regression and backward elimination steps are repeated until no
further significance change can be made to the model (see Storch & Zwiers
(2003) for more information on this topic). The significance of the results
is checked through the p-value. The p-value is the probability of getting
a correlation as large as the observed value by random chance, when the
true correlation is zero.

2.4. Sea level simulation

In the next step, the sea level simulation models are developed. For
this purpose two different hybrid simulation models are considered. The

first model is a hybrid of wavelet theory and ANN named DWNN, and the
second one is a hybrid of wavelet theory and ANFIS called DWANFIS. In
these models wavelet theory is employed to decompose the input and output
data into several smoother time series, after which the relations between
decomposed inputs and outputs are explored using ANN/ANFIS.



618 H. Goharnejad, A. Shamsai, S. A. Hosseini

2.4.1. Discrete Wavelet Theory

The wavelet transform was introduced at the beginning of the 1980s
and has been widely used in different scientific fields. Labat (2005) has
discussed the most recent contributions in wavelet applications. The time-
scale wavelet transform of a continuous time signal, x(t), is formulated

(Mallat 1998):

W (a, b) =
1√
a

∫ +∞

−∞
g∗
(

t− b

a

)

x(t) dt , (8)

where ∗ corresponds to the complex conjugate and g(t) is called the wavelet
function or mother wavelet. T (a, b) is the wavelet coefficient, a is the model
parameter and acts as a dilation factor, b is a temporal translation of the
function g(t), which allows the study of the signal around b.

In hydrologic cases where just one discrete time signal is available,
equation (8) is discretized using the logarithmic uniform spacing for scale

discretization with correspondingly coarser resolution of the b locations,
which allows for N transform coefficients to completely describe a signal of
length N .

The DWT of a signal x is calculated by passing it through a series of
filters. First, the samples are passed through a low-pass filter with impulse
response, resulting in a convolution of the two. At the same time, the
signal is decomposed using a high-pass filter. The outputs give the detail
coefficients (from the high-pass filter) and approximation coefficients (from

the low-pass). The two filters are related to each other and they are known
as a quadrature mirror filter. For a discrete time series, xi, the dyadic
wavelet transform becomes (Mallat 1998)

Tm,n = 2
−m

2

N−1
∑

i=0

g(2−m i− n)xi , (9)

where Tm,n is the wavelet coefficient for a discrete wavelet of scale a = 2m

and location b = 2mn. Equation (9) considers a finite time series, xi, i =
0, 1, 2, . . . , N − 1, and N is an integer power of 2: N = 2M . This gives the

ranges of m and n as 0 < n < 2−M m− 1 and 1 < m < M respectively. At
the largest wavelet scale (i.e. 2m wherem=M) only one wavelet is required
to cover the time interval, and only one coefficient is produced.

The total number of wavelet coefficients for a discrete time series of
length N = 2M is then 1+ 2+4 = 8 = . . .+2M−1 =N − 1. In addition, the
signal smoothed component, T , is left, which is the signal mean. Thus,
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a time series of length N is broken into N components, i.e. with zero
redundancy. The inverse discrete transform is given (Mallat 1998):

xi = T (t) +
M
∑

m=1

Wm(t) , (10)

in which T (t) is called the approximation sub-signal at level M and Wm(t)
are detail sub-signals at levels m = 1, 2, . . . ,M . The wavelet coefficients,
Wm(t) (m = 1, 2, . . . ,M), provide the detail signals, which can capture
small features of interpretational value in the data; the residual term, T (t),
represents the background information of data.
Because of the simplicity of W1(t), W2(t), . . . , WM (t), T (t), some inter-

esting characteristics, such as the period, hidden period, dependence and
jump can be easily diagnosed through wavelet components.
In this study some irregular mother wavelets such as Haar, Db2

(Daubechies wavelet of order 2) and Coif1 were used; they are illustrated
in Figure 2. Haar is the first and simplest wavelet. A Haar wavelet is
discontinuous, and resembles a step function. A Daubechies wavelet has no
explicit expression exception. However, the square modulus of the transfer
function of T is explicit and fairly simple. Coiflets are discrete wavelets
that have scaling functions with vanishing moments. The wavelets are
near-symmetric; their functions have N/3 vanishing moments and scaling
functions N/3 − 1 and have been used in many applications (see Mallat
(1998) for more information).

1

0

-1

0 0.5 1

1

0

-1

Haar wavelet (HAAR) Daubechies wavelet (Db2) Coiflet wavelet (Coif1)

0           1           2           3

1

0

-1

0             2             4

Figure 2. Profiles of the wavelet transformations considered in this paper (Mallat
1998)

2.4.2. Artificial Neural Networks

A feed forward neural network model or MLP, consisting of multiple
layers of nodes in a directed graph, utilizes a supervised learning technique
called back propagation for training the network. Mathematically an MLP
can be written as

y = ϕ

(

n
∑

i=1

ωiri + b

)

, (11)
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where ωi is the weight corresponding to the input variable of ri, b is the bias,
ϕ is the activation function and n is number of input variables (Bishop 1995,
Haykin 1998). For more information, see Rosenblatt (1961) and Rumelhart
et al. (1986).

2.4.3. Discrete Wavelet artificial Neural Network

The DWNN model is a combination of the wavelet transform and ANN
models. The DWNN can handle problems of larger dimension and it also
has an efficient network structure in comparison with the ANN models:

yDWNN = ϕ

(

n
∑

i=1

ωi Tm,n + b

)

, (12)

so

yDWNN = ϕ

(

n
∑

i=1

ωi

(

2
−m

2

N−1
∑

i=0

g(2−mi− n)xi + b

))

. (13)

The model parameters are the same as in eqations (9) and (11). In
the DWNN model the input variable ri of the ANN model is replaced
with the decomposed series, Tm,n, provided by the wavelet application. In
equation (13) Tm,n is replaced with its equivalent from equation (9). In
this model the decomposed time series of selected climate signals through
wavelet theory are used for training the ANN model. ANN models with
different structures are developed and the model with the best performance
is used for simulating sea level in the future under climate change impacts.

2.4.4. Adaptive Neuro-Fuzzy Inference System model

Neuro-fuzzy systems are fuzzy systems that employ ANN theory to
determine their properties (fuzzy sets and fuzzy rules) by processing data
samples. Neuro-fuzzy systems harness the power of two paradigms – fuzzy
logic and ANNs – by utilizing the mathematical properties of ANNs
for tuning rule-based fuzzy systems. A specific approach in neuro-fuzzy
development is the adaptive neuro-fuzzy inference system (ANFIS), which
has yielded significant results in modelling nonlinear functions (Maguire
et al. 1998).
ANFIS uses a feed-forward network to search for fuzzy decision rules that

perform well on a given task. Using a given input-output data set, ANFIS
creates an FIS for which membership function parameters are adjusted
using either a back propagation algorithm alone or a combination of a back
propagation algorithm and a least-squares method. This factor allows the
fuzzy systems to learn from the data being modelled.
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A first-order Takagi-Sugeno fuzzy model with two inputs and one output
is considered, so that for each input there are two membership functions.
The entire system consists of five layers, and the relationship between the
input and output of each layer is summarized as follows:

Layer 1: The output of the ith node in layer 1 is denoted as O1, i defined
by:







O1, i = µAi
(x) for i = 1, 2

, (14)
O1,i = µBi−2(y) for i = 3, 4

where µAi
(x), µBi−2(y) can adopt any fuzzy membership function. For

example, if the bell-shaped membership function is employed, µAi
(x) is

given by

µAi
(x) =

1

1 +

{

(

x−ci
ai

)2
}bi

, (15)

where ai, bi and ci are the parameters of the membership function, governing
the bell shaped functions accordingly.

Layer 2: Every node in this layer is a fixed node labelled G, which
multiplies the incoming signals and output product. For instance,

O2, i = wi = µAi
(x)× µBi

(y) , i = 1, 2 . (16)

Each output node represents the firing strength of a rule.

Layer 3: Every node in this layer is a circular node labelled N . The ith
i node calculates the ratio of the ith rule’s firing strength to the sum of all
the rules’ firing strengths. The output of this layer is called the normalized
firing strength.

O3, i = w =
wi

w1 + w2
, i = 1, 2 . (17)

Layer 4: Node i in this layer computes the contribution of the ith rule
towards the model output, with the following node functions:

O4, i = wifi = wi(pix+ qiy + ri) , (18)

where wiw is the output of layer 3 and {pi, qi, ri} is the parameter set.
Parameters in this layer are referred to as consequent parameters.
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Layer 5: The single node in this layer is a fixed node labelled P that
computes the overall output as the summation of all incoming signals.

OverallOutput = O5, i =
∑

i

wifi =

∑

i wifi
∑

i wi

. (19)

ANFIS supports two different methods for antecedent membership
function identification: grid partition (GP) (Jang 1993) and subtractive
clustering (SC) (Chiu 1994). The grid partition method divides the data
into rectangular subspaces based on a pre-defined number of membership
functions and their types, producing rule base explosion. In contrast, the
subtractive clustering method determines data point clusters by measuring
their potential in feature space. This method has the advantage of avoiding
the explosion of the developed rule base, a problem known as the ‘curse
of dimensionality’. When there are a few input variables, grid partition is
a suitable method for data classification.

2.4.5. Discrete Wavelet Adaptive Neuro-Fuzzy Inference System

DWANFIS combines the abilities of DWT in feature extraction and
selection with the characteristic decision capabilities of ANFIS techniques
(Long & Datta 1996). DWANFIS is constructed based on the DWT theory
(Ha et al. 2005). DWT allows one to decompose x(t) using a wavelet
function g : Rn → R. Based on wavelet decomposition, the DWANFIS
structure is formulated as follows:

y(x) =

∑n
i wifi(g(Di(x− ti))

∑n
i wi

, (20)

where wi are the weights of the DWANFIS inputs, ti are translation
vectors, Di represents the dilation vectors, g is the wavelet function or
mother wavelet, and fi are Sugeno output functions of the ANFIS. The
performance of these models is the same as DWANN (Barford et al. 1992,
Mittal & Aadaleesan 2010).

2.5. Model performance evaluation indices

Different measures are available for evaluating the performance of the
proposed sea level simulation models. In this study the Mean Squared
Error (MSE), Root Mean Squared Error (RMSE), correlation coefficient
(R) and Nash-Sutcliff coefficient (R2

NS) indices are employed. These indices
are formulated as follows:

MSE =

∑N
i=1(Si −Oi)

2

N
, (21)



Vulnerability assessment of southern coastal areas of Iran to sea level . . . 623

RMSE =

⌈

∑N
i=1(Si −Oi)

2

N

⌉0.5

, (22)

R=
N
∑N

i=1 Si Oi −
∑N

i=1 Si

∑N
i=1Oi

{⌈

N
∑N

i=1 S2
i −

(

∑N
i=1 Si

)2
⌉⌈

N
∑N

i=1 O2
i −

(

∑N
i=1 Oi

)2
⌉}0.5 ,(23)

R2
NS = 1−

∑N
i=1(Si −Oi)

2

∑N
i=1(Oi −Oi)2

, (24)

where Oi is the observed value at the ith time step, Si is a forecast value at
the same moment of time, N is the number of time steps and Oi is the mean
value of the observed data. The higher values of the correlation coefficient
show better model performance. In general, correlation coefficients > 0.7
provide satisfactory simulations (Makarynskyy et al. 2004). The RMSE
and MSE are used to measure forecast accuracy, which increases from
zero for perfect forecasts through large positive values as the discrepancies
between forecasts and observations become increasingly large. The value
of R2

NS decreases from 1 for a perfect forecast through large negative
values for unreliable forecasts. In general, the negative values of R2

NS show
unacceptable prediction results. Obviously, values of R2

NS closer to one and
a small RMSE indicate the model’s greater efficiency (Nourani et al. 2011).

2.6. Study area

The southern coastline of Iran, which is adjacent to the Persian Gulf and
the Oman Sea, is the study area of this paper. With an area of 251 000 km2,
the Persian Gulf is connected to the Sea of Oman in the east, and its western
end is marked by the major river delta of the Arvandrood, which carries
the waters of the Rivers Euphrates and Tigris. The waters are overall very
shallow, with a maximum depth of 90 m and an average depth of 50 m. The
Sea of Oman, a strait (and not an actual gulf) connecting the Arabian Sea
with the Persian Gulf, is a semi-enclosed basin with depths ranging from
100 to 3000 m. The climate in this region is more or less similar to that of
the Indian Ocean.

The Iranian Tide Gauge Network, operated by the National Carto-
graphic Centre (NCC), records the tidal elevations at 9 locations along
the Persian Gulf and the Sea of Oman. Just four of these tide gauge
stations have been used in this study, as they supply sufficient data for
our purposes. Nevertheless, to increase the accuracy of the analyses, the
Karachi station (southern Pakistan), located in the eastern part of the Sea
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of Oman, is also included in this study. The locations of these stations and
their characteristics are given in Figure 3 and Table 1 respectively.

Figure 3. Location of the tide gauges along the southern coast of Iran (http:
//earth.google.com)

Table 1. Characteristics of the tide gauges on the southern coast of Iran (end of
data series for all stations, 2008)

Station Latitude Longitude Establishment Mean Standard

[◦N] [◦E] [Year] [mm] deviation

[mm]

Imam Hassan 29.83 50.25 1990 1862.14 159.37

Shahid Rajaie 27.10 57.07 1989 3242.57 78.62

Chabahar Port 25.28 60.62 1990 2758.62 415.67

Kangan 27.83 52.55 1989 2160.23 96.35

Karachi,
24.80 66.97 1979 1771.25 114.38

Manora Island

For an evaluation of climate change impacts, the outputs of CGCM3
(3rd version of the coupled Canadian global climate model) under different
climate change scenarios are used. The simulated monthly data of this model
are accessible at http://loki.qc.ec.gc.ca/DAI. The surface grid representa-
tion of CGCM3 is about 3.75◦ × 3.75◦ and includes 32 vertical grid levels,
extending to 50 km above the surface.

3. Results and discussion

3.1. Data preparation

After the data gaps in the sea level time series have been filled, the Hurst
coefficient is calculated for the five stations (see Table 2). Since the Hurst
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coefficient for all of the tide gauges is more than 0.5, we can infer that the
length of the sea level time series at all stations is sufficient to be considered
for sea level change analysis.

Table 2. Results of Hurst coefficient analysis for the available tide gauge data

Row Station Hurst coefficient

1 Imam Hassan 0.502

2 Kangan 0.514

3 Shahid Rajaie 0.519

4 Chabahar 0.593

5 Karachi 0.534

The presence of a trend in the sea level records at each station is
investigated using the Mann-Kendall method. The direction of Z indicates
the direction of the trend. A positive (or negative) value of Z indicates an
upward (or downward) trend. The critical value of Z at the 0.05 significance
level of the trend test applied in this study is ± 1.96. The results of the trend
analysis (Table 3) show that there is no significant trend at the different
gauges, except at Karachi, which shows a slightly increasing trend. It should
be noted that because of the characteristics of the wavelet transform, this
method can deal with trending time series.

Table 3. Results of trend analysis for sea level data on the southern coast of Iran

Row Station Trend Z Z critical Interpretation

[mm year−1]

1 Imam Hassan 15 1.09 1.96 no trend

2 Kangan −1 0.00 1.96 no trend

3 Shahid Rajaie −3 −0.16 1.96 no trend

4 Chabahar 1 0.00 1.96 no trend

5 Karachi 29 2.18 1.96 increasing

3.2. Predictor selection

The stepwise regression method is utilized to select the most appropriate
predictors of sea level change (for results – see Table 4). The climatic
variables with higher coefficients of determination and SSE and smaller P -
values are selected as predictors of sea level changes along the Iranian south
coast. The climatic variables of Sea Level Pressure (SLP), Geopotential
Height (GH), Sea Surface Temperature (SST) and Sea Precipitable Water
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Table 4. Results of stepwise regression application to CGCM3 outputs for
a selection of sea level change predictors on the southern coast of Iran

No. Predictor P -value R MSE Status

1 geopotential height (500 hPa) 0.0222 0.68 1.72 select

2 geopotential height (850 hPa) 0.1021 0.21 21.12

3 zonal wind (surface) 0.5436 0.03 52.56

4 zonal wind (500 hPa) 0.5672 0.05 53.44

5 zonal wind (850 hPa) 0.6183 0.07 55.64

6 air temperature 0.3362 0.10 43.32

7 sea surface temperature (SST) 0.0013 0.40 2.64 select

8 relative humidity (up to 300 hPa) 0.1349 0.09 41.56

9 specific humidity (up to 300 hPa) 0.1620 0.08 42.44

10 pressure 0.3986 0.04 45.52

11 omega (to 100 hPa) 0.6782 0.02 47.84

12 sea level pressure (SLP) 0.0114 0.60 1.40 select

13 precipitation rate 0.4579 0.05 48.84

14 sea precipitable water (SPW) 0.0056 0.71 1.08 select

15 momentum flux, V -component 0.5839 0.03 53.44

16 momentum flux, U -component 0.5529 0.02 52.56

17 zonal velocity component (surface) 0.4681 0.03 54.16

18 zonal velocity component (500 hPa) 0.5023 0.03 51.68

19 zonal velocity component (850 hPa) 0.5281 0.02 51.24

20 meridional velocity component (surface) 0.6187 0.02 50.2

21 meridional velocity component (850 hPa) 0.6747 0.04 57.4

22 vorticity 0.2938 0.05 56.76

24 divergence (surface) 0.5891 0.02 51.32

23 divergence (500 hPa) 0.5992 0.03 52.2

25 divergence (850 hPa) 0.7125 0.01 59.72

(SPW) are selected as sea level change predictors from among 25 climatic

variables simulated by CGCM3. These variables are used as DWNN and

DWANFIS simulation model inputs.

3.2.1. The Discrete Wavelet artificial Neural Network model

When applying the DWNN model, the predictors and sea level time

series are first decomposed to high-pass and low-pass series using three

discrete wavelet functions named Haar, Db2 and Coif1. 80% (1012 series)
of the 1265 series of decomposed values of predictors and predictands are

used randomly to train the ANN model, while the remaining 253 series

are used for model validation. The data in the calibration and validation

groups are selected randomly. The ANN model includes one hidden layer
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and has four and one neurons in the input and output layers respectively.
The transit functions of the input, hidden and output layers are determined
to be tansig, logsig and pureline respectively. Following Liang et al. (2008),
the number of neurons in the hidden (NNH) layer is calculated as
follows:

NNH =
NNI + NNO

2
, (25)

where NNI and NNO are the numbers of neurons in the input and output
layers respectively. From this equation the number of neurons in the hidden
layer is determined as 2.5. However, to assess the best performance of the
ANN model, ANN models, with 2, 3 and 4 neurons in the hidden layer, are
considered. The results are given in Table 5. With respect to this table,
the number of neurons in the hidden layer is taken to be 3, which yields the
smallest RMSE value.

Table 5. Evaluation of ANN model performance using different neurons in the
hidden layer

Number of neurons R R
2
NS RMSE

in the hidden layer

4 0.67 0.61 0.127

3 0.70 0.68 0.104

2 0.61 0.54 0.143

The sea level time series simulated by the DWNN model using different
wavelet functions as well as the sea level time series are given in Figure 4.
This shows that the model outputs are well matched with the observed
values and that the worst case is when the Haar wavelet function is used.
In this case the correlation between the observed and simulated values is 0.6,
whereas in other cases this correlation is about 0.7. The model performance
indices are given in Table 6 separately for the calibration and validation
periods. This table also gives the results of the application of the individual
ANN model. The results indicate a significant improvement in ANN model
performance when the hybrid form of the ANN model is used, even in the
worst case. Even though the performance of the DWNN models that use
Db2 and Coif1 are similar, the model with the Coif1 wavelet function is
selected as the best DWNN model for future sea level projection under
climate change impacts because of its better performance in the calibration
period.
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Figure 4. Comparison of the results of sea level simulation using DWNN and the
observed data during the calibration and validation periods

Table 6. Performance of the proposed DWNN models for sea level prediction in
the calibration and validation period

Wavelet Structure Calibration Validation

R R
2
NS RMSE R R

2
NS RMSEfunction

Haar 4-3-1 0.59 0.57 0.1327 0.56 0.53 0.1658

Db2 4-3-1 0.70 0.67 0.1179 0.67 0.64 0.1547

Coif1 4-3-1 0.70 0.68 0.1043 0.68 0.64 0.1586

without
4-3-1 0.30 0.25 0.1953 0.19 0.11 0.2517

wavelet

3.2.2. The Discrete Wavelet Adaptive Neuro-Fuzzy Inference

System model

As the second sea level prediction model, the pre-processed data (by
wavelet transform) are used as the input of the ANFIS model. The
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calibration parameters of the DWANFIS model include the number of
membership functions (MF), type of membership function, number of

decomposition levels and mother wavelet type. These parameters are
calibrated by the available data using different wavelet transform functions.

For the development of the DWANFIS model the trimf, trapmf, gbellmf,

gaussmf, gauss2mf, pimf, dsigmf and psigmf membership functions are
considered. In this study, gausmf-2 is selected as the best membership

function as it results in a minimum RMSE during the model training. Three
membership functions are considered for each predictor. The best number

of model training epochs is determined by trial and error as 20.

The sea level time series simulated by the DWANFIS model using

different wavelet functions as well as historical sea level time series are shown
in Figure 5. Based on this figure, the model outputs match the observed

values well. The weakest result corresponds to the DWANFIS model using
the Haar wavelet function and the grid partition method for ANFIS model

development. In this case, the correlation of the observed and simulated

values (the average of the validation and calibration periods) is 0.7, which
is just about the best result obtained with the DWNN model. The model

performance indices are given in Table 7 separately for the calibration and
validation periods. This table also lists the results of application of ANFIS

without wavelet transform, which shows a significant improvement in model
performance using wavelet transformation. Furthermore, the models that

use the sub-clustering method perform much better than those using the
grid partitioning method. Table 7 shows that the models’ performances

are similar to each other as far as the application of grid partitioning is
concerned, but in the DWANFIS models, which use sub-clustering, the Coif1

wavelet transform is less accurate than the other two wavelets considered.
Even the DWANFIS model that uses sub-clustering and the Haar wavelet

performs best for simulating the sea level on the southern coast of Iran.
This is corroborated by the very similar results of the DWANFIS models

developed using sub-clustering and two other types of wavelets. All of
the three DWANFIS models developed using the sub-clustering method

are considered for the future projection of sea level under climate change
impacts.

To evaluate the performance of the model in dealing with the data

through climate change simulation, the simulations of the CGCM3 model
under climate change scenario A2 for the historical period (from 1990 to

2008) are used in the Anfis-Sub-Clustering-Haar simulation model. The
results are given in Figure 6. This shows that the assumptions in climate

change scenario development have caused the data diversity to increase
somewhat.
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Figure 5. Comparison of the results of sea level simulation using DWANFIS and
the observed data during the calibration and validation periods
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Figure 5. (continued)

Table 7. Performance of the proposed DWANFIS models for sea level prediction
in the calibration and validation periods

Wavelet ANFIS Calibration Validation

R R
2
NS RMSE R R

2
NS RMSEfunction method

Haar

su
b
-c
lu
st
er
in
g 0.81 0.77 0.0885 0.85 0.80 0.0373

Db2 0.80 0.77 0.1036 0.84 0.80 0.0573

Coif1 0.74 0.70 0.1073 0.80 0.74 0. 0854

without
0.29 0.18 0.3428 0.18 0.13 0.4173

wavelet

Haar

g
ri
d
p
a
rt
it
io
n 0.67 0.64 0.1321 0.71 0.66 0.1092

Db2 0.68 0.66 0.1304 0.71 0.70 0.0968

Coif1 0.69 0.67 0.1169 0.73 0.71 0.0901

without
0.33 0.28 0.1889 0.21 0.15 0.2563

wavelet
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Figure 6. The performance of the selected sea level simulation model for the
period 1990–2008 using the simulated climate variables from the CGCM3 model
under climate change scenario A2
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Table 8. Projections of sea level changes on the southern coast of Iran as a result
of climate change impact for the period 2000–2100

Station Climate change Wavelet type Sea level rise

name scenario by 2100 [cm]

Haar 48

CGCM3A1b Db2 36

Coif1 36Imam
Hassan Haar 72

CGCM3A2 Db2 72

Coif1 72

Haar 36

CGCM3A1b Db2 24

Coif1 60
Kangan

Haar 60

CGCM3A2 Db2 72

Coif1 72

Haar 24

CGCM3A1b Db2 12

Coif1 48Shahid
Rajaie Haar 48

CGCM3A2 Db2 48

Coif1 60

Haar 24

CGCM3A1b Db2 24

Coif1 48
Chabahar

Haar 48

CGCM3A2 Db2 48

Coif1 60

Haar 6

CGCM3A1b Db2 36

Coif1 60
Karachi

Haar 12

CGCM3A2 Db2 60

Coif1 72
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3.3. Projection of future sea level

The CGCM3 simulated climatic variables under the two climate change
scenarios A1b and A2 are fed into the DWANFIS sea level simulation model,
which has the best performance in comparison with the other models,
in order to evaluate climate change impacts on sea level changes in the
study region over the period 2000–2100. The Shahid Rajaie station shows
the maximum changes in mean sea level during the next 100 years. The
projected sea levels at all the stations for the two climate change scenarios
for the period 2000–2100 using the models are presented in Table 8. The sea
level changes under scenario A2 are more significant than those predicted
by scenario A1b. The results of different models employed at different
stations show a wide range of sea level changes at different stations, varying
from 0.12 m at Shahid Rajaie station to 0.72 m at Imam Hassan, Kangan
and Karachi. The results indicate that on moving eastwards along the
Iranian south coast, the impacts of climate change on average sea level
change decreases. The maximum average sea level rise is projected at the
Imam Hassan station and the lowest value corresponds to the Shahid Rajaie
station.

The models developed in this study are based on a limited length time
series of sea level data, so supplying more data would increase the reliability
of the models and results. However, just a projection of future sea level
changes is given here; for real case applications, further studies will be
needed, especially on data and model uncertainty. The uncertainties in
the selection of different climate change scenarios and GCM models are
not considered. The models employed do not incorporate uncertainties,
which could play an important role in the evaluation of climate change
impacts. Different types of ANN models can also be incorporated in the
development of the DWNN model to improve its performance. Furthermore,
the application of different methods involving data sharing and overlapping
in different series for predictor selection can provide useful information.

4. Summary and conclusion

Precise sea level projections are important for coastal navigation and
offshore engineering applications as well as for marine recreational activities,
especially for development programmes in coastal regions. This study
proposes a methodology for projecting climate change impacts on sea
level rise. This methodology uses stepwise regression to select the most
appropriate predictors and then employs hybrids of ANN and ANFIS
with wavelet transformation (named DWNN and DWANFIS respectively)
for sea level simulation. The wavelet transform decomposes the predictor
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and predictand time series into smoother time series to be used in the
simulation models. The decomposed time series of predictors are fed into the
ANN/ANFIS models individually to simulate decomposed time series of sea
level. The outputs of these models are composed to form the simulated sea
level time series. The proposed method is to be employed on the southern
coast of Iran. The set of sea level predictors in this region includes Sea Level
Pressure (SLP), Geopotential Height (GH), Sea Surface Temperature (SST)
and Sea Precipitable Water (SPW). The results show that the DWANFIS
model performs better than the DWNN model in sea level simulation.
This study shows that the average sea level rise at the study region is
about 0.33 m and 0.59 m under climate change scenarios of A1b and A2
respectively. Considerable expanses of flat coastal areas will be inundated as
a result of sea level increase. This range of sea level change would result in
substantial changes in coastal ecosystems and would give rise to significant
economic problems.

References

Adamowski J., 2008a, Development of a short-term river flood forecasting method
for snowmelt driven floods based on wavelet and cross-wavelet analysis,
J. Hydrol., 353 (3–4), 247–266, http://dx.doi.org/10.1016/j.jhydrol.2008.02.
013.

Adamowski J., 2008b, River flow forecasting using wavelet and cross-wavelet
transform models, Hydrol. Proc., 22 (25), 4877–4891, http://dx.doi.org/10.
1002/hyp.7107.

Anctil F., Tape G.D., 2004, An exploration of artificial neural network rainfall
runoff forecasting combined with wavelet decomposition, J. Environ. Eng. Sci.,
3 (S), 121–128, http://dx.doi.org/10.1139/s03-071.

Barford L.A., Fazzio R. S., Smith D.R., 1992, An introduction to wavelets, Hewlett-
Packard Lab., HPL-92-124, 27 pp.

Bindoff N. L., Willebrand J., Artale, V., Cazenave A., Gregory J., Gulev S., Hanawa
K., Le Quere C., Levitus S., Nojiri Y., Shum C.K., Talley L.D., Unnikrishnan
A. S., 2007, Observations: oceanic climate change and sea level, [in:] Climate
change 2007: the physical science basis, Contribution of Working Group I
to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change, Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt
K.B., Tignor M. & Miller H. L. (eds.), Cambridge Univ. Press, Cambridge,
New York, 387–429.

Burn D.H., Cunderlik J.M., 2004, Hydrological trends and variability in the Laird
River basin, Hydrol. Sci. J., 49 (1), 53–67, http://dx.doi.org/10.1623/hysj.49.
1.53.53994.

Cannas B., Fanni A., See L., Sias G., 2006, Data preprocessing for river flow
forecasting using neural networks: wavelet transforms and data partitioning,



Vulnerability assessment of southern coastal areas of Iran to sea level . . . 635

Phys. Chem. Earth, 31 (18), 1164–1171, http://dx.doi.org/10.1016/j.pce.2006.
03.020.

Chiu S. L., 1994, Fuzzy model identification based on cluster estimation, J. Int.
Fuzzy Syst., 2, 267–278.

Coulibaly P., Burn D.H., 2005, Spatial and temporal variability of Canadian
seasonal streamflows, J. Climate, 18 (1), 191–210, http://dx.doi.org/10.1175/
JCLI-3258.1.

Drago A. F., Boxall S. R., 2002, Use of the wavelet transform on hydro-
meteorological data, Phys. Chem. Earth, 27 (32–34), 1387–1399, http://dx.
doi.org/10.1016/S1474-7065(02)00076-1.

Gilbert R.O., 1987, Statistical methods for environmental pollution monitoring,
Van Nostrand Reinhold, New York, 320 pp.

Haykin S., 1998, Neural networks – a comprehensive foundation, 2nd edn., Prentice-
Hall, Upper Saddle River, NJ, 26–32.

Houghton J.T., Ding Y., Griggs D. J., Noguer M., van der Linden P. J., Xiaosu
D. (eds.), 2001, Climate change 2001: The scientific basis, Contribution of
Working Group I to the Third Assessment Report of the Intergovernmental
Panel on Climate Change, Cambridge Univ. Press, Cambridge, New York,
639–693.

Intergovernmental Panel on Climate Change (IPCC), 2007, Climate change 2007:
impact, adaptation and vulnerability. Contribution of Working Group II to the
Fourth Assessment Report of the IPCC, Cambridge Univ. Press, Cambridge,
976 pp.

Jang J. S. R., 1993, ANFIS: adaptive network-based fuzzy inference system, IEEE
T. Syst. Man Cyb., 23 (3), 665–685, http://dx.doi.org/10.1109/21.256541.

Kendall M.G., 1975, Rank correlation methods, Charles Griffin, London, 202 pp.

Kim T.W., Valdés J.B., 2003, Nonlinear model for drought forecasting based on
a conjunction of wavelet transforms and neural networks, J. Hydrol. Engin.,
8 (6), 319–328, http://dx.doi.org/10.1061/(ASCE)1084-0699(2003)8:6(319).

Kleinow T., 2002, Testing continuous time models in financial markets, Ph.D.
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