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Abstract

We present a theoretical framework for an asymptotically converging, scaled genetic algorithm
which uses an arbitrary-size alphabet and common scaled genetic operators. The alphabet can be
interpreted as a set of equidistant real numbers and multiple-spot mutation performs a scalable
compromise between pure random search and neighborhood-based change on the alphabet level.
We discuss several versions of the crossover operator and their interplay with mutation. In
particular, we consider uniform crossover and gene-lottery crossover which does not commute
with mutation. The Vose–Liepins version of mutation-crossover is also integrated in our approach.
In order to achieve convergence to global optima, the mutation rate and the crossover rate have
to be annealed to zero in proper fashion, and unbounded, power-law scaled proportional )tness
selection is used with logarithmic growth in the exponent. Our analysis shows that using certain
types of crossover operators and large population size allows for particularly slow annealing
schedules for the crossover rate. In our discussion, we focus on the following three major
aspects based upon contraction properties of the mutation and )tness selection operators: (i)
the drive towards uniform populations in a genetic algorithm using standard operations, (ii)
weak ergodicity of the inhomogeneous Markov chain describing the probabilistic model for the
scaled algorithm, (iii) convergence to globally optimal solutions. In particular, we remove two
restrictions imposed in Theorem 8.6 and Remark 8.7 of (Theoret. Comput. Sci. 259 (2001) 1)
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where a similar type of algorithm is considered as described here: mutation need not commute
with crossover and the )tness function (which may come from a coevolutionary single species
setting) need not have a single maximum.
c© 2003 Elsevier B.V. All rights reserved.
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0. Introduction

The main purpose of this exposition is to extend the presentation in [56,62] 1 in
regard to mixing operators in genetic algorithms and to remove two shortcomings in
[56, Theorem 8.6, Remark 8.7] which impose certain conditions on the genetic operators
in order to obtain a scaled genetic algorithm which converges to global optima. In
fact, we remove the conditions that (1) mutation commutes with crossover and that
(2) the )tness function has a sole maximum. We achieve these goals by presenting
a mostly self-contained, streamlined theory of convergent, scaled genetic algorithms
that use a general-size alphabet, standard crossover-mutation operators and unbounded
power-law scaled proportional )tness selection. Overall, we pursue the following major
objectives:
1. The alphabet A is primarily interpreted as a )nite set of equidistant real numbers

such that the genetic algorithms discussed here are well-suited for optimization in a
compact domain in R‘, ‘∈N. This follows an idea formulated, e.g., by Markus et
al. in [40] and in [56]. On the level of the alphabet, we discuss the spot-mutation
operator m(1)

�0 which performs a scalable compromise between pure random change
and a neighborhood-based hill-climbing strategy analogous to a similar strategy for
the simulated annealing algorithm. See the paper by Aarts and van Laarhoven [1]
for an overview on simulated annealing.

2. Based upon the analysis of the spot-mutation operator m(1)
�0 , we study multiple-spot

mutation in regard to certain contraction properties that ensure the following: (1)
weak ergodicity of the inhomogeneous Markov chain describing the probabilistic
model for the scaled genetic algorithm and, together with a contraction property of
the )tness selection operator, (2) convergence towards uniform populations.

3. We allow essentially all standard types of crossover operators under the following
three conditions: (1) the crossover operation leaves uniform populations invariant,
(2) the entries of the stochastic matrix describing the crossover operation are ra-
tional functions in the crossover rate without singularities and (3) the crossover
operation converges to the identity operation, if the crossover rate converges to
zero. In particular, we allow appropriately scaled uniform crossover in our setting.
In addition, we present an analysis of gene-lottery crossover which yields an example

1 We point out to the reader that it is desirable but not necessary to read [56,62] in order to understand
most of this presentation. We shall only refer to [56,61,62], if a side-track result can be obtained from results
presented here by already well-established straightforward techniques.
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Table 1

Step 0 Initialize population p = (c1; : : : ; cs) with creatures c1; : : : ; cs ∈C.
Step 1 Apply crossover to creatures in p.
Step 2 Apply mutation to the genetic information in p.
Step 3 Apply the selection mechanism to the family of creatures in p.
Step 4 IF termination condition is satis)ed, THEN stop, ELSE continue at step 1.

of non-commuting crossover and mutation operators. Our discussion also contains
an improved model for one-cutpoint regular crossover compared to the analysis
by Schmitt et al. [62, Section 2.2] and a model for the Vose–Liepins version of
mutation-crossover [68, p. 44], [69].

4. Asymptotic convergence of genetic algorithms to global optima with not-necessarily-
commuting crossover and mutation operators is shown under the condition that the
mutation and crossover rates are properly annealed to zero and unbounded power-
law scaled proportional )tness selection is used with logarithmic growth in the
exponent. The condition of a single maximum imposed upon the )tness function
in [56, Theorem 8.6, Remark 8.7] is thereby removed. Thus, our analysis is, in
particular, more general than the approach taken in Vose’s book where it is always
assumed that the )tness function is injective (cf. [68, p. 25, footnote]).

As MJuhlenbein [43] points out in the introduction to his survey on genetic algorithms,
evolutionary algorithms based upon “mutation, mating and selection” were already in-
troduced in the 1960s as a tool for optimization. One example of such work is the
paper by Bremermann et al. [8]. Genetic algorithms, a particular case of evolutionary
algorithms, were invented by Holland [29] and are by now a well-established tool for
search and optimization. A given optimization task is encoded in such a way that can-
didate solutions are understood as elements in a )nite collection C of creatures in a
model “world” and a )tness function f : C→R+ exists which has to be maximized.
In the model for genetic algorithms presented in this exposition, creatures (candidate
solutions) are identi)ed with their genetic information which typically consists of an
ordered string of coeNcients selected from an appropriately chosen alphabet A such
as, e.g., {0; 1} or an equidistant set of real numbers. Non-binary genetic algorithms
have previously been investigated, e.g., by Bhattacharyya and Koehler [7], Koehler
et al. [32], Leung et al. [35] and Nomura and Shimohara [45]. The collection of crea-
tures in the current population p of )xed size s is subject to three operations: crossover,
mutation and selection which are applied cyclically and iteratively until a termination
condition is satis)ed. Overall, the genetic algorithm is described in Table 1.

A genetic algorithm is called simple, if all operations in steps 1–3 stay constant over
the course of the algorithm.

In this work, we shall be interested in the asymptotic behavior of the genetic
algorithm de)ned by the above table, i.e., the probabilistic behavior of the algo-
rithm if never halted in step 4 above. Asymptotic behavior of genetic algorithm has
been investigated by many authors: Agapie [2], Aytug and Koehler [4], Cerf [14,15],
Davis [16], Davis and Principe [17,18], Fogel [20], Goldberg [24], He and Kang [28],
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Holland [29], Leung et al. [35], Liepins and Vose [69], Lozano et al. [36], Mahfoud
[37], Mahfoud and Goldberg [38,39], Nix and Vose [44], Rudolph [50], Suzuki [65,66],
and Vose [68]. See also related work in the case of genetic programming by Poli [46]
and Poli and Langdon [47]. The analysis presented in this work sets boundary condi-
tions for proper design and implementation of genetic algorithms that actually do stop
after a )nite but large number t of cycles, t ∈N. The proofs of Theorem V.4.3
(p. 160) in the book by Isaacson and Madsen [30] or [59, Theorem 3.3.2] show
that for large t the probability distribution describing the state of the algorithm after t
steps is close to the limit of the steady-state distributions of the individual steps (see
the discussion in Sections 2.6, 3.3, Theorem 3.3.2). In fact, the algorithm follows the
trajectory of steady-state distributions of the individual steps. This, in principle, allows
for development of a stopping-criterion for a genetic algorithm which is scaled as in
Theorem 3.3.2 and its Corollaries. However, such a stopping-criterion should depend
upon an analysis of the problem instance.

Aarts and van Laarhoven describe in [1, pp. 41–43; p. 49: )rst •] the diNculty
to obtain applicable, general “black-box-scenario” stopping criteria for the simulated
annealing algorithm. Work by Catoni [10–13] constitutes a major advance in this regard
and should be generalized to the case of genetic algorithms in future work. In fact,
Catoni analyses stopping the simulated annealing algorithm after )nitely many steps and
)nding an optimal cooling schedule for that purpose rather than studying the asymptotic
behavior of simulated annealing. A similar analysis (which the author considers an
outstanding problem) should be carried out for genetic algorithms preferably with non-
fully positive mutation. For genetic algorithms, the stopping-criterion by Aytug and
Koehler [4] is a valuable step. But since this result is based upon the mutation rate,
it is the most general result possible and therefore of limited practical use. A similar
approximation result for the steady-state distribution based upon the mutation rate is
obtained by Leung et al. [35].

After discussing asymptotics, let us discuss the steps of the genetic algorithm as
outlined in the above table. We note that the combined crossover-mutation phase of a
genetic algorithm is also called the generator phase or mixing phase of the algorithm,
cf. [68, p. 32]. Genetic information is recombined by the crossover operation and is
slightly altered under mutation.

Crossover models the exchange of genetic information of creatures and is inspired
by exchange of genetic information in living organisms, e.g., during the process of
sexual reproduction. It is discussed in Sections 2.3–2.5. The notion needed to show
convergence of genetic algorithms is that of a rational generalized crossover de)ned
in Section 2.3. Examples for rational generalized crossover operators can be found
in the literature, e.g., in [7,35]. We shall mainly be concerned with four examples
for crossover methods: one=two-cutpoint regular crossover, uniform regular crossover
and gene-lottery crossover. First, we consider one-cutpoint regular crossover as in
[62, Section 2.2, “simple crossover”]; [56, Section 5.2], i.e., a procedure where the
creatures c1; : : : ; cs in the even-size population are sequentially paired and the one-
cutpoint crossover operation is then applied to each of the pairs (c1; c2), : : : (cs−1; cs)
with probability �. This follows, e.g., Goldberg’s approach [23, pp. 16–17]. The new
model for one-cutpoint regular crossover presented in Section 2.4 yields a signi)cant
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improvement in regard to determining the spectrum of the crossover matrix. The re-
sult is in complete correspondence (not identical though) with Koehler’s Theorem [31,
p. 419]. It illustrates in a signi)cant way why Koehler’s Theorem actually holds and
in which way mutation and crossover contribute to the spectrum of the mixing ma-
trix. Our analysis of one-cutpoint regular crossover also yields a convenient way to
describe two-cutpoint regular crossover and uniform regular crossover using the tensor-
space description of the vector-space V̋ underlying our model (see Eq. (7) below).
A second principal model for crossover that we shall consider is the so-called gene-
lottery crossover where for every creature in the next generation (population), the letter
(allele) at a given spot 
 is selected probabilistically from the alleles at spots 
 of all
creatures in the present population. This provides an explicit example of a reasonable
crossover operation that does not commute with the mutation operation. However, a
strong convergence result can be obtained for a properly scaled genetic algorithm that
employs the quite “destructive” gene-lottery crossover procedure (see Corollary 3.3.4).
Observe that in every example for crossover discussed here, the given crossover oper-
ation may alter every creature in the population. Thus, the population before crossover
and the population after crossover may be disjoint, if they are seen as sets of creatures.

Mutation models random change in the genetic information of creatures and is in-
spired by random change of genetic information in living organisms, e.g., through the
ePects of radiation or chemical mismatch. The spot mutation matrix m(1)

�0 which mod-
els change by mutation on the level of the alphabet is discussed in Section 2.1. The
multiple-spot mutation operator M (m)

�0 ;� which acts on entire populations and is based
upon the local action of m(1)

�0 is discussed in Section 2.2. Multiple-spot mutation has
been studied in a Markov chain framework over )nite populations by many authors.
Among earlier references that have been used by others are the work of Davis and
Principe [17,18] and Nix and Vose [44].

Fitness selection models reproductive success of adapted organisms in their environ-
ment and, usually, includes a random rearrangement of the creatures=individuals in a
population. In this work, we shall restrict the analysis to scaled proportional )tness
selection based upon a given )tness function f (consult, e.g., Goldberg’s book [23,
p. 16]; [54, Section 2.3 or 58, Section 7.1]) which is used in standard applications of
genetic algorithms to select the creatures in the future population from the creatures
in the present population after the crossover-mutation operation. Thereby, the value
f(c; p) of the )tness function f for a particular creature c may depend upon the
population p the creature resides in. Thus, our analysis includes the case of rank of
creatures within a population based upon a given raw )tness function C→R+. See,
e.g., [58, Section 7.3] for a suitable de)nition 2 of rank. Using a selection method
based upon rank induced by a given raw )tness function was proposed by Baker [5].
Scaled proportional )tness selection is discussed in Section 2.6.

2 Note that our de)nition of rank simply assigns an integer value in [1; s] to creatures in the populations
(with largest value for maximal creatures in the population) depending upon the quasi order induced by the
)tness function on the creatures in the current population. This is diPerent from the de)nition of “ranking
selection” given in [68, p. 25].
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De Jong [19] stressed the need for a theoretical framework for coevolutionary genetic
algorithms and possible convergence theorems in regard to coevolutionary optimization
(“arms races”) which require treatment of a population-dependent )tness function. We
note at this point that the main results of this exposition (Theorem 3.3.2 and its corol-
laries) solve the coevolutionary optimization problem for a single-species setting, if a
set of agents exist that are strictly superior in every population they reside in. Further-
more, [56, Theorem 8.6, Remark 8.7] already solve the coevolutionary optimization
problem for a single-species setting, if a single dominant agents exists. These results
have recently been generalized for multi-species settings in [58–60].

The mathematical model presented in this exposition uses an inhomogeneous Markov
chain over a )nite set ˝ of populations. Consequently, the state space S̋ of the
genetic algorithm consists of probability distributions over populations p∈˝. These
probability distributions are considered as elements of the free vector space V̋ over ˝,
i.e., S̋ ⊂ V̋ . Thus, the stochastic matrices representing the genetic operators crossover,
mutation and selection in the model for a scaled genetic algorithm presented here act
on V̋ . Consult Section 5 for a concrete example that illustrates this setting.

Most authors represent populations as multi-sets following the work of Davis and
Principe [17,18], Liepins and Vose [69] and Nix and Vose [44]. A more general
Markovian framework for stochastic search methods using multi-sets is given by Vose’s
theory of random heuristic search [67,68]. As in [56,61,62], the representation used in
this exposition considers populations as strings of letters in the underlying alphabet
and not as multi-sets. As outlined in [56, Section 2.9], the multi-set representation
can easily be embedded into the tensor-string representation considered here. Rudolph
[50] developed his Markov chain model for genetic algorithms over the tensor-string
representation for populations approximately around the same time as [62].

A speci)c example that shows the concurrent use of the tensor-string representation
for populations and the stochastic matrices modeling the genetic operators is listed in
Section 5.

What makes our approach diPerent is that we do not attempt to unite the genetic
operators crossover, mutation and selection to one operator which is subsequently
analyzed. We rather analyze the genetic operators separately to isolate key prop-
erties: (1) crossover plays a dual role enhancing mutation in the mixing phase of
the algorithm ([56, Theorem 6.1]) as well as enhancing selection in the contraction
phase of the algorithm in some cases (end of Section 2.5 and Proposition 2.6.2);
(2) mutation is responsible for weak ergodicity (Theorem 3.2.1) and the Qow away
from uniform populations (Proposition 2.2.3); (3) )tness selection is responsible for
contraction towards uniform populations (Proposition 2.6.1); (4) mutation-selection is
responsible for convergence to uniform populations in the zero mutation rate limit
(Theorem 3.1.1); (5) all three genetic operators act together to obtain the steady-state
Qow inequality which shows convergence to global optima (proof of Theorem 3.3.2,
Part 3c).

Various convergence results for genetic algorithms can be found in the literature.
However, a speci7c condition limiting generality is attached to most of these results.
Rudolph [50] studied genetic algorithms together with an elitist strategy that always
keeps the best creature found so far. Obviously, this algorithm must converge eventu-
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ally. However, Example 2 in [56, Section 8.3] shows that an adverse )tness landscape
may lead an ill-designed genetic algorithm away from global optima. In such cases,
the simple genetic algorithm with elitist strategy may behave worse than enumera-
tive search. He and Kang [28] have developed estimates for the rate of convergence
of elistist-type genetic algorithms. Their estimates depend upon 7rst visit times. With
similar strategy, Greenwood and Zhu [26] investigate the (�; 
) and (�+ 
) evolution-
ary strategy algorithms with self-adaptation 3 for (� + 
) = (1+1) and (�; 
) = (1; 1).
Greenwood and Zhu consider functions over Lebesque-measurable domains with non-
isolated singularities and )nd the optimum up to error � ¿ 0. In principle, their anal-
ysis relies on eventual mutation into a proper neighborhood of global optima similar
to Rudolph’s case. Extending Rudolph’s analysis of elitist-strategy genetic algorithms,
Agapie [2] presents an analysis of a mutation-adaptive simple genetic algorithm that
is convergent under certain conditions [2, Theorem 4.3]. Agapie requires that every
non-optimal populations p is inessential, i.e., there is another population q (sink) that
can be reached from p but oPers no way to return to p. Agapie presents an estimate
of the convergence rate in [2, Theorems 2.9 and 5.2]. Cerf [14,15] has developed a
framework for a convergent genetic algorithm which requires a (larger) populations
size that strongly depends upon the optimization problem. Vose’s approach to con-
vergence of genetic algorithms under the framework of random heuristic search [68,
Chapter 3] requires an in7nite population limit for convergence to stable )xed points
[68, p. 147].

A proof of asymptotic convergence for a genetic algorithm of )xed, relatively small
population size using scaled proportional )tness selection based upon an inhomogeneous
Markov chain model has only recently been obtained in [56, Theorem 8.6, Remark 8.7]
essentially for )tness functions C→R+ with a single global maximum or rank based
upon such )tness functions. We remark that, unfortunately, the proof of convergence
in [65,66] fails for principal reasons, cf. [56, Section 8.3]. As outlined in [62,
pp. 120–121], the condition of an injective )tness function is not so much of a restric-
tion in regard to function optimization. However, in regard to ease of implementation 4

and applicability, in regard to mathematical generality and in regard to the analogue
with the arti)cial cooling process in the simulated annealing 5 algorithm [1] as advo-
cated by Davis and Principe [18], it is desirable to remove the condition of a single
global maximum or injectivity for the given (raw) )tness function.

The main results of this exposition, Theorem 3.3.2 and its two Corollaries, achieve
the following goals: (1) a general-purpose, scaled, converging genetic algorithm is

3 The (�+
) evolutionary strategy generates 
¿� oPspring from � creatures and selects the � )ttest among
the available �+ 
 creatures. The (�; 
) evolutionary strategy generates 
¿� oPspring from � creatures and
selects the � )ttest among the 
 oPspring. Self-adaptation modi)es Rechenberg’s 1

5 -rule [48].
4 One avoids to implement a procedure which makes the raw )tness function arti)cially injective at

runtime, or to assign “maxrank+�” to the best creature found thus far in the course of the algorithm (consult
[56, Theorem 8.6, Remark 8.7]). Such techniques may bias the outcome of the genetic algorithm considerably.

5 Speculating, one may anticipate to implement a genetic algorithm in the near future based upon
DNA=RNA-based encoding and computing where the parameters such as mutation rate and selection pressure
are controlled, e.g., by the abundance of certain enzymes in a chemical solution, the temperature, radiation
or sound. In such a setting, it seems impractical to attempt to implement special book-keeping procedures.
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described whose setup is quite similar to that of the simulated annealing algorithm;
(2) explicit cooling schedules for not-necessarily commuting mutation-crossover and
exponentiation schedules for )tness selection are given; (3) no conditions are at-
tached, in particular, the )tness function need not be injective and the population
size s can stay small and controllable. In fact, s can be set to ‘+1 where ‘ is the
length of the genome of creatures (candidate solutions). The genetic algorithm pre-
sented in this paper consequently satis)es all goals formulated by Davis and Principe
[18, p. 270].

Finally, let us mention that Lozano et al. [36] have developed a genetic algorithm
with a simulated-annealing-type selection strategy which converges asymptotically to
global optima. This provides an alternative to the selection mechanism developed in
this exposition.

1. Notation and preliminaries

Before we describe the proposed scaled genetic algorithm, investigate its components
and prove its asymptotic convergence, we need to collect a number of de)nitions and
elementary facts in this section. The notation used here is essentially the same as in
[56, Section 2] up to some additions and simpli)cations. To keep this presentation
mostly self-contained, we include a listing which is complete in regard to almost the
entire exposition for the convenience of the reader. Consult also Section 5 for a tutorial
on the notation used in this exhibition.

1.1. Symbols and keywords

The following index of mathematical symbols is listed in the order of appearance of
items: 1.2: Z, R, R+, C, R+

∗ , N0, N, �n;m, 〈·〉, ‖ · ‖1, (·)∗, e. 1.3: Mk(�), Mk , X [·],
operator norm ‖ · ‖1, 1, Pe,

∏s
�=t X�, stochastic, irreducible, fully positive. 1.5: A, �,

a(�), dA, n, close neighbors, Nn(�), V1. 1.6: ‘, C, ˝, s, L, J , set(p), p∧ J , c∈p,
spot, !, !±n, V̋ , VC , U, S̋ ,. 1.7: GFVu, meanu. 2.1: m(1)

�0 , f . 2.2: M (m)
�0 ;�. 2.3: C(�).

2.4: C(1)
reg (�), C

(2)
reg (�), C

(u)
reg (�), 2.5. C(m)

glc (�), 2.6. f, Df, Cmax, %2(f), unbounded power-

law scaling ft , logarithmic exponentiation schedule g, proportional )tness selection Sf
t .

3.2: annealing schedules for mutation, (M , (0, (′
0, t0. 3.3: SMC genetic, algorithm, SCM

genetic algorithm, annealing schedules for crossover (3.3.2). 4.2: P), SD, D. 4.3: r,
VLGA.

1.2. Scalars and vectors

Let Z, R, R+ and C denote the integers, the real numbers, the non-negative real
numbers and the complex numbers, respectively. Let R+

∗ =R+\{0}, N0 =Z∩R+ and
N=Z∩R+

∗ . For elements k; m of a set, let �k;m = 1, if k =m, and let �k;m = 0 otherwise,
i.e., � is the Kronecker delta. Recall that for v= (v,)k−1

,=0 ; w= (w,)k−1
,=0 ∈Ck , k ∈N, the

canonical inner product of v and w and the usual Hamming-norm or ‘1-norm of v are
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given by

〈w; v〉 =
k−1∑
,=0

Sw,v, and ‖v‖1 =
k−1∑
,=0

|v,|: (1)

We shall use the notation x∗ to denote the adjoint of a vector or matrix x. Let
e = k−1 · (1; 1; : : : ; 1)∗ ∈Rk . Observe that e is the maximal entropy probability dis-
tribution (over k elements) in the positive part of the ‖ · ‖1-unit sphere of Rk (see,
e.g., [56, Section 2.8]). The notation for e diPers by a factor 2−L from the notation
introduced in [52, p. 104], but coincides with the notation used in [56,61].

1.3. Matrices

Let Mk(�), k ∈N, denote the k×k matrices with entries in a set �. Let Mk =Mk(C).
We shall enumerate the coeNcients of a matrix in Mk(�) with indices running from 0
through k − 1. A matrix in Mk will operate by matrix multiplication from the left on
column vectors in Ck . If X ∈Mk and v∈Ck is a row vector, then we shall write X [v]

for the matrix obtained from X by replacing the )rst row of X with v. The operator
norm of X ∈Mk is given by ‖X ‖1 = sup{‖Xv‖1: v∈Ck ; ‖v‖1 = 1} as in [53, p. 5,
Eq. (5)]. The matrix associated with the identity map Ck →Ck will be denoted by
1. Let Pe = (e; e; : : : ; e)∈Mk be the orthogonal projection onto spanC({e}). In con-
trast to some conventions, we shall use the

∏
-symbol to denote products of possibly

non-commuting matrices as follows: for X� ∈Mk , s; t ∈Z, s �= t, let

s∏
�=t

X� = Xt · Xt+sign(s−t) · · ·Xs;
s∏

�=s
X� = Xs: (2)

A matrix in Mk(R+) is called column-stochastic or for short stochastic, if each of
its columns sums to 1. See Schaefer’s book [53] for a good and short introduction to
theoretical aspects of stochastic matrices.

X ∈Mk shall be called reducible or decomposable, cf. [53, p. 19], if there exists a
permutation matrix U ∈Mk({0; 1}) such that

X =U ·
(

X1 X2

0 X3

)
· U−1 = U ·

(
X1 X2

0 X3

)
· U ∗; (3)

where X1 ∈Mm for some m∈N, 16m¡k. Otherwise, X ∈Mk shall be called irre-
ducible or indecomposable. A matrix in Mk(R+

∗ ) will be called fully positive and is
obviously irreducible.

In order to treat weak ergodicity of the inhomogeneous Markov chain underlying the
model for the scaled genetic algorithm considered in this exposition, we can take into
account that multiple-spot mutation contributes fully positive matrices to this Markov
chain (see Proposition 2.2.2.1). The following, possibly known Lemma shortens the
discussion of weak ergodicity considerably compared to the discussion in the books
by Isaacson and Madsen [30, pp. 142–151, p. 151: Theorem V.3.2] or Seneta [63,
pp. 85–86, 134–142, p. 137: Theorem 4.8, p. 141: Theorem 4.9].
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Lemma 1.3.1. Let k ∈N and �t ∈ (0; 1=k) for t ∈N such that
∑

t∈N �t =∞. Let
Mt ∈Mk([�t ; 1]) and Xt; Yt ∈Mk be stochastic matrices. Let v; w∈ (R+)k such that
‖v‖1 = ‖w‖1 = 1, i.e., v and w are probability distributions. Then we have
1. ‖Mt(v− w)‖16(1 − �tk)‖v− w‖1.
2. limt→∞ (

∏1
�=t X� ·M� · Y�)(v− w) = 0.

Proof. One has Mt = �tkPe + M ′
t with M ′

t ∈Mk(R+). Using [53, p. 5, Eq. (7′)], we
conclude that ‖M ′

t ‖161−�tk. Hence, ‖Mt(v−w)‖1 = ‖M ′
t (v−w)‖16(1−�tk)‖v−w‖1,

since v−w∈ e⊥ and, consequently, Pe(v−w) = 0. This shows statement (1). Applying
statement (1) to the M�, �∈N, we have∣∣∣∣

∣∣∣∣
(

1∏
�=t

X� ·M� · Y�

)
(v− w)

∣∣∣∣
∣∣∣∣
1
6 ‖v− w‖1 ·

t∏
�=1

(1 − ��k);

since the X� and Y� are stochastic and have operator norm equal to 1 by [53, p. 5, Eq.
(7′)]. The latter product converges to 0 for t→∞, if

∑
�∈N �� =∞. In the non-trivial

case lim�→∞ �� = 0, this can be easily shown by taking logarithms.

1.4. Application of Frobenius theory

The following collection of arguments constitutes a well-known consequence of
Frobenius’ celebrated result [53, p. 22, Theorem 6.5]. See also [57, Section 1.3].

Lemma 1.4.1. Let X ∈Mk be a stochastic matrix, k ∈N.
1. Ref. [53, p. 7, Theorem 2.3] shows that X has an eigenvector v+ to eigenvalue 1
with positive entries. [53, p. 13, Proposition 4.2] shows that X has spectral radius
1. Since the sequence (Xm)m∈N is bounded, we conclude by [53, p. 11, Proposition
3.4] that 1 is a simple pole of the resolvent.

2. Suppose that for every pair of indices (,; ,′), 06,; ,′ ¡ k, there exists m∈N such
that (Xm),;,′¿0. Then X is irreducible as remarked in the discussion following
[53, p. 20, Proposition 6.2].

3. Suppose that X is irreducible and at least one diagonal entry of X is strictly
positive. By [53, p. 23, Corollary 2], one obtains that 1 is the only eigenvalue of
absolute value 1 and a simple root of the characteristic equation. By the remarks
following [53, p. 9, Proposition 2.8], one obtains that the eigenspace pertaining
to eigenvector 1 is one-dimensional and spanned by v+ obtained in statement (1)
above.

The following Lemma will be used to show that the stochastic matrix associated with
an individual step of a scaled genetic algorithm has a positive, invariant eigenvector
which is uniquely determined up to scalar multiples.

Lemma 1.4.2. Let M ∈Mk(R+
∗ ) and X ∈Mk be stochastic matrices. Then we have

1. MX ∈Mk(R+
∗ ). Consequently, MX has an invariant eigenvector v=MXv∈Ck which

as such is uniquely determined up to scalar multiples. Furthermore, v can be chosen
such that v∈ (R+

∗ )k and ‖v‖1 = 1.
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2. Suppose that v obtained in statement (1) satis7es v∈ (R+
∗ )k and ‖v‖1 = 1. In ad-

dition, assume that M is invertible. Then, w=M−1v is an invariant eigenvector
of XM which as such is uniquely determined up to scalar multiples. Furthermore,
w∈ (R+)k and ‖w‖1 = 1.

Proof. MX is fully positive since M is such. Lemma 1.4.1.3 shows that MX has
an invariant eigenvector v∈Ck which is uniquely determined up to scalar multiples,
and one can assume v∈ (R+)k . v can be normalized such that ‖v‖1 = 1. The identity
MXv= v shows that v∈ (R+

∗ )k . This completes the proof of statement (1). Let w be
any possible invariant eigenvector of XM . Then we have MXMw=Mw. Thus, Mw= 2v
for a 2∈C. Since M is invertible, one obtains that w is uniquely determined up
to scalar multiples. By Lemma 1.4.1.1, we know that XM has an invariant eigen-
vector w ∈ (R+)k . Suppose that w is normalized such that ‖w‖1 = 1. Then, Mw is a
probability distribution since M is stochastic. Hence, Mw= v. This completes the proof
of statement (2).

We point out to the reader that [57, Sections 1.1–1.3, 5] presents a collection of
simple, likely known arguments that provide coverage and detailed proof for the facts
listed in Sections 1.2–1.4 of this exposition.

1.5. The alphabet and the basic vector space

The letters in the alphabet A of size �; 26�∈N, underlying the mathematical
model for the optimization algorithm described in this work shall be denoted by
a(0); a(1); : : : ; a(� − 1). Sometimes but only if explicitly stated, we shall identify A
with Z� =Z=�Z such that under this identi)cation a(�)≡ �, 06�6�−1. This identi)ca-
tion allows to de)ne a shortest cyclic distance function dA : A×A→ [0; ��=2�]∩N0

by setting

dA(a(�); a(�′)) =dR(� + �Z; �′ + �Z): (4)

Let n∈N such that n ¡ �=2. We shall say that a(�); a(�′)∈A are close neighbors, if
� �= �′ and dA(a(�); a(�′))6n. Let Nn(�) be the set of close neighbors of a(�), 06�6
�− 1.

Let V1 be the free vector space over A. We shall identify V1 with C�, i.e., de)ne
a linear map V1 →C�, such that a(�)∈V1 is mapped to b�, where b� = (��; �′)�−1

�′=0 ∈C�

is a standard unit base vector, 06�6�− 1.

1.6. Creatures and populations

We shall consider creatures or candidate solutions in the model world to which the
genetic algorithm is applied as ‘-tuples over the alphabet A where 26‘∈N. Thus,
creatures have a genome of length ‘. Let C=A‘ denote the set of possible creatures.
The number of elements in C is given by #(C) = �‘.
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The set of populations ˝, to which the genetic algorithm is applied, is the set of
s-tuples of creatures, s∈N. We shall assume that s is even and s¿4, if not explicitly
stated otherwise. Let L= ‘ · s. Then, #(˝) = �L.

Let J ⊂{1; : : : ; s}. The set J will act as a selector mask. We shall mainly consider
J = {1; : : : ; s} as the regular setting for this exposition. We shall set J = {1; : : : ; s}∩ 2N
for incorporating the Vose–Liepins version of crossover-mutation in a genetic algorithm.
The latter is discussed in Section 4.3. If p = (c1; c2; : : : ; cs) is a population, c4 ∈C,
1646s, then we de)ne set(p) = {c4: 1646s} and p∧ J = (c4)4∈J . If c∈C, then
we shall write c∈p, if c∈ set(p).

A spot in the genome is, by de)nition, the position of one of the letters in a word
over A representing a creature or population. For p; q∈˝, we de)ne the Hamming dis-
tance !(p; q) as the number of spots in the genome where p and q diPer. Similarly, we
de)ne !±n(p; q) as the number of spots in the genome where p and q diPer by a close
neighbor in the sense of Section 1.5. Thus, for p= (c1; c2; : : : ; cs), q= (d1; d2; : : : ; ds),
c4; d4 ∈C, 1646s, c4 = (a(�(0; 4)

1 ); : : : ; a(�(0; 4)
‘ ), d4 = (a(�(1; 4)

1 ); : : : ; a(�(1; 4)
‘ ), �(,; 4)


 ∈
[0; �− 1]∩N, 16
6‘, ,= 0; 1, I = {(4; 
): 1646s; 16
6‘}

!(p; q) = #{(4; 
)∈ I : �(0;4)

 �= �(1;4)


 }; (5)

!±n(p; q) = #{(4; 
) ∈ I : �(0;4)

 �= �(1;4)


 and dA(a(�(0;4)

 ); a(�(1;4)


 ))6n}: (6)

We de)ne the vector-space V̋ underlying our model for genetic algorithms as the free
complex vector space over ˝. Thus, dim(V̋ ) = #(˝) = �L. Every population p can
be identi)ed canonically with an integer in [0; �L − 1], i.e., the letters comprising p
are used as digits to describe a number in the �-adic number system. This induces a
natural order on ˝ and is used to index matrices acting on V̋ . See Section 5.1 for an
example in this regard. V̋ is further identi)ed with the L-fold tensor product of V1

as follows:

V˝ = ⊗L

̂=1

V1: (7)

With the tensor-space identi)cation in Eq. (7) set VC = V̋|s=1. Then one has

V˝ = ⊗s
4=1 VC: (8)

The tensor product description of V̋ in Eq. (7) allows for an elegant way to analyze
the mutation operator (see Proposition 2.2.2.2 and work by GriNths and TaverVe [27]),
the crossover operator for regular crossover (see Eqs. (18), (20) and (22)) and gene-
lottery crossover (see Eq. (25)). This is useful for computation of spectra and in, e.g.,
verifying that mutation commutes with some of the crossover operators mentioned
above.

Let U⊂ V̋ be the free vector space over all populations which are uniform, i.e.,
which consist of s copies of a single creature. Consequently, ˝∩U equals 6 the set of
uniform populations. In addition, PU shall denote the orthogonal projection onto U.

6 By the construction of V̋ as free vector space over ˝, the latter becomes the set of base vectors in V̋

and thus ˝⊂ V̋ . Hence, the above set-intersection is well de)ned and yields the set (of base vectors) of
uniform populations.
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Lemma 1.6.1. Let X : V̋ →V̋ be a linear map such that Xp=p for every p∈˝∩U.
Then X satis7es XPU =PU and (1− PU)X = (1− PU)X (1− PU).

Proof. We have XPUp=Xp=p=PUp for p∈˝∩U and XPUp= 0 =PUp for p∈
˝\U. Hence, XPU =PU. In addition, we have (1 − PU)X = (1 − PU)XPU + (1 − PU)
X (1− PU) = (1− PU)PU + (1− PU)X (1− PU) = (1− PU)X (1− PU).

Let S̋ ⊂ V̋ be the set of probability distributions over ˝. S̋ is the relevant state
space in this investigation where the stochastic matrices representing the individual
steps of the probabilistic algorithm act by matrix multiplication from the left.

1.7. Gene frequency vectors

The map GFVu as de)ned below measures allele=gene frequencies within populations.
For p= (c1; c2; : : : ; cs)∈˝, c4 ∈C, 1646s, let

GFVu(p) = s−1
s∑

4=1
c4 ∈

‘⊕

=1

V1: (9)

We shall use GFVu in this exposition as a means to analyze scaled gene-lottery crossover
(see Section 2.5). De)ning a mean-value in the ‘-dimensional, positive unit-cube for
binary genetic algorithms, GFVu was introduced in [62, Section 1.3] under the termi-
nology meanu. The latter notation was kept for �¿2 in [56]7 .

GFVu determines invariant subspaces of V̋ in regard to certain crossover operations.
More precisely, GFVu pertains to what is called unrestricted crossover in [52, Section
2.2, p. 117 P.; 56, Section 5.3] and to regular crossover in the multi-set representation
as outlined in [56, Section 5.2.2]. GFVu is a very useful tool in analyzing the interplay
crossover vs. mutation. In that regard, the reader is referred to the results [56, Proposi-
tions 3.5, 3.8, Section 5.2.1.3, Lemma 5.1, Section 5.3.1.3, Section 5.4, Theorem 6.1].

2. The genetic operators

2.1. The spot mutation matrix

In this section, let �0 ∈ [0; 1] be a )xed parameter. Note however, that in the sub-
sequent sections of this exposition we shall always assume �0¿0. The spot mutation
matrix m(1)

�0 ∈M� models change within the alphabet A at a single spot 
̂ in the com-
bined genome of a population, 16
̂6L. We model local change determined by m(1)

�0

as a continuous function of �0 such that �0 = 0 corresponds to uniform change within a
preferred “small neighborhood” Nn(�) of the current letter a(�) at spot 
̂ in the genome,
while �0 = 1 corresponds to change within the alphabet A which is spread out uni-
formly. Thus, we model change on the alphabet level determined by m(1)

�0 as a scalable

7 Ref. [56, p. 16, line 4] contains a typographical error: the tensor-symbol should be replaced by a direct-
sum symbol, cf. [55, p. 13].
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compromise between a neighborhood-based hill-climbing strategy in the spirit of the
simulated annealing algorithm [1] and pure random change as essentially advocated in
Rudolph’s work [51, p. 140]. In fact, Rudolph argues for a mutation operation that is
determined by a maximal entropy distribution.

In general, we can model mutation on the level of a single spot in the genome of a
creature by any stochastic matrix m(1)

�0 ∈M� with zero entries on the diagonal. Thus,
for �= 2 the spot mutation matrix m(1)

�0 models Qipping a single bit in the genome and
we have

m(1)
�0

= f =
(

0 1
1 0

)
∈ M2: (10)

Next, we de)ne a spot mutation matrix m(1)
1 for �¿1 that models change which is

spread out as uniformly as possible within A. In fact, we set

m(1)
1 = (1 − �)−1(1− Pe) + Pe: (11)

This description of m(1)
1 shows that its spectrum is given by {(1−�)−1; 1}. Furthermore,

m(1)
1 commutes with every symmetric stochastic matrix since Pe does so.
In order to de)ne the localized portion of the spot mutation operator, let u denote

the unitary, stochastic matrix describing the cyclic shift, i.e.,

〈a(� + 1); ua(�)〉 = 1; � ∈ Z�: (12)

Observe that m(1)
1 is a linear combination of powers of u. The spot mutation matrix

m(1)
0 is de)ned in terms of u as follows:

m(1)
0 = (2n)−1

n∑
6=1

(u6 + u−6); (13)

where n¡�=2 determines the size of the local neighborhood of a letter in the under-
lying alphabet A as in Section 1.5. The matrix m(1)

0 describes switching to the 2n
close neighbors of a letter a(�) with equal probability. If n is small compared with
�, then m(1)

0 represents a neighborhood-based search in the spirit of the simulated an-
nealing algorithm [1]. The spectrum of m(1)

0 and, consequently, the spectrum of m(1)
�0

as in de)nition (14) and the spectrum of the multiple-spot mutation operator M (m)
�0 ; �

given by De)nition 2.2.1 can be computed by straightforward spectral calculus from
sp(u) = {exp(27i�=�): 06�¡�}. One may apply, e.g., [49, Theorems 10.28, 11.23; 62,
p. 105]. The reader may carry this out along the lines of [56, Propositions 3.3.3, 3.6.3]
where explicit similar computations are listed. As shown in [56, Theorem 6.1], such
computation of spectra has implications for estimates of contraction=mixing properties
of the combined crossover-mutation operator in a genetic algorithm. This also ePec-
tively generalizes Koehler’s Theorem [31, p. 419].

Finally, using de)nitions (11) and (13), we set

m(1)
�0

= (1 − �0)m
(1)
0 + �0m

(1)
1 ; �0 ∈ (0; 1): (14)
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For �= 2; 3, we have m(1)
�0 =m(1)

0 =m(1)
1 . Otherwise, we have the following direct

consequences of de)nition (14).

Lemma 2.1.2. Let a(�); a(�′)∈A such that � �= �′, 06�; �′6�−1. Let n∈N such that
n¡�=2. Then we have
1. 〈a(�);m(1)

�0 a(�)〉= 0,
2. if dA(a(�); a(�′))6n, then 〈a(�′);m(1)

�0 a(�)〉= (1 − �0)=(2n) + �0=(�− 1),
3. if dA(a(�); a(�′))¿n, then 〈a(�′);m(1)

�0 a(�)〉= �0=(�− 1).

In de)nition (12) and, consequently, in (13) and (14), we have identi)ed the alphabet
A with Z� for reason of mathematical convenience such that, in particular, the )rst and
last letter of the alphabet become close neighbors. In applications of genetic algorithms
to optimization problems, one may be interested in considering R-valued parameters or
coeNcients as entries in the genome of creatures. If a regular programming language
such as Fortran or C is employed for the implementation of the genetic algorithm, then
only a )nite set R0 ⊂R of real numbers is used. In many cases, the search space can
be restricted further by a rough analysis of the given optimization problem to a )nite
interval A= {a(�) = x0 + ��: 06�¡�}⊂R0, x0; �∈R. Such an approach is formulated,
e.g., in work by Markus, Renner, & Vanza [40, p. 48] and in [58, p. 16]. See also work
by Nomura and Shimohara [45]. In this situation, the above identi)cation A ≡ Z� may
be seen as an arti)cial structure. However, if we assume that the maxima of the )tness
function occur for parameter values (i.e., letters) well within the interior of A and the
)tness function assumes relatively low values at the boundary, then it is not signi)cant
that mutation is de)ned cyclically symmetric since the selection mechanism will force
the algorithm away from the boundary of the domain of de)nition. Consequently,
the analysis presented here can be applied to a large class of optimization problems
where R-valued parameters are optimized in a compact domain. Alternatively, one
may employ an asymmetric spot mutation matrix m(1)

0 which implements change within
“one-sided” neighborhoods for parameter values (i.e., letters) close to the boundaries x0

and x0 +(�−1)� of an alphabet A as above. In such a setting, the main results of this
exposition, Theorem 3.3.2 and its Corollaries, stay valid. In the situation of a particular
asymmetric spot mutation matrix, one has (as single most important change) to adapt
the mutation Qow inequality obtained in Proposition 2.2.3. See [57, Proposition 3.1.1]
for a general type of mutation Qow inequality that should cover most conceivable
cases.

2.2. Multiple-spot mutation

Multiple-spot mutation M (m)
�0 ; � has been studied theoretically by many authors. Earlier

references include the work of Davis and Principe [17,18], Vose and Liepins [69] and
Nix and Vose [44]. We continue the analysis in [62, Section 2.1, p. 110 >., “multiple-
bit mutation”; 56, Section 3.3]. However, our discussion here will be limited to the
absolute minimum. Multiple-spot mutation is the most commonly used procedure for
mutation in implementations of genetic algorithms.
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De%nition 2.2.1 (multiple-spot mutation M (m)
�0 ; �). In what follows, suppose that the spot

mutation matrix m(1)
�0 is given as in de)nition (14) with �0 ∈ (0; 1]. Let �∈ (0; 1

2

)
denote

the mutation rate, and for 
̂= 1 · · ·L execute the following two steps.
Step 1: Decide probabilistically whether or not to change the letter at spot 
̂ in the

current population. The decision for change is made positively with probability �.
Step 2: If the decision has been made positively in step 1; then the letter at spot 
̂

is altered in accordance with the transition probabilities for letters set by m(1)
�0 .

In this work, we shall mainly be interested in genetic algorithms using small mutation
rates. In order to avoid some technicalities in our presentation, we have therefore
restricted the mutation rate to �∈ (0; 1

2

)
in De)nition 2.2.1. If necessary, the reader

may adapt the results [56, Propositions 3.6, 3.7, Theorems 6.1, 6.2] to obtain some of
the results listed there and in what follows here for larger �, in particular, conditions
that ensure key properties of M (m)

�0 ; � such as being invertible.

Proposition 2.2.2. Let �0 ∈ (0; 1] determine the balance between neighborhood-based
search and uniform change in the spot mutation matrix m(1)

�0 as in de7nition (14).
Let �∈ (0; 1

2

)
denote the mutation rate for multiple-spot mutation M (m)

�0 ; �. Let M (m)
�0 ; �

also denote the stochastic matrix associated with multiple-spot mutation. M (m)
�0 ; � acts

on V̋ and describes transition probabilities for entire populations. Then we have
1. Let p; q∈˝. The coe?cients of M (m)

�0 ; � are given as follows:

〈q;M (m)
�0 ;�p〉= �!(p;q) ·

(
1 − �0

2n
+

�0

�− 1

)!±n(p;q)

·
(

�0

�− 1

)!(p;q)−!±n(p;q)

· (1 − �)L−!(p;q) ¿ 0:

In particular, M (m)
�0 ; � is a fully positive, symmetric matrix with entries bounded

below by K�L
0�

L where K ∈R+
∗ is a suitable constant.

2. M (m)
�0 ; � =

⊗L

̂=1 ((1 − �) 1 + �m(1)

�0 ).
3. M (m)

�0 ; � is an invertible matrix.

Proof. Statement (1) follows directly from the De)nition 2.2.1 and Lemma 2.1.1.
Statement (2) follows by comparing statement (1) and the action of the matrix listed on
the right-hand side of the formula. Finally, we show statement (3). m(1)

�0 is a stochastic
matrix and, consequently, has operator norm 1 by [53, p. 5, Eq. (7’)]. By Rudin [49,
Theorem 10.13.2], we conclude that the spectrum of m(1)

�0 is contained in the closed unit
disk. Elementary spectral calculus shows now that the spectrum of (1−�)1+�m(1)

�0 is
contained in the open right half-plane of C. In particular, (1−�)1+�m(1)

�0 is invertible.
Thus, M (m)

�0 ; � is invertible as a tensor product of invertible matrices.

Observe that for an asymmetric spot mutation matrix which drives the algorithm
away from the boundaries a(0) and a(�−1) of the underlying alphabet as discussed
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at the end of Section 2.1, the results obtained in Proposition 2.2.2.2.-3 stay valid. A
tensor-product description of mutation is known in Theoretical Biology. See, e.g., work
by GriNths and TaverVe [27]. The next result is one of the key ingredients in showing
convergence to uniform populations by properly scaled genetic algorithms. See [57,
Propositions 3.1.1] for a generalization.

Proposition 2.2.3 (mutation Qow inequality). Let �0 ∈ (0; 1] determine the balance be-
tween neighborhood-based search and uniform change in the spot mutation matrix
m(1)

�0 as in de7nition (14). Let �∈ (0; 1
2

)
denote the mutation rate for multiple-spot

mutation M (m)
�0 ; �. As throughout this exposition let n¡�=2 denote the size of local

neighborhoods as in Section 1.5 and let

: =
(

(1 − �)s + �s ·
(

2n
(

1 − �0

2n
+

�0

�− 1

)s

+ (�− 2n− 1)
(

�0

�− 1

)s))‘

:

Then :∈ (0; 1), and we have for v∈ S̋

‖(1− PU)M (m)
�0 ;�v‖1 6 1 − : + :‖(1− PU)v‖1:

Proof. Let p∈˝ be uniform. In order to produce a uniform population from p under
multiple-spot mutation, one selects 
 spots to be changed in the )rst creature of p and
then has to change s · 
 corresponding spots in p where 06
6‘. From the 
 spots
in the )rst creature selected for change, one selects 6 spots that are changed to close
neighbors in the sense of Section 1.5 where 0666
. For the close neighbors, one has
(2n)6 distinct choices. For the remaining spots to be changed, one has (�− 2n− 1)
−6

distinct choices. Thus, the probability of producing a uniform population from p via
M (m)

�0 ; � is given by

‘∑

=0

(
‘



)
(1 − �)s(‘−
)�s
 ·

(

∑

6=0

(


6

)
(2n)6

(
1 − �0

2n
+

�0

�− 1

)s6

× (�− 2n− 1)
−6
(

�0

�− 1

)s(
−6)
)

= : ∈ [0; 1]:

Clearly 0¡:. Since for �¿0 there is also a positive probability for generating a non-
uniform population from p, we have :¡1.

The probability for producing a non-uniform population from p via M (m)
�0 ; � is given

by 1−:. Let v∈ S̋ . Then we obtain

‖(1− PU)M (m)
�0 ;�v‖1

=
∑

q∈˝\U

∑
p∈˝

〈q;M (m)
�0 ;�p〉〈p; v〉

=
∑

p∈˝∩U

‖(1− PU)M (m)
�0 ;�p‖1〈p; v〉 +

∑
p∈˝\U

‖(1− PU)M (m)
�0 ;�p‖1〈p; v〉
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6
∑

p∈˝∩U

(1 − :)〈p; v〉 +
∑

p∈˝\U
〈p; v〉

= (1 − ‖(1− PU)v‖1)(1 − :) + ‖(1− PU)v‖1

= 1 − : + :‖(1− PU)v‖1:

2.3. Rational generalized crossover

In order to handle the crossover operation C for the purpose of obtaining a conver-
gent, scaled genetic algorithm, we can essentially adopt the de)nition of a continuous,
generalized crossover operation given in [61, Section 4.1; 56, Section 5.1.1]. Note how-
ever, that we drop the condition that the crossover operation is given by a symmetric
matrix. The condition of a symmetric crossover matrix is used in [56] only in the proof
of Theorem 8.2.2, formula (30)]. We shall illustrate in Section 4.1 that the proof of
[56, Theorem 8.2.2] essentially stays valid without this condition. Thus, the results in
[56], in particular, those on genetic drift and positive limit-mutation rate [56, Sections
7.5, 8.1] stay valid for scaled genetic algorithms that use not-necessarily symmetric,
continuous generalized crossover operators. See Section 4.1 for more details in this
regard.

De%nition 2.3.1 (rational generalized crossover). For crossover rate �∈ [0; 1], we sup-
pose that C =C(�) is not a necessarily symmetric, but stochastic matrix that acts on
V̋ via the identi)cations in Section 1.6 and describes transition probabilities for entire
populations. In addition, C(�) satis)es the following conditions:
1. � �→ 〈q; C(�)p〉 is a rational function in � for p; q∈˝ which obviously has no

singularity in [0; 1],
2. C(0) = 1,
3. C(�)p=p for p∈˝∩U.

Clearly, C(�)k is also a rational generalized crossover operation, k ∈N. Combining
parts 1 and 2 of De)nition 2.3.1, we can write C(�) in the following way:

C(�) = 1 + �C0(�); (15)

where C0(�) is a matrix acting on V̋ with bounded, rational entries in �. In addition,
we have the following result.

Lemma 2.3.2. Let � �→C(�) be a rational generalized crossover as in De7nition 2.3.1.
Then there exists �0 ∈ (0; 1] such that
1. 〈p;C(�)p〉¿ 1

2 for p∈˝, �∈ [0; �0], and
2. C(�) is invertible for �∈ [0; �0].

Proof. Let p∈˝. We have lim�→0〈p;C(�)p〉= 〈p;p〉= 1. Thus, there exists �p ∈
(0; 1] such that 〈p;C(�)p〉¿ 1

2 for �∈ [0; �p]. The determinant is a continuous function
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in its argument. Hence, lim�→0 det(C(�)) = det(1) = 1. Thus, there exists �1 ∈ (0; 1]
such that det(C(�)) �= 0 for �∈ [0; �1]. Set �0 = min{�1; �p: p∈˝}¿0.

In order to illustrate De)nition 2.3.1, let us consider the following two examples.
Section 2.4 presents a new, simpli)ed model for one-cutpoint regular crossover which
allows for an improved version of the analysis in [62, Section 2.2]. As a by-product
of the analysis, we obtain simple descriptions of two-cutpoint regular crossover and
uniform regular crossover with respect to the tensor-space description of V̋ as in Eq.
(7). These simple descriptions show, in particular, that these regular crossover oper-
ators commute with mutation. Section 2.5 shows that gene-lottery crossover in two
scaled versions also )ts the requirements for a generalized crossover operation listed
in De)nition 2.3.1 above. Gene-lottery crossover operators do not commute with mu-
tation. However, their use yields a convergent, scaled genetic algorithm as formulated
in Corollary 3.3.4 where the crossover rate can stay larger than any power of the mu-
tation rate over the entire course of the algorithm. In fact, the discussion in Sections
2.4 and 2.5 shall yield signi)cant improvements of the main result of this exposi-
tion (Theorem 3.3.2) in Corollary 3.3.3 (for regular crossover) and Corollary 3.3.4
(for gene-lottery crossover). In all examples introduced in Sections 2.4 and 2.5, the
functions � �→ 〈q; C(�)p〉, p; q∈˝, are actually polynomials.

Variations of the crossover operator for �= 2k , k ∈N, that )t De)nition 2.3.1 have
been previously studied by several authors, e.g., Bhattacharyya and Koehler [7] as well
as Leung et al. [35]. See also work by Koehler et al. [32] in this regard.

2.4. Regular crossover

Recall that the size s¿4 of populations is supposed to be an even integer. Regular
crossover shall refer to a procedure where the creatures c1; : : : ; cs in the population are
sequentially paired, and a speci)c crossover operation is then applied to each of the
pairs (c1; c2); : : : ; (cs−1; cs) with probability �. This follows, e.g., Goldberg’s approach
[23, pp. 16–17].

One-cutpoint regular crossover has previously been studied in the tensor-string rep-
resentation for populations in [62, Section 2.2, “simple crossover”; 56, Section 5.2].
We )rst de)ne the elementary one-cutpoint crossover operation C(4; 
) for 1646s=2
and 16
6‘. C(4; 
) exchanges “heads” (leading letters in spots before and including
spot 
) of creatures c24−1 and c24 in the current population. The case 
= ‘ is included
in order to present an analysis that completely covers the discussion in [62, Section
2.2] and for mathematical convenience as discussed there (see [62, p. 113; footnote,
Proposition 7.6]). We shall also treat the case 16
¡‘ in what follows below.

De%nition 2.4.1 (elementary one-cutpoint crossover C(4; 
)). Let 1646s=2 and
06
6‘. Let p= (c1; : : : ; cs)∈˝ be the current population, c4′ ∈C, 164′6s. Then
the elementary one-cutpoint crossover operation C(4; 
) is de)ned by the following
three steps.
Step 1: Pick creatures c24−1 = (a(�1); : : : ; a(�‘)) and c24 = (a(�′1); : : : ; a(�

′
‘)) from p

where a(�
); a(�′
)∈A, 16
6‘.
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Step 2: For 6= 1; : : : ; ‘ do: ((If 66
, then switch letters by setting Sa6 = a(�′6) and
Sa′6 = a(�6). If 6¿
, then copy letters by setting Sa6 = a(�6) and Sa′6 = a(�′6).))
Step 3: Replace c24−1 by ( Sa1; : : : ; Sa‘) and replace c24 by ( Sa′1; : : : ; Sa′‘) in p.

C(4; 0) is the identity operation. We shall also denote the symmetric, stochastic ma-
trix associated with the elementary one-cutpoint crossover operation by C(4; 
). The
matrix C(4; 
) acts on V̋ and describes transition probabilities for entire populations.
C(4; 
) commutes with M (m)

�0 ; � since C(4; 
) moves letters around but does not alter
them; and it does not matter whether the entire collection of letters in a population is
mutated spot-wise before or after being rearranged. Consequently, all crossover opera-
tors considered in Section 2.4 commute with M (m)

�0 ; �. Similar considerations can be made
for a single-spot mutation operation that uses m(1)

�0 similar to the single-spot mutation
considered in [56, Section 3.2].

Clearly, one has C(4; 
)p=p for p∈˝∩U. One also has C(4; 
)2 = 1 which
shows that—up to a rearrangement of the basis of V̋—C(4; 
) is a block diagonal
matrix consisting of 1 of proper dimension and Qip matrices f as de)ned in Eq. (10).
See Section 5.4 for examples. This shows sp(C(4; 
)) = {−1; 1}. One then randomizes
the choice of the cut-cutpoint 
 giving every possible value for 
 equal probability.
This yields the averaged one-cutpoint crossover operation SC(4) which is given by the
following symmetric, stochastic matrix:

SC(4) = ‘−1
0

‘0∑

=1

C(4; 
): (16)

In Eq. (16), one has ‘0 = ‘, if a “cutpoint” 
= ‘ is permitted and ‘0 = ‘−1 otherwise.
The spectrum of SC(4) satis)es

sp( SC(4)) ⊂ {−1} ∪ [−1 + 2=‘0; 1 − 2=‘0] ∪ {1}: (17)

This follows from the fact that SC(4) is a convex combination of commuting matrices
C(4; 
) and [49, Theorem 11.23]. For p∈˝∩U, one obtains as immediate conse-
quence of C(4; 
)p=p and de)nition (16) that SC(4)p=p.

Example. Let p= ((a(0); a(0); : : : ; a(0)); (a(1); a(0); : : : ; a(0))) where the letter a(1)
occurs at spot ‘+1 of p, i.e., the )rst spot of the second creature. Let q= ((a(1); a(0);
a(0); : : : ; a(0)))∈˝ and x=p − q= 1 · p + (−1) · q∈ V̋ . Then C(1; 
)p= q and
C(1; 
)q=p for every 
, 16 
6‘. Hence, SC(1)x= − x and, consequently, −1∈
sp( SC(1)). However, this example for an eigenvector to eigenvalue −1 will disappear
in the multi-set representation for populations since then p and q represent the same
population. (See also [56, Theorem 6.2]).

Finally, we have:

De%nition 2.4.2 (one-cutpoint regular crossover C (1)
reg ). Let �∈ [0; 1] denote the

crossover rate. For 4= 1 · · · s=2 do the next two steps.
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Step 1: Decide probabilistically whether or not crossover takes place in the current
population involving parent creatures c24−1 and c24. The decision for crossover to take
place is made positively with probability �.
Step 2: If the decision for crossover involving creatures c24−1 and c24 has been

made positively in step 1, then execute SC(4).

The case of a negative decision in step 1 above is referred to as cloning in
[68, p. 43]. Suppose that the tensor-factors V1 in Eq. (7) are canonically arranged
corresponding to sequentially listing creatures as in Eq. (8), i.e., tensor-factor 
̂=
(4 − 1)‘ + 
 corresponds to spot 
 in creature c4 in a population p= (c1; c2; : : : ; cs),
c4 ∈C, 1646s. The symmetric, stochastic matrix C(1)

reg (�) describing transition proba-
bilities for entire populations under one-cutpoint regular crossover is then given by the
following expression:

C(1)
reg (�) =

s=2∏
4=1

((1 − �)1 + � SC(4)) =
s=2⊗
4=1

((1 − �)1 + � SC(1)|s=2): (18)

A direct veri)cation based upon Eq. (18) shows that C(1)
reg (�) satis)es the requirements

for a rational generalized crossover operation set in Section 2.3. Using Eq. (17) and
[49, Theorem 11.23], one obtains (for suNciently small �) a better estimate 1−2�=‘0 for
the second largest modulus of elements in the spectrum of C(1)

reg (�) than [62, Proposition
7.7]. This yields improvements of results in [62, Proposition 10; 58, Theorem 6.1].

Koehler’s Theorem [31, p. 419] proves the Vose–Liepins conjecture by determining
the spectrum of the crossover-mutation matrix in the Vose–Liepins model for binary
genetic algorithms [69,68]. Up to a leading factor 1

2 , the factors (1−2�)k contributed
by the mutation matrix coincide in the Vose–Liepins model and the model based
upon the tensor-string representation for populations used here (cf. [62, Proposition
3.4]). The improved estimate 1−2�=‘0 obtained above corresponds to (but does not
equal) the factor 1−�=(;− 1) contributed by crossover in the third largest eigenvalue
obtained in Koehler’s Theorem. The reason for the factors 1

2 will become apparent
in Section 4.3. See [56, Theorem 6.2] for a related result where the spectrum of the
combined crossover-mutation matrix is considered acting on the multi-set representation
for populations (as a projection of the crossover-mutation matrix in the tensor-string
representation for populations).

Next, let us sketch a model for two-cutpoint regular crossover C(2)
reg . Assume

)rst that s= 2. Then two-cutpoint regular crossover C(2)
reg |s=2 can be described as

follows:

C(2)
reg |s=2(�) = (1 − �)1 + �

‘
‘ − 1

· ( SC(1)2 − ‘−11) (19)

with ‘0 = ‘ in Eq. (16). Suppose that the tensor-factors V1 in Eq. (7) are canonically
arranged as for Eq. (18). Then we have

C(2)
reg (�) =

s=2⊗
4=1

C(2)
reg |s=2(�): (20)
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Here, we suppose that a probabilistic decision to apply two-cutpoint regular crossover
is made separately for each of the pairs (c1; c2) · · · (cs−1; cs).

In contrast to one-cutpoint regular crossover which is often used in implementations
of genetic algorithms, two-cutpoint regular crossover C(2)

reg has the advantage of being
“cyclicly symmetric”: the genome of a creature can be seen bent to a circle; corre-
sponding pieces of the genome are exchanged between creatures during crossover; but
in regard to this operation there are no preferred head and tail which are usually “sep-
arated” in a non-trivial elementary one-cutpoint crossover operation. In other words,
there is no linkage “directed towards the head of creatures” in the sense of Geiringer
[21, p. 33] as discussed in [56, p. 26: footnote 4, Section 5.4]. See also related work
by Vose and Wright [71].

Finally, let us sketch a model for uniform regular crossover C(u)
reg . Uniform regular

crossover switches letters of the parents creatures c24−1 and c24 at corresponding spots

, 16
6‘, with probability 1

2 . Uniform regular crossover has been discussed, e.g.,
by Nomura and Shimohara [45] and Vose [68, p. 43]. Assume )rst that s= 2. Then
uniform regular crossover C(u)

reg |s=2 can be described as follows:

C(u)
reg |s=2(�) = (1 − �)1 + 2−‘�

‘∏

=1

(1 + C(1; 
)C(1; 
− 1)): (21)

Suppose that the tensor-factors V1 in Eq. (7) are canonically arranged as for Eq. (18).
Then we have

C(u)
reg (�) =

s=2⊗
4=1

C(u)
reg |s=2(�): (22)

We suppose again that a probabilistic decision to apply uniform regular crossover is
made separately for each of the pairs (c1; c2) · · · (cs−1; cs).

The descriptions in Eqs. (20) and (22) allow for veri)cation of commutation relations
involving single/multiple spot mutation and two-cutpoint/uniform regular crossover
based upon the discussion for C(4; 
) after De)nition 2.4.1. Such results have been
obtained for one-cutpoint regular crossover in Proposition 2.2.2.2, [62, Lemma 5.9,
Proposition 7.1.4; 56, Section 5.2.1.2]. This in turn allows for analysis of spectral prop-
erties and contracting properties of two-cutpoint/uniform regular crossover with respect
to the Euclidean norm using the Spectral Mapping Theorem [49, Theorem 10.28]. See
[52, Propositions 7, 10], [56, Theorems 6.1, 6.2] for applicable results related to these
aspects.

2.5. Gene-lottery crossover

Gene-lottery crossover is a variant of the crossover operation which accelerates con-
vergence to uniform populations by selecting letters (genes/alleles) probabilistically
from the distribution of letters at corresponding spots in the creatures of the current
population.
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De%nition 2.5.1 (scaled, spot-wise gene-lottery crossover C(m)
glc ). Let �∈ [0; 1] denote

the crossover rate. Let p= (c1; c2; : : : ; cs) be the current population, c4 ∈C, 1646s.
Let <= (<
)‘
=1 = GFVu(p). For 16
6‘, let

<
 =
�−1∑
�=0

<(
; �) · a(�) ∈ V1; <(
; �) ∈ [0; 1]: (23)

Now, execute for 4= 1 · · · s and for 
= 1 · · · ‘ the following two steps.
Step 1: Decide probabilistically whether or not to apply gene-lottery crossover at

spot 
 in creature c4. The decision for application of gene-lottery crossover is made
positively with probability �.
Step 2: If the decision has been made positively in step 1, then probabilistically

select a letter for that spot such that a(�)∈A has probability <(
; �) of being selected,
06�6�− 1.

We shall denote the stochastic matrix associated with the scaled gene-lottery
crossover operation by C(m)

glc =C(m)
glc (�) as well. The matrix C(m)

glc acts on V̋ and de-

scribes transition probabilities for entire populations. It is immediately clear, that C(m)
glc

leaves uniform populations invariant. Also, C(m)
glc (0) = 1 follows directly from De)nition

2.5.1.
In order to verify De)nition 2.3.1.1 for C(m)

glc (�), suppose )rst that ‘= 1. Now, let
p= (a(�1); a(�2); : : : ; a(�s)); q= (a(�′1); a(�

′
2); : : : ; a(�

′
s)) with a(�4); a(�′4)∈A=C, 164

6s. Let GFVu(p) = <= (<1) and let <1 be as in Eq. (23). Then, the stochastic matrix
C(m)

glc (�)|‘=1 describing probabilistic passage from p to q under gene-lottery crossover
is given by

〈q; (C(m)
glc (�)|‘=1)p〉 =

s∏
4=1

((1 − �)�(a(�4); a(�′4)) + �<(1; �′4)): (24)

For arbitrary ‘∈N, consider the order of tensor-factors V1 in Eq. (7) arranged in such
a way that s-tuples of 
th spots in creatures are combined, and then these s-tuples
are listed sequentially for 16
6‘, i.e., tensor-factor 
̂= (
 − 1)s + 4 corresponds to
spot 
 in creature c4 in a population p= (c1; c2; : : : ; cs), c4 ∈C, 1646s. With this
identi)cation of V̋ , we have

C(m)
glc (�) =

‘⊗

=1

C(m)
glc (�)|‘=1: (25)

De)nition 2.5.1 shows that gene-lottery crossover is a quite “destructive” procedure.
For example in the case of the binary genetic algorithm, gene-lottery crossover can
generate any population in ˝ from a population p such that GFVu(p) is an interior
point of the 2‘-dimensional, positive ‖ · ‖1-unit-sphere. Since this includes generating
uniform populations, we can conclude for arbitrary size � of the underlying alphabet
that C(m)

glc (�) is not symmetric for �¿0.
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De%nition 2.5.2 (alternate scaled gene-lottery crossover).
Step 1: Decide probabilistically whether or not to apply gene-lottery crossover glob-

ally to the current population. The decision to apply gene-lottery crossover is made
positively with probability �∈ [0; 1].
Step 2: If the decision has been made positively in step 1, then gene-lottery crossover

corresponding to C(m)
glc (1) in the sense of Eq. (25) is applied.

In case of De)nition 2.5.2, the stochastic transition matrix is given by (1 − �)1 +
�C(m)

glc (1) with C(m)
glc (1) as in Eq. (25). The two crossover operations just considered

and the population-wise single/multiple-spot mutation operators based upon m(1)
�0 , in

general, do not commute. This is shown by the following and similar examples.

Example. Let �= 2, ‘= 1, s= 2. Let p= (a(0); a(0)); q= (a(1); a(0)); q0 = (a(0);
a(1))∈˝. Then

〈q;M (m)
�0 ;�C

(m)
glc (1)p〉 = 〈q;M (m)

�0 ;�p〉 = �(1 − �): (26)

On the other hand, we have

〈q; C(m)
glc (1)M (m)

�0 ;�p〉 = �(1 − �)(〈q; C(m)
glc (1)q〉 + 〈q; C(m)

glc (1)q0〉) =
�(1 − �)

2
(27)

Eqs. (26) and (27) show that M (m)
�0 ; � and C(m)

glc (�) do not commute for the setting of
the example, if �¿0.

For �¿0 and p∈˝, there is a positive probability to generate uniform populations
from p under gene-lottery crossover. Thus, C(m)

glc (�) satis)es the following inequality:

‖(1− PU)C(m)
glc (�)v‖1 6 =c · ‖(1− PU)v‖1: (28)

A similar estimate as inequality (28) holds, if gene-lottery crossover is given by De)-
nition 2.5.2. Inequality (28) can be obtained as the proof of Proposition 2.6.1.3. =c is
a function of � and lim�→0 =c(�) = 1. Thus, gene-lottery crossover alone (as func-
tion of �t , t ∈N) )ts the de)nition of a generalized )tness scaling given in [56,
De)nition 7.1]. In fact, one has ˝I =˝, ˝II = ∅ and =t = =c(�t) in the sense of
[56, De)nition 7.1].

Inequality (28) has two major consequences: (1) The ePect of genetic drift (i.e., non-
ergodic convergence to uniform populations in a genetic algorithm without mutation)
as discussed in [61, Section 6; 56, Section 7.5] is accelerated. (2) The contraction
property of the combined crossover-selection operator Ft as discussed in Proposition
2.6.2 is enlarged by a factor =c(�t).

Using gene-lottery crossover, e.g., in a simple genetic algorithm with extremely
low mutation rate may virtually be equivalent to implementing genetic drift. If no
speci)c precautions are taken, then an observed accelerated “convergence” to uniform
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populations induced by =c could be very misleading in regard to the goal of rather
“fully” (ergodically) exploring the search space and )nding globally optimal creatures.
However, use of gene-lottery crossover in a properly scaled, asymptotically converging
genetic algorithm as described in Corollary 3.3.4 yields the possibility that gene-lottery
crossover accelerates the accumulation of “good genes” considerably since the crossover
rate can stay larger than any power of the mutation rate over the entire course of the
algorithm.

The gene-lottery crossover operators considered above are “multiple-spot” operators
as they are applied sequentially to every spot in the population. Another possible gene-
lottery crossover operator would be a “single-spot” gene-lottery crossover operator in
analogy to single-spot mutation in the sense of [56, Section 3.2].

2.6. The 7tness function and selection

We shall assume that there is a given non-constant )tness function f : Df→R+

where Df ⊂C × ˝ is the set of all pairs (c; p) such the c∈p. Suppose that for
every p∈˝ one has max{f(c; p): c∈p}¿0. In addition, we shall assume that a
non-empty set Cmax ⊂C exists such that for any population p∈˝, c∈C\Cmax and d;
d′ ∈Cmax:

c; d ∈ p ⇒ f(c; p) ¡ f(d; p) and d; d′ ∈ p ⇒ f(d; p) = f(d′; p); (29)

i.e., the elements of Cmax behave strictly superior in every population they reside in.
Typical examples for )tness functions satisfying (29) are: (1) a )tness function

whose values are independent of the population and (2) rank based upon such a
(raw) )tness function. In that case, Cmax is the set of creatures where the (raw)
)tness function attains maximal value. See [56, Section 7.3] for a suitable de)ni-
tion of rank. Using a selection method based upon rank induced by a given raw
)tness function was proposed by Baker [5]. Another example for a )tness function
satisfying (29) arises in a coevolutionary, single-species setting (e.g., game-playing
programs of )nite length), if a group of strictly superior creatures (agents)
exists.

The optimization algorithm is supposed to maximize f in the sense of )nding an
element of Cmax. What we shall show in Theorem 3.3.2 is that a properly scaled ge-
netic algorithm will do this asymptotically: if w∞ ∈ S̋ is the limit of the steady-state
distributions wt =Gtwt ∈ S̋ for the individual steps Gt , t ∈N, of the underlying inho-
mogeneous Markov chain describing the algorithm (see line (38)), then w∞ is non-zero
only over uniform populations containing members of Cmax. Let vt =

∏1
�=t G�v0 where

v0 ∈ S̋ is initially )xed. Asymptotically, the probability distributions vt describing the
state of the scaled genetic algorithm for individual steps t ∈N approach the trajectory
of the wt even though thermal equilibrium (i.e., steady state vt =wt) is not necessarily
reached in an individual step. These facts follow from an inspection of the proofs of
[30, p. 160: Theorem V.4.3] or [57, Theorem 3.3.2]. See Theorem 3.3.2 for additional
details.
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Let

%2(f) = min{f(c; p)=f(d; p): p ∈ ˝; c ∈ set(p) ∩ Cmax �= ∅;
d ∈ set(p)\Cmax �= ∅} ¿ 1: (30)

%2(f) measures the “strength” of second-to-best creatures in populations containing
elements of Cmax. %2(f) is easy to determine, if the )tness function f is given by
rank.

Next, we de)ne power-law scaling of the )tness function in accordance with, e.g.,
[23, p. 124; 62, Section 2.3; 56, Section 7.1; 65, p. 65; 66, p. 100]. In fact, we set

ft(c; p) = (f(c; p))g(t) for (c; p) ∈ Df; t ∈ N; g : N→R+
∗ : (31)

In addition, let ft(c; p) = 0, if (c; p)∈ (C × ˝)\Df. We shall say that a power-law
scaling is unbounded, if limt→∞ g(t) =∞. In this exposition, we shall only consider
unbounded, logarithmic scalings g given by the following expression:

g(t) = B log(t − t0 + 2) for B ∈ R+
∗ ; t ∈ N ∩ [t0;∞): (32)

It has been shown in [56, Theorem 8.5], that fast scalings with, e.g., linear growth
g(t) = at + b in the exponent are of limited value, in particular, in regard to the use
of a crossover operation. In fact, such algorithms are asymptotically equivalent to a
“take-the-best” algorithm [56, De)nition 8.4] where one cycle of the algorithm consists
of the mutation-step and picking maximal creatures in the current population.

Finally, scaled proportional )tness selection is de)ned as follows (see, e.g., [56, Sec-
tion 7.1] for more details): For p= (c1; c2; : : : ; cs); q= (d1; d2; : : : ; ds)∈˝ with c4; d4 ∈
C, 1646s, let #(d4; p) denote the number of copies of d4 in the population p. In
this situation, the stochastic matrix Sf

t describing probabilistic passage from p to q
under scaled proportional )tness selection is given by

〈q; Sf
t p〉 =

(
s∑

4=1
ft(c4; p)

)−s

·
s∏

4=1
#(d4; p)ft(d4; p): (33)

The following proposition collects basic properties of the scaled )tness selection oper-
ators Sf

t . Proposition 2.6.1.3 improves [62, Proposition 11.6].

Proposition 2.6.1. Let p and q be populations as above and let the scaled 7tness
selection operator Sf

t be de7ned as in Eq. (33). Let == 1 − s−s+1. Then we have
1. If p is a uniform population, then Sf

t p=p.
2. ‖PUS

f
t p‖1¿1− =

3. If v∈ S̋ , then ‖(1− PU)Sf
t v‖16= · ‖(1− PU)v‖1.

Proof. De)nition (33) shows statement (1). To show statement (2), assume )rst that
f(c1; p) =f(c4; p) for every 4 with 2646s and all creatures in p are diPerent.
Then, one can generate exactly s uniform populations from p with proportional )tness
selection. Hence, ‖PUS

f
t p‖1 = 1− = in this situation. In any other situation, we obtain
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from (33):

‖PUS
f
t p‖1 ¿

(
s∑

4=1
ft(c4; p)

)−s

·
s∑

4=1
ft(c4; p)s

=
s∑

4=1

(
ft(c4; p)

/(
s∑

4′=1
ft(c4′ ; p)

))s

:

The latter expression takes minimal value 1 − =, if f(c1; p) =f(c4; p) for every 4
with 2646s as a discussion employing elementary means of calculus shows. This
completes the proof of statement (3). Let us )nally show statement (1). Using statement
(3), Lemma 1.6.1 and statement (2), we obtain for v∈ S̋

‖(1− PU)Sf
t v‖1 = ‖(1− PU)Sf

t (1− PU)v‖1 =
∑

q;p∈˝\U
〈q; Sf

t p〉〈p; v〉

=
∑

p∈˝\U
(1 − ‖PUSf

t p‖1)〈p; v〉6 = · ‖(1− PU)v‖1:

This completes the proof of statement (3).

The following proposition illustrates the dual nature of the crossover operation. Com-
bined with mutation, crossover can be seen as enhancing mixing=randomizing proper-
ties of mutation as formulated in [56, Theorem 6.1]. Combination with the selection
operators Sf

t yields a generalized )tness scaling Ft= Sf
t ·C(�t) in the sense of [56,

De)nition 7.1]. In fact, one has in the sense of [56, De)nition 7.1]: ˝i=˝, ˝ii= ∅
and =t61−s−s+1 (shown in Proposition 2.6.2.2).

Proposition 2.6.2. Let =∈ [0; 1). Let C and F be stochastic matrices acting on V̋
such that

CPU = PU; FPU = PU and ‖(1− PU)Fv‖1 6 =‖(1− PU)v‖1:

Consider the two cases F=C ·F , or F=F ·C. Then we have
1. If p is a uniform population, then Fp=p.
2. If v∈ S̋ , then ‖(1− PU)Fv‖16= · ‖(1− PU)v‖1.

Proof. The prerequisites for C and F show that Fp=p for either de)nition of F.
Lemma 1.6.1 and the inequality for F show

‖(1− PU)FCv‖1 6 =‖(1− PU)Cv‖1 = =‖(1− PU)C(1− PU)v‖1

6 =‖(1− PU)v‖1 and

‖(1− PU)CFv‖1 = ‖(1− PU)C(1− PU)Fv‖16‖(1− PU)Fv‖1

6 =‖(1− PU)v‖1

since both 1− PU and C have operator norm 1 by [53, p. 5, Eq. (7′)].
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3. Convergence of scaled genetic algorithms

3.1. The drive towards uniform populations

The mutation Qow inequality established in Proposition 2.2.3 shows how the muta-
tion operation controls the balance between uniform and non-uniform populations in a
genetic algorithm. If the mutation Qow inequality is combined in a proper way with
the contraction of the selection operator towards uniform populations established in
Propositions 2.6.1.3 and 2.6.2, then this ensures that the combined probability over
non-uniform populations in the steady-state distribution of a simple genetic algorithm
becomes small for small mutation rates. This fact is shown with stronger statement
and simpli)ed proof in the next Theorem. See [62, Theorem 15; 56, Theorems 8.1.3,
8.2.3–4] for results related to these aspects.

Theorem 3.1.1. Let =∈ [0; 1). Let F and X be stochastic matrices acting on V̋ such
that

XPU = PU; FPU = PU and ‖(1− PU)Fv‖1 6 =‖(1− PU)v‖1

for every v∈ S̋ . Let �0 ∈ (0; 1] determine the balance between neighborhood-based
search and uniform change in the spot mutation matrix m(1)

�0 as in de7nition (14). Let
�∈ (0; 1

2 ) denote the mutation rate for multiple-spot mutation M (m)
�0 ; � as in De7nition

2.2.1. Suppose that :∈ (0; 1) is given as in Proposition 2.2.3. Then we have for
v∈ S̋ :
1. ‖(1− PU)FM (m)

�0 ; �Xv‖16= · (1 − : + :‖(1− PU)v‖1),
2. ‖(1− PU)(FM (m)

�0 ; �X )kv‖16(1 − :)==(1 − :=) + (:=)k‖(1− PU)v‖1 for k ∈N,
3. If v is an invariant vector of FM (m)

�0 ; �X , then ‖(1− PU)v‖16(1 − :)==(1 − :=).

Proof. Using Propositions 2.6.2.2, 2.2.3 and Lemma 1.6.1, one has

‖(1− PU)FM (m)
�0 ; �Xv‖1 6 = · ‖(1− PU)M (m)

�0 ; �Xv‖1

6 = · (1 − : + :‖(1− PU)Xv‖1)

= = · (1 − : + :‖(1− PU)X (1− PU)v‖1)

6 = · (1 − : + :‖(1− PU)v‖1):

since 1−PU and X have operator norm 1 by [53, p. 5, Eq. (7′)]. This shows statement
(1). Statement (1) shows statement (2) for k = 1 since 1=(1−:=)¿1. To complete the
proof of statement (2), we proceed by induction

‖(1− PU)(FM (m)
�0 ;�X )k+1v‖1 6 = · (1 − : + :‖(1− PU)(FM (m)

�0 ; �X )kv‖1)

6 = · (1 − : + :((1 − :)==(1 − :=)

+ (:=)k‖(1− PU)v‖1))

= (1 − :)==(1 − :=) + (:=)k+1‖(1− PU)v‖1:
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Statement (3) is now obtained as follows:

‖(1− PU)v‖1 = lim
k→∞

‖(1− PU)(FM (m)
�0 ;�X )kv‖1

6 lim
k→∞

((1 − :)==(1 − :=) + (:=)k‖(1− PU)v‖1)

= (1 − :)==(1 − :=):

The results [54, Theorems 8.1, 8.2], [62, Theorem 17] and quite drastically [62,
Theorem 8.3] show that a genetic algorithm with strictly positive mutation-rate limit
cannot asymptotically converge to a probability distribution over populations con-
taining only globally optimal creatures. Consequently, in order to obtain asymptotic
convergence, the mutation rate has to be annealed to zero. Theorem 3.1.1 shows
that in this situation the algorithm must converge to a probability distribution over
uniform populations only. Thus, even though the goal of an optimization algorithm
should be to )nd just one copy of a globally optimal creature, the fabric of the
algorithm will asymptotically deliver a uniform population containing globally opti-
mal creatures. We point out that a properly designed, scaled, asymptotically converg-
ing genetic algorithm as in Theorem 3.3.2 and its Corollaries allows for probabilis-
tic estimates in regard to running the algorithm only a )nite (but larger) number
of cycles and approaching the limit probability distribution over uniform populations
containing globally optimal creatures, cf. [30, p. 160: proof of Theorem V.4.3] or
[57, Theorem 3.3.2].

3.2. Weak ergodicity

The following Theorem extends a result by Suzuki [65, p. 60, Lemma 1; 66, p. 98,
Lemma 1], a result of the discussion in [61, Section 3; 56, Theorem 4.1].

Theorem 3.2.1. Suppose that Xt; Yt are sequences of stochastic matrices acting on
V̋ , t ∈N. Let �0 determine the balance between neighborhood-based search and
uniform change in the spot mutation matrix m(1)

�0 as in de7nition (14). Let � de-
note the mutation rate for multiple-spot mutation M (m)

�0 ; � as De7nition 2.2.1. Let
(M ; (0 ∈R+

∗ , (′
0 ∈ (0; 1]. Let (M and the initial value t0 ∈N be determined such that

(M · t−1=(,0L)
0 ¡ 1

2 where ,0 ∈ [1;∞) is set as described below. Now, set �(t) =(M

· t−1=(,0L) for t ∈N∩ [t0;∞). Let �0 = �0(t) be determined by one of the following
annealing schedules:
1. Local balance which is bounded below. Set ,0 = 1. Choices are:
• �0 ∈ (0; 1] is kept constant. This includes the case �= 2 and for our choice of
spot mutation matrix also the case �= 3.

• �0(t) =(′
0 − (0 · �(t)∈ (0; 1] where (0¡(′

0=�(t0).
2. Decreasing local noise. Choose ,0 ∈ (1;∞) and set �0(t) =(0 · �(t),0−1 ∈ (0; 1]
where (06�(t0)1−,0 .

Given the above cooling schedule, set Gt =Xt ·M (m)
�0(t);�(t) ·Yt for t ∈N∩ [t0;∞). Then

the inhomogeneous Markov chain
∏t0

�=t G� is weakly ergodic.
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Proof. For the proof one combines Lemma 1.3.1 and Proposition 2.2.2.1.

3.3. Convergence to global optima

Theorem 3.3.2 and its corollaries are the main results of this exposition. They show
that a carefully scaled genetic algorithm with not-necessarily commuting mutation and
crossover converges for arbitrary 7tness function to (a probability distribution over)
uniform populations containing only elements of Cmax (see the beginning of Section
2.6). This simpli)es and strengthens [56, Theorem 8.6, Remark 8.7] considerably in
regard to applicability and implementation. However, there is a price to pay in that we
require the crossover rate being annealed to 0 for the algorithm described below. Such
a condition is not required in [56, Theorem 8.6, Remark 8.7]. Note that our analysis
in Theorem 3.3.2 and its corollaries is, in particular, more general than the approach
taken in Vose’s book [68] where it is always assumed that the )tness function is
injective [68, p. 25, footnote]. To obtain our main result, we )rst need the following
Lemma.

Lemma 3.3.1. Let k ∈N, r0 ∈ [1;∞) and �max; %∈R+
∗ . Let x,;,′ ; x0 ∈C, x0 �= 0 and

r,;,′ ; %, ∈R+ for 16,; ,′6k. Assume that all r,;,′ are distinct. Assume that all %,

are distinct. Let x̂6; 6′ ∈C and r̂6; 6′ ; %̂6 ∈R+ for 166; 6′6k. Assume that all r̂6; 6′ are
distinct. Assume that all %̂6 are distinct. Suppose that hp : (0; 1]→C satis7es
• hp(�) = h(�)=ĥ(�) for �∈ (0; �max], where

h(�) =
k∑

,=1
�%, ·

(
k∑

,′=1
x,;,′ · (1 + x0�r0 )r,;,′

)
;

ĥ(�) =
k∑

6=1
�%̂6′ ·

(
k∑

6′=1
x̂6; 6′ · (1 + x0�r0 )r̂6; 6′

)
�= 0:

• |hp(�)|6% for �∈ (0; �max].
In this situation, we have
1. hp can be extended to a continuous function in �= 0,
2. there exists j∈N and 20¿0 such that the function 2 �→ hp(2j) is continuously
di>erentiable in [0; 20].

Proof. Suppose )rst that r0 ∈N. If the complex logarithm [34, p. 111] is de)ned in
such a way that it becomes discontinuous along −R+ and analytic in C\(−R+), then
the function z �→ (1+ z)r , r ∈R+, shall be analytic in C\(−∞;−1]. Consequently, this
function has an absolutely converging power series expansion in D0

C = {z ∈C: |z|¡1}
which is uniformly converging on any compact subset of D0

C by [34, pp. 49–52, The-
orems 2.4–2.6]. Combine the sums

k∑
,′=1

x,;,′ · (1 + x0�r0 )r,;,′ =
∞∑
i=0

y,;i�i and
k∑

6′=1
x̂6;6′ · (1 + x0�r0 )r̂6;6′ =

∞∑
i=0

ŷ6;i�
i
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to absolutely converging power series for �∈ |x0|−1=r0 ·D0
C, where y,; i; ŷ6; i ∈C for

16,; 66k, i∈N0.
Let F= {i + %,: 16,6k; i∈N0}⊂R+ and F̂= {i + %̂6 : 1666k; i∈N0}⊂R+.

Then one has

h(�) =
k∑

,=1

∞∑
i=0

y,;i�i+%, =
∑
%∈F

y(%)�%;

ĥ(�) =
k∑

6=1

∞∑
i=0

ŷ6;i�
i+%̂6 =

∑
%̂∈F̂

ŷ(%̂)�%̂; (34)

where y(%); ŷ(%̂)∈C for %∈F, %̂∈ F̂. All series shown in line (34) are converging
absolutely and uniformly for �∈ [0; |x0|−1=r0=2]. Let

%0 = min{%; %̂: y(%) �= 0 �= ŷ(%̂); % ∈ F; %̂ ∈ F̂}¿ 0;

i0 = �%0� + 1; %′
0 = i0 − %0 ¿ 0: (35)

Then hp(�) = (�−%0h(�))=(�−%0 ĥ(�)). Let F′ = {i + %, : 16,6k; 06i¡i0}⊂F. We
have

�−%0h(�) =
∑
%∈F′

y′(%)�%−%0 +
k∑

,=1
�%,+%′0

∞∑
i=i0

y,;i�i−i0 ; (36)

where y′(%)∈C for %∈F′. All exponents for � that are used in the )nite sum over
F′ and the power-series in line (36) are positive. The theory of power series shows
that the power-series representation for �−%0h(�) in line (36) is converging uniformly
and absolutely for �∈ [0; |x0|−1=r0=2]. In fact, the radii of convergence for the power-
series are determined by (y,; i+i0 )

∞
i=0, 16,6k using [34, p. 52, Theorem 2.6] and stay

|x0|−1=r0 .
A similar power-series representation as in line (36) can be derived for �−%0 ĥ(�).

If �−%0 ĥ(�) does not have a non-zero constant term in its power-series representation,
then %0 was chosen among the %∈F′. Thus, �−%0h(�) must have a non-zero constant
term y′(%0). In this case, hp would be unbounded which contradicts the hypothesis of
the Lemma. Hence, �−%0 ĥ(�) has a non-zero constant term and hp can be extended
continuously to �= 0. This completes the proof of statement (1).

Let j∈N. Consider the following expression for 2∈ [0; 20], 20 = (min{|x0|−1=r0=2;
�max})1=j:

(2j)−%0h(2j) =
∑
%∈F′

y′(%)2j(%−%0) +
k∑

,=1
2j(%,+%′0)

∞∑
i=i0

y,;i2j(i−i0); (37)

where the notation de)ned in Eq. (36) is used. If we chose j large enough, then every
exponent in the series shown in Eq. (37) is either 0 or larger than 1. A similar consider-
ation holds for 2 �→ (2j)−%0 ĥ(2j). Hence for suNciently large j, the function 2 �→ hp(2j)
is continuously diPerentiable for 2∈ [0; 20] by the quotient rule of diPerentiation. This
proves Lemma 3.3.1 in case r0 ∈N.
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To obtain Lemma 3.3.1 in the case r0 ∈ (1;∞), compose the function hp given in
Lemma 3.3.1 for r0 = 1 with the function � �→ �r0 and apply the chain rule.

A genetic algorithm as in the table in the introduction shall be called an SMC genetic
algorithm in accordance with the action of the corresponding stochastic matrices. If
the order of crossover and mutation are reversed in every cycle of the algorithm, then
we shall speak of an SCM genetic algorithm.

Theorem 3.3.2 (Convergence to global optima). Let t0 ∈N be 7xed and t ∈N∩
[t0;∞) enumerate the individual steps Gt of the scaled genetic algorithm as described
below. Suppose that the genetic operators mutation, crossover and selection satisfy
the following conditions:
• �0(t) determines the balance between neighborhood-based search and uniform
change in the spot mutation matrix m(1)

�0 as in de7nition (14). �(t) denotes the mu-
tation rate for multiple-spot mutation M (m)

�0(t);�(t) as in De7nition 2.2.1. ,0 ∈ [1;∞)
and the annealing schedules t �→ �0(t) and t �→ �(t) are given by one of the choices
listed in Theorem 3.2.1.

• A rational generalized crossover operation C(�t) as in De7nition 2.3.1 is used.
Suppose that the crossover rates satisfy �t =(C�(t),0‘+1 where (C ∈ (0; 2,0‘+1].
We shall not assume that mutation and crossover commute as operators.

• Power-law scaled proportional 7tness selection Sf
t as de7ned in Section 2.6 is used

with logarithmic exponentiation g(t) =B log(t − t0 + 2) as in Eq. (32). Let %2(f)
be given by de7nition (30). %2(f) is easy to determine if the 7tness function is
given by rank. Suppose that B satis7es

,0‘ ¡ ,0LB log(%2(f)) + 1:

• The population size satis7es s¿,0‘.
In case of an SMC genetic algorithm, set k = 1. In case of an SMC genetic algorithm,

set k = 0. Let the stochastic matrices Gt describing the individual steps of the scaled
genetic algorithm be given by

Gt = Sf
t · C(�t)1−k ·M (m)

�0(t);�(t) · C(�t)k ; k = 0; 1: (38)

Then we have:
1. The inhomogeneous Markov chain Ht =

∏t0
�=t G� describing the scaled genetic

algorithm is strongly ergodic.
2. Let wt =Gtwt ∈ S̋ denote a steady-state distribution of an individual step Gt of
the scaled genetic algorithm. For su?ciently large t, wt is uniquely determined
up to scalar multiples as invariant eigenvector of Gt . Then w∞ = limt→∞ wt ∈ S̋
exists. w∞ is strictly positive only over uniform populations generated by creatures
in Cmax.

3. Let v0 ∈ S̋ be the probability distribution for the selection of the initial popula-
tion. Let vt =Htv0 ∈ S̋ describe the state of the algorithm after step t. Then we
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have limt→∞ vt =w∞ as is shown in the proofs of [30, p. 160, Theorem V.4.3]
or [57, Theorem 3.3.2]. Consequently, the states of the scaled genetic algorithm
converge to (a probability distribution over) uniform populations generated by
globally optimal creatures.

Proof. In what follows, we consider �∈ (0; (M · t−1=(,0L)
0 ] and t ∈ [t0;∞) as R-valued

parameters satisfying �=(M · t−1=(,0L). Gt is well-de)ned for R-valued t ∈ [t0;∞).
Part 1: Proof of uniqueness of wt . If k = 1, then M (m)

�0(t);�(t) ·C(�t) is fully positive

for any stochastic crossover matrix C(�t) by Proposition 2.2.2.1. In addition, M (m)
�0(t);�(t)

is invertible by Proposition 2.2.2.3, and C(�t) is invertible for suNciently large t
by Lemma 2.3.2.2. Hence in both cases k = 0; 1, we obtain by Lemma 1.4.2.2 that
wt is uniquely de)ned as an invariant eigenvector of Gt up to scalar multiples for
large t.
Part 2: Proof of statement (1). Theorem 3.2.1 shows that the inhomogeneous

Markov chain Ht is weakly ergodic for k = 0; 1. In order to show that Ht is strongly
ergodic, we shall apply [30, p. 160, Theorem V.4.3] or [57, Theorem 3.3.2]. In order
to complete Part 2, we only have to show that the sequence (‖wt+1 − wt‖1)t∈N∩ [t0 ;∞)

is summable, i.e.,
∑∞

t=t0 ‖wt+1 −wt‖1¡∞. Since ˝ is )nite, the latter is achieved by
showing that (|〈p; (wt+1 − wt)〉|)t∈N∩ [t0 ;∞) is summable for every p∈˝.

By Part 1 of the proof, we know that the kernel of Gt−1 is generated by wt ∈ S̋ ⊂
(R+)�

L
for large t. Adding the rows of Gt − 1 to the )rst row, we see that the kernel

of (Gt−1)[0] is generated by wt as well. Hence, (Gt−1)[e∗] has kernel {0} and the
equation (Gt−1)[e∗]wt = (�−L; 0; : : : ; 0)∗ uniquely determines wt . In this situation, wt

can be computed using Cramer’s Rule [33, p. 182, Theorem 3].
Let T = t − t0 + 2 =(,0L

M �−,0L − t0 + 2. Expressing the coeNcients of the )tness
selection operator in terms of T , we obtain from Eq. (33):

〈q; Sf
t p〉 =

(
s∑

4=1
TB log(f(c4;p))

)−s

·
s∏

4=1
#(d4; p)TB log(f(d4;p)) (39)

for p= (c1; c2; : : : ; cs); q= (d1; d2; : : : ; ds)∈˝, c4; d4 ∈C, #(d4; p)∈N0, 1646s. For
p∈˝, set hp(�) = 〈p;wt〉 with t =(,0L

M �−,0L. By Proposition 2.2.2.1, De)nition 2.3.1.1
and Eq. (39), we conclude that the computation of hp(�) using Cramer’s rule yields a
function that satis)es the prerequisites of Lemma 3.3.1 with r0 = ,0L, �max6(Mt−1=(,0L)

0 ,
%= 1 and x0 = (2− t0)=(

,0L
M . By Lemma 3.3.1.2, there exists j∈N and 20¿0 such that

the function 2 �→Ip(2) = hp(2j) is continuously diPerentiable in [0; 20]. Let t1 ∈ (2−j,0L
0 ;

∞)∩N. Let K ∈R+
∗ be such that |(d=d2)Ip(2)|6K on [0; 20]. Then we have

∑
t∈[t1 ;∞)∩N

|〈p; (wt+1 − wt)〉| =
∞∑
t=t1

|Ip((1=j
M (t + 1)−1=(j,0L)) −Ip((1=j

M t−1=(j,0L))|

6
∞∑
t=t1

K · (1=j
M · |(t + 1)−1=(j,0L) − t−1=(j,0L)| ¡ ∞:
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Part 3: Proof of statement (2). The )rst part of statement (2) concerning uniqueness
of the wt has already been shown in Part 1 of the proof. The limit w∞ ∈ S̋ exists
since the wt ∈ S̋ , t ∈N, satisfy

∑∞
t=t0 ‖wt+1 − wt‖1¡∞ and, consequently, form a

Cauchy sequence. Theorem 3.1.1.3 implies

‖(1− PU)w∞‖1 = lim
t→∞ ‖(1− PU)wt‖16 lim

t→∞ (1 − :(�(t)))==(1 − =) = 0;

where := :(�(t))∈ (0; 1) is given as in Proposition 2.2.3, and = as in Proposition
2.6.1.3. This shows that w∞ is non-zero only over uniform populations. To complete
Part 3 of the proof, we show now that w∞ is strictly positive only over populations
in Cs

max ⊂˝, i.e., populations that contain only globally optimal creatures.
The idea for the following argument is to derive an estimate for the probabilistic

Qow between �=Cs
max and �′=˝\Cs

max, if the homogeneous Markov chain de)ned
by Gt is in steady state. This is based upon the fact that wt =Gtwt . Let P� be the
orthogonal projection onto spanC(�) and let P�′ be the orthogonal projection onto
spanC(�′). Let !(t) = ‖P�wt‖1. Let �+= {p∈˝ : set(p)∩Cmax �= ∅}.
Part 3a: The Dow towards �. In order to make a transition under mutation from

q′ ∈�′ to a population q+∈�+, one has to change at most the letters in the spots
corresponding to a single creature in q. For each of these changes, the probability
under mutation is at least �0=(�−1), cf. Lemma 2.1.1.3. If t is chosen suNciently
large, then the crossover rate is suNciently small such that Lemma 2.3.2.1 can be
applied to C(�t). A transition from q+∈�+ to a population p∈�∩U under )tness
selection occurs now with probability bounded below by s−s+1, cf. Proposition 2.6.1.2.
Hence, we have for K1 ∈R+

∗ and summations over p∈�∩U, q+∈�+, q′ ∈�′

‖P�GtP�′wt‖1 ¿
∑
p;q′

〈p; Sf
t C(�t)1−kM (m)

�0(t);�(t)C(�t)kq′〉〈q′; wt〉

¿
∑

p;q+ ;q′
〈p; Sf

t q
+〉〈q+; C(�t)1−kq+〉〈q+; M (m)

�0(t);�(t)q
′〉

×〈q′; C(�t)kq′〉〈q′; wt〉
¿
∑
q+ ;q′

s−s+1 1
2
〈q+; M (m)

�0(t);�(t)q
′〉〈q′; wt〉

¿
1
2
s−s+1(��0=(�− 1))‘

∑
q′

〈q′; wt〉¿K1�,0‘ · ‖P�′wt‖1: (40)

Hence, we have

‖P�′GtP�′wt‖1 = ‖P�′wt‖1 · ‖P�′Gt(‖P�′wt‖−1
1 P�′wt)‖1

= ‖P�′wt‖1 · (1 − ‖P�′wt‖−1
1 ‖P�GtP�′wt‖1)

6 ‖P�′wt‖1 · (1 − K1�,0‘): (41)

Let q+ = (c1; c2; : : : ; cs)∈�+, c4 ∈C, 1646s. Let 6max denote the number of spots
in p that are occupied by elements in Cmax. The probability for selecting an arbitrary
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element d∈ set(q+)∩Cmax in the process of the scaled proportional )tness selection
operation is then given by

6maxft(d; q+)
/(

s∑
4=1

ft(c4; q+)
)

: (42)

The expression in line (42) is bounded below by (1 + (s−1)T−B log(%2(f)))−1. Hence
we have

‖P�S
f
t q

+‖1 ¿ (1 + (s− 1)((,0L
M �−,0L + 2 − t0)−B log(%2(f)))−s:

Hence, there exists K2 ∈R+
∗ such that for suNciently small �:

‖P�′Sf
t q

+‖1 = 1 − ‖P�S
f
t q

+‖1 6 K2�,0LB log(%2(f)): (43)

Part 3b: The Dow towards �′. In order to estimate the probabilistic Qow from � to
�′ in application of Gt to wt , we distinguish two cases:
Case 1: Initial crossover-mutation step destructs all globally optimal creatures.

In order to make a transition from p∈� to a population qc ∈˝\�+ via crossover-
mutation, one has to change every creature in p in appropriate fashion. In that case,
a subsequent selection operation cannot generate an element of �+. If k = 1, i.e.,
crossover is applied )rst, then the crossover operation alone may achieve changing
every creature in p. By Eq. (15), the combined probability for this to happen is
bounded by K3�,0‘+1, K3 ∈R+

∗ . Mutation may then keep the resulting qc ∈˝\�+. If
crossover did not change p∈�, then mutation has to alter at least one spot in every
creature in p. By Proposition 2.2.2.1, the combined probability for this to happen is
bounded by K4�s, K4 ∈R+

∗ . If crossover did only change some creatures in p∈�, then
mutation has to alter at least one spot in every unaltered creature in p. This happens
with probabilities that are bounded by higher-order terms than the previous two cases
discussed. If k = 0, then a similar argument can be used.
Case 2: Initial crossover-mutation step retains globally optimal creatures. An ini-

tial application of C(�t)1−kM (m)
�0(t);�(t)C(�t)k to p∈� yields elements q+∈�+\� with

probability bounded from above by K5�, K5 ∈R+
∗ , since at least one spot in p must

be changed by mutation, or crossover must be applied. If selection is applied to q+,
then the combined probability to generate elements of �′ is bounded from above by
K2�,0LB log(%2(f)) as was shown in line (43).

Hence, we have for K6 ∈R+
∗ and summations over q′ ∈�′, qc ∈˝\�+, q+∈�+\�,

p∈�:

‖P�′GtP�wt‖1

=
∑

q′ ;qc;p
〈q′; Sf

t q
c〉〈qc; C(�t)1−kM (m)

�0(t);�(t)C(�t)kp〉〈p;wt〉

+
∑

q′ ;q+ ;p
〈q′; Sf

t q
+〉〈q+; C(�t)1−kM (m)

�0(t);�(t)C(�t)kp〉〈p;wt〉
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6
∑
qc;p

〈qc; C(�t)1−kM (m)
�0(t);�(t)C(�t)kp〉〈p;wt〉

+
∑
q+ ;p

K2�,0LB log(%2(f))〈q+; C(�t)1−kM (m)
�0(t);�(t)C(�t)kp〉〈p;wt〉

6
∑
p

K6(�,0‘+1 + �s)〈p;wt〉 +
∑
p

K2K5�,0LB log(%2(f))+1〈p;wt〉

= (K6�,0‘+1 + K6�s + K2K5�,0LB log(%2(f))+1)!(t): (44)

Part 3c: The steady-state Dow inequality. Combining inequalities (41) and (44)
yields the steady-state Qow inequality as follows:

1 − !(t) = ‖P�′wt‖1 = ‖P�′GtP�wt‖1 + ‖P�′GtP�′wt‖1

6 (K6�,0‘+1 + K6�s + K2K5�,0LB log(%2(f))+1)!(t)

+ (1 − K1�,0‘)(1 − !(t)): (45)

Inequality (45) shows that limt→∞ !(t) = 1. This completes Part 3 of the proof and
the proof of Theorem 3.3.2.

Theorem 3.3.2 requires that the crossover rate is annealed rather fast compared with
mutation. If we use a regular crossover operation, then Theorem 3.3.2 can be strength-
ened considerably in this regard as the following Corollary shows.

Corollary 3.3.3 (Convergence to global optima). Let m∈ [1;∞). Suppose that the
prerequisites of Theorem 3.3.2 hold except for the following changes:
• The crossover operation is given by (scaled) one-, two-cutpoint or uniform regular
crossover (see De7nitions 2.4.2, (20) and (22)). The crossover rate is given by
�t =(C�(t)1=m where (C ∈ (0; 21=m].

• B satis7es: ,0‘¡,0LB log(%2(f)) + 1=m.
• The population size satis7es: s¿2m,0‘.
Then the conclusions of Theorem 3.3.2 hold.

Proof. To prove Corollary 3.3.3, the proof of Theorem 3.3.2 can be copied except
for the discussion in Part 3b, Case 1 and resulting estimates in the steady-state Qow
inequality. With the notation used in the proof of Theorem 3.3.2 we have
Case 1′: In order to make a transition from p∈� to a population qc ∈˝\�+ via

crossover-mutation, one has to change every creature in p in appropriate fashion. In
that case, a subsequent selection operation cannot generate an element of �+. If k = 1,
i.e., crossover is applied )rst, then the crossover operation alone may achieve changing
every creature in p. By Eq. (18) or (20), the combined probability for this to happen
is bounded by K3�

s=2
t =K3(

s=2
C �(t)s=(2m), K3 ∈R+

∗ . Mutation may then keep the resulting
qc ∈˝\�+. If crossover only changed 4 creatures in p∈� which is bounded from
above by terms in the order of �(t)4=(2m), then mutation has to alter at least one spot in
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the unchanged s−4 creature in p. By Proposition 2.2.2.1, the combined probability for
the latter to happen is bounded by K4�s−4, K4 ∈R+

∗ . The asymptotically largest estimate
(i.e., for suNciently small �) obtained in this discussion is the term K3(

s=2
C �(t)s=(2m).

The case k = 0 need not be discussed since mutation and crossover commute. Proof of
the latter statement is discussed after De)nition 2.4.1.

Now, the steady-state Qow inequality is obtained as follows with K6 ∈R+
∗ :

1 − !(t)6 (K6�s=(2m) + K2K5�,0LB log(%2(f))+1=m)!(t)

+ (1 − K1�,0‘)(1 − !(t)); (46)

which yields limt→∞ !(t) = 1.

If we use scaled, spot-wise gene-lottery crossover, then Theorem 3.3.2 can be strength-
ened too. This is shown in the following corollary.

Corollary 3.3.4 (Convergence to global optima). Let m∈ [1;∞). Suppose that the
prerequisites of Theorem 3.3.2 hold except for the following changes:
• The crossover operation is given by scaled, spot-wise gene-lottery crossover (see
De7nitions 2.5.1). The crossover rate is given by �t =(C�(t)1=m where (C ∈ (0; 21=m].

• B satis7es: ,0‘¡,0LB log(%2(f)) + 1=m.
• The population size satis7es: s¿m,0‘.
Then the conclusions of Theorem 3.3.2 hold.

Proof. To prove Corollary 3.3.4, the proof of Theorem 3.3.2 can again be copied
except for the discussion in Part 3b, Case 1 and resulting estimates in the steady-state
Qow inequality. With the notation used in the proof of Theorem 3.3.2 we have
Case 1′′: In order to make a transition from p∈� to a population qc ∈˝\�+ via

crossover-mutation, one has to change every creature in p in appropriate fashion. Thus,
one has to alter at least one spot in every creature of p. In that case, a subsequent
selection operation cannot generate an element of �+. If k = 1, i.e., crossover is applied
)rst, then the crossover operation alone may achieve changing every creature in p.
By Eqs. (24) and (25), the combined probability for this to happen is bounded by
K3�s

t =K3(s
C�(t)s=m, K3 ∈R+

∗ . Mutation may then keep the resulting qc ∈˝\�+. If
crossover did only change 4 creatures in p∈�, then mutation has to alter at least
one spot in the unchanged s − 4 creature in p. By Proposition 2.2.2.1, the combined
probability for this to happen is bounded by K4�s−4, K4 ∈R+

∗ . Overall, the required
change can be estimated for small � by an upper bound of order �(t)s=m. The case
k = 0 is discussed similarly.

Now, the steady-state Qow inequality is obtained as follows with K6 ∈R+
∗ :

1 − !(t)6 (K6�s=m + K2K5�,0LB log(%2(f))+1=m)!(t)
+ (1 − K1�,0‘)(1 − !(t)); (47)

which yields limt→∞ !(t) = 1.
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Remark 3.3.5. Corollaries 3.3.3 and 3.3.4 show (with mathematical theory and not
experimentally) the quite remarkable ePect that with increasing population size, one is
allowed to use a more relaxed cooling schedule for crossover. Thus for larger population
size, the part of the algorithm design, i.e., de)nition of creatures (data structures), which
is exploited by crossover plays a more important role. Overall, crossover has more
time and opportunity to perform its enhancement of the mixing phase of the genetic
algorithm. See [56, Theorem 6.1] where this statement is given a precise meaning in
terms of contraction properties of the combined crossover-mutation operator in case of
regular crossover.

Remark 3.3.6. Anily and Federgruen [3, Theorem 2] have shown for the simulated
annealing algorithm that one can use certain non-monotone sequences for the cooling
parameter and still obtain an asymptotically converging simulated annealing algorithm.
The reader may adapt Anily and Federgruen’s work to the situation of Theorem 3.3.2
to obtain asymptotically converging genetic algorithms with more general annealing
schedules for mutation than presented in this work.

The author conjectures that Theorem 3.3.2 and its corollaries can possibly be gen-
eralized to the following situations with random-nature annealing schedules for the
mutation rate � and the spot mutation rate �0: � is chosen at runtime depending upon
the state of the algorithm. If the algorithm repeatedly returns to the same state (i.e.,
population), then � is increased by a certain magnitude. Overall, � follows one of
the trajectories proposed in Theorem 3.2.1. For �0 we have: (1) Local balance which
is bounded below. Set ,0 = 1. �0(t)∈ (’; 1] is chosen at runtime depending upon the
state of the algorithm, ’∈ (0; 1). If the algorithm repeatedly returns to the same state
(i.e., population), then the local noise is increased. (2) Decreasing local noise. Set
,0 = 2. �0(t)∈ [�(t); 1] is chosen at runtime depending upon the state of the algorithm.
Overall, �0(t) follows the trajectory of the �(t) with occasional bursts.

Section 4 of [57] discusses a number of other possible generalizations and continu-
ations of the work presented in this exposition. In the opinion of this author, adapting
the approach to theoretical treatment of scaled genetic algorithms presented here to the
case of a non-fully positive mutation matrix (see, e.g., [56, Section 3.2]) is the most
challenging and important next advance.

4. Additional extensions of the theory

4.1. Not-necessarily symmetric generalized crossover operators

In [56, Section 5.1.1] generalized crossover is considered with the additional as-
sumption that the stochastic matrices C(�) are symmetric. We shall outline in this
section that this condition can actually be dropped almost entirely in [56]. The main
results of [56], in particular, in regard to strictly positive limit mutation rate stay valid.
This yields valuable examples for non-converging genetic algorithms that use non-
symmetric crossover operations such as gene-lottery crossover.
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4.1.1. Genetic drift
The discussion in [56, Section 7.5] holds without change. We observe that simple

genetic algorithms with zero mutation rate and any crossover are dangerous, non-
ergodic procedures. Thus, an extremely low mutation rate in a simple genetic algorithm
may as well yield misleading experimental results. This point of view is in accordance
with experimental results by, e.g., Banzhaf et al. [6].

In this context, the author notes that investigations of genetic algorithms without
mutation as in [9,22,64,73] must fail to produce explicit convergence theorems with
scaling schedules such as Theorem 3.3.2 for the principal reason that these paradigms
rely on a non-ergodic exploration of the search space via genetic drift. Similarly,
schema theory for genetic programming without mutation as in [46, Theorems 1–4]
must fail to produce explicit convergence theorems. This concurs with the point of
view expressed by Vose [68, p. 211, lines 1–4].

4.1.2. Strictly positive limit mutation rate and single-spot mutation
In the case of the SCM genetic algorithm, [56, Theorem 8.1] stays valid and can even

be extended to the case of a single-spot mutation as de)ned in [56, Section 3.2] which
uses the spot mutation matrix given by de)nition (14). Ref. [56, Theorem 8.1] can
be extended to the case of the SMC genetic algorithm too. In that case, [56, Theorem
8.1.3] is obtained with the help of Theorem 3.1.1.3.

4.1.3. Strictly positive limit mutation rate and multiple-spot mutation
In the case of the SCM genetic algorithm, [56, Theorems 8.2.1,3,4] hold without

change and can even be extended in that M (m)
�0 ; � as discussed here is used as mutation

operation. In order to obtain [56, Theorem 8.2.2], one has to suppose that C�∞ − �1 is
a positive matrix for some �∈ (0; 1] similar to the conditions for [56, Theorem 8.2.4].
Such a condition is satis)ed for scaled, spot-wise gene-lottery crossover by Eqs. (24)
and (25). If p∈˝ is a population of uniform )tness as in the proof of [56, Theorem
8.2.2, pp. 46 (line 28)–47 (line 5)], then 〈p;C�∞M (m)

�0;∞ ;�∞v∞〉 �= 0 for v∞ ∈ S̋ simply
because M (m)

�0;∞ ;�∞ is fully positive and C�∞ has positive diagonal.
In the case of the SMC genetic algorithm, [56, Theorem 8.2] holds without change

and for M (m)
�0 ; � as mutation operation. For the proof, one notes that M (m)

�0;∞ ; �∞C�∞
is a fully positive matrix. This yields strong ergodicity in [56, Theorem 8.2.1] and
〈p;M (m)

�0;∞ ; �∞C�∞v∞〉 �= 0 in the proof of [56, Theorem 8.2.2, pp. 46 (line 28)–47 (line
5)]. Again, [56, Theorem 8.2.3] follows from Theorem 3.1.1.3. The argument for the
proof of [56, Theorem 8.2.4, p. 47] can be easily modi)ed to the case of the SMC

genetic algorithm. Note that [56, p. 47] contains a systematic typographical error: M (1)
�∞

should always be replaced by M (m)
�∞ .

Ref. [56, Theorem 8.3] holds for both the SCM- and SMC-genetic algorithm. Note that
[56, Theorem 8.3.3] does not suppose that the )tness function induces an order on the
set of creatures C.

4.1.4. Zero-limit mutation rate and multiple-spot mutation
Ref. [56, Theorem 8.5] stays valid for commuting crossover and mutation operators.

The property of crossover being symmetric is used nowhere in the proof. Note that
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[56, Theorem 8.5] does not even suppose that crossover is a continuous function of
the crossover rate.

Ref. [56, Theorem 8.6, Remark 8.7] also stay valid for not-necessarily-symmetric
crossover matrices. Again, symmetry of the crossover matrices is used nowhere in the
proof.

4.2. Invariant subspaces for commuting crossover and mutation

The following proposition simpli)es and strengthens [62, Propositions 1.7, 3.5; 58,
Propositions 3.5, 3.8]. It states that any (mutation) matrix that commutes with a speci)c
crossover operator maps the space of invariant vectors of that crossover operator into
itself. Note that for the proof of Proposition 4.2.1, one only has to know that SD and
D (de)ned below) are the spaces of invariant vectors for the respective crossover
operators.

Let )s denote the group of permutations of s elements. Elements of )s act canoni-
cally on ˝ by shuYing creatures (see [56, Section 2.9] for a more detailed de)nition).
Let P) be the average/mean over those linear, stochastic operators on V̋ that are
induced by the canonical action of the group )s on ˝. The maps v �→P)v, v∈ V̋
and X �→P)XP) for matrices X acting on V̋ embed the model for genetic algorithms
based upon the multi-set representation for populations into the model presented in this
exposition. For more details on this claim and the projection P) see [56, p. 13].

Proposition 4.2.1. Let �∈ (0; 1] be 7xed. Let M be a matrix acting on V̋ . Suppose
that M commutes with one of the crossover matrices (1)–(7) listed below.
1. (1) The one-cutpoint regular crossover matrix C(1)

reg (�) given by Eq. (18), (2) the
two-cutpoint regular crossover matrix C(2)

reg (�) given by Eq. (20), (3) the uniform
regular crossover matrix C(u)

reg (�) given by Eq. (22).
Let �¡1. Let D= SD with SD as in [56, p. 15]. SD is the space of invariant vectors

for the matrices (1)–(3). This follows from [62, Proposition 7.6] 8 which holds also
in the case of two-cutpoint=uniform regular crossover.

2. (4) The one-cutpoint regular crossover matrix in the model based upon multi-set
representations for populations given by P)C(1)

reg (�)P) (�¡1), (5) the two-cutpoint
regular crossover matrix in the model based upon multi-set representations for
populations given by P)C(2)

reg (�)P) (�¡1), (6) the uniform regular crossover ma-
trix in the model based upon multi-set representations for populations given by
P)C(u)

reg (�)P) (�¡1), (7) the unrestricted crossover matrix C(u)
� in the sense of

[62, Section 2.2, p. 117].
Let D=D with D as in [56, p. 14]. D is the space of invariant vectors for the

matrices (4)–(7). This follows from [58, Lemma 5.1] which holds for one=two-
cutpoint and uniform regular crossover and from [62, Proposition 9.6] for
unrestricted crossover.

Then MD⊂D.

8 The last equation listed in the statement of [62, Proposition 7.6] should better be: C�PD =PD =PDC� .
This also holds for [62, Proposition 9.6].
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Proof. Let v∈D. Let C stand for one of the crossover operators listed above. Then
we have for k∈N

Mv = Mk−1
k∑

,=1
C,v = k−1

k∑
,=1

C,Mv = lim
k→∞

k−1
k∑

,=1
C,Mv ∈ D (48)

by [61, p. 10, Theorem 3.1].

4.3. The Vose-Liepins version of mutation-crossover

Vose [68, Section 5.4, p. 44] describes one cycle of the classical simple genetic
algorithm as follows: (a) obtain two parents by the selection function, (b) mutate
the parents by the mutation function, (c) produce the mutated parent’s child by the
crossover function, (d) put the child into the next generation, (e) if the next generation
contains less than r members, go to step (a). r is the population size. The acronym
VLGA shall refer to a genetic algorithm whose cycle is described by steps (a)–(e) as
above. See also the analysis by Vose and Liepins [69].

The procedure of pairing creatures to produce oPspring in the VLGA produces one
child at a time while regular crossover as de)ned in Section 2.4, in [56, Section
5.2.1], [62, Section 2.2] following, e.g., Goldberg’s book [23, pp. 16–17] produces two
oPspring from two parents in a single crossover-step. Mitchell [42, p. 139, line 19]
writes that the procedural diPerence was assumed for reason of mathematical simplicity.
In what follows, we shall show that the VLGA can be easily embedded into the model
developed here and in [61,62].

If r∈N denotes the )nite population size which corresponds to a computer-
implementation of a VLGA, then set s= 2 · r. Suppose that f : C→R+

∗ is the origi-
nally given )tness function in the sense of [68, p. 25]. We need not assume the f is
injective as in all of [68].

Let p=(c1; c2; : : : ; cs); q=(d1; d2; : : : ; ds)∈˝ be populations, c4; d4∈C, 1646s=2r.
In order to embed the VLGA into the model developed here, we modify the selec-
tion procedure given by the de)nition prior to line (33) in such a way that creatures
for the next population q are selected only from positions 4 in the present popula-
tion p where 4 is even. That means: one only selects creatures from positions 4 in
J = 2N∩ [2; s]. This yields a selection operator Sf

t whose stochastic matrix is given as
follows:

〈q; Sf
t p〉 =

( ∑
4′∈J

ft(c4′ ; p)
)−s

·
s∏

4=1
#(d4; p ∧ J )ft(d4; p): (49)

Now, we can restate the de)nition of one cycle of the VLGA as follows:
1. Given p∈˝, apply proportional )tness selection 9 as de)ned in line (49). The )tness

function f can be scaled or unscaled (g(t) = 1, cf. Eq. (31)). Line (49) shows that

9 We can also use other selection methods here such as tournament )tness selection involving only the
c24 in p, 1646r. See [25,40,41,61,54, p. 78; p. 170; p. 59; p. 153; Section 7.2].
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this step ePectively creates r pairs of “parents” from r creatures (c2; c4; : : : ; c2s) in
p. The creatures (c1; c2; : : : ; c2s−1) in p are disregarded.

2. Apply the mutation operator to the population. One choice for a mutation operator
is multiple-spot mutation M (m)

�0 ;�. Vose [68, p. 42] allows for additional choices for
mutation. We leave a discussion of these possibilities to the reader.

3. Apply regular crossover (or gene-lottery crossover as in Section 2.5) to the popu-
lation obtained after the mutation operation.

Note that the above list describes a mathematical model for the VLGA and not a proposed
method of implementation. After every cycle, the next )tness selection step (1) will
disregard the creatures c24−1 for 1646r obtained through mutation-crossover in the
previous cycle and randomly arrange the chosen parents. Thus, we do not have to
perform a “selection step from the children” as in [68, p. 43, line 25]. The algorithm
whose model is described in steps (1)–(3) above is in complete accordance with the
de)nition of the VLGA.

The new model for the VLGA presented in steps (1)–(3) above allows for applica-
tion/adaptation of the results in [56], their extensions as discussed in Section 4.1 and
the main results of this work in Section 3.3. A detailed mathematical treatment incor-
porating both de)nitions of the selection operator given in lines (33) and (49) can be
found in [57,59,60]. In particular, [56, Theorems 8.2, 8.3] and its extension discussed
in Section 4.1 shows ergodicity but non-convergence to global optima for the VLGA

with strictly positive mutation limit which includes the case of the simple VLGA. On
the other hand, [56, Theorems 8.5, 8.6] and their extensions discussed in Section 4.1 as
well as Theorem 3.3.2, Corollaries 3.3.3 and 3.3.4 show convergence to global optima
of the appropriately scaled VLGA.

5. Appendix: examples for stochastic matrices modeling genetic operators

This appendix is included here in order to address the concerns of one of the ref-
erees and possibly to ease accessibility to the overall mathematical framework used
in this exhibition. In what follows, we shall explicitly list the setup via tensor-
string representation of populations and corresponding stochastic matrices that model
some of the genetic operators discussed above. We do this for the smallest rea-
sonable setting. In fact, we set �= 2 and, consequently, �0 = 1, ‘= 2 and s= 2.
Then L= 4.

5.1. Tensor-string representation of populations

Let the alphabet be given by A= {ô; |̂}. Then

V1 = C · ô + C · |̂ = {x0 · ô + x1 · |̂ : x0;1 ∈ C} = C2 = C�: (50)

Here, base vector ô∈V1 is identi)ed with (1; 0)∗∈C2 and base vector |̂∈V1 is identi-
)ed with (0; 1)∗∈C2. We have 4 = �‘ possible creatures: (ô; ô), (ô; |̂), (|̂; ô) and (|̂; |̂).
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And we have the following 16 = �L populations:

p0 = ((ô; ô); (ô; ô)); p1 = ((ô; ô); (ô; |̂));
p2 = ((ô; ô); (|̂; ô)); p3 = ((ô; ô); (|̂; |̂));
p4 = ((ô; |̂); (ô; ô)); p5 = ((ô; |̂); (ô; |̂));
p6 = ((ô; |̂); (|̂; ô)); p7 = ((ô; |̂); (|̂; |̂));
p8 = ((|̂; ô); (ô; ô)); p9 = ((|̂; ô); (ô; |̂));
p10 = ((|̂; ô); (|̂; ô)); p11 = ((|̂; ô); (|̂; |̂));
p12 = ((|̂; |̂); (ô; ô)); p13 = ((|̂; |̂); (ô; |̂));
p14 = ((|̂; |̂); (|̂; ô)); p15 = ((|̂; |̂); (|̂; |̂)):

p0, p5, p10 and p15 are uniform populations. A general element of V̋ =C16 is now
simply given by

v = v0p0 + v1p1 + v2p2 + v3p3 + v4p4 + v5p5 + v6p6 + v7p7

+v8p8 + v9p9 + v10p10 + v11p11 + v12p12 + v13p13 + v14p14 + v15p15

= (v0; v1; : : : ; v15)∗; (51)

where vk ∈C, 06k615. Note that the summation in line (51) understands the pk as
pure symbols. In particular, no additions or other operations involving the four compo-
nents of pk in A are performed. The latter identity in line (51) is by canonical iden-
ti)cation V̋ =C16. Thus, e.g., p0∈V̋ is canonically identi)ed with (1; 0; : : : ; 0)∗∈C16.
By de)nition, we have 〈pi; pk〉= �i; k , 06i; k615, and the inner product 〈·; ·〉 is
conjugate-linear in the )rst argument. We have, e= 1

16

∑15
k=0 pk ∈S̋ . An arbitrary

element of U is given by

v0p0 + v5p5 + v10p10 + v15p15 ∈ U: (52)

In particular, p0 =p0 +0p5 +0p10 +0p15∈U. The probability vector which represents
equal probability over only uniform populations is given by

1
4
p0 +

1
4
p5 +

1
4
p10 +

1
4
p15 ∈ S˝ ∩U: (53)

We note that pk ∈ V̋ , since pk is a base vector in V̋ , 06k615. Thus, the notations
˝⊂ V̋ , ˝∩U= {p0; p5; p10; p15} and ˝\U are justi)ed.

In regard to the tensor-product representation of V̋ =V1 ⊗V1 ⊗V1 ⊗V1 stated in
line (7), we list the following examples of tensor representations of populations and
base vectors of V̋ in terms of base vectors ô; |̂∈V1:

p0 = (ô) ⊗ (ô) ⊗ (ô) ⊗ (ô) = ô⊗ ô⊗ ô⊗ ô and p11 = |̂ ⊗ ô⊗ |̂ ⊗ |̂: (54)
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Let us compute GFVu for some populations

GFVu(p0) = (ô; ô) ∈ V1 ×V1 = V2
1; GFVu(p11) =

(
|̂; 1

2
ô +

1
2
|̂
)

:

(55)

Any linear operator X acting on V̋ is given by a 16× 16 matrix (Xi; k)15
i; k=0 such that

Xi; k = 〈pi; Xpk〉.

5.2. Some auxiliary matrices

We note that the matrix Pe is given in the setting of the present example by the
16× 16 matrix with constant entries 1

16 . PU is given by the diagonal 16× 16 matrix
whose diagonal equals (1; 0; 0; 0; 0; 1; 0; 0; 0; 0; 1; 0; 0; 0; 0; 1).

5.3. Example for the mutation matrix

As discussed in Section 2.1, line (10), the spot mutation matrix m(1)
�0 is given by

the unitary, stochastic Qip matrix f that acts on V1 =C2. We can assume any �0 or )x
�0 = 1.

Let, as usual, � denote the mutation rate and let �̂= 1−�. The following computation
shows the determination of the (0; 2)- and (2; 11)-coeNcients of the mutation matrix
M (m)

1;� in accordance with Proposition 2.2.2.1:

〈p0; M
(m)
1;� p2〉 = �!(p0 ;p2) · �̂L−!(p0 ;p2) = � · �̂3 and

〈p2; M
(m)
1;� p11〉 = �!(p2 ;p11) · �̂L−!(p2 ;p11) = �2 · �̂2: (56)

Altogether, M (m)
1;� is given as follows:




�̂4 ��̂3 ��̂3 �2�̂2 ��̂3 �2�̂2 �2�̂2 �3�̂ ��̂3 �2�̂2 �2�̂2 �3�̂ �2�̂2 �3�̂ �3�̂ �4

��̂3 �̂4 �2�̂2 ��̂3 �2�̂2 ��̂3 �3�̂ �2�̂2 �2�̂2 ��̂3 �3�̂ �2�̂2 �3�̂ �2�̂2 �4 �3�̂
��̂3 �2�̂2 �̂4 ��̂3 �2�̂2 �3�̂ ��̂3 �2�̂2 �2�̂2 �3�̂ ��̂3 �2�̂2 �3�̂ �4 �2�̂2 �3�̂
�2�̂2 ��̂3 ��̂3 �̂4 �3�̂ �2�̂2 �2�̂2 ��̂3 �3�̂ �2�̂2 �2�̂2 ��̂3 �4 �3�̂ �3�̂ �2�̂2

��̂3 �2�̂2 �2�̂2 �3�̂ �̂4 ��̂3 ��̂3 �2�̂2 �2�̂2 �3�̂ �3�̂ �4 ��̂3 �2�̂2 �2�̂2 �3�̂
�2�̂2 ��̂3 �3�̂ �2�̂2 ��̂3 �̂4 �2�̂2 ��̂3 �3�̂ �2�̂2 �4 �3�̂ �2�̂2 ��̂3 �3�̂ �2�̂2

�2�̂2 �3�̂ ��̂3 �2�̂2 ��̂3 �2�̂2 �̂4 ��̂3 �3�̂ �4 �2�̂2 �3�̂ �2�̂2 �3�̂ ��̂3 �2�̂2

�3�̂ �2�̂2 �2�̂2 ��̂3 �2�̂2 ��̂3 ��̂3 �̂4 �4 �3�̂ �3�̂ �2�̂2 �3�̂ �2�̂2 �2�̂2 ��̂3

��̂3 �2�̂2 �2�̂2 �3�̂ �2�̂2 �3�̂ �3�̂ �4 �̂4 ��̂3 ��̂3 �2�̂2 ��̂3 �2�̂2 �2�̂2 �3�̂
�2�̂2 ��̂3 �3�̂ �2�̂2 �3�̂ �2�̂2 �4 �3�̂ ��̂3 �̂4 �2�̂2 ��̂3 �2�̂2 ��̂3 �3�̂ �2�̂2

�2�̂2 �3�̂ ��̂3 �2�̂2 �3�̂ �4 �2�̂2 �3�̂ ��̂3 �2�̂2 �̂4 ��̂3 �2�̂2 �3�̂ ��̂3 �2�̂2

�3�̂ �2�̂2 �2�̂2 ��̂3 �4 �3�̂ �3�̂ �2�̂2 �2�̂2 ��̂3 ��̂3 �̂4 �3�̂ �2�̂2 �2�̂2 ��̂3

�2�̂2 �3�̂ �3�̂ �4 ��̂3 �2�̂2 �2�̂2 �3�̂ ��̂3 �2�̂2 �2�̂2 �3�̂ �̂4 ��̂3 ��̂3 �2�̂2

�3�̂ �2�̂2 �4 �3�̂ �2�̂2 ��̂3 �3�̂ �2�̂2 �2�̂2 ��̂3 �3�̂ �2�̂2 ��̂3 �̂4 �2�̂2 ��̂3

�3�̂ �4 �2�̂2 �3�̂ �2�̂2 �3�̂ ��̂3 �2�̂2 �2�̂2 �3�̂ ��̂3 �2�̂2 ��̂3 �2�̂2 �̂4 ��̂3

�4 �3�̂ �3�̂ �2�̂2 �3�̂ �2�̂2 �2�̂2 ��̂3 �3�̂ �2�̂2 �2�̂2 ��̂3 �2�̂2 ��̂3 ��̂3 �̂4




:
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Note that if M (m)
1;� is seen as a 2× 2 matrix of 8× 8 matrices, then the same 8× 8

matrix M8 is multiplied by �̂ for the (0; 0)- and (1; 1)-components and by � for the
(0; 1)- and (1; 0)-components of M (m)

1;� . This corresponds to one of the tensor-factors

((1− �)1+ �m(1)
�0 ) = �̂1+ �f occurring in Proposition 2.2.2.2. The matrix M8 is given

by the last tensor factor in the formula stated in line (57) below. In fact, we have the
following tensor-product decomposition of M (m)

1;� :

M (m)
1;� = (�̂1 + �f) ⊗M8

=
(

�̂ �
� �̂

)
⊗




�̂3 ��̂2 ��̂2 �2�̂ ��̂2 �2�̂ �2�̂ �3

��̂2 �̂3 �2�̂ ��̂2 �2�̂ ��̂2 �3 �2�̂

��̂2 �2�̂ �̂3 ��̂2 �2�̂ �3 ��̂2 �2�̂

�2�̂ ��̂2 ��̂2 �̂3 �3 �2�̂ �2�̂ ��̂2

��̂2 �2�̂ �2�̂ �3 �̂3 ��̂2 ��̂2 �2�̂

�2�̂ ��̂2 �3 �2�̂ ��̂2 �̂3 �2�̂ ��̂2

�2�̂ �3 ��̂2 �2�̂ ��̂2 �2�̂ �̂3 ��̂2

�3 �2�̂ �2�̂ ��̂2 �2�̂ ��̂2 ��̂2 �̂3




: (57)

This can be continued to obtain the tensor-product decomposition of M (m)
1;� in Proposi-

tion 2.2.2.2. To illustrate how Proposition 2.2.2.2 and the formulas in lines (18), (20),
(22) and (25) can be checked, let us repeat the computation carried out in line (58)
using the tensor-product decomposition of M (m)

1;� , cf. Proposition 2.2.2.2. Then we have

〈ô⊗ ô⊗ ô⊗ ô; ((�̂1 + �f) ⊗ (�̂1 + �f) ⊗ (�̂1 + �f) ⊗ (�̂1 + �f))(ô⊗ ô⊗ |̂ ⊗ ô)〉
= 〈ô; (�̂1 + �f)ô〉 · 〈ô; (�̂1 + �f)ô〉 · 〈ô; (�̂1 + �f)|̂〉 · 〈ô; (�̂1 + �f)ô〉
= �̂2 · � · �̂

and

〈ô⊗ ô⊗ |̂ ⊗ ô; ((�̂1 + �f) ⊗ (�̂1 + �f) ⊗ (�̂1 + �f) ⊗ (�̂1 + �f))(|̂ ⊗ ô⊗ |̂ ⊗ |̂)〉
= 〈ô; (�̂1 + �f)|̂〉 · 〈ô; (�̂1 + �f)ô〉 · 〈|̂; (�̂1 + �f)|̂〉 · 〈ô; (�̂1 + �f)|̂〉
= � · �̂2 · �: (58)

5.4. Examples for the crossover matrix

We shall list below the elementary one-cutpoint crossover matrices C(1; 1) and
C(1; 2) in regard to the example setting established in Section 5.1 above and De)nition
2.4.1. The reader may then easily synthesize the crossover operators SC(1) = 1

2 (C(1; 1)+
C(1; 2)) in the sense of line (16) and C(1)

reg )(�) in the sense of De)nition 2.4.2 and
line (18).
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The elementary one-cutpoint crossover matrix C(1; 1) which is unitary and stochastic
is given as follows:




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




:

Similarly, the elementary one-cutpoint crossover matrix C(1; 2) is given as follows:




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




:
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5.5. Example for the ‘take-the-best‘ selection matrix

We )nally note that for the )tness function de)ned in [56, p. 55, Section 8.3,
Example 1] the take-the-best selection matrix limt→∞ Sf

t is listed and permanently
available online in a Mathematica notebook in [54].

6. Conclusion

The main results of this exposition, Theorem 3.3.2, Corollaries 3.3.3 and 3.3.4
achieve the following goals:
1. A general-purpose, scaled genetic algorithm is described that converges asymptot-

ically to global optima. There are no special requirements in regard to the )tness
function or the )tness landscape. The size s of populations that are strings over an
arbitrary-size alphabet can stay small and can be set as low as ‘+1 where ‘ is the
length of the genome of creatures (candidate solutions).

2. Explicit schedules for scaled mutation, crossover and selection are given as follows:
• Annealing schedule for the mutation rate �(t), t∈N∩ [t0;∞), for multiple-spot

mutation.
�(t) =(M · t−1=(,0 ‘s)¡ 1

2 , where t0∈N, (M ∈R+
∗ , ,0∈[1;∞) can be chosen

(see Theorem 3.2.1).
• Annealing schedule for the crossover rate �t .

Rational generalized crossover: �t =(C�(t),0 ‘+1, where (C∈(0; 2,0 ‘+1] can
be chosen (see Theorem 3.3.2).
Regular pair-wise crossover, or gene-lottery crossover: �t =(C�(t)1=m where

both (C∈(0; 21=m] and m∈[1;∞) can be chosen (see Corollaries 3.3.3 and
3.3.4).

• Exponentiation schedules fg(t) for the )tness function f and scaling of the
corresponding proportional )tness selection operator Sf

t .
g(t) =B log(t − t0 + 2) where 1¡sB log(%2(f)) and B¿0 can be chosen.
%2(f) given in line (30) is easy to determine, if )tness selection is based

upon scaled, i.e., exponentiated rank.
3. The genetic algorithm presented in this exposition is well suited for optimization

in a compact domain of Rk , k∈N, in particular, since mutation incorporates a
neighborhood-based search.

4. The genetic algorithm presented in this exposition satis)es all goals (1)–(4) for-
mulated by Davis and Principe in [18, p. 270] and is much in the spirit of the
simulated annealing algorithm.

5. The two major shortcomings of [56, Theorem 8.6, Remark 8.7] are removed:
mutation need not commute with crossover anymore and the )tness function need
not have a sole maximum.

The extension of the theory of genetic algorithms [56] presented in this exposition
contains besides the above strong convergence results the following new elements: im-
proved spectral estimates for one-cutpoint regular crossover (see Section 2.4) which
show one-to-one correspondence with results in Koehler’s Theorem [31, p. 419]; iden-
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tities for stochastic matrices that model two-cutpoint and uniform regular crossover
and act on the free vector space over the tensor-string representation for populations
which allows for simple veri)cation of commutation relation with mutation and spec-
tral estimates (see Section 2.4); an example of an asymmetric crossover matrix that
does not commute with mutation (see Section 2.5); extension of various results of [56]
to the situation of asymmetric crossover matrices (see Section 4.1); embedding of the
Vose–Liepins crossover-mutation method into the model based upon the tensor-string
representation for populations (see Section 4.3); a simpler approach to the mutation
Qow equation (see Proposition 2.2.3); a simpli)ed and more general approach to weak
ergodicity based upon annealing the mutation rate (see Theorem 3.2.1); and, a sim-
pli)ed and strengthened approach to convergence to uniform populations of genetic
algorithms in the zero mutation-rate limit (see Theorem 3.1.1)).
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