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Abstract 

An important problem in computational scientific discovery is to identify, among the diversity of 
discovery programs written in various sciences, a commonality that will take a next step beyond the 
acknowledged general--but weak--framework of heuristic search. 

We characterize discovery in science as the generation of novel, interesting, plausible, and 
intelligible knowledge about the objects of study. We then analyze four current machine discovery 
programs in chemistry, medicine, mathematics, and linguistics according to how their design, or 
the circumstances of their application, heighten the chances of finding knowledge that has all four 
properties. Some general patterns emerge, although some strategies seem idiosyncratic. 

Our candidate for a commonality, which focuses on human factors, can be used pragmatically to 
evaluate and compare the designs of discovery programs that are intended to be used as collaborators 
by scientists. © 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Early work on machine scientific discovery such as Logic Theorist [25], DEN- 
DRAL [23], and AM [22], and later work on the cognitive modelling of historical dis- 
covery (e.g., [21]), have shown that heuristic search in combinatorial spaces is a useful, 
general framework for automating and explaining discovery. However, it has been unclear 
what further generality could be found among programs that accomplish diverse tasks in 
different sciences. Absent general principles, each discovery task must be tackled from 
scratch, but it is better to transfer knowledge from one design experience to the next. 
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We propose human-computer collaboration as a source of generality. We will first 
characterize discovery in science (the activity of scientists, not the AI subfield) in terms 
of four dimensions that reflect the elementary goals of science. Then we will analyze four 
current programs that have made contributions to the scientific literature, with respect to 
these four dimensions. Some patterns will emerge, and also qualitative methods to evaluate, 
report, and compare collaborative discovery programs. 

2. Knowledge discovery and discovery in science 

There has been great recent interest in knowledge discovery in databases (KDD) for 
reasons that include the increasing automatic capture of data. The various definitions of 
KDD are similar, e.g., 

"Knowledge discovery in databases is the nontrivial process of identifying valid, 
novel, potentially useful, and ultimately understandable patterns in data." [ 11 ] 

"Knowledge discovery, is the nontrivial extraction of implicit, previously unknown, 
and potentially useful information from data." [ 13] 

These are a good starting point for characterizing discovery in science, but several changes 
in emphasis are needed due to the nature of the domain of science. 

First, we prefer to remove the reference to nontrivial processes because, in our view, 
the importance of a discovery is separate from the processes that generated it; simpler, 
even trivial, processes are better than complicated ones if they are enough for the job of 
discovery [32]. 

Second, we prefer the term plausible over the term valid because the latter connotes 
certain inference in fields such as formal logic. The many failed attempts to solve Hume's 
problem of induction [29] in philosophy of science show that the best one can expect 
is to induce plausible knowledge; only deductive, non-ampliative inference yields "valid" 
(certain) results, but these do not go beyond the limited content represented by the premises 
or the data. 

Third, the major traditional value in science is not usefulness but interestingness, which 
is often linked to more specific values like generality or simplicity. 

Fourth, and most important, we liberalize the exclusive focus on data to encompass the 
objects of study, of which plain data are a special case. There are many knowledge-driven 
(also known as theory-driven) tasks in science; discounting them will lead to a highly 
incomplete understanding of discovery. 

We preserve the reference to novel, but there is more to add. For example, replications 
can contain (second-class) novelty if they make previous discoveries more credible. Also, 
meta-statements that are idiosyncratic to machine discovery programs also provide novelty, 
e.g., the meta-statement that there exist no simpler solutions within a given space of 
hypotheses. 

Thus, we characterize discovery in science as follows: 

Discovery in science is the generation of novel, interesting, plausible, and intelligible 
knowledge about the objects of study. 
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This description 2 has the flexibility to cover the many types of  contribution that are 
publishable knowledge in science, e.g., models, conjectures, theorems, patterns, causes, 
rules, typologies, taxonomies, descriptions, refutations, confirmations, and so on. 

These four dimensions can vary independently, as is seen by forming their combinations, 
e.g., the number of  blades of  grass viewable from one's office window can be novel, 
plausible, and intelligible but also dull. However, their relative independence does not 
mean that the dimensions are wholly unrelated. For example, both interestingness and 
intelligibility can be enhanced by simplicity or undermined by complexity. The point is 
that scientists can regard some statements as intelligible but dull, and others as interesting 
but obscure, i.e., hard to relate to anything that scientists know or could try to find out. 

Clearly, the criteria for i n t e r e s t i n g n e s s  (or intelligibility) vary greatly, even within one 
science over time. So, to achieve some generality, it is best to consider (pragmatically) 
that results are interesting in science X if practitioners of  X (or users of  the programs) 
believe them to be interesting. One then seeks patterns among the factors that enable these 
domain-dependent judgments. 

The next sections project four successful discovery programs along the dimensions 
of  novelty, interestingness, plausibility, and intelligibility. Notably, none of  the cited 
articles uses these dimensions overtly to describe the programs. Our analysis will suggest 
a working hypothesis about successful applications of  machine discovery. Finally, we 
will advocate that any discovery program should be qualitatively evaluated along these 
dimensions. 

3. Why some programs do science well 

Our characterization of  discovery in science suggests the following claim: 

Any program that with excessive frequency leads to knowledge that is familiar, dull, 
wrong, or obscure will not long be tolerated by its users and hence will fail as a 
collaborator. 

As a corollary, a key question about any program is: 

How does the design of  the program, or the circumstances of  its application, heighten 
the chances that its use will lead to knowledge that is novel, interesting, plausible, 
and intelligible? 

There is a small but appreciable number of  contemporary programs that do science well. 
We have chosen four that have enabled published discoveries in their respective literatures: 

- MECHEM--hypothes izes  reaction mechanisms in chemistry based on the available 
experimental evidence [2,41,42,51,52]. 

- ARROWSMITH--not ices  connections between drugs or dietary factors and diseases 
in medicine [35]. 

2 Note that we use the term discovery in science to characterize not the AI subfield of scientific discovery, but 
instead the activity of research scientists. Also, discovery that deals with new objects of study are not excluded if 
objects is construed broadly, e.g., the Earth is the object of geological study. 
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(1) Given starting materials CH3-CH3 and CD3-CD3, 
the reaction does not yield HD 

(2) Given a starting material CD3-CH3, the reaction does not yield HD 

(3) Reactants involve jointly at most two carbon atoms 

(4) Every conjectured species must appear on left- and right-hand sides of 
some (different) steps in the pathway 

(5) Reject mechanisms whose only intermediate species is CH3-CH 

(6) Reject the step: H2 + CH3-CH ~ CH4 q- CI-12 

Fig. 1. Ethane photolysis constraints. 

- GRAFFITI--makes conjectures in graph theory and similar fields [9,10]. 
- MPD/KINSHIP--profiles the classes within a classification, e.g., in linguistics [26- 

28,46]. 
All four programs can best be described as carrying out a heuristic search over a 
large combinatorial space. Also, all the programs accomplish tasks that predate the 
involvement of modem computers, which contrasts them from data-intensive problems 
in, say, molecular biology in which the sovereignty of programs may be conceded from 
the start. Other programs have done science well (e.g., [24,30,33,44,47,48]), but this list 
suffices for our purposes. There are also exploratory programs that have illuminated aspects 
of scientific reasoning without yet serving as collaborators (e.g., [1,4,5,7,18,21,22,36,53]); 
these are outside the scope of our analysis. 

Each program handles the four dimensions in multiple ways, but we will usually mention 
only one way for each program/dimension combination. Our analysis will be a posteriori: 

we examine systems that are successful as determined by publication in the scientific 
literature, and then project them along the dimensions. Alternative, a priori  approaches 
are, e.g., studies of interestingness based on statistics [ 17,19] or on general domain-free 
notions like unexpectedness and actionability [31 ]. 

3.1. M E C H E M  

MECHEM finds explanatory hypotheses (reaction mechanisms) in chemistry. That 
is, given the starting materials of a chemical reaction, any observed products and 
intermediates, and prior background knowledge expressed as constraints, the program 
finds all simplest mechanistic hypotheses that explain how the products are formed 
while respecting the constraints. For example [50], given that the starting material CH3- 
CH3 (ethane) forms H2, CH2=CH2 (ethylene), and CH4 (methane), and subject to the 
constraints in Fig. 1, MECHEM can generate from scratch hypotheses like: 

(1) CH3-CH3 ) H2 + CH3-CH 
(2) CH3--CH3 ~ CH4 + CH2 
(3) 2(CH2) > CH2=CH2 
(4) CH3-CH > 2(CH2) 



R.E. Vald~s-Pdrez / Artificial Intelligence 107 (1999) 335-346 339 

The reader is not expected to understand the chemistry; the aim is only to give some 
notion of the types of prior knowledge and of the form that hypotheses take. MECHEM has 
a graphical interface that allows the chemist to express over 100 types of prior knowledge, 
and this list grows with the demands posed by new applications. 

MECHEM's output tends to contain novelty because the pieces (elementary reactions 
and chemical substances) that make up a hypothesis (mechanism) are not drawn from a 
catalogue of common reactions; rather, they are generated from scratch using algorithms 
[37-39] that are minimally slanted toward particular solutions. Thus, in a sense MECHEM 
embodies a new representation (i.e., explores a new problem space) [43]. 

A second reason for novelty is that, as shown by extensive experience (e.g., [41,42, 
52]) and by methodological arguments [50,51], a comprehensive search for all simplest 
hypotheses regularly reveals possibilities that tend to be overlooked by human scientists, 
who are not equipped to do massive searches of a combinatorial space. In a recent 
application [2], MECHEM generated 41 mechanisms consistent with prior knowledge 
which were experimentally tested and thus reduced to a handful which could not currently 
be discriminated. Finally, MECHEM enables novel meta-statements such as "all the 
simplest possible hypotheses are these" which are not feasible without comprehensive 
computerized searches. 

The output mechanisms tend to be interesting because they are simple: the search is 
carried out in stages of simplicity [40], which minimize the number of individual reaction 
steps and the number of hypothesized (i.e., not given as input) chemical substances, such 
as reaction intermediates. 

Plausibility is ensured because after inspecting an output, the user can articulate his 
objections, based on background knowledge, in the form of constraints and re-run the 
program. This interaction can continue until no more objections remain, at which time 
the surviving hypotheses can be considered plausible. 

Finally, the hypotheses are intelligible because by design the program searches the 
conventional hypothesis space in mechanistic chemistry which was established around a 
century ago. The mechanism above is of this conventional form. 

3.2. ARROWSMITH 

ARROWSMITH makes conjectures about possible treatments or causes of med- 
ical diseases using the MEDLINE literature as a knowledge source (see [35] and 
http://kiwi.uchicago.edu). Given a disease or other physiological state A, the program 
searches for two associations AB and BC where C is typically a dietary factor, drug, or 
other possible intervention. 

For example, the user may pose A = migraine, and the program may come up with 
B = spreading depression and C = magnesium (a light metal which is essential to the 
human diet). After subsequent human examination of the complementary but disjoint 
subliteratures, which report that "magnesium can inhibit spreading depression in the 
cortex, and spreading depression may be implicated in migraine attacks" [35, p. 185] there 
is the plausible suggestion that magnesium could be a treatment for migraine. 

Swanson et al. have reported eight successful matchings of complementary but disjoint 
literatures, four of these in collaboration with Neil R. Smalheiser, a neurobiologist. The 
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best confirmed connection is between magnesium deficiency and migraine headaches [34]. 
After that publication, more than 12 laboratories have reported confirmatory clinical or 
laboratory tests [35]. 

ARROWSMITH's  conjectures tend to be novel because the methodology involves a 
citation analysis to verify that no (or few) MEDLINE articles cite both subliteratures 
responsible for the associations AB and BC, so that there is no evidence from MEDLINE 
that anyone has noticed these connections. Swanson's colorful term for the program's 
output is "undiscovered public knowledge". 

The interestingness of the conjectures are enhanced by heuristics that filter out C factors 
that are too broad to be significant. For example, Swanson cites hormone, pressure, lipid, 
and membrane as overly broad single words, which are removed by means of  a stoplist 
unless they are in an interesting phrase. 

The conjectures tend to be plausible because many of  the associations are causal, and 
causal relations tend to be transitive. Even if the associations are based on similarity and not 
causality, the shortness of  the path length C ~ B ~ A lends plausibility to the conjecture 
C---~ A. 

Finally, ARROWSMITH's  outputs are intelligible because they tend to be straightfor- 
ward conjectures like C may be a treatment for, or a cause o f  A which can be clinically 
tested, at least in principle. 

3.3. GRAFFITI 

GRAFFITI [9,10] makes mathematical conjectures in domains such as graph theory or 
geometry. In graph theory, the program generates members within a space of  conjectures 
~ ,x i  >~ ~ ,  y j ,  where the terms xi and yj  are numerical features of  a graph (called invariants 
in graph theory) such as its diameter, its largest eigenvalue, and so on. The terms can also 
be quotients or products of  the elementary features. 

GRAFFITI has motivated many graph theoreticians, including its designer, to try to 
refute or prove its conjectures which are broadcast on an email list. Various of  the 
conjectures have been proven (by mathematicians) and published as regular mathematical 
contributions, for example, the conjecture that the independence number of  every 
connected graph ~> the average distance between its vertices [3]. 

The program 3 keeps a database of  previous conjectures so that the program does not 
repeat itself and instead will produce unseen conjectures. However, GRAFFITI has no easy 
way to make direct use of  the mathematical literature, unlike the ARROWSMITH program 
which is used in conjunction with citation analyses of  MEDLINE. 

The program's "Echo heuristic" [10] rejects less interesting conjectures by testing 
whether a conjecture is seemingly implied by a previous conjecture that has not been 
refuted. For example, a conjecture x > y is stronger, and hence more interesting, than a 
conjecture x ~> y, because the former implies the latter. 

Every conjecture is tested against a file of  qualitatively different graphs and survives 
this plausibility test only if no counterexample is present. I f  a surviving conjecture is later 

3 There have been multiple versions of GRAFFITI which use different heuristics. We have selected from among 
these heuristics without requiring that they all be found in the most current version of the program. 
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refuted by a new graph counterexample, the graph can be added to the file so that over time 
the conjectures' plausibility should grow. 

Finally, GRAFFITI 's  conjectures are intelligible because they are expressions of  the 
form a short sum of  graph properties is <~ another short sum of  graph properties. It 
seems possible, as an illustrative contrast, that conjectures that made arbitrary use of  
more complicated functional forms (e.g., x y j)  would be less understandable by human 
mathematicians and less likely to merit consideration. 

3.4. MPD/KINSHIP 

MPD finds concise profiles of  all the classes within a classification, given at least 
one example of  each class and features (numeric, symbolic, or mixed) that describe the 
examples. Thus, the program's input is the same as the input to multiclass, supervised 
concept learning programs [8]. 

The output of  MPD is not a decision tree nor set of  classification roles, but rather (1) a 
guaranteed-minimal list L of  features that enable all N-choose-2 pairwise contrasts among 
the N classes, and (2) individual profiles for each class C, where a profile is a subset of  
L together with a quantitative statement of  which other classes are contrasted from C by 
which feature in the subset. Partial contrasts are allowed if the overlap between feature 
values falls below a user-set maximum. 

MPD is a data-driven program with general scope [45,46], but so far it has been applied 
mostly to linguistics [28]. Thus, we refer specifically to the KINSHIP program [27], which 
is just MPD with a front-end that computes linguistic features of  the examples from the 
raw data. The KINSHIP program automates the task of  componential analysis [15] in 
linguistic anthropology, which seeks concise descriptions of  the pairwise contrasts among 
the members of  a set of  lexical terms. 

Part of  KINSHIP's  input is a list of  the kinship terms in a language. For example, Yankee 
English has 35 terms [27] such as son, daughter, uncle, cousin, grandfather, mother, wife, 
step-father, brother-in-law, etc. The rest of  the input is a listing of  the alternative sequences 
of  genealogical/matrimonial relations that correspond to a kinship term. For example, in 
English an uncle can be a mother's brother, a mother's sister's husband, and so on. 

More formally, the program's input is a set of  kinship terms (i.e., classes), a set of 
examples for each class, and a description of  each example in terms of  a sequence of  
matrimonial (e.g., wife) or blood relations (e.g., son). Over 20 linguistic features are then 
computed from these sequences. Then MPD outputs a minimal overall list of  features plus a 
profile for each kinship term, such as this profile for "brother": generation = 0, sex = male, 
generation-of-last-link = 0, and affini~ = consanguineal, which distinguishes "brother" 
from the other 34 English kinship terms. 

KINSHIP found a novel simplest analysis of  Yankee English and of  an unanalyzed 
language (Bulgarian). Like MECHEM, it searches a large combinatorial space which 
is potentially dense with solutions that are easy to overlook without a comprehensive 
search. Also like MECHEM, it enables meta-statements of  the form "and no other simpler 
solutions exist". 

The program's outputs are interesting because they are maximally concise, i.e., the 
program guarantees a minimal use of  overall features, as well as minimal individual profiles 
of  the kinship terms. 
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Plausibility can be interpreted in two ways. One view is that KINSHIP (and MPD) 
merely find concise descriptions of the available data, so that plausibility is irrelevant. 
However, the methods can in some cases be used inductively, and like all data-driven 
programs, plausibility is heightened by an abundance of input data, as long as some 
elementary statistical checks are applied [14]. 

KINSHIP's output is intelligible because, as with MECHEM, the solution space of 
kinship descriptions is a conventional one taken from the anthropological linguistics 
literature, although it is not the only one, since alternative description spaces have been 
proposed (noted in [27]), for example, one that takes into account the effects of morphemes 
like "grand" in "grandfather" and "in-law" (e.g., sister-in-law) in English. 

3.5. General patterns 

MECHEM and KINSHIP both address novelty by relying on comprehensive searches 
to turn up possibilities that scientists would likely overlook. Also, comprehensive searches 
enable novel meta-statements like "these are all the simplest solutions" which scientists 
find valuable. ARROWSMITH treats novelty by the unique device of citation analysis. 
GRAFFITI, which is a conjecture generator like ARROWSMITH, could in principle do 
likewise, but there is no practical way to automatically decide whether a conjecture is 
without precedent in the mathematical literature. One GRAFFITI heuristic for addressing 
novelty is simply to remember (and not repeat) all of its previous conjectures. 

Each program except GRAFFITI derives for free some degree of interestingness 
from the circumstance that a user poses the initial problem which presumably is of 
interest. Both MECHEM and KINSHIP rely on the simplicity of their outputs to ensure 
interestingness. GRAFFITI prefers stronger or more general statements, i.e., it prefers 
the stronger conjecture A over the weaker conjecture B in the implication A ~ B, e.g., 
x > y --+ x >~ y. Conversely, ARROWSMITH prefers less general conjectures, since it 
rejects broad terms like "hormone" in favor of more specific physiological factors. One 
reason for the discrepancy may be that acceptable medical conjectures should correspond 
to direct experimental tests, and it is easier to test conjectures about specific hormones than 
about hormones in general. 

MECHEM, which is a highly knowledge-driven program, handles plausibility by means 
of a multi-year knowledge engineering effort to let users input constraints that express 
prior knowledge about a chemical reaction. ARROWSMITH relies on the transitivity of 
associations based on causality or simple similarity. GRAFFITI tests its conjectures against 
a database of graphs which are potential counterexamples, whereas KINSHIP relies on 
its data-driven nature, i.e., abundant data leads to plausible descriptions or inductions. 
Thus, GRAFFITI and KINSHIP both use empirical methods, although GRAFFITI uses 
hypothesize-and-test whereas KINSHIP directly uses the data to derive its output. 

Finally, all four programs address intelligibility similarly: their outputs all lie within 
different solution spaces that are conventional (but not necessarily unique) for their 
respective domains. 

So what general patterns emerge? Some strategies, such as ARROWSMITH's use of 
citation analysis, are powerful but idiosyncratic. However, we can discern these general 
patterns: 
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(1) People rarely carry out comprehensive combinatorial searches, so programs that 
do so will often turn up novelty in spaces that are dense with solutions. This has 
been demonstrated convincingly in chess play, but it is no less true for discovery in 
science. 

(2) Comprehensive searches of a problem space also enable novel meta-statements like 
"these are all the simplest solutions" which scientists find valuable. 

(3) Simplicity is a frequent guarantor of interestingness, especially in tasks of model 
building [49], where it corresponds to minimizing the number of components, 
processes, and other pieces that compose a model. 

(4) Generality enhances interestingness in sciences that have a formal character, 
whereas in experimental sciences like medicine, specificity--although in principle 
less interesting--may enhance acceptability because of the greater ease of experi- 
mental test. 

(5) When the user poses the problem, some interestingness is inherited for free. 
(6) The use of abundant data ensures some plausibility if elementary statistical checks 

are used. 
(7) Knowledge-driven programs should include a (likely substantial) knowledge engi- 

neering effort so that users can express their prior knowledge, which will vary if the 
program has any generality. 

(8) Programs that generate solutions from a conventional space for the scientific task are 
guaranteed to be intelligible. Often these spaces are not good matches to the spaces 
targeted by domain-independent programs not written specifically for discovery in 
science [2011. 

(9) Intelligibility and novelty can be conflicting goals whenever a program involves a 
new representation of a task, i.e., when it searches a novel problem space. 

These design patterns complement the sociotechnical guidelines in [6], which constructs 
a futuristic scenario of human-computer collaboration and reason backwards about what 
is needed to enable such scenarios. Our analysis is based not on social systems but on an 
individual scientist/program collaboration. 

3.6. O ther  p r o g r a m s  

It is instructive to consider the two classic scientific discovery programs DENDRAL 
and AM. DENDRAL has been described as a scientific success [12] and a "failure" in 
terms of its adoption by external chemist users [24]. AM was an exploratory project 
that never seriously sought mathematician users. Both programs were successful early 
demonstrations of the usefulness of heuristic search for explaining or automating discovery 
in science. 

Our close reading of the DENDRAL literature [ 16,23] reveals no clear failure to handle 
our four dimensions. DENDRAL and MECHEM address these dimensions similarly; the 
main difference is that in MECHEM simplicity is crucial for preferring hypotheses that 
have fewer substances and steps. DENDRAL's failure to be adopted by working structural 
chemists has been much speculated upon; one factor pointed out in both [16] and [24] is 
that the task did not arise often enough to justify the learning effort. Clearly, programs can 
fail to be adopted for reasons other than those contained in our four dimensions. 
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AM [22] never received a serious application effort, so its analysis must be more 
speculative. We surmise that one obstacle to its adoption would have been how to 
ensure occasional novelty, since it could not make use of the comprehensive-search- 
by-simplicity tactic common to MECHEM and KINSHIP, nor of the citation analysis 
used by ARROWSMITH. Also, users would have needed better assurances that AM's 
conjectures were plausible, by more extensive testing or by connecting the program to 
an automated theorem prover. Finally, Lenat himself pointed out the obscurity of AM's 
internal representation of concepts and conjectures, which harmed intelligibility. 

4. Conclusion 

It has long been known that heuristic search in combinatorial spaces provides a 
plausible framework for automating some problems of discovery in science [24] and 
mathematics [22]. Finding other sources of generality has been a problem; it has not been 
evident what other commonalities there were among programs that do diverse tasks in 
different fields, although at least one attempt [49] did address model building as a subtype 
of discovery and built one system based on this modest generalization [48]. This article 
proposes a generalization based on a program/scientist collaboration. 

We have characterized discovery in science as the generation of novel, interesting, plau- 
sible, and intelligible knowledge, which builds on, but diverges from, prior descriptions 
of knowledge discovery. We then analyzed four successful programs in chemistry, medi- 
cine, mathematics, and linguistics by asking how their design, or the circumstances of their 
application, heighten the chances of finding knowledge having all four properties. Some 
general patterns are discernible. 

We propose that future work on collaborative discovery programs, especially in science 
but also elsewhere in knowledge discovery, would do well to design, evaluate, and report 
their programs along these four dimensions. This practice would improve evaluation in 
this field, it would ease the comparison of different programs that do different tasks, and it 
could lead to further qualitative principles. 

Acknowledgements 

This work was supported by grants #IRI-9421656 and #DBI-9727699 from the (USA) 
National Science Foundation, by the NSF Division of International Programs, and by the 
Center for Light Microscope Imaging and Biotechnology at Carnegie Mellon. Thanks to 
Siemion Fajtlowicz and Don Swanson for comments on the descriptions of the GRAFFITI 
and ARROWSMITH programs; any remaining inaccuracies are not their responsibility. 
Vladimir Pericliev and Andrew Zeigarnik have been, respectively, collaborators on the 
KINSHIP/MPD and the MECHEM projects. This article is based on a presentation at the 
International Congress on Discovery and Creativity held May, 1998 in Ghent, Belgium. 

References 

[1] E. Alberdi, D. Sleeman, ReTAX: A step in the automation of taxonomic revision, Artificial Intelligence 91 
(2) (1997) 257-279. 



R.E. Valdds-Pdrez / Artificial Intelligence 107 (1999) 335-346 345 

[2] L.G. Bruk, S.N. Gorodskii, A.V. Zeigarnik, R.E. Valdts-Ptrez, O.N. Temkin, Oxidative carbonylation 
of phenylacetylene catalyzed by Pd (II) and Cu (I): Experimental tests of forty-one computer-generated 
mechanistic hypotheses, J. Molec. Catal. A: Chemical 130 (1-2) (1998) 29-40. 

[3] E Chung, The average distance and the independence number, J. Graph Theory 12 (2) (1988) 229-235. 
[4] V. Corruble, J.-G. Ganascia, Induction and the discovery of the causes of scurvy: A computational 

reconstruction, Artificial Intelligence 91 (2) (1997) 205-223. 
[5] L. Darden, M. Cook, Reasoning strategies in molecular biology: Abstractions, scans, and anomalies, in: 

R. Burian (Ed.), Proceedings of the Philosophy of Science Association, 1994. 
[6] H. de Jong, A. Rip, The computer revolution in science: Steps toward the realization of computer-supported 

discovery environments, Artificial Intelligence 91 (2) (1997) 225-256. 
[7] L. de Ledesma, A. Ptrez, D. Borrajo, L.M. Laita, A computational approach to George Boole's discovery of 

mathematical logic, Artificial Intelligence 91 (2) (1997) 281-307. 
[8] T.G. Dietterich, C. Bakiri, Solving multiclass learning problems via error-correcting output codes, J. 

Artificial Intelligence Res. 2 (1995) 263-286. 
[9] S. Fajtlowicz, On conjectures of Graffiti, Discrete Math. 72 (1988) 113-118. 

[10] S. Fajtlowicz, On conjectures of Graffiti V, in: Proceedings 7th International Quadrennial Conference on 
Graph Theory, Combinatorics and Applications, Vol. 1, 1995, pp. 367-376. 

[11] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, The KDD process for extracting useful knowledge from volumes 
of data, Comm. ACM 39 (1 l) (1996) 27-34. 

[12] E. Feigenbaum, B. Buchanan, DENDRAL and Meta-DENDRAL: Roots of knowledge systems and expert 
system applications, Artificial Intelligence 59 (1-2) (1993) 233-240. 

[13] W.J. Frawley, G. Piatetsky-Shapiro, C.J. Matheus, Knowledge discovery in databases: An overview, in: 
G. Piatetsky-Shapiro and W.J. Frawley (Eds.), Knowledge Discovery in Databases, AAAI Press, Menlo 
Park, CA, 1991, pp. 1-27. 

[14] C. Glymour, D. Madigan, D. Pregibon, P. Smyth, Statistical themes and lessons for data mining, Data Mining 
and Knowledge Discovery 1 (1)(1997) 11-28. 

[15] W.H. Goodenough, Componential analysis, Science 156 (1967) 1203-1209. 
[16] N. Gray, Dendral and Meta-Dendral--The myth and the reality, Chemometrics and Intelligent Laboratory 

Systems 5 (1988) 11-32. 
[17] M. Kamber, R. Shinghal, Proposed interestingness measure for characteristic rules, in: Proceedings AAAI- 

96, Portland, OR, MIT Press, Cambridge, MA, 1996. 
[18] P.D. Karp, Design methods for scientific hypothesis formation and their application to molecular biology, 

Machine Learning (1993). 
[19] W. Klosgen, Efficient discovery of interesting statements in databases, J. Intelligent Information Systems: 

Integrating Artificial Intelligence and Database Technologies 4 (1) (1995) 53-69. 
[20] P. Langley, The computer-aided discovery of scientific knowledge, in: Proceedings 1st International 

Conference on Discovery Science, Springer, Berlin, 1998. 
[21] P. Langley, H. Simon, G. Bradshaw, J. Zytkow, Scientific Discovery: Computational Explorations of the 

Creative Processes, MIT Press, Cambridge, MA, 1987. 
[22] D.B. Lenat, AM: Discovery in mathematics as heuristic search, in: R. Davis, D.B. Lenat (Eds.), Knowledge- 

Based Systems in Artificial Intelligence, McGraw Hill, New York, 1982. 
[23] R. Lindsay, B. Buchanan, E. Feigenbaum, J. Lederberg, Applications of Artificial Intelligence for Organic 

Chemistry: The Dendral Project, McGraw Hill, New York, 1980. 
[24] R. Lindsay, B. Buchanan, E. Feigenbaum, J. Lederberg, DENDRAL: A case study of the first expert system 

for scientific hypothesis formation, Artificial Intelligence 61 (2) (1993) 209-261. 
[25] A. Newell, J. Shaw, H. Simon, Programming the logic theory machine, in: Proceedings Western Joint 

Computer Conference, 1957, pp. 230-240. 
[26] V. Pericliev, R.E. Valdts-Ptrez, A discovery system for componential analysis of kinship terminologies, in: 

Proceedings 16th International Congress of Linguists, 1997. 
[27] V. Pericliev, R.E. Valdts-Ptrez, Automatic componential analysis of kinship semantics with a proposed 

structural solution to the problem of multiple models, Anthropological Linguistics 40 (2) (1998) 272-317. 
[28] V. Pericliev, R.E. Valdts-Ptrez, A procedure for multi-class discrimination and some linguistic applications. 

in: Proceedings COLING-ACL: 17th International Conference on Computational Linguistics and 36th 
Annual Meeting of the Association for Computational Linguistics, 1998, pp. 1034-1040. 



346 R.E. Vald~s-P~rez / A rtificial Intelligence 107 (1999) 335-346 

[29] W. Salmon, The Foundations of Scientific Inference, University of Pittsburgh Press, Pittsburgh, PA, 1966. 
[30] S. Salzberg, A. Delcher, S. Kasif, O. White, Microbial gene identification using interpolated Markov models, 

Nucleic Acids Research 26 (2) (1998) 544-548. 
[31] A. Silberscha~, A. Tuzhilin, What makes patterns interesting in knowledge discovery systems. IEEE Trans. 

Knowledge and Data Engineering 8 (6) (1996) 970-974. 
[32] H.A. Simon, R.E. ValdEs-PErez, D.H. Sleeman, Scientific discovery and simplicity of method (Editorial), 

Artificial Intelligence 9l (2) (1997) 177-181. (Special issue on Scientific Discovery.) 
[33] P. Spirtes, C. Glymour, R. Scheines, Causation, Prediction, and Search, Lecture Notes in Statistics, Springer, 

New York, 1993. 
[34] D.R. Swanson, Migraine and magnesium: Eleven neglected connections, Perspectives in Biology and 

Medicine 31 (4) (1988) 526-557. 
[35] D.R. Swanson, N.R. Smalheiser, An interactive system for finding complementary literatures: A stimulus to 

scientific discovery, Artificial Intelligence 91 (2) (1997) 183-203. 
[36] P. Thagard, Explanatory coherence, Behavior',d and Brain Sciences 12 (3) (1989) 435-502. 
[37] R.E. Valdts-Ptrez, Algorithm to generate reaction pathways for computer-assisted elucidation, J. Comput. 

Chem. 13 (9) (1992) 1079-1088. 
[38] R.E. Valdts-Ptrez, Algorithm to test the structural plausibility of a proposed elementary reaction, J. Comput. 

Chem. 14 (12) (1993) 1454-1459. 
[39] R.E. Valdts-PErez, Algorithm to infer the structures of molecular formulas within a reaction pathway, 

J. Comput. Chem. 15 (11) (1994) 1266-1277. 
[40] R.E. ValdEs-Ptrez, Conjecturing hidden entities via simplicity and conservation laws: Machine discovery in 

chemistry, Artificial Intelligence 65 (2) (1994) 247-280. 
[41] R.E. Vald6s-Ptrez, Human/computer interactive elucidation of reaction mechanisms: Application to 

catalyzed hydrogenolysis of ethane, Catal. Lett. 28 (1) (1994) 79-87. 
[42] R.E. Valdts-PErez, Machine discovery in chemistry: New results, Artificial Intelligence 74 (1) (1995) 191- 

201. 
[43] R.E. ValdEs-PErez, Some recent human/computer discoveries in science and what accounts for them, AI 

Magazine 16 (3) (1995) 37-44. 
[44] R.E. Valdts-PErez, A new theorem in particle physics enabled by machine discovery, Artificial Intelligence 

82 (1-2) (1996) 331-339. 
[45] R.E. Valdts-Ptrez, V. Pericliev, Concise, intelligible, and approximate profiling of numerous classes, 

submitted lbr publication. 
[46] R.E. Valdts-Ptrez, V. Pericliev, Maximally parsimonious discrimination: A generic task from linguistic 

discovery, in: Proceedings AAAI-97, Providence, RI, AAAI Press, Menlo Park, CA, 1997, pp. 515-520. 
[47] R.E. Vald6s-Ptrez, C.A. Stone, Systematic detection of subtle spatio-temporal patterns in time-lapse 

imaging. II. Particle migrations, Bioimaging 6 (2) (l 998) 71-78. 
[48] R.E. ValdEs-Ptrez, J.M. Zytkow, Systematic generation of constituent models of particle families, Physical 

Review E 54 (2) (1996) 2102-2110. 
[49] R.E. ValdEs-P6rez, J.M. Zytkow, H.A. Simon, Scientific model-building as search in matrix spaces, in: 

Proceedings AAAI-93, Washington, DC, AAAI Press, Menlo Park, CA, 1993, pp. 472-478. 
[50] A.V. Zeigarnik, R.E. ValdEs-P~rez, A proposed methodological improvement in the elucidation of chemical 

reaction mechanisms based on chemist/computer interaction, J. Chemical Education, submitted (revised) for 
publication. 

[51] A.V. Zeigarnik, R.E. ValdEs-P6rez, O.N. Temkin, Metal-catalyzed ethylene hydrogenation: The method of 
interactive search for multiple working hypotheses, Langmuir 14 (16) (1998) 4510-4516. 

[52] A.V. Zeigamik, R.E. ValdEs-Ptrez, O.N. Temkin, L.G. Bruk, S.I. Shalgunov, Computer-aided mechanism 
elucidation of acetylene hydrocarboxylation to acrylic acid based on a novel union of empirical and formal 
methods, Organometallics 16 (14) (1997) 311 4-3127. 

[53] J. Zytkow (Ed.), Machine Discovery, Kluwer, Dordrecht, 1996. 


