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Abstract 

In this paper, we investigate the volatility dynamics of EUR/GBP currency using statistical as well as the neural network 
approach which is an alternative way for time series modelling and forecasting in economics. The goal of this paper is to provide 
an alternative and reasonable way in modelling dynamic economic time series. We suggest an alternative approach for 
forecasting time series with non-constant volatility – we suggest and implement several neural network prediction models; we 
also use a large number of statistical models as well as different optimization techniques for artificial neural network. After 
discussing the basics of statistical volatility modelling and the basis of artificial neural networks we perform the experiment on 
real financial data. We quantify several ARCH and GARCH models; we also implement various RBF neural network prediction 
models. The comparative analysis of out-of-sample forecasts evaluated using MSE evaluation measures is performed. Finally, we 
state that suggested neural network models performed almost as good as the standard statistical models and are therefore 
reasonable and acceptable in economic modelling.  
© 2016 The Authors. Published by Elsevier B.V. 
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1. Introduction 

The most common way in expressing the risk is the volatility. Therefore, volatility is an extremely important 
factor for risk management for many economical subjects in the world. It plays an important role in an investor’s 
decision making process. Volatility is not only of great concern for investors but also policy makers and regulators 
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who are interested in the effect of volatility on the stability of financial markets in particular and the whole economy 
in general. Finally, companies and economic subjects (mainly financial) use risk management due to many reasons: 
minimizing potential losses, quantify the most probable development etc. Volatility estimation is an essential input 
in many VaR (Value at Risk) models, as well as for a number of applications in a firms market risk management 
practices. Also, a large part of risk management is measuring the potential future losses of a portfolio of assets 
(volatility modelling provides a simple approach to calculating VaR of a financial position in risk management), and 
in order to measure these potential losses, estimates must be made of future volatilities and correlations.  

Volatility modelling is also important for asset allocation where the Markowitz approach of minimizing risk for a 
given level of expected returns (Markowitz, 1952) has become a standard approach. Perhaps the most challenging 
application of volatility forecasting, however, is to use it for developing a volatility trading strategy. Option traders 
often develop their own forecast of volatility, and based on this forecast they compare their estimate for the value of 
an option with the market price of that option.  

Due to many reasons stated above, it is no surprise that modelling volatility is the must in risk management. 
However, it is not always easy to predict it. In some cases, mainly in dynamic economic markets like stock market or 
forex market volatility has some very unique features and has to be modelled in a special way. In this case, taking 
into account a constant, non-varying volatility is not a right way to go. Various approaches to non-constant volatility 
modelling have been suggested in the econometric literature. Gooijer and Hyndman (2006) proved that artificial 
neural networks had the biggest potential in the domain of time series forecasting. Therefore, various types of neural 
networks have been used for forecasting future values of high frequency financial data such as (Zhang, 2003) or 
(Marcek, 2009). 

To goal of this paper is to provide an alternative way in modelling various economic variables. We take the 
principle of artificial neural network, which is an extremely helpful tool in various areas and we suggest its 
application in economics. More specifically, we create and implement the artificial neural network of the 
feedforward type and we adapt it to be able to forecast economic time series such as GDP, unemployment etc. The 
correctness of our approach is then verified on real economic data.  

2. Material and Methods 

2.1. Statistical volatility modelling 

The major breakthrough in the history of statistical modelling came with publishing a study from Box & Jenkins 
(Box, Jenkins, 1976). In this study by Box and Jenkins (1976) authors integrated all the knowledge including 
autoregressive and moving average models into one book. From that time the ARIMA (AutoRegressive Integrated 
Moving Averages) models have been very popular in time series modelling for a long time as O'Donovan (1987) 
showed that these models provided better results than other models used in that time. However, in 1982, Engle 
showed that this assumption is not always correct. He founded out that in some time series such as financial time 
series and other very dynamic economical time series, the volatility is not always constant and this is due to its 
special features. First of all, it is its stochastic character. Moreover, financial time series exhibit a characteristic 
known as volatility clustering in which large changes tend to follow large changes, and small changes tend to follow 
small changes. Volatility is hence clustered in time and therefore it has persistence character. Resulting from this, 
actual variance is dependent on the previous variances and the time series is characterized by the time-variant 
conditional variance, also called clustering of variances. Another feature of non-constant (financial) volatility is 
mean reversion. Volatility is often persistent and so has a long memory. Also, it has been experimentally proved that 
the distribution of many high frequency financial time series usually have fatter tails than a Gaussian distribution.  

The weakness of ARIMA models in modeling financial time series is the inability to model stochastic non-
constant volatility having the features we described above. In 1982 Engle suggested (Engle, 1982) the solution by 
creating so called ARCH (Autoregressive Conditional Heteroskedastic) models which assume heteroskedastic 
variance of t . The conditional variance in the ARCH(p) model is a function of the past squares of random variable 
et. The ARCH model is able to model the basic properties of financial volatility such as volatility clustering, 
stochastic properties of volatility, mean reversion, fat tails etc. Bollershev (1986) suggested the generalized form of 
ARCH model called GARCH (Generalized Autoregressive Heteroskedastic Models) where conditional variance of 
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ht depends on the previous conditiononal variances. Later, as time went on, many extensions of the GARCH model 
have been introduced in the literature since: e.g. GARCH-in-mean (GARCH-M) models (Engle, Lilien, Robins, 
1987), EGARCH models (Nelson, 1991), Threshold ARCH (TARCH) and Threshold GARCH (TGARCH) 
(Glosten, Jagannathan, Runkle, 1993) and Power Arch (PARCH) models (Ding, Granger, Engle, 1993) just to name 
a few. A number of studies have focused on optimal model specification and the performance of various GARCH 
models in financial markets providing no clear-cut results (Hansen and Lunde, 2005). 

2.2. Statistical vs Neural Network Approach: Real Data Application 

This paper focuses on modelling time series with non-constant conditional volatility; we used daily close prices 
of EUR/GBP exchange rate. The data cover the historical period from October 31, 2003 to October 31, 2013 (n = 
2610 daily observations).† The graphical characteristics of the series is illustrated in Figure 1.  
 

 

 

   

 

 

 

 

Fig. 1.  Time Series of daily close prices of EUR/GBP currency (October, 2003 – October, 2013). 

Due to validation, data were divided into two parts. The first part included 1306 observations (from 10/31/2008 
to 10/31/2008) and was used for quantification. The second part (11/1/2008 to 10/31/2013), counting 1304 
observations, was used for validation by making one-day-ahead ex-post forecast. These observations included new 
data which had not been incorporated into model estimation. The reason for validation was to find out the real 
prediction power of the models. In order to evaluate the quantified model as well as to compare the real forecasting 
performance of our proposed models, the numerical characteristic called Mean Squared Error (MSE) was used. 

2.3. Statistical Modelling 

The empirical statistical analysis, which was performed according to Box-Jenkins (1976), focused on the original 
and differentiated series of daily observations of EUR/GBP currency pair covering a historical period from October 
31, 2003 to October 31, 2008. Statistical modelling was performed in the Eviews software.  

Unit root tests results (see Dickey, Fuller, 1979; Elliott, Rothenberg, Stock, 1996; Kwiatkowski, Phillips, 
Schmidt, Shin, 1992; Phillips, Perron, 1988) showed that this series was not stationary. In order to stationarize the 
series, it was differentiated. After that, unit root tests confirmed that the differentiated series became stationary 
which had been a necessary condition in Box-Jenkins modelling. By analyzing autocorrelation (ACF) and partial 
autocorrelation functions (PACF) of the differentiated series of EUR/GBP, there were no significant correlation 
coefficients (on alpha = 0.05). Due to that we supposed that first differences of the original series formed a white 
noise process. In that case, the original series would have formed random walk process (RWP) as RWP is I(1) 

 

 
† The data was downloaded from the website http://www.global-view.com/forex-trading-tools/forex-history. 
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process. Assuming the differences of the original series formed a white noise process, we selected AR(0) as the 
basic Box-Jenkins model. Ljung-Box Q-statistics confirmed this assumption and the applicability of AR(0) process 
as the correlations were statistically not significant. However, the assumption of normality of residuals of AR(0) was 
rejected at 0.05 significance level. The observed asymmetry might have indicated the presence of nonlinearities in 
the evolution process of residuals. This nonlinearity was also confirmed by graphical quantiles comparison a scatter 
plot of the series which did not appear to be in the form of a regular ellipsoid (see Figure 2). BDS test also rejected 
the random walk hypothesis as the BDS statistic was greater than critical value at 0.05.  

 
 
 
 
 
 
 
 

Fig. 2.  Scatter plot of EUR/GBP residuals variations.           Fig. 3.  Evolution of residuals of AR(0) model 
 

Therefore, other tests had to be performed in order to correctly model this series. We noted that the residuals of 
AR(0) (see Figure 3) were not characterized by a Gaussian distribution. The asymmetry might have indicated non-
linearities in the residuals. When looking at the graph of residuals (see Figure 3), one could observe the variability 
of these residuals could have been caused by the non-constant variance. Residual with small value followed another 
residuals with a small value. On the other hand, residual with a large value usually followed a residual with another 
large value. However, this is not typical for a white noise process. Therefore, this assumption lead us to think about 
stochastic model for volatility. The suitability for using stochastic volatility model was also accepted by performed 
heteroskedasticity test. ARCH test confirmed the series was heteroskedastic since the null hypothesis of 
homoscedasticity had been rejected at 5% and so the residuals were characterized by the presence of ARCH effect 
which was quite a frequent phenomenon at financial time series. Therefore, we applied a stochastic volatility model 
into the basic model. According to correlogram of squared residuals of EUR/GBP differences we quantified 
ARCH(4) model for volatility. After quantification of ARCH(4) model, the residuals were characterized by the 
absence of conditional heteroskedasticity: the ARCH-LM statistics were strictly less than the critical value at 5%. In 
addition, the standardized residuals tested with Ljung-Box Q-test confirmed there were no significant coefficients in 
residuals of this model. Finally, we defined the final AR(0)+ARCH(4) volatility model as the appropriate model for 
forecasting EUR/GBP time series with conditional volatility. The volatility part of the model is defined as follows 
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2.4. Neural Network Approach 

Non-linearity modelling is one of the drawbacks of Box-Jenkins models. According to studies such as that by 
Gooijer (Gooijer, de Hyndman, 2006), artificial neural networks (ANN) are the machine learning models having the 
biggest potential in forecasting time series with non-constant volatility. This is due to the fact that these models are 
extremely helpful in modelling non-linear processes which have a priori unknown functional relations or this system 
of relations is very complex to describe mathematically (Darbellay, Slama, 2000). ANN is based on human neural 
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system and is a universal functional black-box approximator of non-linear type (Hornik, 1993; Hornik, 
Stinchcomber, White, 1989 and Maciel, Ballina, 2008). The reason for attractiveness of ANNs for financial 
prediction can be found in the work of Hill et al. (Hill, Marquez, O´Connor, 1994). Here, the authors showed that 
the ANNs worked best in connection with high-frequency dynamic data. The competitive performance of ANN is 
also documented on a large number of time series (see Liao, Fildes, 2005 and Zhang, Qi, 2005). In this part we show 
a new approach of estimation of forecasting function for time series with conditional volatility modelled by 
feedforward neural network of RBF type combined with genetic algorithms.  

A fully connected feed-forward neural network was selected to be used as the forecasting function, due to its 
conceptual simplicity, and computational efficiency (Marcek, Marcek, 2006). We proposed the architecture of the 
neural network with only one hidden layer due to the fact that according to Cybenko theorem (1989) the network 
with one hidden layer is able to approximate any continuous function. This hidden layer made a previous nonlinear 
transformation of the data so as to facilitate resolution of the problem in hand such as regression, classification, etc. 
The neural network used for this research was the network of RBF type (Orr, 1996). This network is one of the most 
frequently used networks for regression (Marcek, Marcek, 2006). RBF has been widely used to capture a variety of 
nonlinear patterns (Hornik, Stinchcombe, White, 1990) thank to their universal approximation properties (Leshno, 
Lin, Pinkus, Schocken, 1993). The most popular optimization method in neural networks is back-propagation 
(Bryson and Ho) (Bryson, Yu-Chi, 1969). However, there are some drawbacks to back-propagation. One of them is 
the convergence of this algorithm. Due to this reason, we also used the combination of back-propagation with the 
standard unsupervised technique called K-means (see MacQueen, 1967), which belongs to a group of unsupervised 
methods and is a nonhierarchical exclusive clustering method. The K-means was used in the phase of non-random 
initialization of weight vector w performed before the phase of network learning. We assumed that in many cases it 
was not necessary to interpolate the output value by radial functions, it was quite sufficient to use one function for a 
set of data (cluster), whose center was considered to be a center of activation function of a neuron.  

Since BP also features some other problems such as “scaling problem" we decided to implement genetic 
algorithm as other optimizing method for our RBF neural network too. Adopted from biological systems, GA, which 
are algorithms for optimization and machine learning, are stochastic search techniques that guide a population of 
solutions towards an optimum using the principles of evolution and natural genetics (Dharmistha, 2012). They are 
based loosely on several features of biological evolution (Holland, 1975) and have become a popular optimization 
tool in various areas. GA are characterized by basic genetic operators, i.e. reproduction, crossover and mutation 
(Whitley, 1988). Given these genetic operators and components, a GA operates according to the steps stated in 
(Montana, Davis, 1989).  

3. Results and Discussion 

In our tests, we used one-step-ahead, frequently called as static, forecasts, i.e. the horizon of predictions was 
equal to one day. Firstly, we estimated and tested the ARCH(4) model for volatility defined in (1). However, we 
also tested some other statistical models modelling conditional variance such as GARCH(1,1) model (Engle, 1982) 
which is supposed to be so-called universal model in financial domain. We also tested EGARCH(1,1,1) defined in 
(8). Important to remember that the estimation of these models was only based on 1306 in-sample observations, in 
order to make ex-post predictions with remaining 1304 observations. We used the Marquardt optimization 
procedure for finding the optimal values of ARCH/GARCH parameters. The forecasting ability of particular 
networks was measured by the MSE criterion of ex post forecast periods (validation data set). 

As for models based on neural networks, we implemented three models, each of them was an implementation of 
feedforward neural network of RBF type (Orr, 1996). We implemented three different optimization techniques for 
adaptation of weights (parameters) of this network – genetic algorithm, standard back-propagation algorithm (BP) as 
well as a combination of K-means clustering combined with the back-propagation (KM+BP). We implemented all 
of these algorithms and models by ourselves using the JAVA programming language. The results for out-of-sample 
(ex-post) predictions are stated in Table 1. 

The standard back-propagation algorithm for weights adaptation showed to be a weakness of the network. The 
convergence was very slow (cca 5000 epochs) and in addition to that, it generally converged to any local minimum 
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on the error surface. In addition, this algorithm was very dependent on the initialized random weights. Due to this, 
generally a lot of more epochs was needed to achieve reasonable accuracy compared to K-means + BP.  

Bearing in mind these disadvantages of BP, we also tested K-means, that was used in the phase of non-random 
initialization of weight vector w performed before the phase of network learning. Besides lower MSE, another 
advantage of using K-means upgrade was the consistency of predictions. Moreover, the biggest strength of K-means 
was in the speed of convergence of the network. Without K-means, it took considerably longer time to achieve the 
minimum. However, when the K-means was used, the time (number of epochs) for reaching the minimum was much 
shorter (cca 500 to 1000 epochs). Therefore, the advantage of using K-means together with back-propagation is in 
the speed of adaptivity rather than in better predictions.  

Table 1.  Prediction accuracy of tested models measured by MSE (out-of-sample predictions). 

 Optimizing method 

NN configuration RBF (BP) RBF (KM) RBF (GA) 

(4 – 3 – 1) 4,1471*10-9 3,9282*10-9 4,2028*10-9 

(4 – 5 – 1) 4,1590*10-9 4,2222*10-9 4,1587*10-9 

(4 – 7 – 1) 4,2156*10-9 1,1480*10-8 4,1170*10-9 

(4 – 10 – 1) 4,5086*10-9 7,8121*10-9 4,9923*10-9 

 Error Distribution 

Statistical model Gaussian Student GED 

ARCH(4) 3,8203*10-9 3,8054*10-9 3,8143*10-9 

GARCH(1,1) 3,5058*10-9 3,5175*10-9 3,5099*10-9 

EGARCH(1,1,1) 3,4809*10-9 3,4836*10-9 3,4851*10-9 

 

Having tested also GA in weights adaptation, we found out the convergence was also considerably faster than at 
back-propagation. In addition to that, GA did not have the same problem with scaling as back-propagation. One 
reason for this is that GA generally improves the current best candidate monotonically. It does this by keeping the 
current best individual as part of their population while they search for better candidates.  

However, the accuracy results were not very different from the other two optimization techniques. As according 
to the theory, GA are not bothered by local minimum problem such as BP and as GA are also especially capable of 
handling problems in which the objective function is discontinuous or non-differentiable, nonconvex, multimodal or 
noise; we expected better results than we got. This could, however, be caused due to non-optimized parameters of 
GA. Except for our experiments with the best configuration of GA parameters, we also tested the optimization 
procedure stated in (DeJong, 1990) which was in our case not very helpful. Maybe, testing some other optimization 
procedure for the best parameters of GA would lead to better results of genetic algorithm. The second reason could 
be that the standard unbiased crossover function was used. The biased crossover function stated in (Montana, Davis, 
1989) could enhance our solution. The final comparison of all models is stated in Table 2. 

Table 2.  Final Comparison of out-of-sample (ex-post) predictions. 

 Numerical characteristics  

Model MSE E RMSE E Rank 

RBF (4 - 3 – 1) (BP) 4,1471*10-9 0,00006439 6 

RBF (4 - 3 – 1) (KM) 3,9282*10-9 0,00006267 4 

RBF (4 - 7 – 1) (GA) 4,1170*10-9 0,00006416 5 

ARCH(4) (Student) 3,8054*10-9 0,00006168 3 

GARCH(1,1) (Gauss) 3,5058*10-9 0,00005920 2 

EGARCH(1,1,1) (Gauss) 3,4809*10-9 0,00005899 1 

 
On the validation set the best results were achieved with EGARCH(1,1,1) model (see Table 2) while the worst 

results were achieved with neural network combined with the standard algorithm. However, the differences between 
the results were small and the difference in results between the best and worst model is only about nine per cent.  

Following from that, our suggested neural network model showed to be an efficient and accurate way of 
forecasting time series with conditional volatility in financial domain. But, generally speaking, the statistical models 
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achieved a little bit higher accuracy than the neural networks models. However, the difference was very small and 
the results were almost of the same accuracy is still reasonable and acceptable for use in forecasting volatility which 
plays an important role in managerial decision processes in the finance area. Moreover, a little bit worse results of 
neural network models can be the result of the following factors: 

 non-optimized parameters of GA, which could cause a little bit worse final solution than expected  
 back-propagation as the non-ideal optimization technique for parameters optimization  
 The non-ideals inputs of the neural network coming from the statistical ARCH(4) model  
 The data we chose for our experiments were not “representative“. One cannot eliminate the assumption that 

if we used other data for our experiments the neural network models would outperform the ARCH/GARCH. 
Coming from that, there are more options of how to upgrade this model in the future:  

 Apply other known optimization procedure than into our ANN models.  
 Use and implement more advanced version of this algorithm (to avoid the local imprisonment) 
 Implement the recurrent neural network based on GARCH model, not ARCH (recurrent GARCH-RBF). 
 Implement the error-correction part, i.e. smoothing the error (residual) of the RBF neural network by using 

m-period weighted or exponential or simple moving average such as ,tt
RBF
t ue    )1,0(iidut where 
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1
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4. Conclusion 

We investigated the volatility dynamics of EUR/GBP exchange rate differences. We examined two approaches 
for forecasting high-frequency series with conditional volatility –models based on statistics and ANN models. We 
evaluated the effectiveness of various models with respect to forecasting market risk in the exchange rate market. 

We evaluated three most common statistical models for volatility forecasting – the universal GARCH model, the 
basic ARCH and EGARCH model which is able to model leverage effects. In addition to that, all three models were 
evaluated with Gaussian, Student and GED error distributions. We also suggested several models for forecasting 
time series with conditional volatility with artificial neural networks. Moreover, we constructed neural network with 
three different types of optimization techniques; except for the standard back-propagation, we combined a K-means 
clustering into the ANN to achieve higher accuracy of the network. The reason for incorporating other algorithms 
into the network was that the back-propagation was considered a weakness of the RBF. In addition, we also 
eliminated the back-propagation algorithm by using the genetic algorithm instead. In the final comparison of the 
selected optimization methods both of these upgrades showed to be helpful in the prediction process. 

In our experiment, the statistical approach was more accurate than the ANN models. However, the differences in 
accuracy were very small. None of the considered models performed significantly better than the rest with respect to 
the considered criteria. So the achieved ex post accuracy of neural network models is still reasonable and acceptable 
for use in forecasting systems that routinely predict volatility in managerial decision processes. A little bit higher 
error could be caused by non-optimizing parameters of GA, non-ideal inputs of ARCH model or just due to type of 
data we used. Moreover, neural networks are capable of providing information in the form of forecasts with an 
acceptable degree of uncertainty. They are relatively fast and have the ability to generalize. The implemented ANN 
has also such attributes as computational efficiency, simplicity, and ease adjusting to changes in the process being 
forecast. ARCH statistical models require more costs of development, installation and operation in a management 
system, management comprehension and cooperation, and often a lot of computational time.  
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