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Abstract 

This paper considers software faults identification along the phases from design to testing and debugging. The following 
subjects are reviewed and extended: bio-inspired concepts for structuring resilient systems, genetic strategies in test data 
generation, Ant Colony Optimisation (ACO) algorithms for data flow analyzing and testing, artificial immune systems 
(AIS) based mutation testing, and fault tolerant approaches inspired by immunity principles in order to increase the software 
dependability. Data collected during software development cycle can be used to understand the software project evolution 
and its reliability. 
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1. Introduction 

Software testing is an important activity in order to achieve and asses the quality of software 
components/systems, as requested by standards [1, 2]. Quality improvements are obtained through a test-
recognize defects-fix cycle during software development. Practitioners use also verification and validation as 
similar concepts to software testing. As Naik & Tripathy say [3], the verification activities are those that check 
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the correctness of a software development phase, while validation activities are related on customer 
requirements/expectations about the final product. Also, there is a major difference among testing (the 
objective is to find the defect) and debugging (the objective is to find the cause of the defect, and remove it.  

Software testing deals with the following terms, with apparently similar meaning, but with important 
differences among them [4-6]: fault, error, failure, and defect. Fault is a defect within the system (software 
bug, hardware fault etc.). An error is a deviation from the required operation of system or subsystem, as a 
consequence of exiting of one or more faults. However, some faults may stay dormant for a long time before 
generating errors. The presence of an error might cause a whole system to deviate from its required operation, 
generating a failure. The objective of software testing is to produce low-risk software (high reliable) using a 
small number of test cases, where in a simplified model, a test case consists of a pair of (input, expected 
output). The output may depend not only on input, but also on the system state.  

Testing state-oriented software systems is more challenging, the expected output depending both on the 
current state and the input, which is a similar to biological systems behaviour. A class of state-oriented 
software is those of resilient software systems which behave like natural immune systems by tolerating faults 
and continue to operate without any failure [7].  

In practice, there are at least three levels of software testing [4, 5]: unit testing (by programmers working on 
classes, methods, functions or procedures, in isolation), integration testing (more modules are integrated and 
tested by both software developers and integration test engineers), system testing (including functionality 
testing, load testing, stress testing, robustness testing, performance testing, security testing, and dependability 
testing (including reliability assessment). Another important level of testing deals with system acceptance by 
customer (a testing level oriented to quality measurement, more than searching for defects) and can be 
complement to validation activities. The first two levels are important for software developers 
(programmers/software designers) because they may introduce additional details into the system, which are not 
covered by requirements and functional specifications. Testing is conducted also oriented through operational 
profiles (ways of software operation by users), and based on fault classification (initialization/logic/interface) 
by error guessing, fault seeding and mutation analysis. A complete testing should consider coverage analysis 
taking into account statements, branches, paths, including data-flow paths etc. 

Software testing can be conducted through fuzzy approaches related to the fault classification (some faults 
belonging to more than one class), or multilevel input domain partitioning (some inputs belonging to more than 
one input set), as Madsen et al. described in [8, 9]. 

In order to increase the speed in test cases generation, software engineers and computer scientists propose 
the usage of various strategies, some of them inspired by nature: genetic algorithms [10-13], evolutionary 
strategies [14-19], ant-colony systems [20-29], artificial immune systems [30-32], and other methods [33-35].  

Test data generation consists of generating inputs for the program/system under test in order to evaluate its 
internal or external behaviour. Automated test generation is a reality nowadays and optimization methods are 
used to improve the fitness performance (see [14, 19, 20, 23, 27]).  

The rest of the paper is organized as follows. Section 2 presents bio-inspired concepts useful to describe 
genetic algorithms for software testing, and artificial immune systems for fault identification and debugging. 
Evolutionary strategies, including genetic approaches are described in the third section. The fourth section 
discusses on ant colony optimization strategies for software testing. Artificial immune systems are considered 
in the fifth section. The last section is dedicated to conclusions.  

2. Bio-inspired concepts 

The motivation for using bio-inspired methodologies to software development, testing and debugging comes 
from the requirements of designing resilient software. Some factors that affect the software resilience and the 
contexts in which programs might run are related to: the complexity level of software systems, the size of 
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infrastructure under interconnectivity, computer network availability and security, the reliability of open source 
software, the usage of commercial off-the-shelf software, the rate of software renewal (or the retired software), 
insufficient testing of the reused software etc. 

According to Autili et al [7], biological immunity and software resilience are strong related because the 
resilient software architecture is based on fundamental concepts, principles and theories developed around the 
immune systems, those which are self-protected against pathogens being able both to discover and to remove 
infectious agents. The main elements of a biological immune system are [7, 30]: Lymphocytes (TCells: 
TKillers/THelpers and BCells), Memory Cells (the immunological memory), MHC molecules (combined with 
processed antigens recognized by TKillers), Antigen Presenting Cells (APC) or macrophages, and antibodies 
(produced by BCells as immune response to an APC presented antigen). THelpers are specialized in 
recognition of antigens (in order to prevent infections/faults) and TKillers are able to destroy the infectious 
structures. These elements where used by scientist to design Artificial Immune Systems (AIS) in order to be 
used in pattern recognition, anomalies discovery etc. Such tasks are possible through immune algorithms based 
on clonal selection, negative selection, or immune networks theory. 

Another motivation in using bio-inspired concepts in software testing comes from evolutionary theories: 
from an initial population, through evolutionary operators (mutation, crossover etc.) and selection (based on 
some fitness measure), after a number of steps, a final population is obtained. 

Finally, many optimization algorithms were inspired from nature [33]: terrain exploring, in order to find 
food: ant and bee algorithms, cuckoo search, movement of bats, behaviour of fireflies, swarm optimization etc.  

In the following, in the context of software testing only evolutionary strategies and genetic algorithms, ant 
colony optimization, and immune strategies will be considered. 

3. Evolutionary strategies 

Evolutionary algorithms are population-based meta-heuristic computational solutions inspired by 
mechanism of biological evolution like reproduction, mutation, recombination and selection. The most related 
algorithms to the biological models of computing are genetic algorithms that make use of inheritance, mutation, 
selection, and crossover. However, general evolutionary operators, and recent evolutionary strategies converge 
to a powerful evolutionary computation paradigm. The general scheme of any evolutionary algorithm is based 
on the following steps: 

1. Initialize the population P (usually by random candidates); 
2. Evaluate (through a metric based procedure) each candidate from P; 
3. While a termination criteria is not satisfied do: 
      3a) Select parents; 
      3b) Recombine pairs of parents; 
      3c) Mutate the results obtained through step 3b; 
      3d) Evaluate (through a metric based procedure) each offspring obtained through 3c; 
      3e) Select the best evaluated candidates and update the population P; 
4. Output the obtained population. 

An evolutionary algorithm for software testing should evolve as a number of suitable test cases, as initial 
population. The evaluation metric can use a fitness function. Let be n the total number of domain regions / 
testing paths, k be the number of regions/paths covered by a test, and then the test case associated 
fitness/performance is k/n. The recombination and mutation operators applied to test case work like those 
applied to sequences/strings and depend only on the test case architectural model (representation). 

For optimization is considered the following set of attributes: the maximum number of defect detection 
capability (the detect-ability index), the minimum test design efforts/cost (mainly for the initial population), the 
largest number of domain-data regions or control flow paths covered by the testing suite etc. Hence the 
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software testing optimization can be viewed and solved like a multi-objective optimization problem, or 
multiple criteria ranking problem. Both numeric and linguistic variable based algorithms can be used for test 
cases ranking.  

In some cases, the similarity index among test cases can be used. Based on the normalized matrix associated 
to the population P, according to the above attributes, a distance (Euclidian, Hamming etc.) matrix D can be 
computed (dij is the distance between individuals i and j). Then the distance of an individual i in the population 
is the sum of distances on the row i, and the quality index of P can be given as the sum of all elements of D. In 
this way, is easy to extend the approach to a multi-population based algorithm, where populations evolve in 
parallel, and finally the most suited population of test cases should be selected. 

4. ACO strategies 

An ACO algorithm can be used for optimal path identification and is a probabilistic technique for exploring 
graphs according to some well defined objective. 

Such an approach belongs to structural testing (white box) which addresses the following types of testing: 
data flow testing, control flow/coverage testing, basic path testing, and loop testing. Data flow testing focuses 
on the points at which variables receive values (assignment operator or input data) and the points at which these 
values are used (or referenced). By data flow testing can be identified improper use of data values (data flow 
anomalies) due to coding errors.  

The ACO algorithm is working in two modes, depending on the moving direction of ants: forward (from 
source to destination) and backward (from food to nest). The paths under investigation belongs to the control 
flow graph (CFG) associated to the software under testing. A promised algorithm was described by Mann and 
Sangwan [21].  

Based on ants movement rules and the transformation relationship between ant colony paths and test cases, 
Yang et al [29] make effective an ant colony algorithm for iterative optimization of software test cases. 

Any ACO algorithm iteratively performs a loop based on the following procedures: the solution 
constructor/updater (iterative/evolutionary operator), and a procedure to update the pheromone trails depending 
on a parameter modeling the rate of pheromone evaporation. The identified faulting paths will be used to 
efficiently debug the code. 

5. Artificial immune strategies 

Artificial Immune Systems should offer both innate (predefined) and adaptive (through learning) immunity. 
Based on clonal selection (CS) theory, proposed by Burnet [36], the CLONALG is an algorithm proposed by 
Castro and Zuben [37], which generates a population on N antibodies, each specifying a random solution for 
the optimization process (in our case the test planning optimization, test case selection and prioritization etc.), 
and at every iteration, some of the best (according to a specific metric/fitness indicator) existing antibodies are 
selected, cloned (proliferated) and mutated to form a new candidate population. The original population is 
enriched by including a percentage of the best new antibodies, while a percentage of the worst antibodies are 
eliminated. There are possible many variations of CLONALG in order to cover some extensions like polyclonal 
strategies, new immunity operators to prepare the immune response, new learning operators, new affinity 
measures etc.).  

The negative selection theory provides a mechanism to protect the system against self-reactive entities (for 
human body those TCells that reacts against self-proteins are destroyed, the remaining TCells, called matured, 
are free to circulate throughout the body in order to perform immunological functions and protecting the body 
against external antigens). The first negative selection (NS) algorithm was proposed by Forrest et al [38], 
generating a set of detectors (by random generation, and removing such detectors that recognized trained self-
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data) and use these detectors to anomalies identification. In general, any NS algorithm consists of three steps: 
self-data definition, candidate detectors generation, usage of the affinity threshold to select those detectors to be 
used for immunity assurance services. 

The immune network theory, proposed by Jerne [39], motivated researchers to use BCells (as vertices) based 
network models to solve a large plethora of problems by cloning and mutation processes at vertex levels. 

Various hybridization techniques there exist. These approaches include soft computing techniques like: 
artificial neural networks, fuzzy systems, AIS, evolutionary computation and genetic algorithms, including 
gene expression programming. Main applications of immune network algorithms are connected to the 
following fields: data analysis, clustering, anomaly detection, machine learning, optimization, robots, computer 
security etc. 

Clonal selection can be used to test generation (a large collection of test cases can be obtained by mutation 
operator). The size of collection, considered like detectors, can be reduced by simulate a negative selection to 
eliminate those detectors which are not able to detect faults. The remaining detectors will be cloned and 
mutated, evaluated and used to create a new population of detectors. In this way a mixed CS + NS approach is 
obtained. Another application of AIS in software testing may consider the mutation testing and extend the 
techniques proposed in [12] and [13]. 

Based on the good behaviour of AIS in optimization, the evolutionary or ant optimization algorithms used in 
software testing optimization and prioritization can be modified in order to use immune operators and affinity 
metrics. 

6. Conclusions 

This paper considers software testing phase and investigates on the applicability of nature inspired 
approaches to test cases generation, test prioritization, and test planning optimization. Software fault 
identification can be treated as anomalies identification when using artificial immune systems. The software 
reliability and dependability can be improved by optimized software testing and adequate debugging. 
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