
ELSEVIER Theoretical Computer Science 192 (I 998) 3 15-35 I

Theoretical
Computer Science

Interactive foundations of computing

Peter Wegner *

Department of’ Computer Science, Brown Urziversit),, P.O. Box 1910, Proaidence. RI 02912-1910. US.4

Abstract

The claim that interactive systems have richer behavior than algorithms is surprisingly easy
to prove. Turing machines cannot model interaction machines (which extend Turing machines
with interactive input/output) because interaction is not expressible by a finite initial input string.
Interaction machines extend the Chomsky hierarchy, are modeled by interaction grammars, and

precisely capture fuzzy concepts like open systems and empirical computer science. Computable
functions cannot model real-world behavior because functions are too strong an abstraction,
sacrificing the ability to model time and other real-world properties to realize formal tractability.

Part I of this paper examines extensions to interactive models for algorithms, machines, gram-
mars, and semantics, while Part II considers the expressiveness of different forms of interaction.
Interactive identity machines are already more powerful than Turing machines, while noninterac-

tive parallelism and distribution are algorithmic. The extension of Turing to interaction machines
parallels that of the lambda to the pi calculus. Asynchronous and nonserializable interaction are
shown to be more expressive than sequential interaction (multiple streams are more expressive
than a single stream).

In Part 111, it is shown that interaction machines cannot be described by sound and complete
first-order logics (a form of Godel incompleteness), and that incompleteness is inherently neces-
sary to realize greater expressiveness. In the final section the robustness of interactive models in
expressing open systems, programming in the large, graphical user interfaces, and agent-oriented
artificial intelligence is compared to the robustness of Turing machines. Less technical discus-
sion of these ideas may be found in [25-271. Applications of interactive models to coordination,
objects and components, patterns and frameworks, software engineering, and AI are examined
elsewhere [28,29].

The propositions Pl&P36 embody the principal claims, while observations 01 through 040

provide additional insights.

Keywords: Turing machines; Interaction; Coordination; Time; On-line algorithms; Grammars;
Process models; Games; Logic; Models; Incompleteness; Constraints; Emergent behavior;
Empirical computer science

* E-mail: pw@cs.brown.edu

0304-3975/98/$19.00 @ 1998 Published by Elsevier Science B.V. All rights reserved

PZZ so304-3975(97)00154-O

316 P. Wegneri Theoretical Computer Science 192 (1998) 315-351

PART I : MODELS OF INTERACTION

Part I extends models of machines, grammars, and semantics from algorithms to

interaction. We introduce interaction machines as an extension of Turing machines,

extend phrase structure to interaction grammars, and show that interaction cannot be

specified by state-transition semantics.

1. From Turing to interaction machines: Real numbers, real time, and real worlds

Turing machines (TMs) transform finite input strings into output strings by executing

sequences of state-transition instructions (see Fig. 1). They are provided with a finite

initial input string, but cannot accept external input while they compute.

Pl (Turing machines): TMs cannot model interaction since they shut out the world

while computing.

Interactive systems are modeled by interaction machines (IMs) that are simple ex-

tensions of TMs.

Dl (interaction machines): IMs extend TMs by adding dynamic input/output (read/

write) actions that interact directly with an external environment.

Interaction machines may have single or multiple input streams and synchronous or

asynchronous communication, and can differ along many other dimensions, but all IMs

are open systems that express dynamic external behavior beyond that computable by

algorithms.

D2 (interaction histories): Observable behavior of IMs is specified by interaction

histories.
D3 (streams): Sequential histories, called streams, are an interactive time-sensitive

analog of strings.

Turing machine behavior is defined by computable functions on finite input strings,

while interaction machine behavior is defined in terms of interaction histories (see

Fig. 2). It is surprisingly easy to show that interaction machines cannot be reduced to

Turing machines or realized by computable functions.

P2 (interaction machines): Interaction machines cannot be modeled by Turing

machines.

Proposition 2 follows from the fact that finite input strings can always be interactively

extended. IMs cannot be modeled by TMs with a finite initial input. They require an

tape with finite sequence of input symbols

~~~~~~~ 

Fig. 1. Turing machine as a model for algorithmic computation. 



P. Wegnerl Theoretical Computer Science I92 (1998) 315-351 317 

histories (streams) of externally triggered on-line input and output actions 

/ 
Interaction machines described by interaction histories \ 

oracles that sequential histories are streams, incremental commitment 
adversaries can extend finite to unbounded streams natural 

answer questions 

4 
time is modeled as an unbounded, irreversible abstraction processes 

“real time” and “real world” are modeled bv “real numbers” 4 

Fig. 2. Interaction machines and interaction histories. 

infinite input tape whose input is not under the control of the IM and whose acceptance 

(termination) condition cannot be specified by a final state or by infinite repetition of 

a state, as in Buchi automata [22]. To establish P2 it is sufficient to show that IMs 

express mappings between infinite as well as finite strings. 

Interactive behavior cannot be entirely captured by extending finite or infinite map- 

pings of strings. Streams and histories are dynamically evolving partial structures that 

yield new finite forms of behavior not expressible by mappings of strings. The transfor- 

mation semantics of strings is entirely defined by their elements, while that of streams 

(histories) may depend on time, adversaries, oracles, and protocols of interaction. 

01 (streams): The semantics of streams (histories) cannot be expressed by mappings 

(functions) from strings to strings. 

Interaction cannot be expressed by or reduced to transformations (functions). Time 

is a nonfunctional property since the effect of functions (algorithms) does not depend 

on their computation time or on the time at which the effect occurs. Interaction ex- 

tends computing to computable nonjiinctions over histories rather than noncomputable 

Jiuzctions over strings. Airline reservation systems and other reactive systems provide 

interactive services over time that cannot be specified by functions. 

02 (behavior): Interactive behavior includes nonfunctional finite behavior. Functions 

are too strong an abstraction that sacrifices the ability to model time and other real- 

world properties in the interests of formal tractability. They abstract away the ability 

to model autonomous external events, throwing out the baby with the bathwater. 

Driving is a deceptively simple inherently interactive task that can, in the absence 

of traffic, be described by an algorithm specifying when a blindfolded person should 

press the accelerator, turn the steering wheel, or apply the brake. Driving home from 

work without traffic can, in principle, be modeled by off-line rules for closed systems 

that specify when to press the accelerator or turn the wheel. Driving home in traffic 

cannot be reduced to an algorithm even in principle: it depends on incredibly complex 

unpredictable on-line events that are not algorithmically or sequentially describable 

even for finite computations. 

03 (persistence): Persistent agent behavior over time is not algorithmically de- 

scribable, since functions cannot express time and persistence as an inherently time- 

dependent property. 



318 P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 

The correspondence between histories observable by a driver and the behavior they 

cause is not algorithmic even for discrete approximations of finite journeys because the 

set of all possible event histories is not algorithmically describable and the mapping of 

histories onto behavior is not algorithmic (like ants on beaches in Section 8). The idea 

that behavior of agents is determined by uncontrollable external interaction histories 

rather than by inner state transitions is central to models of interactive computing. 

Smart bombs which interactively check observations of the terrain against a stored 

map illustrate the power of interaction. Dumb algorithms become smart agents (em- 
bedded systems) when enhanced by interaction. Algorithms are “dumb” and “blind” 

because they cannot interact while they compute: they are autistic in precluding inter- 

action. In contrast, interactive systems model an external reality more demanding and 

expressive than inner algorithmic transformation rules. 

04 (smartness): Extending algorithms with interaction transforms dumb algorithms 

into smart agents. 

The radical view that Turing machines are not the most powerful computing mech- 

anisms has a distinguished pedigree. It was accepted by Turing, who showed in a 

1939 paper [23] that Turing machines with oracles were more powerful than Tur- 

ing machines. Milner [14] noticed as early as 1975 that concurrent processes cannot 

be expressed by sequential algorithms, while Manna and Pnueli [13] showed that non- 

terminating reactive processes like operating systems cannot be modeled by algorithms. 

The intuition that computing corresponds to formal computability by Turing machines 

(a.k.a. the Church-Turing thesis) breaks down when the notion of what is computable 

is broadened to include interaction. Though Church’s thesis is valid in the narrow 

sense that Turing machines express the behavior of algorithms, the broader assertion 

that algorithms precisely capture what can be computed is invalid. 

Thesis (intuitive computing): Algorithms (Turing machines) do not capture the intni- 

tive notion of computing, since they cannot express interactive computing and intuitive 

computing includes interaction. 

Interaction machine inputs cannot be modeled by sets of finite strings both because 

streams cannot be modeled by strings and because finite sequences can always be 

extended. Interaction machines cannot be modeled by the set of all finite sequences 

(which is enumerable) but are more naturally modeled by infinite sequences, because 

adversaries have the last word and can always extend any finite sequence. The behavior 

of adversaries is better modeled by infinite processes that express the cardinality of 

the real numbers (Cantor diagonalization) than by enumerable sequences. The natural 

numbers are not closed with respect to interactive processes like diagonalization, just 

as the rationals are not closed under algebraic operations. 

05 (closure): Natural numbers are not closed under diagonalization, just like rationals 

under algebra. 

P3 (nonenumerability): The interaction histories of an interaction machine are non- 

enumerable. 

Real numbers were viewed in the 19th century as models of the infinite divisibility 

of continuous mathematical and physical space. Infinite divisibility of finite segments 



P. Wegnerl Theoretical Computer Science 192 11998) 315-351 319 

of continuous physical space and infinite extensibility of discrete physical time give 

rise to dual nonenumerable abstractions of reality, corresponding to real numbers and 

real time. The set of all infinite digit streams is in one-to-one correspondence with both 

the real numbers and the input streams of an interaction machine. Interactive models 

bring out the serendipitous and unexpected connection between real numbers and the 

real world. 

06 (real numbers): Interaction machines model real time and the real world by the 

real numbers: models with infinite divisibility of space have the same cardinality as 

models with infinite extensibility of time. 

2. Beyond on-line algorithms: Complexity, coordination, and constraints 

Algorithms receive their input before the computation starts and produce a unique 

output after a finite number of noninteractive steps [ 111. On-line interactive processes 

are not algorithms because they interact while they compute. But if an on-line process 

together with its environment forms a noninteractive (closed) system, then its interactive 

behavior can be specified by an on-line algorithm. 

D4 (closed-system property): An on-line process P has the closed-system property 

if its accessible environment E can be described algorithmically and P with E forms a 

noninteractive (closed) system. 

P4 (on-line algorithms): On-line processes with the closed-system property are on- 

line algorithms. 

An on-line process P with the closed-system property may be viewed as the state 

transition mechanism of a Turing machine whose environment E is a finite tape. It 

performs algorithmic TM computations. 

On-line algorithms for exploring graphs or maps have been extensively studied [ 181. 

Their complexity is measured by interaction cost rather than instruction execution cost. 

The lower bound on interaction cost of finding a point on a line is the basis for com- 

plexity results of a family of related problems, such as finding a line in a plane or an 

intersection in a Manhattan graph. 

D5 (complexity): Interactive complexity = number of interactive steps (see [ 181 for 

definition). 

Agents for exploring static graphs have the closed-system property and are algo- 

rithms. This closed-system condition can be relaxed, so that the interactive behavior of 

agents that interact with systems evolving according to predictable algorithmic inter- 

actions can be described by on-line algorithms. But the behavior of agents that interact 

with open environments that change unpredictably during the process of computation 

inherently cannot be described by algorithms (see Section 6). 

Two-person games model a form of interactive computing that has been extensively 

studied for both process models [ 151 and on-line algorithms. The result that “games 

against nature” with a polynomial number of moves have Pspace algorithmic 



320 P. Wegneri Theoretical Computer Science 192 (1998) 315-351 

complexity [ 171 illustrates that interactive complexity, defined by the number of interac- 

tive steps, can be dramatically less than algorithmic complexity. Games against nature 

need an oracle to realize polynomial interactive complexity. However, for problems 

(like driving) in which local interactive responses yield acceptable global strategies, 

exponential off-line algorithmic complexity reduces to polynomial (linear) on-line in- 

teractive complexity without the need for oracles. 

PS (complexity): Under suitable locality conditions, problems with algorithmic com- 

plexity NP have interactive complexity P. 

On-line algorithms are a restricted form of algorithmic computing slower than off- 

line algorithms because discovering known information requires computation time. The 

ratio between worst-case on-line and perfect-information off-line computation cost is 

called the competitive ratio. 

However, interactive access to new information is more expressive than both on-line 

and off-line algorithms in providing new data to which the agent must react. Interactive 

systems that do not have the closed-system property respond to real-time events and 

express more than on-line algorithms. 

P6 (dynamic interaction): Dynamic interaction is more expressive than on-line 

algorithms. 

Interaction is a form of lazy (just-in-time) commitment to input values. Whereas 

enforced laziness restricts computation by withholding known data, just-in-time lazy 

access to dynamic data increases flexibility and expressiveness beyond that of algo- 

rithms. Dynamic interaction can be viewed as late (lazy) binding of inputs, in contrast 

to eager binding for noninteractive computation. Lazy binding of resources is a practical 

technique that explains the greater flexibility of interpreters over compilers. Inheritance 

owes its power to lazy binding of subclasses to parent classes. Mobile processes support 

lazy binding to resources as they become dynamically available. 

07 (lazy binding): Lazy interactive binding facilitates flexibility in interpreters, 

inheritance, and mobile processes. 

Coordination [l] is the study of models, languages, and architectures that provide the 

glue for managing interactive behavior [4]. Glue is modeled as an active substance that 

captures properties of protocols, channels, pipelines, blackboards, and other architectural 

primitives of coordination media [28]. 

08 (coordination): Coordination is the interactive analog of transformation for 

algorithms. 

Transformation behavior is specified by functions built up from primitive instruc- 

tions, while coordination behavior is specified by interfaces and protocols that can 

be nonalgorithmic and noncompositional. Coordination behavior cannot be specified 

by composition of primitives, but it can be specified by constraints on a space 

of “all possible behaviors”. Constraints make no assumption about the behavior 

being constrained, specifying desired behavior by progressively constraining the su- 

perset of all possible behavior to a desired form, just as a sculptor progressively re- 

moves material from a block of marble until the desired form emerges [29]. Con- 

straint specification is dual to constructive specification from primitives, capturing 



P. Weynerl Theoretical Computer Science 192 (1998) 315-351 321 

emergent noncompositional behavior not expressible by constructive compositional 

techniques. 

09 (constraints): Constraints on histories specify interaction independently of state 

transitions. 

F’7 (constraints): Constraints can specify nonalgorithmic noncompositional emergent 

behavior. 

The duality between inner bottom-up specification by logic and external top-down 

specification by constraints reflects the duality between algorithmic and interactive 

behavior description. 

3. Extending the Chomsky hierarchy: From speakers to listeners 

Automata are “listening machines” that recognize input sequences accepted by a 

state-transition mechanism, while grammars are “speaking machines” that generate 

strings specified by a phrase-structure grammar. The Chomsky hierarchy determines a 

correspondence between classes of listening mechanisms that recognize strings 

(automata) and classes of speaking mechanisms that generate them (grammars): 

jinite automata +--+ regular grammars 

pushdown automata ++ context-free grammars 

linear bounded automata ++ context-sensitive grammars 

Turing machines +-+ unrestricted grammars (recursively enumerable sets j 
Interaction machines extend the listening power of automata, but there is no gen- 

erative grammar that correspondingly extends speaking power. The listening paradigm 

is more naturally extensible to interaction than the speaking paradigm, since input 

(listening) is a cause of interactive expressiveness while output (speaking) is a con- 

sequence of input. Chomsky’s correspondence between automata and grammars ab- 

stracts away differences between listening and speaking that may legitimately be ig- 

nored for TMs but are necessary for IMs. Interactive extensions of the Chomsky 

hierarchy require distinctions between models of listening and speaking to be re- 

introduced. 

P8 (grammars): Interactive listening machines can express richer behavior than gen- 

erative grammars. 

Interaction grammars (see Section 4) are a radical extension of generative grammars, 

while interaction machines are a simple and natural extension of Turing machines. 

Machines are a more powerful paradigm of computation than grammars, since they 

can be extended more naturally from algorithms to interaction. 

Automata have a state transition mechanism and a tape whose rules of engagement 

are noninteractive: 

automaton = state transition mechanism + noninteractive tape ($nite initial string) 

Automaton classes of the Chomsky hierarchy differ in the nature of the rules of en- 

gagement for accessing their tape. Finite automata require the tape to be read-only, 

pushdown automata permit an unbounded auxiliary pushdown tape, linear-bounded 



322 P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 

sequential interaction machines 
nonserializable interaction machines 

interaction grammars, traces, histories 
nonserializable interaction histories 

Fig. 3. The extended chomsky hierarchy: machines and associated behavior 

automata permit writing but place length bounds on the tape, while Turing machines 

permit unrestricted but noninteractive tape access. 

Interaction machines explore the consequences of relaxing the restriction that au- 

tomata are controlled by noninteractive tapes. We show that interaction enhances 

expressiveness, but that different forms of interaction have observably different ex- 

pressiveness. In particular, sequential interaction controlled by a single stream is less 

expressive than nonserializable interaction of multiple streams. 

010 (multiple streams): Multiple streams are more expressive than a single stream. 

Whereas the expressiveness of Turing machines is not increased by adding mul- 

tiple tapes, the expressiveness of interaction machines may be increased by adding 

multiple streams. Different forms of expressiveness associated with asynchronous and 

nonserializable interaction are discussed in Section 11. 

4. Interaction grammars: Incremental commitment, bisimulation 

and game semantics 

D6 (Generative grammars): G = (N, T, S, P) specifies the syntax of languages L(G) 

over an alphabet of terminals T in terms of nonterminals N, a starting nonterminal 

symbol S, and productions P. 

Example: grammar for binary strings: string -+ empty (O.stringI l.string -- generates 

binary strings 
“.” is string concatenation, while “I” is set union 
Interaction grammars replace generative production rules P for strings by reduc- 

tion rules R for accepting histories (special case streams). Reduction rules cannot ex- 

press interaction histories for problems like driving, but can express restricted forms of 

interaction like that associated with process models or two-person games. Interaction 

grammars for this restricted form of interaction have terminals (input symbols) and 

nonterminals (listening states including the initial state S). 

D7 (Interaction grammars): IG = (N, T, S, R) accepts histories (streams) by reduc- 

tion rules R with a dynamic “listening” operator “.” and a “nondeterministic choice” 

operator “+“. Machines specifiable by grammars IG will be called IG machines. The 

stream grammar below generates infinite streams, expressing servers (reactive systems) 

that react to a continuing stream of O’s and l’s over time. 



P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 323 

Example: grammar for streams: stream ---f (0 + l).stream -- accepts binary streams 

“.” listens for externally controlled input, while “9” expresses incremental choice and 

commitment 

Streams for this class of interaction grammars have the form “init.future(init)” where 

init is a past history, “.” represents the present, and mture(init) is a future set of pos- 

sible worlds. Sequential histories have a past that is a string and a future that is 

an unbounded tree. The tree-structured future is incrementally transformed into a se- 

quential past at each computational step. An input action moves one step down the 

tree, lengthening the init string by the current input and pruning the future tree by 

discarding paths not taken. The interactive “.” operator “listens” for an input while 

“+” irreversibly commits to an actual event chosen from possible worlds when inputs 

arrive. 

011 (time): Interaction grammars IG capture the unboundedness and irreversibility 

of time: 

unhoundedness: because the next step is externally controlled 

commitment and irreversibility: by incremental actualization of possible wor1d.s 

Languages L(IG) for interaction grammars IG specify sets of streams (possible 

worlds) whose semantics differs from strings in capturing the unboundedness and irre- 

versibility of time. Expressiveness for grammars IG has both a static set-inclusion com- 

ponent and a dynamic component captured by the preservation of freedom of choice. 

An IG machine Ml is more expressive than M2 if for every past history init accepted 

by M2, the set of future histories future(init) of Ml includes the future histories of M2. 

Such incremental inclusion of future histories for all past histories is called dynamic 

inclusion. 

D8 (dynamic inclusion): A collection of histories Hl dynamically includes histories 

H2 if Hl has at least as much freedom of choice as H2 for every initial history of H2. 

Dynamic inclusion refines set inclusion to include incremental preservation of free- 

dom of choice. The reductions a.(b+c) and a.b + a.c specify the same set of two 

acceptable strings, but the first dynamically includes the second since it preserves the 

freedom to choose between b and c after receiving a. Dynamic inclusion of histories 

is a natural basis for a definition of interactive expressiveness. 

D9 (expressiveness for sequential (serializable) interaction machines): 

Ml is more expressive than M2 iJ’ and only {f its histories dynamically include 

those of M2 

Ml is observably equivalent to M2 if and only if each dynamically includes the 

other 

Dynamic inclusion is a sufficient as well as a necessary condition for IG-machine 

expressiveness. It specifies the fuzzy notion of observability by a precise notion of 

incremental freedom of choice, which is in turn defined by properties of the operators 
“+X and “.‘1. It provides a working definition of IG-machine observability, fixing the 

granularity of abstraction for observational distinctions. 

P9 (inclusion): Dynamic inclusion refines set inclusion as a measure of expressive 

power. 



324 P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 

Preserving freedom of choice implies lazy commitment (never commit today to some- 

thing that can be decided tomorrow). Lazy commitment is a useful military strategy 

that exploits premature commitment by the enemy. Financial options to exercise future 

choices have a market value. In two-person games the ability to delay commitment is 

the key to a winning strategy. 

012 (laziness): Lazy input + lazy commitment 4 dynamic inclusion 4 two-person 

games. 

Interactive expressiveness can be modeled by a two-person game in which player 1 

controls machine Ml, player 2 controls machine M2, and player 2 wins if she can find 

a sequence of moves on M2 that cannot be replicated by player 1 on Ml. Player 2 may 

be viewed as an omniscient adversary who looks for a move that cannot be matched by 

player 1 at each step. If player 2 cannot find a sequence of moves to defeat player 1, 

then player 1 wins and Ml is as expressive as M2. This game expresses dynamic 

(lazy) commitment because player 2 defeats player 1 if she has greater freedom of 

choice at any move. If player 1 can replicate any sequence of moves of player 2, then 

the machine Ml is said to simulate M2. 

DlO (simulation): Ml simulates M2 if Ml can dynamically match every step of M2. 

Dll (bisimulation): Bisimulation is the condition that Ml simulates M2 and M2 

simulates M 1. 

The idea of observational equivalence as mutual simulation (bisimulation) is due to 

Milner and was formalized by Park [ 151. Two machines that simulate each other are 

observationally equivalent in the sense that they can make the same observational 

distinctions. Bisimulation has finer-granularity observational discriminating power than 

set inclusion, capturing dynamic distinctions among streams specified by an interaction 

grammar that are indistinguishable as strings. It provides a temporal dimension for 

distinguishing among histories that captures the semantic notion of preserving freedom 

of choice. 

PlO (expressiveness): Bisimulation, dynamic inclusion, and game semantics are 

equally expressive. 

The power of game semantics to capture bisimulation and dynamic inclusion is 

surprising but natural because two-person games express the tension between inner and 

interactive cleverness of players and opponents who represent all possible behavior, 

including worst-case behavior of adversaries. Though it refines set inclusion to express 

time-sensitive semantics, the semantics of games and IG machines must be further 

extended to capture the more intricate multiple-input-stream behavior of driving or 

airline reservation systems. 

5. State-transition versus observation structures: Intensional versus extensional 

behavior 

Interactive behavior cannot in general be expressed by state-transition behavior be- 

cause differences of scale and granularity may be too great. Human cognitive behavior 



P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 325 

cannot be expressed by laws of chemistry or by the motion of electrons. The mapping 

between inner and externally observable behavior of agents may be arbitrarily complex, 

depending on the granularity of abstraction. The irreducibility of “observation struc- 

tures” to “state-transition structures” mirrors irreducibility interaction to algorithms. 

Extensional observable effects cannot be captured by intensional operational semantics 

of state transitions: 

D12 (extensional and intensional behavior): 

The intensional behavior of an agent is modeled by a state-transition system 

The extensional behavior of an agent is expressed by interaction histories or 

streams 

Pll (irreducibility): Extensional behavior cannot express intensional behavior and 

vice versa. 

observable behavior of components is not expressible by inner behavior speclji- 

cations 

interaction semantics is not expressible by state-transition semantics or vice versa 

The difference in viewpoint between inner and observable behavior corresponds to 

that between operational and denotational semantics. Algorithms have an operational 

semantics specified by a formal correctness criterion, while correctness of interactive 

systems is unspecifiable even in principle: 

algorithms are formally specifiable though correctness of operational semantics 

is undecidable 

interactive denotations cannot be specified by jrst-order logic or by state-transi- 

tion semantics 

Automata are carefully defined to preserve a one-to-one correspondence between 

state-transition and input-output actions. This assumption of a one-to-one correspon- 

dence between observable input-output actions and inner state-transition actions must 

be abandoned for large-granularity interactive abstractions. State-transition descriptions 

(operational semantics) are inadequate for describing the observable interface behav- 

ior of objects and interaction machines. Interface operations of interactive systems are 

implemented by inner action sequences that may take a significant time or be nonter- 

minating. 

The observation structures of [5] provide a formal model of observability that distin- 

guishes between state-transition and observation structures, But [5] uses state-transition 

structures as a scaffolding decorated by observation structures as a basis for defin- 

ing observation semantics. This limits expressive power because it requires observa- 

tions to be viewed through constraints imposed by state transitions. Observation and 

bisimulation structures defined by direct modeling of what is observed determine an in- 

herently richer class of structures and semantic theories than state-transition structures. 

Structured operational semantics (SOS) specifies behavior at the wrong level of ab- 

straction, since intensional structures are inadequate as a scaffolding for expressing 

extensional patterns of observable behavior. 

The distinction between state-transition and interface-event descriptions of bc- 

havior is particularly significant for concurrency. Interleaving models that reduce 



326 P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 

concurrent to nondeterministic sequential computation may be defined by the condition 

“trl (tr2 = trl.tr2 + tr2.trl” for all transitions trl, tr2. The corresponding condition “alb = 

a.b + b.a” among interface events does not generally hold because state transitions may 

interfere. Concurrent execution “PIQ” of two processes does not in general have an 

interleaving interpretation as “P.Q + QP” because “.” is not a meaningful operator for 

interactive components. 

013 (noninterleaving): Noninterleaving models of concurrency fall into two classes: 

enhanced operational semantics: constraints on inner behavior exclude some in- 

terleaved behaviors 
true concurrency: inherently concurrent, noninterleavable behavior 

Causality, locality, and other constraints on interleaving behavior are examined in 

[6] in the framework of enhanced operational semantics, which, as its name implies, 

considers concurrency at the level of state transitions. True concurrency, which more 

radically violates interleaving semantics by admitting inherently concurrent behavior, 

is closely related to nonserializability of transactions (see Section 9). 

P12 (concurrency): Interleaving models, enhanced operational semantic models, and 

true concurrency have progressively greater expressive power. 

Interleaving models are expressible by sequences (traces) of interface events, en- 

hanced operational semantics imposes constraints on trace sequences, while true con- 

currency expresses interface behavior not describable by traces. Greater expressive- 

ness of nonserializable over serializable histories (discussed in Section 11) 

demonstrates the greater computation power of true concurrency over 

interleaving. 

The semantics of process models is expressed extensionally by traces. Traces are used 

in debugging to expose the noninteractive steps of an algorithm to interactive scrutiny 

by users. The term “traces” describes both sequences of observations of a process 

and debugging traces, since both permit external interaction at each step. Debugging 

traces transform algorithms into interactive processes with greater expressive power. 

The intuition that interaction at debugging checkpoints increases expressive power is 

formally proved by showing that interaction machines are more expressive than Turing 

machines. 

014 (debugging): On-line debugging causes algorithms to behave like interactive 

processes. 

Constructing inner models by outside-in inference methods like abduction [ 191 is at 

best a guess, since many inner mechanisms can cause the same observable behavior. 

Since programming is concerned with building systems inside-out, starting from inner 

state transition models, while specification is concerned with the outside-in description 

of what is to be built, computer science is centrally concerned with bridging the chasm 

between outside-in and inside-out description. However, the gap between inside-out and 

outside-in behavior is formally unbridgeable (neither can be uniformly expressed by or 

reduced to the other). 



P. Wegneri Theoretical Computer Science 192 (1998) 315-351 321 

behavior supplied to all clients complete interaction-machine behavior is unspecifiable 
but interfaces (modes of use) can be simply specified 

b;zi;;$le;;;;; by client q powerful server to handle broad range of chent requests ) 
demanded interface behavior << supplied behavior 

Fig. 4. Supplied server behavior versus demanded client behavior. 

w4 serial even+-3 

dialog between two open agents that together form a closed system 

Fig. 5. Component composition as a constraint on behavior. 

6. Open systems: Nomuonotonicity, duality 

The fuzzy concept “open system” is precisely defined in terms of interaction. 

D13 (open, closed): A system is open iff it is interactive and closed iff it is non- 

interactive. 

Closed systems can become open by removing their parts. Interactiveness is non- 

monotonic, since decomposition of closed noninteractive systems creates open sub- 

systems and composition of open systems may produce closed systems. In contrast, 

concurrency and distribution are monotonic: all subsystems of nonconcurrent non- 

distributed systems also have this property. Nonmonotonicity implies that non- 

interactive (algorithmic) systems may have interactive subsystems whose behavior is 

non-algorithmic. 

An engine of a car may behave unpredictably when a spark plug is removed. Animals 

(or persons) with an established behavior routine may behave erratically in unfamil- 

iar environments. Subsystems with predictable (algorithmic) constrained behavior have 

unpredictable (nonalgorithmic) behavior when the constraint is removed and a greater 

range of possible behaviors must be considered: 

P13 (nonmonotonicity): Openness and interactiveness are nonmonotonic system prop- 

erties. 

The fact that algorithms are not closed under the operation of taking subsystems 

is a lack of robustness, similar to the lack of closure of integers under division and 

of rationals under square root. The relation between closed systems and their open 

subsystems is analogous to that between rationals and reals. 

Interaction machines provide a precise framework for the specification of openness 

and open systems. Openness of server components allows them to interact with clients 

over time. Open systems are designed to handle all clients, while individual clients 

often have simple interface demands. The supplied behavior of interactive systems is 

intractable, while demanded behavior is often quite tractable (see Fig. 4). 



328 P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 

An interactive isolated component 01 becomes a noninteractive system when com- 

posed with a second component 02 so that each talks only to the other (see Fig. 5). 

Each component in isolation interacts freely with clients, while each component of the 

composite system constrains the behavior of the other: 

The set of all possible behaviors of 01, viewed as an isolated system, is non- 

algorithmic. When input to 01 is constrained to be that produced by 02 in response to 

a message stream from 01, 01’s behavior can be tractably described. The component 

02 constrains 01 to closed-system behavior. Algorithmicity is not preserved under 

decomposition of the system compose(O1, 02) into its components 01 and 02, and 

conversely nonalgorithmicity is not preserved under system composition. 

The relation between 01 and 02 is asymmetrical for observers residing in one of the 

objects or when the two objects play different roles, as in client/server or agent/environ- 

ment systems. Two-component systems where each acts as a constraint on the other 

arise in control theory, where isolated systems having richer uncontrolled than con- 

trolled behavior are natural. Composition that causes an open system to become closed 

is a special case of composition that yields open systems that can be further composed. 

There is a duality between uncontrollability by 01 of its environment 02 and the 

uncontrollability by 02 of the inner actions of 01 [7,28]. Inner actions of 01, called 

tau moves in [ 151, cannot be controlled by 02, just as outer behavior of 02 cannot be 

controlled by 01. Inability to control inner behavior of components leads to nondeter- 

ministic output actions by components on the environment, just as inability of compo- 

nents to control their environment is responsible for nondeterministic input actions. 

P14 (duality): Observation/control duality in control theory mirrors algorithm/ 

interaction duality. 

7. Noncompositionality: Specification by constraints, emergent behavior 

Interactive composition “PIQ” of two processes P and Q differs fundamentally from 

composition “P;Q” of two procedures. Whereas “P;Q” specifies sequential composition 

of transformations whose only interaction is passing the baton from P to Q as in a relay, 

“PIQ” specifies composition of persistent subsystems with multiple interactions over 

time. Milner defines composition “PIQ” as “P and Q acting side-by-side, interacting 
in whatever way we have designed them to interact”, recognizing that observable 

interaction rather than unobservable concurrency is the property that process calculi 

must elucidate. 

The term “interactive composition” better expresses component composition than 

“concurrent composition”, since interaction can be observed while concurrency is un- 

observable and is in any case not a required property of interactive systems. Both 

processes and transactions are better expressed in terms of observable interactive prop- 

erties than by unobservable state-transition steps of concurrent execution. 

015 (composition): Process composition is better modeled by noncompositional in- 

teraction than compositional state transitions. 



P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 329 

procedure composition Pl;P2 (noncommutative) process composition Pl IP2 (commutative) 

Fig. 6. Composition of procedures (algorithms) and processes (systems) 

“P;Q” is noncommutative but compositional, while “PIQ” is commutative but non- 

compositional. It creates new (emergent) behavior whose whole is greater than the sum 

of its parts: 

behavior(P1; P2) = behavior(P1) followed by behauior(P2) 

behavior( 0 1 ) 02) = behauior( 01) + behavior( 02) + interaction( 01,02) 

Whereas gluing together (composing) algorithms yields an algorithm, gluing (coor- 

dinating) components to form a subsystem is not compositional: the whole is greater 

than the sum of its parts. 

P15 (noncompositionality): Interactive behavior of processes and persistent com- 

ponents is not compositional. 

The bad news that composite behavior is not expressible by component behavior is 

balanced by the good news that “emergent” behavior can enhance expressiveness. The 

irreducibility of composite wholes to their component parts is a feature of processes, 

objects, and systems (see Fig. 6), just as “emergent behavior” is a feature for neurons in 

the brain [16] and for quantum computers [3]. The fuzzy notion of emergent behavior 

may in fact be precisely defined as noncompositional behavior. 

Compositionality is considered beneficial and indeed essential for constructive math- 

ematics, but is harmful for expressiveness since it constrains the behavior of composite 

systems to be no more than that of their components. Dijkstra’s well-known article “go 

to considered harmful” [8] took it for granted that formalizability was a primary goal 

and that interference with this goal was harmful. However, there is a trade-off between 

formalizability and expressiveness, so that features harmful to formalizability may be 

beneficial for expressiveness. In focusing on expressiveness rather than formalizability 

we invert the metric by which harmfulness is measured and view overemphasis of for- 

malizability as harmful to expressiveness. Harmfulness depends on the goals and point 

of view of the client: 

016 (behavior): Compositionality is beneficial for formalization but harmful for ex- 

pressiveness. Emergent behavior of processes, agents, and software components is in- 

herently noncompositional. 

Compositionality is a nice mathematical property that allows composite structures 

to be specified by “clean” reductionist techniques of mathematical logic and model 

theory. Declarative systems like the lambda calculus are carefully constructed to be 

compositional. But compositionality for structures defined by functions or algorithms 

breaks down for persistent components that interact over time. 



330 P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 

Harnessing already-created components for useful purposes is dual to building a 

composite structure from primitives. Constraints express the sacrifice of freedom for 

discipline to realize collaborative component behavior for both software components 

and people who become cogs (algorithms) in corporations. Marriage constrains the 

freedom of individuals in order to create a collaborative family unit with goal-directed 

behavior. Application frameworks are realized by constraining behavioral freedom of 

classes in class libraries to realize collaborative behavior [29]. 

D14 (frameworks): A framework harnesses library components to realize goal- 

directed behavior. 

P16 (frameworks): Frameworks can be specified by constraints on constituent com- 

ponents. 

Viewing composition as a constraint on interactive behavior provides a systematic 

basis for modeling, dual to algorithm composition. Each interactive composition step 

constrains the behavior of composed components to a subset of their free behavior. 

Specification by constraints uses the counterintuitive contravariant principle “less is 

more” as a basis for analysis and design. Constraints are more powerful because they 

are applicable to noncompositional behaviors. Michelangelo’s sculptures, realized by 

chipping away a marble slab, could not have been realized by gluing together small 

bits of marble. 

PART II : VARIETIES OF INTERACTION 

In Part II we examine a variety of interactive models, ranging from interactive 

identity machines to process models and asynchronous and nonserializable interactive 

systems. We show that concurrency and distribution are orthogonal to interaction, pro- 

vide new perspectives on process models, and explore a hierarchy of different levels 

of interactive expressiveness. 

8. Interactive-identity machines: Pure interaction, judo, and reusability 

D15: Interactive-identity machines (IIMs) immediately output their input without 

transforming it. 

IIMs show that pure interaction without any computation can express very powerful 

behavior. IIMs are simple transducers that realize nonalgorithmic behavior by harness- 

ing the computing power of the environment. They employ the judo principle of using 

the weight of adversaries (or cooperating agents) to achieve a desired effect. IIMs can 

be specified in a variety of language notations: 

loop input(message); output(message); end loop -- specification by a loop 

while true do echo input end while -- specification by a while statement 

P = in(message).out(message).P -- recursive specification as a concurrent process 

Mathematically, IIMs are the interactive analog of free algebras. Identity allows max- 

imal scope for making observational distinctions among outputs, for the same reason 



P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 331 

that free algebras have maximal homomorphisms onto subalgebras. Both interaction 

machines and free algebras preserve maximal distinctions among inputs in their out- 

puts. Computation decreases observational differences through many-to-one mapping, 

just as homomorphism decreases algebraic distinctions. The free behavior of IIMs can 

be progressively constrained by computation to realize restricted forms of behavior that 

perform specific tasks, but observational distinguishability is greatest when no compu- 

tation whatsoever is performed. 

IIMs trivially model Turing machines by simply echoing their behavior. 

P17 (identity): Interactive identity machines can express richer behavior than Turing 

machines. 

IIMs can echo the behavior of both computable and noncomputable processes in the 

environment. Echoing or imitating behavior is a powerful technique of problem solving 

in both people and computers. The behavior of Eliza, called “echo intelligence”, can 

be realized by IIMs with simple echo rules. 

017 (Eliza): Eliza uses interactive identity in simulating dialogs between patients 

and psychiatrists: 

Person: I urn often very depressed. 

Computer: Is it because you ure often very depressed that you came to see me? 

It is easy to dismiss echo intelligence as an illusory trick having nothing to do with 

computing or real intelligence, but in the context of interactive models of computation 

we see that echo intelligence (reusability) is an important principle, framework, and 

mechanism for practical problem solving. Telephone receivers are in a very real sense 

as expressive as the conversations they transmit. 

018 (reusability): IIMs and echo intelligence realize problem solving by reusability. 

The behavior of ants on beaches [21,27], can be specified as the composition of an 

ant and a beach process by an interactive composition operator “II”: 

unt 11 heuclz 

The beach constrains the ant to specific goal-directed behavior. The ant traces out a 

sequential path that is in principle completely determined once the ant is placed on a 

particular point of a particular beach. Though beaches are closed systems, beaches are 

not algorithmically describable and ant-beach systems do not have the closed-system 

property. Paths of ants on beaches are not algorithmically describable. 

P18 (agents): Agents interacting with nonalgorithmic systems have nonalgorithmic 

behavior. 

The problem of driving home from work has a similar structure to that of the ant 

finding its way home to an ant colony. It has the form “driver 11 city” where the driver 

plays the role of the ant and the city plays the role of the beach. Though the abstraction 

of a city adequate for purposes of driving is algorithmic, driver-city systems do not 

have the closed-system property because of dynamic interaction with other cars and are 

nonalgorithmic. The composite system “driver 11 city” is an open system since the city 

plan does not model traffic, while the system “ant I/ beach” is a closed system since 

beaches are presumed unchanging over time (though they are changed by tides and 

storms). 



332 P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 

An interaction machine (or person) knowing no chess can win half the games in a 

simultaneous chess match against two masters by echoing the moves of one opponent 

on the board of the other [27]. Chess machines make use of intelligent input actions 

through one interface to deliver intelligent outputs through another. They harness the 

intelligence of one player to respond intelligently to a second player. Chess machines 

have the closed-system property and are in principle algorithmic, but because their algo- 

rithmic complexity is intractable, players are modeled as interactive systems that solve 

algorithmically intractable problems by heuristically acceptable interactive techniques. 

The composite behavior of psychiatrists and patients has the form “doctor 11 patient”. 

The composite behavior of an interactive chess machine with a player has the form 

“chess 11 player”. In each case simple interactive processes have complex behavior be- 

cause they are composed with an environment that is nonalgorithmic or open or (in 

the case of chess) algorithmically intractable. Interactive identity machines express the 

“pure” case of a transparent identity process I that takes on the behavior of a process 

with which it interacts. IIMs act as the identity element of process algebras: 

I (1 process = process 

Interactive identity machines realize the “management paradigm”: managers harness 

and coordinate workers and resources in the environment without necessarily under- 

standing them in precisely the way an interaction machine harnesses behavior in its 

environment. The composition of a manager M with m workers Wi and n resources Ri 

can be represented algorithmically or interactively: 

bf(Wl,..., Wm,Rl , . . . ,Rn) = MI1 Wl 1) . . .I1 Wm(lRlII . . . ()Rn 

The right-hand side expresses the traditional view of managers as algorithmic co- 

ordinators of workers and resources. The left-hand side, which views managers as 

processes that interact through worker and resource processes, expresses a richer class 

of potential behaviors. 

P19 (management): Interactive management is more expressive than rule-based man- 

agement. 

The expressiveness of IIMs is dependent on external resources, while algorithms 

are self-reliant. High achievement, whether by machines or people, can be realized by 

self-sufficient inner cleverness only for “small” problems: scaling up to “large” prob- 

lems requires harnessing the environment. Collaborative achievements of embedded 

computers, corporations, or nations are dependent on the effective use of an environ- 

mental infrastructure (it takes a village!). Inner restructuring techniques like structured 

programming are not as scalable as interactive restructuring. Interactive systems are 

more scalable than algorithms not only in computing but also in physics and social 

engineering. 

019 (scalability): Large-scale restructuring by CEOs and presidents of large organ- 

izations is interactive, focusing primarily on interaction among subunits of the organ- 

ization. 



P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 333 

9. Interaction, parallelism, distribution: Correctness conditions for transactions 

Parallelism and distribution specify inner structure, while interaction specifies inter- 

face behavior. 

interactive systems interact with an external environment that they do not control 

parallelism (concurrency) is the property that computations qf a system overlap 

in time 

distribution is the property that components of a system are geographically or 

logically separate 

P20 (orthogonality): Interaction, parallelism, and distribution are orthogonal forms 

of behavior. 

Interaction may occur without parallelism or concurrency, as in IIMs. Parallel al- 

gorithms for matrix algebra, graph reachability, or maximum flow are noninteractive, 

receiving all their input before the computation starts. They increase execution speed 

and computational richness but not expressiveness. 

Noninteractive distributed systems likewise increase computational richness but not 

expressiveness. Distributed algorithms for leader election or consensus as described in 

[ 121 are noninteractive, being concerned with processes that interact among themselves 

but not with an external environment. The many rich and worthwhile textbooks and 

courses on parallel and distributed algorithms focus without exception on noninteractive 

problems to ensure that the computations being analyzed are algorithmic. 

020 (algorithms): Parallel and distributed algorithms are noninteractive. 

On-line processes are algorithms only when the process together with its environment 

is closed. Discovering the shortest path in a graph or a map for a finite fixed environ- 

ment is an on-line algorithm because the agent together with its environment is closed. 

The complexity of on-line algorithms for agents that construct internal models of a 

fixed finite external world is analyzed in [ 181 and other papers. However, the problem 

becomes an open nonalgorithmic problem if edges of the graph can be deleted by a 

malevolent adversary (roads can be closed because of snow). Though the development 

of on-line algorithms for closed finite environments is a challenging research problem, 

interactive object-oriented and agent-oriented models of software engineering and Al 

are inherently nonalgorithmic. 

The recognition that interaction rather than parallelism or distribution is the key el- 

ement in providing greater behavioral richness is a nontrivial insight that requires a 

reappraisal of the role of parallelism and distribution in complex systems. The horizon- 

tal base plane of Fig. 7 includes many interesting and important algorithmic systems, 

while systems not in the base plane are nonalgorithmic. 

Modeling transaction correctness by concurrency expresses this problem at the wrong 

level of abstraction, since serializability is an implementation-dependent criterion of 

correctness. Viewing transactions as atomic noninteractive units substitutes interaction 

control for concurrency control as a correctness criterion. Noninteractiveness is locally 

checkable, while nonserializability is a global condition. 



334 P. Wegneri Theoretical Computer Science 192 (1998) 315.351 

interactive (external inputs) 
4 

interaction is nonalgorithmic even for identity machines, 
open, on-line, reactive, empirical models of computation 

sequential algorithms 9 
distributed 

) 
(separated in space) 

/ 

noninteractive parallelism and distribution are algorithmic 
express inner noninteractive system properties 

parallel (simultaneous in time) 

Fig. 7. Design space for interactive, parallel, and distributed computing. 

serializability: implementation-dependent interface with a scheduler, global condition 
operational, implementation-dependent semantics of correctness 

atomicity: implementation-independent interface with a client, local constraint 
applicable to nested and typed transaction models, broader notion of equivalence 

noninteractiveness: interaction constraint, implies incremental algorithmicity 
can be incrementally relaxed to broader notion of correctness allowing controlled interaction 

Fig. 8. Transactions correctness as an interaction constraint. 

The correctness condition for transactions was first expressed in terms of serializ- 

ability (equivalence to a serial computation). Lynch [12] suggested that serializability 

was needlessly implementation-dependent and that atomicity provided a higher-level 

correctness condition with certain technical advantages, focusing on local rather than 

global properties of components. Atomicity bridges the gap between state-transition 

and interaction models, since it can be described either by uninterruptability of state- 

transition actions or by noninteractive granularity of observation. 

“Local noninteractiveness,” which views transactions as piecewise noninteractive lo- 

cally algorithmic segments, presents transaction correctness in a new light as a condi- 

tion for noninteractive and therefore locally algorithmic behavior. Its outward-directed 

focus on absence of interaction goes Mher than atomicity in freeing itself from de- 

pendence on state-transition semantics. Viewing transaction correctness as interaction 

control, expressed by absence of interaction rather then atomicity of state transi- 

tions, suggests models for transaction correctness different from that of concurrency 

control. 

021 (correctness conditions): serializability ---t atomicity + local noninteraction 

Local noninteractiveness directly implies local algorithmicity, providing an immediate 

rationale for this correctness condition that invites extension to limited interactiveness 

that preserves locally algorithmic behavior. In contrast, limited atomicity is inconsistent: 

atomicity cannot be relaxed incrementally. It is easier to manage and monitor controlled 

interactiveness than controlled nonatomicity (see Fig. 8). 

Applications like collaborative text editing that violate transaction atomicity are more 

naturally expressed by constraints on interaction protocols (interaction control) than by 

constraints on concurrency of state transitions (concurrency control). 



P. Wegnerl Theoretical Computer Science 192 11998) 315-351 335 

P21 (transactions): Interactive correctness conditions are more natural than serializ- 

ability. 

10. Process models: Elements of interaction, unicasting 

Milner’s seminal paper on process models [14] anticipated that functions cannot 

express meanings of processes and that histories play a role in specifying the semantics 

of concurrency. Processes expressed by “P + a.P” are streams with an initial action 

a and future history P. Alternating input and output actions are given by “stream + 

input.output.stream” or by the interaction grammar “game + player2.playerl .game”, 

which describes game streams in which the opponent makes the first move. 

Process models [15] specify the semantics of a single act of interaction by substitu- 

tion of an argument for a variable, as in lambda calculus reduction: 

reduction rule: lambda( applied to N + substitute N for x in M ----f send N 

to receive(x)M 

In Milner’s calculus for communicating systems (CCS), and its later refinement the 

pi calculus [ 151, the receive command binds values dispatched by a send command by 

extending intra-process to inter-process substitution. The connection between a receiv- 

ing process P and a sending process Q, indicated in the lambda calculus by textual 

proximity, is specified by a channel name, say n: 

interactive reduction rule: n_receive(x)M.P j n_send(N).Q ---f (subst N Jk)r 

x in M). P 1 Q 

Though the substitution effect of sending a value from a source to a destination is the 

same between as within processes, this semantics fails to model the control structure for 

establishing communication channels. Channels are established by a nondeterministic 

“broadcasting protocol” that dynamically binds senders to eligible receivers at message 

transmission time, thereby facilitating process mobility. 

We call broadcasting followed by committed rendezvous between a sender and re- 

ceiver “unicasting”. The restriction that only a single receiver gets the broadcast mes- 

sage, which differs from the permissive receipt of messages by all receivers in radio and 

television broadcasting, views broadcast messages as nonreusable entities consumed by 

receivers. Unicasting is a method of advertising a sales commitment to a single pur- 

chaser that invites matching by a symmetric commitment of a buyer. Unicasting ensures 

nonreusability of messages, interactive commitment characteristic of open systems, and 

irreversibility of time. 

022 (CCS): CCS models computing by algorithmic reduction and interactive uni- 

casting. 

The “uni” of unicasting refers to commitment to a unique communication action 

rather than to a unique receiver. An extension to multi-party communication that pre- 

serves the uniqueness of commitment preserves the essence of unicasting. From a 

semantic viewpoint, unicasting specializes the “.” operator to symmetrically triggered 

input actions and complementary output actions. Both the sender and receiver broad- 



336 P. Wegnerl Theoretical Computer Science I92 (1998) 315-351 

cast their availability for communication, symmetrically narrowing their choice from a 

set of offered alternatives to a specific commitment. Irreversibility becomes a property 

of the act of communication that applies symmetrically to both senders and receivers 

rather than an asymmetrical property of input actions. 

Unicasting is an interdisciplinary interaction paradigm for incremental narrowing 

of possible to actual worlds that reflects the asymmetry of time. It is a pervasive 

mechanism in nature that triggers biological, chemical and computational interaction. 

It models biological binding in DNA, where affinity between complementary pairs 

A-T and C-G determines binding of DNA sequences [27]. It models biological coupling 

between males and females where each partner broadcasts promiscuous availability but 

makes a commitment to just a single partner, as well as reproductive coupling between 

sperm and eggs. Chemical binding of positive and negative ions is likewise realized 

by unicasting to all ions of opposite polarity. 

023 (unicasting): Unicasting is a robust communication primitive in both real and 

artificial worlds. 

P22 (unicasting): Unicasting models computational, chemical, biological, and sexual 

interaction. 

Living organisms are defined in biology textbooks by the property of interacting with 

their environment [20]. Proteins and nucleic acids (DNA, RNA) are structured to sup- 

port chains of interactive elements at the molecular level, using the idea of “backbones” 

whose role in providing hooks for interaction is similar to that of network backbones. 

Reproduction is an extremely complex process of interactive matching among several 

billion base-pairs of a chromosome chain. Interaction requirements dominate function 

requirements in determining the form of chromosomes and other biological structures. 

More generally, software architectures for both application-independent software engi- 

neering and application-dependent domains like biology have characteristic interaction 

patterns determined by interaction requirements. 

024 (architectures): Network and chromosome architectures have “backbone” inter- 

action patterns. 

Viewing biological and other domains in terms of their interaction patterns rather 

than state-transition rules can provide useful qualitative insights and new forms of 

abstraction for computational models. Biological problems of alignment and protein 

folding conform to interaction constraints that identify algorithmic regularities in a 

nonalgorithmic space of interactive possibilities. 

The pi calculus generalizes CCS by transmitting names rather than values across 

send-receive channels, while preserving unicasting as the control structure for commu- 

nication. Since variables may be channel names, computation can change the channel 

topology and process mobility is supported. The unicasting protocol for binding names 

captures the semantics of mobile processes and of server processes whose ports are 

bound to senders at message-receiving time. 

The pi calculus is a coordination calculus that aims to express “who” communicates 

by extending algebraic laws developed to express “what” is communicated. Focusing 

on the problem of “who” processes communicate with turns out to allow the question 



P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 337 

action terms: A -> x_send(z).P __ send z on channel x, then do P 
x_receive(y).P -- substitute received name for y in P, then do P 

terms: P -> Al + A2 + ___ An -- alternative (nondeterministic) actions 
Pl IP2 -- interactive composition 
hide(y)P -- restriction (hiding) 
!P __ replication (arbitrary number of compositions) 

Fig. 9. Syntax of the pi calculus. 

of “what” is communicated to be handled as a tractable subproblem. However, calculi 

for names have an imperfectly understood interactive semantics while calculi for values 

have a well-understood algorithmic semantics. 

P23 (names): The pi calculus for names is an interactive analog of the CCS calculus 

for values. 

The pi calculus is more complex than CCS because it contains rules for nondeter- 

minism, information hiding, and replication with no analog in the lambda calculus. Its 

syntax may be defined as in Fig. 9. 

The basic computation step (message passing by substitution of values (names) for 

the bound variable y in the receiver) is the analog of the substitution of arguments for 

bound variables in the lambda calculus. However, the control structure that determines 

when interactive steps are executed has an elusive and inherently nondeterministic 

semantics. The similarity between lambda and pi calculus computing steps represents 

the tip of an iceberg whose submerged computing engine must cope with broadcasting, 

hiding, nondeterminism and many other semantic communication issues entirely absent 

from the lambda calculus. 

025 (pi calculus): The pi calculus expresses interactive, nonalgorithmic behavior of 

process models. 

Milner’s recognition of the importance of identifying the “elements of interaction” 

and his pursuit of this goal by extension of the lambda calculus provide remarkable 

insights into the foundations of interaction but are a beginning rather than a com- 

plete foundation for interactive computing. Though the simplicity and power of the pi 

calculus is aesthetically appealing, its primitives are too low-level to specify real inter- 

active applications, just as lambda calculus primitives are too low-level for algorithmic 

applications. 

Calculi based on interleaving semantics like the pi calculus are limited in their ex- 

pressiveness because they do not model true concurrency. Though interleaving models 

are more powerful than algorithmic models, they are less expressive than true concur- 

rency. Interleaving models can be expressed by traces, while nonserializable systems 

are expressible only by more powerful nonserializable histories. 

Both the pi calculus and interaction machines extend the Church-Turing model to 

interaction, but the pi calculus extends the lambda calculus while interaction machines 

extend Turing machines. The equivalence of Church and Turing models for algo- 

rithms does not extend to interactive computation because nonserializable nonatomic 

operations with duration cannot be expressed by lambda calculus extensions based 

on interactive reduction and unicasting that yield trace-based interleaving models of 



338 P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 

Fig. 10. Interactive extensions of the Church-Turing model. 

semantics. The impact of state on expressiveness is greater when state can persist 

over the life cycle of a systems and is sharable among nonatomic operations having 

duration than when state is local to a single execution of an algorithm (a single inter- 

action). Multiple processes with persistent shared state can express forms of interactive 

concurrency not expressible by stateless models that realize interleaving concurrency 

(see Fig. 10). 

P24 (pi calculus): The pi calculus has the expressive power of serializable interaction 

machines. 

The pi calculus expresses interleaving semantics but not nonserializable true con- 

currency. Our definition of expressiveness for sequential interaction machines by inter- 

leaving semantics, bisimulation, and game semantics suggests that this robust criterion 

of expressiveness also covers the pi calculus. 

026 (shared state): Interaction machines realize more powerful interaction than the 

pi calculus. 

11. Asynchronous and nonserializable interaction: Physics as interactive 

computation 

Since models of physics and computation differ only in the inner structure of com- 

ponents, it is not surprising that they have related models of interaction. Newtonian, 

relativistic, and chaos/quantum models of physics have models of interaction related 

to synchronous, asynchronous, and nonserializable computing. 

Synchronous versus asynchronous interaction distinguishes systems on the basis of 

global (Newtonian) time versus relativistic time. Sequential versus nonserializable in- 

teraction distinguishes systems along a different dimension related to physical models 

of chaos: both model sensitivity to initial conditions. 

Synchronous systems have a global notion of time like SIMD and MIMD systems, 

while asynchronous systems have a local notion of time associated with each software 

component but no global notion of time. Note that synchronous versus asynchronous 

message passing is a weaker notion that provides local synchrony between senders 

and receivers but falls short of the global synchrony of a synchronous system, which 

requires synchronous execution of all instructions. 

P25 (asynchrony): Asynchronous is more expressive than synchronous interaction. 



P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 339 

Fig. 11. ATM system as an asynchronous interaction machine. 

The behavior of distributed systems with no global notion of time clearly includes 

synchronous systems with global time as a special case. Distributed systems with auto- 

nomous components have no notion of global time, though they can agree on a com- 

mon approximate time by clock-synchronization algorithms. Interaction histories of 

asynchronous systems are richer than those of synchronous systems. 

Synchronous adversaries control “what” inputs an agent receives, while asynchronous 

adversaries additionally control “when” an input is received. Asynchronous adversaries 

who can decide when to zap you are interactively more powerful than synchronous 

adversaries who merely control content and not time. 

Nonserializable interaction, illustrated by the familiar example of a joint bank ac- 

count, is conceptually very different from asynchronous interaction. Suppose that a joint 

bank account contains $1.5 million and that two clients simultaneously try to withdraw 

$1 million at different ATMs. Assume that the withdrawal process requires adjusting 

an investment portfolio and is therefore not instantaneous (see Fig. 11). A transaction 

system could in principle handle this situation by satisfying only one client and abort- 

ing the transaction of the other. But concurrent interactive systems cannot be presumed 

to be transactionally well behaved: we must model and manage breakdown of transac- 

tional behavior, just as psychologists must model and manage nervous breakdown in 

people, and physical systems must cope with chaos. 

Transactions are a computational mechanism for handling system overload caused by 

multiple simultaneous demands on a resource. The effect of concurrent potentially con- 

flicting operations opl, op2 of an object can, in the absence of transaction atomic&y, 

be arbitrary and chaotic. Behavior becomes nonserializahle in that it does not corre- 

spond to any sequential execution of the operations opl and 0~2. Nonserializability of 

concurrently executed operations of an object’s interface specializes nonserializability 

of database transactions by considering only atomicity of interface operations, but is 

essentially similar. 

Though nonserializable behavior is considered undesirable in many contexts, it is 

more expressive (observably richer) than serializable behavior and can be harnessed 

for useful purposes. Aborting a transaction or replacing a time-consuming optimal algo- 

rithm by an approximate just-in-time algorithm is a technique for managing nonserial- 

izable behavior. Aborted transactions and just-in-time functions replace ideally desired 

functionality by less desirable functionality that can be serializably realized. 

P26 (nonserializability): Nonserializable is more expressive than serializable inter- 

action. 



340 P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 

Fig. 12. Chaotic two-dimensional motion of steel pendulum in a magnetic field. 

aborting transactions to achieve serializability may eliminate desirable expressive- 

ness 
Transaction management systems that guarantee atomicity are safe but often too con- 

servative. Permiting some degree of controllable nonserializability, just like permitting 

some unsound behavior in tasks like error checking, can be worthwhile. For example, 

optimistic concurrency-control systems lower their guard on the assumption that no 

conflicts occur and pay for this by requiring drastic and time-consuming actions when 

this assumption is violated. High-achieving people, like efficient computers, operate 

close to the margins of nonserializability and pay the price of greater stress and a 

higher incidence of nervous breakdowns than person opting for comfort at the expense 

of achievement. 

027 (nonserializability): Nonserializability enhances expressiveness but compromises 

safety. 

Nonserializability causes unobservable and uncontrollable temporal sensitivity in ac- 

cessing a shared resource (the object’s state) that is analogous to chaos in physics: 

sensitivity among competing clients to shared computing resources corresponds to 

sensitivity among competing forces on a shared physical object. The pattern of 

competing access to shared resources in the bank account example arises in the well- 

known demonstration of physical chaotic behavior of Fig. 12, which illustrates a two- 

dimensional pendulum (steel ball) in the presence of two magnets. The magnets Ml, 

M2 correspond to the operations opl, 0~2, while the steel ball corresponds to the state. 

The magnets exert two streams of impulses on the steel ball, just as operations exert 

streams of impulses on the object’s state. 

Chaotic behavior in physics is modeled by nonlinear differential equations. The dif- 

ferential equations for a pendulum have a linear first-order behavior but non-linear 

second-order terms when the first-order terms cancel each other. Pendulum behavior is 

linear when in the force field of one of the magnets but non-linear (chaotic) in regions 

where the force fields cancel each other out. 

Nonserializability combined with information hiding gives rise to inherent non- 

determinism analogous to the nondeterminism of quantum theory. Interference of light 

passing through two slits on a screen has the same interference structure as the ex- 

amples of magnets and bank accounts, with slits playing the role of operations (mag- 

nets) and the screen serving as the shared state. Though the inner details of behavior 

for quantum theory and chaos are very different, the interference between competing 

attempts to access a shared resource is similar, giving rise to similarity in the style of 

associated computational models. 



P. Wegner I Theoretical Computer Science 192 (1998) 315-351 341 

The boundary between Turing and interaction machines corresponds to that between 

closed and open subsystems, while that between synchronous and asynchronous ma- 

chines corresponds to that between Newtonian models with absolute time and relativis- 

tic models whose frames of reference have local time. Though relativistic effects are 

negligible for distributed systems (unless distributed across spaceships), the principle 

that time is relative to a frame of reference with a subjective notion of simultaneity 

and an objective notion of causality applies to both physical and computational objects. 

Insights derived from interactive models of computation could well prove useful 

in the study of foundations of physics, since incompleteness, asynchrony, nonserial- 

izability, and abstraction effects of interaction are similar in physics and computing. 

Incompleteness distinguishes between empirical and formal models and asynchrony 

distinguishes between synchronous and asynchronous models, while nonserializability 

is the cause of interference effects responsible for the phenomena of both chaos and 

quantum theory. 

028 (physics): Interactive models of computing are strongly related to models of 

physics. 

incompleteness: distinguishes empirical interactive models from jbrmal algorithmic 

models 

asynchrony: distinguishes models with universal time from jrames of reference with 

relutive time 

nonserializability: expresses interference among competing interactions, character- 

istic of chaos 

abstraction: hiding of inner actions causes nondeterminism, granularity causes quan- 

tum eflects 

The nondeterminism of quantum theory is due to abstraction effects that make 

“chaotic” interference inherently unobservable. Quantum effects in physical theories 

arise because abstractions have a minimal granularity imposed by limitations of ob- 

servability. They do not occur in systems whose granularity of abstraction is defined 

by the designer rather than by physical laws, but distributed models whose observation 

granularity is system-defined could in principle give rise to computational quanta. 

P27 (physics): Distinctions among Newtonian, relativistic, chaos, and quantum-theory 

models of physics can be characterized by styles of interactive computing. 

The often-asked question of whether the universe is deterministic can be expressed in 

terms of the question, “Is the universe an open or a closed system?’ In the real world 

no system is entirely deterministic since it is open to disturbance from an external 

environment, but we can for practical purposes study systems like the solar system 

as closed deterministic systems. When this question is asked about the universe, it 

becomes a question about whether the universe is closed or open in the topological 

sense of containing its limit points. If it is topologically closed it has a chance of being 

deterministic, while if it is topologically open it cannot be deterministic because it is 

subject to unpredictable external forces. 

029 (openness): Open computing models provide an interdisciplinary basis for ex- 

pressing interaction. 



342 P. Wegneri Theoretical Computer Science 192 (1998) 315-351 

open mathematical space: geometrical region that does not include its external 
limit points 
open physical model: physical system subject to external forces 
open interactive model: computing system subject to external inputs 
open society: society whose norms can evolve as a result of experience 
P28 (openness): Openness in mathematics, physics, and computing has a common 

foundation. 

PART III : INCOMPLETENESS AND ROBUSTNESS 

Incompleteness is viewed as a positive attribute of interactive systems necessary for 

expressiveness rather than as a negative obstacle to formalization. Interactive expres- 

siveness provides a robust basis for a broad class of models that parallels the robustness 

of Turing machines. The bipolar robustness of algorithmic and interactive models cor- 

responds to the distinction between closed and open systems, programming in the large 

and programming in the small, rationalism and empiricism, etc. 

12. Incompleteness of interactive models: Limitations of logic, 
program correctness 

Incompleteness implies that reducing systems to logic is not merely overambitious 

but inherently unachievable. The goals of research on formal methods must be modified 

to reflect that completely proving interactive correctness is not merely impractical but 

actually impossible. For example, the goals of the fifth-generation computing project of 

expressing interactive systems by logic are not merely hard to realize but unachievable 

in their pure form [24]. 

030 (proofs): All proofs are expressible by programs, but not all programs have 

correctness proofs. 

P29 (logic): Logic is too weak to model interactive computation. 

Formal reasoning, like algorithmic computing, is a noninteractive step-by-step process 

from a starting point to a result. Though rules of inference are chosen nondeterministi- 

tally while algorithm execution is deterministic, this tactical difference of control does 

not give rise to strategic differences of expressiveness. Both algorithms and proofs are 

closed systems that exclude interaction during problem solving: 

031 (mapping logic into computation): 
logical system 4 programming language 
well-formed formulae 4 programs 
theorem to be proved + initial input 
rules of inference + nondeterministic rules of computation 
proofs --+ sequential algorithmic computations 



P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 343 

soundness: 
R captures behavior all behavior in W is caumred bv R 

modeled world W (semantics) 

Soundness + Completeness Implies Reducibility of Semantics to Syntax 

Fig. 13. Relations between syntax and semantics in logical models 

Models in logic and computation aim to capture semantic properties of a modeled 

world by syntactic representations for the pragmatic benefit of users. Interactive models 

may have multiple pragmatic modes of use (interfaces), while logics have a single 

pragmatic interpretation determined by the syntax. 

D16 (models): A model M= (R, W, I) expresses representations R of modeled 

worlds W interpreted by human or mechanical interpreters I. R, W, I specify the 

syntax, semantics, and pragmatics of the model. 

This definition extends logical and algorithmic models specified entirely by syntax 

and semantics, adding a pragmatic component that expresses the role of environments, 

observers, users, and interpreters [30]. 

Logical formulae are interpreted as true/false assertions about a modeled world of 

functions and predicates. Formulae true in all models (interpretations) are called tau- 

tologies. Theorem proving expresses reasoning about tautologies by syntactic rules for 

proving whether or not a formula is derivable by rules of inference from axioms. 

D17: A logic is sound if all provable formulae are tautologies, complete if all 

tautologies are provable. 

Soundness and completeness relate syntactic representations R to their semantic mod- 

eled worlds W, though they capture only properties true in all modeled worlds and 

have little to say about properties of specific modeled worlds. Soundness ensures that 

representations correctly model behavior of their modeled worlds, while completeness 

ensures that all possible behavior is modeled. Soundness and completeness together 

ensure that a representation correctly captures all behavior in the world being modeled. 

But completeness restricts semantics to closed modeled worlds completely express- 

ible by a representation independently of external (empirical) influences. It constrains 

modeling power to syntactically expressible behavior (see Fig. 13). 

Soundness ensures that syntactic proofs are semantically correct, while completeness 

ensures that all semantic meaning is syntactically expressible: completeness measures 

the comprehensiveness of the proof system in expressing semantic meaning. Soundness 

and completeness together imply that W is reducible to R (the semantic world W is 

equivalent to and no richer than its representation R). Reducibility of W to R implies 

completeness of R in expressing W, while incompleteness implies irreducibility. 

Though first-order logics have an uncountable number of models, the number of 

theorems provable from axioms is recursively enumerable. If the logic is both sound 

and complete, then there is a one-to-one correspondence between syntactic theorems 



344 P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 

and semantically true assertions for all models, and the number of true assertions 

expressible by theorems is recursively enumerable. 

P30 (models): Sound and complete models have an enumerable number of true 

statements. 

Godel proved incompleteness using a diagonalization argument to show that true 

statements were not recursively enumerable [lo]. Incompleteness of interaction ma- 

chines follows from the stronger property that the set of computations are not enu- 

merable. The incompleteness proof for interaction machines is actually simpler than 

Godel’s, following directly from nonenumerability of infinite sequences. Since inter- 

action machines are more strongly incomplete than integers, incompleteness is easier 

to show. 

P31 (incompleteness): Interaction machines have no sound and complete first-order 

logic. 

032: Irreducible, noncompositional, open, empirical, or interactive systems are 

necessarily incomplete. 

Incompleteness of interaction machines is strongly related to both noncompositional- 

ity and emergent behavior. All three concepts are simply alternative ways of describing 

system behavior for which the whole is greater than the sum of its parts. Composi- 

tionality allows the whole to be completely specified in terms of the sum of its parts 

and therefore implies completeness, while noncompositionality means that the whole 

cannot be completely specified by its parts. Emergent behavior is behavior that emerges 

noncompositionally from component behavior and cannot be completely captured by 

compositional formal systems. 

Godel’s incompleteness result for arithmetic over the integers is a particular case 

of a broad class of incompleteness results that brings out the fundamental limitations 

of completeness. Incompleteness is a necessary price to pay for modeling independent 

domains of discourse whose semantic properties are richer than the syntactic nota- 

tion by which they are modeled. Completeness is possible only for a restricted class 

of relatively trivial logics over semantic domains reducible to syntax. It restricts be- 

havior to that describable by algorithmic proof rules. Models of the real world and 

even of the integers sacrifice completeness in order to express autonomous (external) 

meanings. 

Complete describability, compositionality, and nonemergence of new behavior are 

seen to be equivalent restrictions on expressiveness. The converse properties of incom- 

plete describability, noncompositionality, and emergent behavior are equivalent charac- 

terizations of unformalizable expressiveness. Computing goes beyond logic in providing 

systematic techniques for dealing with unformalizable systems. 

033 (incompleteness): Incomplete systems express richer behavior than complete 

systems. 

complete = compositional = no emergent behavior = formalizable 

incomplete = noncompositional = emergent behavior = unformalizable 

Logics that find errors in programs illustrate that soundness and completeness, though 

well defined, are often abandoned for practical reasons. Error-finding logics are sound 



P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 345 

if they generate error messages only when the program has an error and complete if 

they discover all errors: 

D18 (error-checking logics): 

soundness: if error message then error 
completeness: if error then error message 
P32 (errors): Systems for finding errors in programs are neither sound nor complete. 

Though soundness and completeness are well defined by the condition that er- 

ror messages occur if and only if there is an error, neither is practically useful. 

Sound logics conservatively exclude useful error messages for which soundness can- 

not be guaranteed, while complete logics recklessly generate many spurious (unsound) 

error messages. Practical systems are neither sound nor complete, generating some 

erroneous messages and missing some errors to strike a balance between caution and 

aggressiveness. 

The reasons for abandoning soundness and completeness in this domain bear fur- 

ther analysis. Our goal is to check that a syntactically defined error-detection system 

captures an independent ssemantic notion of error. Since the semantic notion cannot 

be precisely defined it cannot be completely formalized, but the semantic notion of 

error can be syntactically approximated. In choosing our approximation we avoid the 

extreme conservatism of soundness and the extreme permissiveness of completeness by 

compromising (in both the good and bad senses of the word) between conservatism 

and permissiveness. 

034 (type 1 and type 2 correctness): Proofs of existence of correct behavior (type-l 

correctness) are generally easier than proofs of the nonexistence of incorrect behavior 

(type-2 correctness): 

type- 1 correctness: prove existence of desired behavior, local soundness property, 
often provable 
type-2 correctness: prove nonexistence of incorrect behavior, global completeness, 

rarely provable 
Insisting on type-l correctness in all contingencies (soundness) is too conservative, 

since the existence of correct behavior in favorable circumstances is sufficient. Insisting 

that all error messages of an error-detection system necessarily correspond to errors is 

too conservative, while insisting that airline reservation systems work correctly in all 

possible contingencies (including power failures) is too expensive. 

The study of incomplete systems has been strongly resisted on the grounds that 

we should not attempt to analyze, much less build, systems whose behavior we cannot 

prove correct. However, practical techniques for design and implementation rarely guar- 

antee correctness. We live in a world where correctness cannot be guaranteed and use 

ad-hoc testing heuristics to increase the probability of correctness. Guaranteed correct- 

ness can rarely be unachieved for real applications. The distinction between algorithmic 

and interactive systems corresponds to that between toy and real systems and also to 

that between systems with guaranteed and probable correctness. 

Result checking of behavior after it occurs is an important practical correctness 

technique in cases where it is applicable. Techniques for systematic on-line result 



346 P. Wegner I Theoretical Computer Science 192 (1998) 315-351 

checking will become an increasingly important practical supplement to off-line testing 

and verification [2]. Since getting the right answer cannot be algorithmically guaranteed 

by a priori correctness proofs, a posteriori methods of interactive checking for rightness 

of the answer become increasingly important. 

035 (result checking): Interactive (just-in-time) correctness checking will become 

important. 

Result checking that proves properties of computer-generated “theorems” differs from 

traditional interactive theorem proving that uses interaction to prove a statically deter- 

mined result. The extension of theorem proving to interactively generated evolving re- 

sults is the formal analog of extending algorithms to interaction. Proving that computed 

data has certain properties extends the notion of theorems to moving targets and allows 

interactive focusing on what actually occurs rather than on sets of all possible events. 

036: Proving interactive theorems extends interactive theorem proving. 

Formal logic studies processes of inference guaranteed to be valid because of their 

logical form independently of their subject matter (formal logic -+ logical form). For- 

mal logic is explicitly nonempirical: it is concerned with “laws of thought” true in- 

dependently of the empirical propositions being reasoned about. Since techniques of 

problem solving and model building generally depend on domain-specific properties not 

expressible by logic, formal logic cannot express general domain-specific modeling. 

037 (domains): Formal logic models logical form, while interaction models non- 

logical content. 

13. Robustness of interactive models: Programming in the large and empirical 

computer science 

The robustness of Turing machines in expressing algorithms, functions, and logic 

is paralleled by an equal robustness of interaction machines in expressing software 

systems, AI agents, and empirical models. Each left-hand-side concept of Fig. 14 is 

more expressive than the corresponding right-hand-side concept. Moreover, left-hand- 

side concepts can be uniformly modeled by a universal interaction machine, just as 

right-hand-side concepts can be uniformly modeled by a Turing machine (universal 
algorithm machine). Interaction machines define a robust notion of expressiveness for 

left-hand-side concepts just as Turing machines provide robust expressiveness for right- 

hand-side concepts. 

038 (robustness): Software systems, AI agents, and open systems have the same 

expressive power. 

P33 (robustness): Interaction has many alternative models with the same expressive 

power. 

The greater expressiveness of interactive over algorithmic computing has been exten- 

sively explored. We briefly examine each of the other dichotomies of Fig. 14, defining 

terms where necessary. 

open systems > closed systems 



P. Wegner I Theoretical Computer Science 192 (1998) 315-351 341 

4 
Interactwe problem solvmg 
open systems 
prqgrammm in the large 
object-base programmmg b: 
interfaces, coordination > 

has richer 
behavior than 

algonthmlc problem solving 
closed systems 
programmmg m the small 
procedure-onented programming 
functions, transformation 

Fig. 14. Robust expressiveness of interaction and Turing machines. 

A computing system is said to be open if its behavior during the process of com- 

putation depends on external information and closed otherwise. Turing machines and 

algorithms with inputs are closed (their actions do not depend on external interaction), 

while interactive systems are open. Mathematically, open systems have free variables 

while closed systems have only bound variables. 

programming in the large > programming in the small 

Programming in the small (PIS) is algorithmic, while programming in the large (PIL) 

is interactive. A sequence of a million arithmetic operations is not PIL, while medium- 

size embedded software systems are. PIL systems are necessarily interactive but not 

necessarily large. PIL is not simply scaled-up PIS; it has qualitatively different program 

structures and models of computation. The irreducibility of interaction to algorithms 

implies inexpressibility of PIL by PIS. Scaling up shifts attention from inner activities 

within components to interaction among components. PIL was observed to differ from 

PIS as early as the 1960s but the difference was viewed as a quantitative change of 

scale. Expressing the difference as a qualitative change of expressiveness explains the 

observed inability to scale up from algorithms to software systems. 

P34 (systems): Software engineering systems have interactive, nonalgorithmic 

models. 

object-based programming > procedure-oriented programming 

Interaction machines model objects while Turing machines model functions and pro- 

cedures. Interaction machines provide a unifying model for objects in software engi- 

neering and agents in AI. 

interfaces, coordination > functions, transformation 

Interfaces plays a role in system specification analogous to that played by functions in 

specifying algorithms. Coordination behavior is the interactive analog of transformation 

behavior. Semantics of an interactive system is specified by all possible coordination 

behaviors, just as semantics of an algorithm is specified by all possible transformation 

behaviors. Coordination is concerned with constraining nonalgorithmic interaction so it 

can be managed and harnessed for useful purposes. 

distributed artijicial intelligence (agent-oriented programming) > logic-based AI 

The paradigm shift in AI from logic and search to interactive models is not merely 

a tactical change but is a strategic paradigm shift from closed algorithmic to more 

expressive interactive models. The reasoning/interaction dichotomy is precisely that 

between good old-fashioned AI and “modem” agent-oriented AI. This paradigm shift 

is evident not only in research, but also in textbooks that systematically reformulate AI 



348 P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 

in terms of intelligent agents [ 191. In AI just as in software engineering the transition 

from toy problems to practical applications involves a shift from purely algorithmic to 

interactive models. 

039 (paradigm shift): The algorithm/interaction paradigm shift permeates all areas 

of computing. 

scientljk modeling paradigm > logical reasoning paradigm 
philosophical empiricism > philosophical rationalism 
The dichotomy of algorithmic versus interactive models extends to rationalist versus 

empirical models in physics and philosophy. Interactive models are the computational 

analog of the 17th-century liberation of the natural sciences from the Platonic world 

view. The extension from synchronous to asynchronous and nonserializable interaction 

corresponds to that from the Newton/Laplace model as a synchronous deterministic 

clock and the relativity/quantum/chaos model as an asynchronous nondeterministic 

system. Relativity replaces the synchronous Newtonian model by asynchronous ob- 

servers with independent frames of reference, while quantum theory and chaos reflect 

nondeterminism and sensitivity to initial conditions: 

Plato/Descartes models + NewtonlLaplace models + relativityjquantumlchaos 
theory 

algorithmic models -+ synchronous interactive models + asynchronousjnon- 
serializable models 
The paradigm shift from algorithmic to interactive (empirical) models occurs in many 

disciplines as they mature. Computer science provides a normative interdisciplinary 

framework for better understanding the conceptual foundations of such paradigm shifts. 

It is a lingua franca for modeling that allows common features of interactive models 

in a variety of disciplines to be uniformly expressed. 

The philosophical intuition that empirical models are more expressive than rational- 

ist models can be precisely stated and proved in computational terms. In expressing 

rationalist versus empiricist models by “algorithms versus interaction” we reduce fuzzy 

philosophical distinctions to crisp concepts of computation, showing that empiricism is 

in a precise sense more expressive than rationalism. 

P35 (empiricism): The intuition that empiricism extends rationalism can be proved 

for computing. 

Irreducibility establishes the intellectual legitimacy of empirical computer science 

by freeing researchers from the obligation of expressing their models in algorithmic 

terms. It establishes computer science as a discipline distinct from mathematics and, by 

clarifying the nature of empirical models of computation, provides a technical rationale 

for calling computer science a science. 

P36 (empirical CS): Interaction machines precisely characterize empirical computer 

science. 

The paradigm shift from algorithms to interaction has sparked Kuhnian debates be- 

tween proponents of algorithmic theory and interactive practice concerning both in- 

tellectual legitimacy and funding. Though limitations on the role of formalism appear 

to provide ammunition against theoretical research and imply that certain kinds of 



P. Wegnerl Theoretical Computer Science 192 (1998) 315-351 349 

theoretical research such as attempts to reduce object-based to functional or logic pro- 

gramming should be abandoned, better understanding of the role of theory can in fact 

refocus theoretical research to support practice more effectively, just as it has done in 

the natural sciences. 

040 (research): Models of interaction can refocus research to serve practice more 

effectively. 

Computing technology has undergone a paradigm shift from complete mathematical 

models to incomplete but more expressive interactive models. Escape from the Tur- 

ing tarpit into a new interactive dimension enriches the design space of models of 

computing so that applications can be more effectively expressed. Moreover, focusing 

on interaction patterns can often provide useful qualitative insights and new abstraction 

frameworks. Domain-specific models of biology as well as domain-independent models 

of software engineering take on new meaning when components are viewed in terms of 

how they interact rather than in terms of what they compute [28,29]. Interaction ma- 

chines express the paradigm shift from algorithms, logic, and mathematics to empirical 

interactive models in a natural and simple form. 

Appendix: List of propositions 

This list of propositions provides a profile of differences between algorithmic and 

interactive models. Many are simply alternative statements of the thesis that inter- 

action is more expressive than algorithms. Collectively these propositions show that the 

interactive computing paradigm requires traditional assumptions about the nature of 

computing to be fundamentally revised. 

Propositions 

Pl (Turing machines): TMs cannot model interaction since they shut out the world 

while computing. 

P2 (interaction machines): Interaction machines cannot be modeled by Turing ma- 

chines. 

P3 (nonenumerahility): The interaction histories of an interaction machine are non- 

enumerable. 

P4 (on-line algorithms): On-line processes with the closed-system property are 

on-line algorithms. 

P5 (complexity): Under suitable locality conditions, problems with algorithmic com- 

plexity NP have interactive complexity P. 

P6 (dynamic interaction): Dynamic interaction is more expressive than on-line 

algorithms. 

P7 (constraints): Constraints can specify nonalgorithmic noncompositional emergent 

behavior. 

PS (grammars): Interactive listening machines can express richer behavior than gen- 

erative grammars. 



350 P. Wegnerl Theoretical Computer Science I92 (1998) 315-351 

P9 (inclusion): Dynamic inclusion refines set inclusion as a measure of expressive 

power. 

PlO (expressiveness): Bisimulation, dynamic inclusion, and game semantics are 

equally expressive. 

Pll (irreducibility): Extensional behavior cannot express intensional behavior and 

vice versa. 

P12 (concurrency): Interleaving models, enhanced operational semantic models, and 

true concurrency have progressively greater expressive power. 

P13 (nonmonotonicity): Openness and interactiveness are nonmonotonic system prop- 

erties. 

P14 (duality): Observation/control duality in control theory mirrors algorithm/inter- 

action duality. 

P15 (noncompositionality): Behavior of processes and persistent components is not 

compositional. 

P16 (frameworks): Frameworks can be specified by constraints on constituent com- 

ponents. 

P17 (identity): Interactive identity machines can express richer behavior than Turing 

machines. 

P18 (agents): Agents interacting with nonalgorithmic systems have nonalgorithmic 

behavior. 

P19 (management): Interactive management is more expressive than rule-based man- 

agement. 

P20 (orthogonality): Interaction, parallelism, and distribution are orthogonal forms 

of behavior. 

P21 (transactions): Interactive correctness conditions are more natural than serializ- 

ability. 

P22 (unicasting): Unicasting models computational, chemical, biological, and sexual 

interaction. 

P23 (names): The pi calculus for names is an interactive analog of the CCS calculus 

for values. 

P24 (pi calculus): The pi calculus has the expressive power of serializable interaction 

machines. 

P25 (asynchrony): Asynchronous is more expressive than synchronous interaction. 

P26 (nonserializability): Nonserializable is more expressive than serializable inter- 

action. 

P27 (physics): Distinctions among Newtonian, relativistic, chaos, and quantum-theory 

models of physics can be characterized by styles of interactive computing. 

P28 (openness): Openness in mathematics, physics, and computing has a common 

foundation. 

P29 (logic): Logic is too weak to model interactive computation. 

P30 (models): Sound and complete models have an enumerable number of true 

statements. 

P31 (incompleteness): Interaction machines have no sound and complete first-order 

logic. 



P. Wegner I Theoretical Computer Science I92 (I 998) 315.-351 351 

P32 (errors): Systems for finding errors in programs are neither sound nor complete. 

P33 (robustness): Interaction has many alternative models with the same expressive 

power. 

P34 (systems): Software engineering systems have interactive, nonalgorithmic mod- 

els. 

P35 (empiricism): The intuition that empiricism extends rationalism can be proved 

for computing. 

P36 (empirical CS): Interaction machines precisely characterize empirical computer 

science. 

References 

[I] J. Andreoli, C. Hankin, D. Le Metayer, Coordination Programming: Mechanisms, Models. and 

Semantics, 1996. 

[2] M. Blum, Result Checking, MIT Distinguished Lecture, 1994. 
[3] G. Brassard, A Quantum Jump in Computer Science, Lecture Notes in Computer Science 1000. Springer, 

Berlin, 1995. 
[4] P. Ciancarini, Coordination models and languages as software integrators, Comput. Surveys 28 (1996) 

300-302. 
[5] P. Degano, R. DeNicola, U. Montanari, Universal axioms for bisimulations, Theoret. Comput. Sci. 114 

(1993) 63-91. 
[6] I’. Degano, C. Priami, Enhanced operational semantics, Comput. Surveys 28 (1996) 352-354. 
[7] T. Dean, M. Wellman, Planning and Control, Morgan Kaufman, Los Altos, CA, 1991. 

[S] E. Dijkstra, Go to considered harmful, CACM 1968. 
[9] D. Garlan, Research directions in so&ware architecture, Comput. Surveys 27 (1995) 257-261, 

[lo] K. Godel. On formally undecidable propositions of Principia Mathematics and related systems, 

translation of 1931 article in Monatshefte fur Mathematik und Physik, in: M. Davis (Ed.), The 

Undecidable, Raven Press, New York, 1965. 
[1 l] D. Knuth, The Art of Computer Programming, vol. 1, Addison-Wesley, Reading, MA, 1968. 
[12] N. Lynch, Distributed Algorithms, Morgan Kaufman, Los Altos, CA, 1996. 
[13] Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems, Springer, Berlin, 1992. 
[ 141 R. Milner, Processes: a mathematical model of computing agents, in: Logic Colloquium ‘73, 

North-Holland, Amsterdam, 1975. 
[15] R. Milner, Elements of interaction, CACM 36 (1993) 78-89. 
[16] M. Minsky, The Society of Mind, Simon and Schuster, New York, 1986. 
[17] C. Papadimitriou, Games against nature, J. Comput. System Sci. 31 (1985) 288-301. 
[IS] C. Papadimitriou, M. Yannakakis, Shortest paths without a map, Theoret. Comput. Sci. 84 ( 1991) 

127-150. 
[ 191 S. Russell, P. Norvig, Artificial Intelligence: A Modem Approach, Addison-Wesley, Reading, MA, 1994. 
[20] J. Setubal, J. Meidanis, Introduction to Computational Molecular Biology, PWS, Boston, MA, 1997. 

[21] H. Simon. The Sciences of the Artificial, 2nd ed., MIT Press, New York, 1982. 
[22] W. Thomas, Automata on infinite objects, in: J. Van Leeuwen (Ed.), Handbook of Theoretical Computer 

Science, vol. B, MIT Press, New York, 1990. 
[23] A. Turing, Systems of logic based on ordinals, Proc. London Math. Sot., 1939. 
[24] P. Wegner, Tradeoffs between reasoning and modeling, in: Agha, Wegner, Yonezawa (Eds.). Research 

Directions in Concurrent Object-Oriented Programming, MIT Press, New York, 1993. 
[25] P. Wegner, Interaction as a basis for empirical computer science, Comput. Surveys 27 (1995) 45-48. 
[26] P. Wegner, Interactive foundations of object-based programming, 1EEE Computer 28 (1995) 70 -72. 
[27] P. Wegner, Why interaction is more powerful than algorithms, CACM 40 (1997) 80-91. 
[28] P. Wegner, Interactive software technology, in: Handbook of Computer Science and Engineering, 

CRC Press, Boca Raton, IL, 1996. 
[29] P. Wegner, Frameworks for active compound documents, Brown University TR-97-01, January 1997. 
[30] P. Wegner, The expressiveness of models, Brown University, Technical Report, August 1997, 

www.cs.brown.edu/people/pw. 


