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Abstract 

We call a bipartite graph homogeneous if every finite partial automorphism which respects left 
and right can be extended to a total automorphism. 

A (x,)~) bipartite graph is a bipartite graph with left side of size x and right side of size 2. We 
show that there is a homogeneous (No, 2 ~°) bipartite graph of girth 4 (thus answering negatively 
a question by Kupitz and Perles), and that depending on the underlying set theory all 
homogeneous (No, N~) bipartite graphs may be isomorphic, or there may be 2 ~1 many 
isomorphism types of (No,N1) homogeneous graphs. 

O. Introduct ion  

A homogeneous graph is one in which every finite partial automorphism extends 
to a total automorphism. All countable homogeneous graphs were classified 
in 1-10], and countable tournaments were classified in 1,9] (see also 1,3]). When 
looking at countable homogeneous bipartite graphs, one sees that there are only five 
types of such graphs: complete bipartite graphs, empty bipartite graphs, perfect 
matchings, complements of perfect matchings and the countable random bipartite 
graph. 

In this paper we study the structure of uncountable homogeneous bipartite graphs 
which have two sides of unequal cardinalities. We must make the following demand on 
the notion of automorphism to admit this class of graphs: a bipartite graph has a left 
and a right side, and automorphisms preserve sides (this is necessary, as otherwise 
a partial finite automorphisms which switches two vertices from the different sides 
cannot be extended to a total automorphism). 
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We call a bipartite homogeneous graph with a left side of cardinality x and a right 
side of cardinality 2 > x and which is neither complete nor empty, a (~c, 2) saS graph. 
The name should mean 'symmetric asymmetric', where the symmetry is local, and the 
asymmetry is global, in having a bigger right hand side. (The demand that saS graphs 
are neither complete nor empty is to avoid trivial cases). 

The paper is organized as follows: In Section 1 we classify homogeneous bipartite 
graphs, and remark that there are only five types of countable homogeneous bipartite 
graphs. Then we prove the existence of (No, 2 s°) saS graphs. The existence of such 
graphs answers negatively the following question by J. Kupitz and M.A. Perles: is it 
true that in every connected locally 3-symmetric (see below) bipartite graph of girth 
4 which is not a complete bipartite graphs both sides are of equal cardinality? (Kupitz 
and Perles proved that the answer is 'yes' if the graph is finite). 

In Section 2 we count the number of non isomorphic (No, N~ ) saS graphs under the 
assumption of the weak continuum hypothesis. We prove that the weak continuum 
hypothesis (i.e., 2 s° < 2 ~l, which is a consequence of the continuum hypothesis) 
implies that there are 2 ~1 pairwise non-isomorphic (No, N~) saS graphs. 

In Section 3 we show that --3CH + MA implies that there is only one (No,N1) saS 
graph up to isomorphism. These results together show that the number of isomor- 
phism types of (No, N~) saS graphs is independent of ZFC, the usual axioms of Set 
Theory. 

Our interest in homogeneous bipartite graphs started when M. Perles introduced 
to us the question of the existence of a locally symmetric infinite bipartite graphs 
of girth 4 with sides of unequal cardinalities. (See 1.5 below.) We are grateful to 
him for this, and not less for his careful reading of the paper and his helpful 
suggestions. 

The notation we use is mostly standard, but we nevertheless specify it here. 

0.1. Notation 
(1) A bipartite graph is a triple F = (L,  R, E )  = ( L r, R r, E r) such that L ~ R = 0, 

L and R are non-empty and E ~ { { x, y}: x e L, y • R }. L • R is the set of vertices of 
F, E is the set of edges. Members of L and R are called left and right vertices, 
respectively. Abusing notation, we sometimes write v • F, instead of v • L w R. Abus- 
ing notation even more, we may write L × R for { { x, y }: x • L, y • R }. F = (L,  R, E ) 
is a subgraph of F' = (L' ,  R', E ' )  if L ~_ L', R ~_ R', E ~_ E'. It is called an induced 
subgraph if in addition E = E' ~ L x R. 

(2) A bipartite graph F = (L,  R, E )  is complete if for all x • L, y • R we have 
{ x, y } • E and is called empty if E = 0. If F = (L,  R, E) ,  the complement graph of F, is 
the graph whose edge set is L x R \E. 

(3) I f F  is a bipartite graph and v • F, the set F(v) = {u: u • F, {v,u} • E} is called 
the set of neighbors of v. F is called a perfect matching iff F(u) is a singleton for every 
u • F .  

(4) A square in a graph F is a quadruple of distinct vertices, vl . . . . .  v4 such that 
{ v l , v 4 } • E a n d  {v l , v i+ l} •Efo r  1~<i~<3. 
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(5) A partial homomorphism between two graphs/ '1, F2 is a partial map f :  I"1 ~ F2 
with the property that for all x,y ~ dom(f ) :  {x,y} e El iff { f ( x ) , f ( y ) }  ~ E2. 

(6) A partial isomorphism between bipartite graphs F and F'  is a 1-1 partial map 
from L r u  R r into L r ' w  R r' which preserves left and right (i.e., f [ L  r] ~_ L r', 
f [ R r ] ~_ R r' ) and preserved edges and non-edges (i.e., { u, v } ~ E riff  { f(u) ,  f (v )  } e E r' 
for all u, v e domf) .  Such a partial isomorphism f i s  called a (total) isomorphism if f i s  
a bijection between the vertices of F and F'. 

f is called a (partial) automorphism of F if f is a (partial) isomorphism of F to 
F itself. (So we only consider (partial) automorphisms which respect left and right 
sides.) Aut (F) i s  the group of all automorphisms of F. 

(7) A bipartite graph F is locally n-symmetric if there is some H _~ Aut(F) such that 
for every v ~/" and every two n-tuples of neighbors of v, x 1, ..., x, and y 1 . . . . .  y,, there 
is an automorphism ~0 e H such that (p(v) = v and q~(xi) = yi for all 1 ~< i ~< n. In such 
a case we say that H acts on / "  in a locally n-symmetric manner. 

(8) A bipartite graph F is homogeneous if every finite partial automorphism can be 
extended to an automorphism. If H c_ Aut(F) has the property that for every finite 

partial automorphism f o r / "  there is an automorphism in/4  which extends f we say 
that H acts homogeneously on F. 

Kupitz and Perles proved. 

0.2. Theorem. l f  F is a finite, connected bipartite graph of girth 4 which is not complete, 
and is locally 3-symmetric, then ILl = IRI. 

We shall also need some standard set theoretic notation: to is the set of all natural 
numbers. We use the convention that n = {0, 1 . . . . .  n -  1 }, namely that a natural 
number equals the set of all smaller natural numbers. By °'to we denote all functions 
from to to to by <~'to we denote all finite sequences from to. "to is the set of all sequences 
of natural numbers of length n, i.e., functions from n into to. For q e "to, i ~ to we let r/^ i 
be the sequence q extended by i, i.e., r/w { (n, i)}. 

The relation q,~v between the sequences r/and v denotes that r/is an initial segment 
of v. Ord is the class of ordinals. An ordinal is equal to the sets of all smaller ordinals, 

= {/~ e O r d : / ~ <  ct}. 
By f [ A ]  we denote the range of the function f w h e n  restricted to the set A. An 

n-tupel ~ of a set A is an ordered subset {x(1),x(2) . . . . .  x(n)} ~_ A of size n. By IAI we 
denote the cardinality (finite or infinite) of the set A. By d o m f w e  denote the domain of 
a function f and by ran f its range. If A _~ to, the complement of A (in to) is the set 
-"IA d--el to \A.  

The symbol V+x ~ A means 'for all but finitely many x in A'. 

1. What homogeneous bipartite graphs exist? 

Let us classify all bipartite homogeneous graphs. Suppose F = (L,  R, E )  is homo- 
geneous. If both sides are of cardinality 1, there are only two possibilities. Suppose 
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then that x ¢ y are on the same side (say L). If F(x)  = F(y), by homogenei ty  

F(x)  = F(z)  for every z ~  L, or, in other words, there is a set B _  R such that 

B = F(x )  for all x e L. If B and R \ B  are proper  subsets of R, an easy violation of 

homogenei ty  follows. Therefore F is either a complete or  an empty bipartite graph. 

Thus, i f F  is neither complete nor  empty, it must  be that x -- y ¢~ F(x )  -- F(y )  for 

every x, y e L and for every x, y e R (a graph which satisfies this equivalence is called 

extensional). 

Let us first assume that for some x ~ L, F(x )  is a finite subset of  R of  cardinality 

n. By homogeneity,  {F(x) :  x e L} = {u: u _ R, lul = n}. If n > 1 and IRI > n + 1, 

this leads to a contradict ion (try mapping  two x's with n -  1 c o m m o n  neighbors 

to two other  x's with n - 2 c o m m o n  neighbors). If lRI = n + 1, F is a complement  

of a perfect matching of size 2n + 2. So we are left with the case n = 1. One 

possibility is that R = {u}, and in this case F is a complete bipartite graph. 

Otherwise, F must be a perfect matching! Similarly, if F(x )  is co-finite for some 

x E L, then F is a complement  of  a perfect matching. All this applies when L is replaced 

by R. 
We are left, then, with the case that every x e L has an infinite co-infinite set of 

neighbors in R and vise versa. In this case we prove that F satisfies for every k, l < to 

the following property:  

(*)k,l For every distinct Xo . . . . .  Xk,Yo . . . . .  Yt in L (in R) there are infinitely many 

u ~ R (in L) such that u e F(xi )  and u ¢ F(y j )  for  i <~ k, j <<, I. 

Proof. Given Xo . . . . .  Xk,Yo . . . . .  y~ e L, let us first prove that there is at least one u ~ R 

which is a neighbor of every xl and not  a neighbor of every yj for i <<. k , j  <~ I. Let v e R 

be any vertex. Pick distinct X'o . . . . .  X'R e F(v)  and Y'o . . . . .  Y'l¢ F(v)  from L. This is 

possible, since F(v)  is infinite co-infinite. Now find an au tomorphism q~ that takes 

x l ,y j  to xi,y~ respectively, and u :=  ~0(v) is as we want. Next suppose that there are 

x i ,y j  as above for which there are only finitely many u as above, and suppose, 

furthermore that the number  of such elements u is minimal for this choice of xi, yj. As 

L is infinite, there is some z e L, z ¢ xi and z ¢ yj for i ~< k a n d j  ~< I. Let u be as above. 

If u ~ F(z)  let z :=  y~+ 1, and otherwise let z := x k + 1 to obtain a choice of  xi, yj  with 

a smaller number  of u, and a hence a contradiction. [] 

We call a bipartite graph which satisfies (*)k,l for all k, l < to random, and state 

without  proof:  

1.1. Fact.  Every countable random bipartite 9raph is homogeneous and has 9irth 4. 

1.2. Fact.  Every two countable random bipartite 9raphs are isomorphic to each other. 

For  proofs see [4, p. 98] or [2, p. 93 and p. 129]. 
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1.3. Remark. As a consequence of 1.2, the set of sentences {( • )k,t: k, l < ~o} is a set of 
axioms of a complete first-order theory (see [2, p. 113]). Also, the sentences in this 
theory are exactly those sentences whose probability to hold in a randomly chosen 
bipartite graph of size 2n tends to 1 when n tends to infinity. 

Let us sum up what homogeneous bipartite graphs there are: 
(a) complete bipartite graphs and empty bipartite graphs, 
(b) perfect matchings and complements of perfect matchings, 
(c) homogeneous random bipartite graphs. 
Evidently, it is class (c) that deserve attention. By the remark above, all members of 

class (c) are elementarily equivalent to each other (i.e., satisfy the same first-order 
sentences). We already mentioned that the countable members of class (c) are all 
isomorphic to the countable random bipartite graphs, so we might ask: 

1.4. Question. What uncountable homogeneous bipartite graphs are there? As (a) and 
(b) are trivial, the question is what uncountable members of class (c) are there? 

We shall now show that there are homogeneous random graphs with countable left 
side and uncountable right side. We call these graphs (No,K) saS graphs when the 
cardinality of their right side is • > No. Recall that above we showed that if a homo- 
geneous bipartite graph is neither complete nor empty then it is extensional. This 
implies in particular that ILl ~< 2 IRI and IR] ~< 2 qLI. Therefore if in a homogeneous 
non-trivial bipartite graph [LI = No, we have an a priori bound of 2 ~° on I R I. We shall 
see that this bound is attained: 

1.5. Theorem. There is an (No, 2 s°) saS graph. 

Proof. The left side of our graph will be ~, and the right side will be a set of functions 
in '~09. We will construct our graph as a projective limit, in some appropriate sense, of 
a sequence {F,: n < ~ )  of finite bipartite graphs. 

We shall need the following notion: 

1.6. Definition. Wc say that F'  is a 'magic extension' of F if 
(1) F is an induced subgraph of F', 
(2) every finite partial automorphism of F extends to a total automorphism of F'. 
E. Hrushovski proved in [6] the following theorem: 

1.7. Theorem. Every finite graph has a finite magic extension. 

Looking at the proof in [6] one can see that the same theorem is still true if we 
replace 'finite graph' by 'finite bipartite graph'. Hence, we get the following fact: 
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1.8. Fact. For every finite bipartite graph F there is a finite bipartite magic 

extension F'. 

The fact follows also from a more recent result by Herwig on magic extensions of 

finite relational structures see [5]. 
We remark here that it is only the finite case that needed a proof, because it is 

standard and easy that every infinite (bipartite) graph has a magic extension of the 
same cardinality. (see [2, p. 214ff]) 

Proof of Theorem 1.5. We define now the construction of the sequence 
(F.:  1 ~< n < o9). The graph Fn = ( L . ,  R., E. ) has a left side Ln which is an initial 
segment of co (a natural number) and a right side Rn - "09, a finite set of sequences 
of natural numbers of length n. Let L l = { 0 , 1 }  and g l = { ( 1 ) , ( 2 ) }  and 
Ex -- {(0, ( 1 )), (1, ( 2 ) ) } .  (This will ensure that the graph we get at the end is neither 

empty nor complete.) 
We demand: 

(1) LEi +1 = LEi, 
(2) R2i+ 1 = { rl ̂  1 : r I • R2i} u { r/^ 2: ~/• g2i} and for every x e L2i+ 1 -- L2i and 

v•R2,+l, {x,v}•E2,+l {x,v I(2i)}•E2,. 
So at even stages we 'double' the points of the right side. Put more precisely, we 

can define P2i(~/)= ~/^1 for all ~l•R2i ,  ~2i(r/) = ~/[2i for r l •R 2 i+ l ,  and we let ~2i 
and P2~ be the identity on L2~. Thus, although F2~ is not an induced subgraph of 

F2i+ 1, P2~, is an embedding of F2~ in F2i+ 1 as an induced subgraph, and ~2i is a graph 
homomorphism. 

At odd stages 2 i +  1, we do the following: Let p2i+l(~/)= ~/^1 for r leR2i+l ,  

P2i+ 1 = identity on L2i+ 1. Now find a magic extension F2~+2 = (L2i+2, R2i+ 2, E2i+2) 
of the graph p[F2~+I]. By renaming vertices we may assume that all vertices in 
R2i+ 2 which are not already in P2i+ 1 [F2i+ 1 ] are sequences of length 2i + 2 whose 
first 2i + 1 entries are all 0, and that L2i+2 is an initial segment of the natural 

numbers. 
Again we let ~2 i+  1(/7) : /7 I(2i + 1) for all r / •  p(R2 i  + 1 ) , / z ( x )  = X for X • L2 i+1 .  So 
is a partial homomorphism from F2i+2 onto FEi+l. 
Note that our sequence of graphs, together with the maps ~ can be viewed almost 

as a projective system, except that the homomorphism involved are partial. Neverthe- 
less, its 'projective limit' can be defined in a natural way: 

We define F~ = ( L , R , E )  as follows: The left side L=~o .  The right side 
R = {~/•°co: (V°~n)(rl In ~ R,)}. Let E = {{x,r/}: (W~n)({x,  rl In} • E,)}. [] 

We have to show two facts: 

1.9. Fact. The cardinality of  R is 2 ~°. 

1.10. Fact. The graph Fo~ = ( L , R , E )  is homogeneous. 
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The proof of the first being trivial, let us turn to the proof of the second. Suppose f i s  
a finite partial automorphism of F. We can find n o which is large enough such that 
( d o m f  w r a n f ) ~ L ~ _  L,  o and such that for any ql ~r/2 in d o m f w  ran f, 
ql rno, r/2 tno ~ R.o and qi [no ~ q2 [no, and such that for every x,q e d o m f  u ran f, 
{ x, ~/} e E ~ { x, q I no } e E, o. So for each n >/no, ,/'induces a (finite) partial automor- 
phism J~, of F.: f , ( q l n ) = f ( q ) I n  for all ~ /edom(f )  c~R, f . ( x ) = . f ( x )  for 
x e dom(f )  c~ L. Suppose without loss of generality that no = 2io + 1. Let ~o =f,o. 
Now argue by induction on n >~ no to get a sequence of partial automorphisms (~: 
n >/no) satisfying the following for all n >~ no: 

(1) j~ is a partial automorphism of F., and if n > no, then ~ is total. 
(2) j~ extends f , ,  
(3) rt.°f.+l =~o~.. 
Given ~ _  1 (i > no), a partial automorphism o n  F2i-1, we can find a total 

automorphism ~ i  of F2~ extending J~_l  (or more precisely, extending 
rtz~ ~ ~ °fz i-  1 ° n2~- 1). Condition (2) will automatically be satisfied. 

Now we have to definefzi+ 1. We must have ~ +  a IL2~+ 1 = J ~  IL2~, so it remains to 
define fzi+l IR2~+ 1. To satisfy condition (3), we require 

( . )  if /~,(x)= y, t h e n f 2 , + l E ( x ^ l , x ^ 2 } ] = { y ^ l , y ^ 2 } .  

For x in dom(f2i) n R2i, exactly one ofx  ̂  1, x^2 is in dom(f2i+ x) (by assumption on 
no), so (2) and (3) uniquely determine the behaviour of fzi÷l on x^ l  and x^2 in this 
case. For q ¢ dom(f21), we define f2i+ l(r/) arbitrarily satisfying ( • ). 

Having done the induction, let F be defined of F as follows: for x ~ to, F (x )  = 

y ¢~ (V®n)(f,(x) = y) and for q e R ,  F ( q ) =  v .=- (¥~nj(~(qpn) = vpn). 
We have to check that this indeed defines an automorphism. Note that all the 

extend each other as far as the left side is concerned, and that whenever r/e R~, j < i 
and q tJ .e R s, then J~(q) IJ = J~(~/PJ). From this property it is easy to see that all F is 
well-defined on the right side of F, and since all the f are automorphism, also fwill  be 
an automorphism. 

We do mention one more thing: The proof actually gave us the following property: 

( * * ) for every finite partial automorphism f o f  F there is a locally finite automor- 
phism F of F extending f. 

By a locally finite automorphism we mean a permutation F of F with the property 
that for every finite A ~ co there is a finite B ~ A such that F I B  E Sym(B). 

1.11. Remark. (1) A similar proof shows the existence of (x,2 ~) saS graphs for any 
infinite cardinal x. 

(2) If x < )~' ~< 2, and if F is a (x, 2) saS graph, then it is easy to find an induced 
subgraph F'  which is a (x, 2') saS graph. 
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2. The number of (No, N~) saS graphs under weak CH 

In this section we handle the question of the number of the isomorphism types of 

(No, N! ) saS graphs. An obvious upper bound is 2 ~ ,  the number of isomorphism types 

of graphs of size N~. In this section we show that if 2 ~° < 2 ~', then this upper bound 

is realized: there are 2 s~ isomorphism types of (No,N1) saS graphs. In the next 

section we show that if CH fails and MA holds, then all (No,N1) saS graphs are 

isomorphic to each other, namely there is a unique isomorphism type of (No, N1) saS 
graphs. 

The idea of the first proof  is as follows: we construct a family f¢ of 2 ~1 different saS 
graphs sharing the same fixed countable left side. An isomorphism between two saS 

graphs being determined by its action on the left side, an isomorphism between two 

saS graphs in f¢ is really a permutation of the left side. There are 2 ~° permutations of 

a given countable set, therefore there are at most 2 ~° members in every equivalence 
class of c~ modulo isomorphism. Therefore it follows by 2 ~° < 2 ~' that there are 2 ~' 

such classes. 
The construction of many different saS graphs is done by iteratively extending 

a countable random graph ~o~ many times, preserving homogeneity and preserving 

the left side, in 2 ~' many different ways. 

2.1. Notation. The left side of all graphs in this section will be ~. Since we deal only 

with extensional graphs, we will identify a vertex in R with its set of neighbors in L, so 

the edge relation will always be given by e. 
For  u ~ R denote u + ~f u and u-  ~r__l u. 

For a finite function a: R --. { + ,  - } we let B~ = 0u~do,~ ~ U ~tu~. I f F  is random, then 

for every finite function a: R --, { + ,  - } the set B, is infinite. 

We now prove a few technical lemmas concerning the structure of the automor-  
phism group of a random bipartite graph, which will be used later in extending 

countable random bipartite graphs: 

2.2. Lemma. Suppose that F = (~o,R, e ) is random, that Uo . . . . .  Uk ~ R and that 

f 9 c Aut(F) are two distinct automorphisms ofF. Then there are u, v ~ R, both not in 

the list Uo . . . . .  uk such that for every x E u\v, f ( x )  ~ g(x). 

What this lemma says is, that if two automorphisms are different, then they are 
different on a definable infinite set of vertices: the set of all points which are connected 
to some u and not connected to some v. Moreover, the u and v may be chosen quite 

freely. 

Proof. We may assume by applying g -  ~ to f and g, that g = id. As f 4: id, there is 
some x such that f ( x )  v~ x. As F is random, there are infinitely many u e F which 
satisfy x e u but f ( x ) ¢  u. Pick one such u with the property that both u and f ( u )  are 
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not in the list Uo . . . . .  u~ and set v : = f ( u ) .  For  every x e u ,  J ' ( x ) ~ v .  So if x ~ u \ v ,  

f ( x ) ~ v, while x ¢ v. In particular, f ( x ) ~ x. [] 

2.3. Corollary. l f  F is random, Uo . . . . .  uk ~ R and gl,  g2 . . . . .  gt 6 Aut (F)  then there is 

some finite function a: R ~ { + ,  - } such that {uo . . . . .  Uk } ~ d o m a  = 0, and such that 

.for every x ~ B, ,  g l ( x ) , g z ( x )  . . . . .  gz(x) are l distinct members of  to. 

Proof. Apply 2.2 iteratively (~) times. [] 

2.4. Lemma.  Suppose that B is an infinite subset o f  to and that 91 . . . . .  gk are 1-1 

functions defined on B with the property that for  every x ~ B and l <~i < j <~ k, 

gi(x) v ~ yj(x) .  Then there is an infinite subset B' c_ B such that for every x v ~ y in B' and 

1 <~ i <<. j <~ k, gi(X) :/: gi(Y)" 

Proof. By induction on n we pick an increasing chain of finite sets A, with this 

property. At the induction stage: Clearly g~- t [ A , ]  is finite, because g~ is 1 1. Pick any 

x e B \ { g i - ~ [ g j [ A . ] ] :  1 <<. i ~ j ~  k} and let A.+~ = A . w  {x}. [] 

2.5. Corollary. Suppose that F is random, z: F ~ { + ,  - } is a finite partial function, 

and G ~_ Aut (F)  is finite. Then there exists an infinite set B ~_ B~ such that for 
(g, x) # (g', x') ~ G x B, g(x)  # g'(x'). 

Proof. By Corol lary 2.3 there is a finite function a: R ~ { + ,  - } such that for every 

x ~ B~, the elements G(x)  and I Gt distinct elements. As dom r and dom a are disjoint, 

also z ~ a is a function and therefore B~ ~ ~ ~ B, is infinite. By Lemma 2.4 there is an 

infinite set B ___ B, ~ ~ for which the required holds. [] 

We now prove the main lemma: 

2.6. Lemma.  Suppose F is a countable random bipartite graph, and G ~_ Aut(F)  is 

a countable group ofautomorphisms. Then there are two incompatible countable random 

bipartite graphs F ° and F 1 with the same left side as F, properly extending F such that 

G _ A u t ( F  i) for  i e {0, 1}. By 'incompatible' we mean that there is no random bipartite 
graph F' with the same left side as F extending both F ° and F 1. 

Proof. For  any set S ~ o ,  the graph F ° = ( t o ,  R w G ( S ) , ¢ )  satisfies that 

G c Aut(F)) ,  where G( S) denotes { g [ S ] :  9 ~ G) and g [ S ]  = {g(x): x ~ S}. But F ° is 

not necessarily r andom for an arbitrary choice of S (for example, it is not  r andom if 

S = - -qA for some A ~ R). We shall find some subset S of to such that for both 
F ° : =  (to, R ~ G(S), ~ ) and F l = (to, R w G(--qS)~ ) are random. This will com- 
plete the proof, as in addit ion to the fact that F i is r andom and G _~ Aut F i (i = 0, 1), it 

is clear that there is no random graph F '  = (to, R', e ) such that both S and ~ S  
belong to R'. 
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For  a, b _~ to, a c7 b = 0 and any finite partial function a: G w R ~ { + ,  - } we let 

A E R  c~ dora(a) g ~ G  c7 ~ t (+)  g ~ G  c~ a-I(-) 

So our  goal is to construct  a set S such that for all a as above we have 

B.,s,~s is infinite. 

This is equivalent to saying that (to, R • G(S), e )  and by symmetry  also 

(to, R ~ G(-7S)~ ) are random. 

Note  that there are only countably  many  finite partial functions a as above, so we 

can enumerate  them as a l , a 2  . . . .  We may also assume that each such a occurs 

infinitely many times in this list. 

We construct  S and --1 S by approximat ing them inductively by finite sets an -~ S 

and b. G --7 S, which satisfy: 

(i) a n ~ b . = O ,  
(ii) nean+l  w bn+l, 

(iii) an -~ an+l and bn - b. + a, 
(iv) there are at least n points in B~.,A .... b.~," 
For  n = 0 let an = b. = 0. 
For  n + 1: We specify which elements should be added to an and bn to obtain an+ 1 

and bn + 1, respectively. 

First, if n ¢ an w bn, add it to an + 1. 
z ! XlX We can find by 2.5 an infinite set B _~ B~.m such that for all (g ,x)  # ~g, ) in 

(dom(a  c~ G)) x B, g(x) # g'(x'). 
Now note that n da --. = {g(x): x~an  W bn,g ~ dom(a . ) c~  G} is finite, so we can find 

a set X .  c_ B \ (B .  ~ {n}) of size n. 
def ~ clef 

Let a.+ 1 = a. u {g -  l(x):  g e a -  l( + ) c7 G, x e X.} ,  and let ~,.+ l - b. u {g -  l(x):  

g e a - 1 ( _  )c7 G, x e X.  }. Note  that a.+~ and b .+l  are disjoint, by the conclusion 

of 2.5. Moreover,  B ... . . . . .  b.., -~ X.  and therefore (iv) holds. 

Let S = ~ . a . .  It follows by (i) that  --7S = U,b . .  As for any S ~ to, if a .+ l  ~ S and 

b. + 1 - S, then 

B..,s,-~s ~- B..,~ .... bn+l ~- Xn" 

Since each finite partial a :  G w R ~ { + ,  - } appears as a.  with arbitrarily large n, 

this shows that B.,s,~s is infinite. [] 

2.7. Theorem. There are 2 ~ different homogeneous random bipartite graphs of car- 

dinality N1 with to as their left side. 

Proof. To every ~/~ <~12 we at tach a pair (F . ,  G , )  such that the following conditions 

hold: 
(1) F, = (to.Rn, e ) is a countable r andom bipartite graph and G~ _~ AutF~ is 

a countable group that acts on £, homogeneously.  
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(2) If t/,~v then Rn ~ Rv and Gn ~ Gv. 
(3) For every q, RT^o and R,^I are incompatible. 
We define (Fn and G T) by induction on the length of r/. If q is the empty sequence, 

let F, be any countable random bipartite graph with to as its left side, and let G T be any 
countable group of automorphisms that acts homogeneously on F T. 

Iflg r/is some limit ordinal a, let R, = Ua<~RTra and let G T = Ua<~ G, la. We should 
show that G T ~ Aut(FT) and that it acts homogeneously on F~. As all members of G T 
preserve E by their definition on R,, it is enough to show that R T is closed under G,. 

Suppose that g E G T and A ~ R T are arbitrary. There is some fl < lg(r/) such that 
g ~ G~r a and A ~ R,rt~. Now g(A)~ RTt a ~ R T. To see homogeneity, suppose f is 
a finite partial automorphism of F T. There is some ordinal B < lg~/ such that 
d o m f  u ran f___ to w RTr a. By the induction hypothesis, there is some g ¢ GTr a c_ G T 

extending f. 
If (Fn, G n) is defined, use Lemma 2.6 to find two incompatible countable homo- 

geneous random bipartite extensions of F T, F,^o and F,^1. As Fn^~ are countable 

random bipartite graphs for i ~ {0, 1 }, they are homogeneous by Fact 1.1. For every 

finite partial automorphism of FT^~ there is an automorphism of FT  ̂~ which extends it, 
so by adding countably many automorphisms to G, and closing under composition 
we get a countable group extending G T which acts homogeneously on Fn^~. Let this 
group be G.^ i. 

Having done the definition by induction, we define for every sequence ¢ e °'~2 
a bipartite graph F¢ = (to, U~<,o~ R¢r,, e ) .  As the group Ge = U~<o,~ G¢r~ acts homo- 
geneously on F~ - as is easily seen - F~ is homogeneous. Suppose that ~o and ~1 are two 
different members of °~2 and let ct be the last ordinal such that ~o I~ = ~ I~t. By 

condition (3) above, (to, Reo, e ) (to, R¢~, e ) are incompatible. As Feo and Fe~ are 
random, they must be different. [] 

2.8. Theorem. If2  ~° < 2 ~ ,  then there are 2 ~ many isomorphism types o f (No ,  N1) saS 

graphs. 

Proof. By the previous theorem there is a collection of 2 ~1 many different saS 
graphs { F~: i < 2 ~1 } such that the left side of each F~ is to. As isomorphism between 
F~ and F~ for i,j < 2 ~ is determined by its action on o9. Therefore in an equivalence 
class of {Fi: i <  2 ~1} modulo isomorphism there are at most 2 ~° members. 
By the assumption 2s°<  2 ~,  it follows that there are 2 ~ many equivalence 
classes. [] 

2.9. Remark. The proof above is readily generalized to give 2 ~* isomorphism types of 
(x,x +) saS graphs in case 2 ~ < 2 ~*. 

We note that CH implies that 2 ~° < 2 ~', and therefore implies by the theorem above 
that there are 2 ~1 many isomorphism types of (No,N1) saS graphs. 
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3. The number of (No,N~) saS graphs under the MA + ~ C H  

We turn now to an examinat ion  of the number  of  (No,N~) saS graphs  under  the 

assumpt ion  that  C H  fails but  Mar t in ' s  ax iom MA holds. The si tuation here is exactly 

opposi te  to what  we have seen under  (weak) CH. We shall prove  the following: 

3.1. Theorem (MA). For any x < 2 ~° there is a unique (No,N) saS graph. 

First we will recall the s ta tement  of  MA (see [7]). 

A dense set D in a part ial  order  (P, ~< ) is a subset D ~ P such that  for every x e P 

there is y e D, x ~< y. Two members  x, y e P are compatible if there is z e P such that  

x ~< z and y ~< z. An antichain in P is a set of  pairwise non-compat ib le  elements. 

A partial  order  satisfies the ccc (countable chain condition) if every ant ichain is 

countable.  A f i l ter in a partial  order  is a set F _~ P which satisfies (a) F is downward 

closed, i.e. y e F & x -%< y ~ x  ~ F and (b) F is directed, i.e. x , y  e F =~(3z ~ F ) ( z  >~ x 

& z >i y). The ax iom MA (Mart in 's  Axiom) is the s ta tement  ' for every ccc partial  order  

P and every collection ~ of fewer than 2 ~° dense sets of P there is a filter of  P with 
non-empty  intersection with every D e ~ ' .  MA follows easily from the con t inuum 

hypothesis  (CH), but it is known that  MA is consistent with the negat ion of C H  - -  in 

fact, MA may  be true with the con t inuum being any regular cardinal. 
Let us introduce the following notation: if F = (~o, R, E) is a bipart i te graph,  

t r a  finite partial  function f rom to to { + ,  - } we let 

~ : = { a ~ R : V x ~ d o m ( t r ) : a ( x ) =  + i f f { x , a } ~ E } .  

3.2. Lemma.  Let  F = ( o ~ , R , E )  be an (~'¢o,X) saS graph, x > ~¢o. Then for  all a as 

above we have r~,[ = x. 

Proof. Fix k, l in to. We will only consider functions tr with l a - l (  + )1 = k, 

l a -  ~ ( - )1 = I. For  any such functions a, a '  there is a partial  a u t o m o r p h i s m  f m a p p i n g  
~r- ~ ( + ) to a '  - ~ ( + ) and a -  1 ( _ ) to a '  - 1 ( _ ). The total  au tomorph i sm f e x t e n d i n g  

f must  m a p  ~ ,  onto  ~ , .  
Hence all these sets ~ ' ,  have the same cardinality, say 2. Since every element of  

R must  be in some such ~ ,  (by homogenei ty)  and there are only countable  m a n y  such 

tr we get x ~< 2. No, i.e., 2 = x. [] 

3.3. Fact.  I f  F = (og, R , E )  is an (No,X) saS graph, then R can be partitoned into 
K many countable sets (Ri: i < K) such that for  all i < x the induced subgraph determined 

by (to, Ri) is random. 

Proof. Let R = {xi: i < K}. We will construct  (Ri: i < K) by induction. Given (Rj: 
j < i), we can choose countable  sets 

Rr U Rj 
j<i 
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for every partial finite function cr from to to { + ,  - }, because by 3.2, I&,l = x, 

tUj<iRjl < x. l f x i ~  Uj<iR i then let 

R, = U R; 
t7 

otherwise let Ri:= U ,R~  u {xi}.  

3.4. Definition. Assume F = (to, R , E )  and F ' =  (to, R ' , E ' )  are two (No,X) saS 

graphs, and let R = U~ Ri, R' = Ui R~ be parti t ions as in 3.3. We let Pr.r' be the set of 

all finite partial isomorphisms between F and F '  respecting the partitions, i.e., all finite 

partial isomorphisms p satisfying 

Vx e dom(p)  c~ Ri; p(x)  ~ RI, 

Pr.r' is naturally ordered by the set inclusion relation. (We consider functions to be 

sets of ordered pairs.) 

3.5. Lemma.  (Pr,r', ~- ) is a partial order satisfying the countable chain condition. 

Proof. Let { Po: ~ < to1 } - Pr.r'. For  each ~, let so := {i < x: dom(po) n Ri :/: 0}. so 

is a finite set. Applying the d-system lemma [7, II, 1.5] we may without  loss of 

generality assume that (so: ~ < tot) forms a d-system with root  s. Moreover ,  since 

there are only countably  many possibilities for Pots, we may also assume that for some 

P ~ Pr, r' we have for all ~: pots -= pts. Similarly, we may assume Polto = Ptto for all ~t. 
Now for any ~, fl we have that Po u pp is a l - I  function, and hence an element 

of Pr.r'. ~] 

3.6. Proof  of  Theorem 3.1. Let F = (to, R, E ) ,  F '  = (to, R', E ' )  be (~o, x) saS graphs, 

and fix parti t ions as in 3.3. For  any filter G ~_ Pr.r', we let fG :-- S G. Clearly fG will be 

a partial, i somorphism from F to F' .  

N o w  note that for each x c to w R, the set Dx:= {p e Pr.r' : x e dom(p)}  is a dense 

subset of Pr.r' (because each (co, R)) is a r andom bipartite graph). 

By MA we can find a filter G ~_ Pr.r' that meets all D~,. This implies that f~ is an 

isomorphism from F into F' .  Similarly, using x many dense sets defined from F '  we 

can insure that f will be onto. Hence F and F '  are isomorphic. [] 
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