
doi: 10.1016/j.procs.2016.05.381

Efficient Skyline Query over Multiple Relations

Jinchao Zhang1,2, Zheng Lin()1, Bo Li1, Weiping Wang1, and Dan Meng1

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China

{zhangjinchao,linzheng,libo,wangweiping,mengdan}@iie.ac.cn

Abstract

Skyline query on multiple relations, known as skyline join query, finds skyline points from join
results of multiple data sources. The issue of skyline join query has been extensively studied.
However, most of the existing skyline join algorithms can only perform query on two relations,
and ignores the common occasion which involves more than two relations. In this paper, we
propose an efficient skyline join algorithm Skyjog, which is applicable for query on two or
more relations. Skyjog can quickly identify most of skyline join results with simple calculation.
Extensive experiments demonstrate that Skyjog outperforms the state-of-the-art skyline join
algorithms on two and more than two relations.

Keywords: Skyline Query, Group Division, Multiple Relations

1 Introduction

Skyline query aims to find interesting points from the given dataset. For example, a tourist
traveling to the seaside is looking for a hotel that is not only cheap but also close to the beach[1].
The process of finding interesting hotels is skyline query, and the price and distance are regarded
as skyline attributes.

In some applications, skyline attributes belong to multiple relations, and the issue of com-
puting skyline results on multiple relations is termed as skyline join query. There are many
skyline join algorithms, while most of them are limit to two relations. Though two algorithms
S2J-M [7] and S3J-M [7] have been proposed for skyline join on more than two relations, they
are just the simple extension of existing two-relation skyline join algorithms.

In this paper, we study the issue of skyline join query over multiple relations, and propose
an efficient skyline join algorithm Skyjog based on group division approach. For each relation,
tuples are grouped according to the join attribute. Skyjog divides these tuples into several
partitions depending on the dominance relationships of inter-group and intra-group. Based on
the properties of group division, tuples generated by some join combinations are guaranteed to
be skyline points. To obtain the final result, Skyjog only has to check tuples that are generated
by other join combinations. Benefiting from the group division approach, Skyjog efficiently
reduces the size of intermediate results and avoids much redundant computation.

Procedia Computer Science

Volume 80, 2016, Pages 2211–2215

ICCS 2016. The International Conference on Computational
Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2016
c© The Authors. Published by Elsevier B.V.

2211

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.381&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.05.381&domain=pdf

2 Related Work
Some of the prior work on skyline join query include [3],[4], [5],[8],[2],[6] and [7]. Although
these algorithms compute skyline results using different approaches and techniques, they try to
improve performance by avoiding redundant computation and reducing intermediate datasets.
In the following, we review some representative algorithms.

The skyline join query was firstly studied by Jin et al. [3]. Jin et al. [4] developed non-
blocking algorithms for skyline queries on equi-joins. Vlachou et al. [8] proposed an algorithm
SFSJ which is inspired by SFS algorithm [2]. Nagendra and Candan [6] introduced a concept
of layer/region pruning (LR-pruning) for skyline join queries. Based on this pruning approach,
the authors proposed S2J algorithm and S3J algorithm in the same literature. Base on the
work [6], Nagendra and Candan proposed two algorithms S2J-M and S3J-M in [7], which are
the first and the only existing algorithms for skyline join on more than two relations.

3 Preliminaries
Let R denote a relation, and B denote the attribute set of R. Let τ and τ ′ denote tuples in
R. We can claim that the tuple τ ′ is dominated by τ , denoted as τ ≺B τ ′, if the following
conditions are satisfied simultaneously, 1) τ.ai ≤ τ ′.ai

1, 2) ∃aj , τ.aj < τ ′.aj , where ai, aj ∈ B,
and τ.ai denotes the value of τ on the attribute ai. The skyline query of R with respect to B

is defined as SKYB(R)= {τt| � ∃τk s.t. τk ≺B τt, τt, τk ∈R}. The attributes in B are termed as
skyline attributes. For simplicity, we use SKY(R) instead of SKYB(R) in this paper.

For skyline join query, the skyline attributes are distributed over multiple relations. For
example, for the query on M relations R1, R2, ..., RM , the set of skyline attributes consists of M
disjoint sets, B1, B2, ..., BM , where Bi is the skyline attribute set of Ri. Intuitively, the result
can be calculated by performing skyline query on the join result of these M relations, which is
SKY B1∪B2∪...∪BM

(R1 � R2 � ... � RM)2. However, such an approach of calculating skyline
join result is inefficient, since the join operation of M relations leads to a large intermediate
dataset.

As stated in [3], for skyline join on two relations, each relation is partitioned into groups in
terms of the join attribute, i.e., tuple τ and tuple τ ′ are in the same group if the join attribute
of them are the same. We claim that τ is a local skyline point if it is not dominated by other
tuples of its group, and τ is a global skyline point if it is not dominated by other tuples of all
groups. Tuple τ belongs to one of three cases3, a) LSS, τ is both a local skyline point and a
global skyline point. b) LSN, τ is a local skyline point, but not a global skyline point. c) LNN,
τ is not a local skyline.

4 Our Solution

4.1 The Amendment on Previous Work
Let LSS(Ri) denote the LSS tuples of relation Ri, and LSN(Ri) denote LSN tuples of relation
Ri. The existing skyline join query algorithms in [3] and [8] are based on the property of
LSS(R1) � LSS(R2) ⊆ SKY(R1 � R2) (property 1) and LSS(R1) � LSN(R2) ⊆ SKY(R1 � R2)
(property 2), where R1 and R2 are joinable relations. However, we find that property 2 does
not always hold. As shown in Figure 1, the HID and TID are join attributes for R1 and R2

respectively, and the rest are skyline attributes. We note that the tuple (A,5,10) belongs to
LSS(R1) , and the tuple (A,5,3) belongs to the LSN(R2), but (A,5,10) · (A,5,3)4 is not a
skyline tuple, since it is dominated by (B,5,10) · (B,4,2).

1Small values are preferable in this paper.
2Join referred in this paper indicates equi-join operation.
3LSS, LSN and LNN are denoted as LS(S), LS(N) and LN(N) in original paper.
4The symbol ’·’ is the join operator for two tuples.

Skyline Query over Multiple Relations J Zhang et al.

2212

Figure 1: An example for skyline join query

The property 2 holds if we put a restriction on relations, the vector consisting of all skyline
attributes of the tuple is unique in inter-group , i.e., for a tuple τ in group A, then there does
not exist a tuple τ ′ in other groups that τ.ai is equal to τ ′.ai, for any ai ∈ B. The following
statements and datasets in experiments comply with this restriction.

4.2 Foundation of Our Algorithm

The two properties (property 1 and property 2) make it possible for identifying a portion of
skyline join results before join operation. For skyline join on two relations, R1 and R2, each
relation is partitioned into two groups, LSS and LSN (LNN is pruned, see Section 3). Tuples
generated by three out of four join combinations, LSS(R1) � LSS(R2), LSS(R1) � LSN(R2),
and LSN(R1) � LSS(R2), are guaranteed to be skyline points. We only have to examine
tuples in LSN(R1) � LSN(R2), then the results of skyline join on R1 and R2 are obtained.

However, employing the group division approach for skyline join on more than two relations
is a bit complex. For skyline join on M relations, R1 and RM are head relation and rear relation
respectively, they only have the join relationships with one relation. The join attribute of R1

is termed as right join attribute(rj). Similarly, the join attribute of RM is termed as left join
attribute(lj). Each of other relations has both lj attribute and rj attribute simultaneously.

In order to utilize the group division approach, relations have to be partitioned in terms
of a join attribute, this join attribute is termed as division attribute(DA). The join attribute
used for current join operation is chosen as DA. The skyline join on M relations is shown in
Figure 2. In each step, the first two relations are selected as the left operand and right operand
for join operation respectively. Then the intermediate result is served as left operand in next
processing step. We notice that all relations excluding R1 serve as the right operand in join
operation. Thus, these relations use lj attribute as DA, only R1 uses rj attribute for group
division. Similar to skyline join on two relations, LNN of the head relation and rear relation
are pruned, since tuples in LNN cannot contribute to the final results as well. However, tuples
of LNN in other relations have an opportunity to generate a skyline point.

The left operand (denoted as L) contains two parts LSS and LSN, while the right operand
(denoted as R) has one more part LNN, if this operand is not the rear relation. Tuples generated
by LSS(L) � LSS(R), LSS(L) � LSN(R), and LSN(L) � LSS(R) are still guaranteed to
be skyline points in L � R, and belong to LSN(L � R). Tuples generated by other join
combinations, LSS(L) � LNN(R), LSN(L) � LSN(R) and LSN(L) � LNN(R), have to be
determine further, and we use U to denote the set of all these uncertained tuples. If tuple t
in U belongs LNN(L � R), then it will be discarded. Otherwise, t will be put in partition
of LSS(L � R) or LSN(L � R), depending on if t is a global skyline point or not. Then
LSS(L � R) ∪ LSN(L � R) will be the left operand in next step.

Figure 2: Skyline join query on multiple relations

Skyline Query over Multiple Relations J Zhang et al.

2213

5 Performance Evaluation
Experiments are conducted on a Linux server with a 2.2 GHz CPU, 32GB RAM. We modify
the tool written by Börzsöny [1] to generate experimental datasets. The datasets are generated
based on independent, correlated and anti-correlated distributions. The number of relations
involved in each query varies from 2 to 4. The join rate5 ranges from 0.1 to 0.5. The cardinality
of each dataset is 100k.

We use the state-of-the-art algorithms for performance comparison. They are S2J and
S3J for skyline join on two relations, S2J-M and S3J-M for skyline join on more than two
relations. These four algorithms employ the B-tree index for join operation. However, we find
that B-tree is not efficient. Thus, we improve these algorithms by utilizing hash approach for
join operation, and name them as S2JH , S3JH , S2J-MH and S3J-MH respectively.

5.1 Evaluation of queries on two relations
Experiments are carried out on two 3-dimensional relations, and the two relations have the
same distribution. The execution time of the algorithms is shown in Figure 3.

As expected, the Skyjog algorithm outperforms other alternatives on all datasets. It is about
one order of magnitude faster than S2J and S3J on independent and correlated distribution
(Figure 3(a) and Figure 3(b)), and is about 3 times faster than S2J and S3J on anti-correlated
distribution (Figure 3(c)). This result demonstrates that the group division approach utilized
by our algorithm has an remarkable effect on performance promotion, since group division can
avoid much point comparison, and it also reduces the number of intermediate tuples generated
by join operation.

The S2JH algorithm and S3JH algorithm result in about 50 percent performance improve-
ment compared to S2J and S3J , and this can be explained that the average search time for
hash index is O(1), while that is O(log(n)) for the B-tree index. Thus, S2JH and S3JH are
more efficient.

Figure 3: Skyline join query on 2 relations

5.2 Evaluation of queries on more than two relations
In this subsection, we evaluate the algorithms on 4 relations, and use only one join rate 0.1 in
this experiment. The execution time of the algorithms is shown in Figure 4.

We can see that Skyjog outperforms other competitive algorithms on all datasets, and the
algorithms with the hash index are superior to corresponding algorithms with the B-tree index.
To be specific, the execution time of Skyjog barely changes with various dimensions. However,
the execution time of other algorithms rapidly increases with the growth of dimensions. The
largest performance gap between Skyjog and others occurs on datasets with 4 dimensions, as

5Join rate is the proportion of tuples in a dataset that will be involved in join result.

Skyline Query over Multiple Relations J Zhang et al.

2214

Figure 4: Skyline join query on 4 relations

shown in Figure 4(b). Skyjog is about two orders of magnitude faster than other algorithms.
This can be explained that group division prunes most of the points before join operation, while
S2J−M(H) has to perform the join operation on all outer relations(see [7] for details) without
any point pruning. On independent and anti-correlated distributions, the execution time of all
algorithms increases as the the number of dimensions varies from 2 to 4. Since the cardinality
of skyline results rapidly increases with the growth of dimensions, and the group division used
by Skyjog starts being less effective.

6 Conclusion
This paper studies the issue of skyline join query processing. We propose an efficient algorithm
Skyjog, which performs skyline join on two or more relations. Skyjog is based on the group
division approach, and achieves a significant performance improvement by reducing the size of
intermediate results and avoiding redundant computation. Extensive experiments demonstrate
that Skyjog performs well on various datasets, and outperforms the state-of-the-art algorithms
on all experimental datasets.

Acknowledgments
This work is supported by the National KeJiZhiCheng Project (2012BAH46B03), the Na-
tional HeGaoJi Project (2013ZX01039-002-001-001), the National Natural Science Foundation
of China (61502478), and ”Strategic Priority Research Program” of the CAS (XDA06030200).

References

[1] S Borzsony, Donald Kossmann, and Konrad Stocker. The skyline operator. In Data Engineering,
2001. Proceedings. 17th International Conference on, pages 421–430. IEEE, 2001.

[2] Jan Chomicki, Parke Godfrey, Jarek Gryz, and Dongming Liang. Skyline with presorting. In Data
Engineering, 2003. Proceedings. 19th International Conference on, pages 717–719. IEEE, 2003.

[3] Wen Jin, Martin Ester, Zengjian Hu, and Jiawei Han. The multi-relational skyline operator. In
ICDE 2007, pages 1276–1280. IEEE, 2007.

[4] Wen Jin, Michael D Morse, Jignesh M Patel, Martin Ester, and Zengjian Hu. Evaluating skylines
in the presence of equijoins. In ICDE 2010, pages 249–260. IEEE, 2010.

[5] Mohamed E Khalefa, Mohamed F Mokbel, and Justin J Levandoski. Prefjoin: An efficient
preference-aware join operator. In ICDE, pages 995–1006. IEEE, 2011.

[6] Mithila Nagendra and K Selçuk Candan. Skyline-sensitive joins with lr-pruning. In Proceedings of
the 15th international conference on extending database technology, pages 252–263. ACM, 2012.

[7] Mithila Nagendra and K Selçuk Candan. Efficient processing of skyline-join queries over multiple
data sources. ACM Transactions on Database Systems (TODS), 40(2):10, 2015.

[8] Akrivi Vlachou, Christos Doulkeridis, and Neoklis Polyzotis. Skyline query processing over joins.
In Proceedings SIGMOD 2011, pages 73–84. ACM, 2011.

Skyline Query over Multiple Relations J Zhang et al.

2215

